

# Operational Description

FCC ID: PN3Y72148-1

## 1 GENERAL DESCRIPTION

The EUT consists of three products EMTR, RMTR, and the HHTR.

All three products are capable of communicating with each other, so by necessity all RF parameters such as modulation type, data rate, channel frequencies, etc. are the same in each. During a communications session, one radio is the master and one radio is the slave. Master radios determine the hop sequence, while slave radios follow.

In the case of an EMTR <> RMTR session, the EMTR is the master. For an EMTR <> HHTR session, the HHTR is the master, and for a RMTR <> HHTR session, the HHTR is the master. In no case is the RMTR a master.

The antenna is permanently attached to the PCB and the Antenna is internal on all three EUT's. Therefore it meets the 15.203 Requirement.

**Deleted: ¶**

### 1.1 System overview

The RF link between TWACS transceivers uses a range of frequencies between 902 MHz and 928 MHz. This range is divided into 79 channels. Fifty channels are needed to satisfy the FCC's minimum channel set requirements, so 50 of the 79 were chosen for use. Five of these 50 channels are reserved for link acquisition and the other 45 are used for link maintenance (packets transmitted after a link has been acquired). The acquisition channels are spaced evenly throughout the upper end of the 50-channel set. The 45 link maintenance channels are used in a random manner while a link is active between transceivers. The radio transceivers are equipped with folded dipole antennas. Folded dipoles were chosen because of their broader radiation pattern as compared with regular dipoles, this guarantees a better radio coverage under a variety of field installation conditions utilities may find. Operationally, TWACS transceivers can play one of two roles during an RF session: A transceiver that requests a link is the *requestor* transceiver; a transceiver that replies to that request is an *acceptor* transceiver. TWACS transceivers can be characterized by their roles as shown in Table 1:

| Table 1 – Roles of DCSI's Radio Transceivers |           |                         |                     |
|----------------------------------------------|-----------|-------------------------|---------------------|
| Transceiver                                  | Type      | Can request a link from | Can grant a link to |
| EMTR                                         | Acceptor  | None                    | an RMTR or an HHTR  |
| RMTR                                         | Requestor | an EMTR or an HHTR      | None                |
| HHTR                                         | Both      | an EMTR                 | an RMTR             |

As can be seen, EMTRs never request a link; they are always acceptor transceivers. By contrast, RMTRs never grant a link; they are always requestor transceivers. The HHTR, since it must be able to communicate with both EMTRs and RMTRs, can act as either an acceptor transceiver (with an RMTR) or a requestor transceiver (with an EMTR). The reason this distinction is important is that the acceptor transceiver always controls the channels hop sequence. This means that an EMTR always controls the hop sequence. An HHTR controls the sequence when communicating with an RMTR. An RMTR never controls the hop sequence. Bear in mind that this distinction between acceptor and requestor transceivers is strictly operational. It is not a functional difference because the same RF transceiver and RF engine code are used on all transceivers.

**Deleted: ¶**

The RMTR is a battery-powered device. In order to maximize battery life, the RMTR is powered off as much as possible. The requirement to maximize battery life drives a number of other factors in the system. One implication of this is that the normal Master/Slave relationship, evident throughout the design, which begins at the CCE, now ends at the EMTR. The EMTR cannot wake up the RMTR to establish a session, but can take control of a session once it is established by the RMTR. The RMTR is designed to wake up once an hour and create a session with an EMTR. Any unknown data is uploaded at that time from the RMTR to the EMTR. At any given time, the EMTR knows nearly everything the RMTR knows, plus it maintains engineering data to describe the quality of the radio link. The CCE may access this data upon demand. The EMTR maintains an "acquisition list" table. Each RMTR is categorized as belonging to a certain type of service. The various types are: Electric, Water, Gas, and Propane. A number of ports are supported for each service type. The CCE reads data from the appropriate port in order to obtain information.

The RMTR unit wakes up once an hour to take a reading from a wired encoder. The encoder's reading as well as the unit's serial number determines when the RMTR will attempt to transfer that reading via RF to an EMTR. At the calculated time interval (anywhere from 10 to 25 minutes past the above reading time), the RMTR wakes up again and attempts to contact an EMTR. If the contact is successful, the data is transferred. This occurs on multiple channels and is less than 1 second in total on-air time. The system does not have any retry capability \*during\* a session, so the session time can be less than 1 second total in the event of a data error in a packet.

If the contact is not successful or a data error occurs, the RMTR sleeps for 10 minutes and tries again. There are at most 4 attempts to contact an EMTR during any given hour. There are no ongoing sessions. All sessions are less than one second in length, and always occur over multiple channels. It is not possible to violate the 400mS in 20 second rule because the hop sequence never repeats during a session.

## 1.2 System Receiver Input Bandwidth

System Receiver Input Bandwidth: The receiver employs a ceramic filter to limit the receive noise bandwidth to approximately 1.5 times the width of the transmitted signal. This is a practical value based on component tolerances and allowances for drift.

Deleted: ¶  
¶

Formatted: Bullets and Numbering

## 1.3 System Receiver Hopping Capability

System Receiver Hopping Capability: Every transmitted packet from a master radio has a byte reserved for "next channel". The receiver uses this value to shift frequencies (channels) in synchronization with the master radio.

Deleted: ¶

Formatted: Bullets and Numbering

## 1.4 Section 15.247(g) and (h) Hopping Requirements

The synthesizer in the units is capable of tuning 79 channels in the 902-928 band, but only fifty channels are defined for communications (see the attached "DCSI Channel Allocation" table). Five of these are defined as acquisition channels (shown as "acquisition" on the attached "DCSI Channel Allocation" table).

Deleted: ¶

Formatted: Bullets and Numbering

A session begins by the transmission of a small "RTS" packet on the acquisition channel with the lowest RSSI. If no response is heard, the next acquisition channel is attempted. This is continued until acquisition occurs but stops prior to violation of the "400 milliseconds in 20 seconds rule" on any channel.

Initial hop\_index for the hop sequence is computed by the master with the following algorithm:

Hop\_index = Current\_Time MOD Max\_Frequency

Where Current\_Time increments by one every 2.5 seconds of real time, and Max\_Frequency is a constant and defined as 45. This computation results in a hop index of between 0 and 44, which is used as an index into the hop table (see the attached "Hop Table" definition). Once this initial point in the hop table is computed, subsequent packet exchanges simply increment this index by one for each exchange. Since a session can occur at any time, Current\_Time can be any value.

In practice there is never a session that is long enough to cause the hop\_index to roll back around to where it started. In fact, most complete sessions are less than a second long.

### DCSI Channel Allocation

| Channel | Frequency (Hz)  | Usage       | Channel | Frequency (Hz)  | Usage       |
|---------|-----------------|-------------|---------|-----------------|-------------|
| 3       | 903275806.45161 | session     | 65      | 923275806.45161 | session     |
| 4       | 903598387.09677 | session     | 66      | 923598387.09677 | session     |
| 5       | 903920967.74194 | session     | 67      | 923920967.74194 | session     |
| 6       | 904243548.38710 | session     | 68      | 924243548.38710 | acquisition |
| 7       | 904566129.03226 | session     | 69      | 924566129.03226 | session     |
| 8       | 904888709.67742 | session     | 70      | 924888709.67742 | session     |
| 9       | 905211290.32258 | session     | 71      | 925211290.32258 | session     |
| 10      | 905533870.96774 | session     | 72      | 925533870.96774 | session     |
| 11      | 905856451.61290 | session     | 73      | 925856451.61290 | session     |
| 12      | 906179032.25807 | session     | 74      | 926179032.25807 | session     |
| 13      | 906501612.90323 | session     | 75      | 926501612.90323 | session     |
| 41      | 915533870.96774 | acquisition | 76      | 926824193.54839 | session     |
| 42      | 915856451.61290 | session     | 77      | 927146774.19355 | acquisition |
| 43      | 916179032.25807 | session     | 78      | 927469354.83871 | session     |
| 44      | 916501612.90323 | session     | 79      | 927791935.48387 | session     |
| 45      | 916824193.54839 | session     |         |                 |             |
| 46      | 917146774.19355 | session     |         |                 |             |
| 47      | 917469354.83871 | session     |         |                 |             |
| 48      | 917791935.48387 | session     |         |                 |             |
| 49      | 918114516.12903 | session     |         |                 |             |
| 50      | 918437096.77419 | acquisition |         |                 |             |
| 51      | 918759677.41936 | session     |         |                 |             |
| 52      | 919082258.06452 | session     |         |                 |             |
| 53      | 919404838.70968 | session     |         |                 |             |
| 54      | 919727419.35484 | session     |         |                 |             |
| 55      | 920050000.00000 | session     |         |                 |             |
| 56      | 920372580.64516 | session     |         |                 |             |
| 57      | 920695161.29032 | session     |         |                 |             |
| 58      | 921017741.93548 | session     |         |                 |             |
| 59      | 921340322.58065 | acquisition |         |                 |             |
| 60      | 921662903.22581 | session     |         |                 |             |
| 61      | 921985483.87097 | session     |         |                 |             |
| 62      | 922308064.51613 | session     |         |                 |             |
| 63      | 922630645.16129 | session     |         |                 |             |
| 64      | 922953225.80645 | session     |         |                 |             |

## DCSI Hop Table

| Index | Channel |
|-------|---------|
| 0     | 42      |
| 1     | 52      |
| 2     | 11      |
| 3     | 5       |
| 4     | 72      |
| 5     | 76      |
| 6     | 64      |
| 7     | 79      |
| 8     | 47      |
| 9     | 74      |
| 10    | 10      |
| 11    | 67      |
| 12    | 7       |
| 13    | 78      |
| 14    | 4       |
| 15    | 49      |
| 16    | 43      |
| 17    | 51      |
| 18    | 48      |
| 19    | 66      |
| 20    | 6       |
| 21    | 44      |
| 22    | 65      |
| 23    | 12      |
| 24    | 71      |
| 25    | 8       |
| 26    | 57      |
| 27    | 13      |
| 28    | 73      |
| 29    | 45      |
| 30    | 60      |
| 31    | 63      |
| 32    | 3       |
| 33    | 75      |
| 34    | 61      |
| 35    | 46      |
| 36    | 70      |
| 37    | 58      |
| 38    | 9       |
| 39    | 53      |
| 40    | 56      |
| 41    | 62      |
| 42    | 54      |
| 42    | 69      |
| 44    | 55      |