

RADIOMETRICS
Midwest Corporation

Electromagnetic Compatibility Test Report

Tests Performed on a DCSI

Wireless Meter Reading System, Model EMTR

Radiometrics Document RP-5648

Product Detail:

FCC ID: PN3 PN3Y72129-1

Equipment type: 902.6 to 927.8 MHz Transceiver for Meter Reading.

Test Standards:

US CFR Title 47, Chapter I, FCC Part 15 Subpart C

FCC Part 15 CFR Title 47: 2002

Industry Canada RSS-210, Issue 5 as required for Category I Equipment

This report concerns: Original Grant

FCC Part 15.249

RSS-210 6.2.2 (m2)

Tests Performed For:

DCSI

5657 Campus Pkwy.

Hazelwood, MO 63042

Phone: (314) 895-6505

Test Facility:

Radiometrics Midwest Corporation

12 East Devonwood

Romeoville, IL 60446

Phone: (815) 293-0772

e-mail: info@radiomet.com

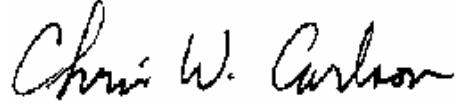
Test Date(s): (Month-Day-Year)

September 2 to November 14, 2005

Document RP-5648A Revisions:

Rev.	Issue Date	Affected Pages	Revised By
0	December 15, 2005		
1	December 19, 2005	1, 4	Joseph Strzelecki
2	December 22, 2005	7	Joseph Strzelecki

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report		
Equipment Tested (Company, Model, Product Name): DCSI, EMTR, UHF Transmitter	Document No.: RP-5648A Rev. 2	Page: 2 of 28


Table of Contents

1 ADMINISTRATIVE DATA	3
2 TEST SUMMARY AND RESULTS	3
2.1 RF Exposure Compliance Requirements	3
3 EQUIPMENT UNDER TEST (EUT) DETAILS	3
3.1 EUT Description	3
4 TESTED SYSTEM DETAILS	4
4.1 Tested System Configuration	4
4.2 Special Accessories	4
4.3 Equipment Modifications	4
5 TEST SPECIFICATIONS AND RELATED DOCUMENTS	5
6 RADIOMETRICS' TEST FACILITIES	5
7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	6
8 CERTIFICATION	6
9 TEST EQUIPMENT TABLE	6
10 TEST SECTIONS	6
10.1 AC Conducted Emissions; Section 15.207	7
Figure 1. Conducted Emissions Test Setup	8
10.2 Radiated Emissions	8
10.2.1 Radiated Emissions Field Strength Sample Calculation	9
Figure 2. Drawing of Radiated Emissions Setup	10
10.2.2 Spurious Radiated Emissions Test Results	11

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report		
Equipment Tested (Company, Model, Product Name): DCSI, EMTR, UHF Ttransmitter	Document No.: RP-5648A Rev. 2	Page: 3 of 28

1 ADMINISTRATIVE DATA

<p><i>Equipment Under Test:</i> A DCSI, Wireless Meter Reading System Model: EMTR The EMTR has a Serial Number: 6722806 This will be referred to as the EUT in this Report</p>	
Date EUT Received at Radiometrics: (Month-Day-Year) August 25, 2005	Test Date(s): (Month-Day-Year) September 2 to November 14, 2005
Test Report Written By: Joseph Strzelecki Senior EMC Engineer	Test Witnessed By: Not witnessed by personnel from DCSI
Radiometrics' Personnel Responsible for Test: Joseph Strzelecki Senior EMC Engineer NARTE EMC-000877-NE	Test Report Approved By Chris W. Carlson Director of Engineering NARTE EMC-000921-NE

2 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a Wireless Meter Reading System, Models EMTR and HHTR, manufactured by DCSI. The detailed test results are presented in a separate section. The following is a summary of the test results. This report is for a system of three transceivers.

Environmental Phenomena	Frequency Range	FCC Section	RSS-210 Section	Test Result
Radiated Emissions (Spurious & Fundamental)	30-9300 MHz	15.249	6.2.2 (m2)	Pass
AC Conducted Emissions	30-9300 MHz	15.249	6.6	Pass

2.1 RF Exposure Compliance Requirements

Since the power output is less than 10 mW, the EUT meets the FCC requirement for RF exposure and it is exempt from RSS-102. There are no power level adjustments and the antenna is permanently attached.

3 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a Wireless Meter Reading System, Models EMTR, manufactured by DCSI. The EUT was in good working condition during the tests, with no known defects.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report		
Equipment Tested (Company, Model, Product Name): DCSI, EMTR, UHF Ttransmitter	Document No.: RP-5648A Rev. 2	Page: 4 of 28

The Antenna has a gain of less than 2 dBi.

4 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations.

The identification for all equipment, plus descriptions of all cables used in the tested system, are:

Tested System Configuration List

Item	Description	Type*	Manufacturer	Model Number	Assem #	Firmware	Serial Number
1	Wireless Meter Reading System	E	DCSI	EMTR	Y72650	V0.9	6722806

* Type: E = EUT, P = Peripheral,

Note that the EMTR is S/N 1067. The EMTR Assembly PWB Number is Y72128-1 Rev 5. The EMTR Antenna Number is Y72224-1 Rev 3. The EMTR was tested in a Centron Meter, S/N 30 260 218 with a DCSI S/N 6722806.

List of System Cables

QTY	Length (m)	Cable Description	Connected to (Item #)	Shielded?
1	3	3 wire AC input Cable for EMTR	#1	No
1	3.5	2-wire AC Output Unterminated Cable	#1	No

The EMTR is installed in an electricity meter. The meter connects to a standard mount for households and businesses. Since the EMTR is wall mounted, it was placed in an upright configuration during the tests. Line and load cables were connected to the EUT as in a typical installation. The lengths were chosen to conform to ANSI C12.1: 2001. Power was supplied at 115 VAC, 60 Hz single-phase.

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.3 Equipment Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report		
Equipment Tested (Company, Model, Product Name): DCSI, EMTR, UHF Transmitter	Document No.: RP-5648A Rev. 2	Page: 5 of 28

5 TEST SPECIFICATIONS AND RELATED DOCUMENTS

Document	Date	Title
FCC CFR Title 47	2005	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices
ANSI C63.4-2003	2003	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
IC RSS-210 Issue 5	2001	Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands)
IC RSS-212 Issue 1	1998	Test Methods For Radio Equipment
ANSI C12.1	2001	Electricity Meters Code For Electricity Metering

The test procedures used are in accordance with the FCC DA 00-75, Industry Canada RSS-212 and ANSI document C63.4-2003, "Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The specific procedures are described herein. Radiated testing was performed at an antenna to EUT distance of 3 meters. The antenna was raised and lowered from 1 to 4 meters.

6 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics has been accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 1999 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the "basic standards" listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics' accreditation status can be verified at A2LA's web site (www.a2la.org).

The following is a list of shielded enclosures located in Romeoville, Illinois:

Chamber A: Is an anechoic chamber that measures 24' L X 12' W X 12' H. The walls and ceiling are fully lined with ferrite absorber tiles. The floor has a 10' x 10' section of ferrite absorber tiles in the center. Panashield of Rowayton, Connecticut manufactured the chamber. The enclosure is NAMAS certified.

Chamber B: Is a shielded enclosure that measures 24' L X 12' W X 8' H. Erik A. Lindgren & Associates of Chicago, Illinois manufactured the enclosure.

Chamber C: Is a shielded enclosure that measures 20' L X 10' W X 8' H. Lindgren RF Enclosures Inc. of Addison, Illinois manufactured the enclosure.

Chamber D: Is a fully anechoic chamber that measures 22' L X 10' W X 10' H. The walls, ceiling and floor are fully lined with ferrite absorber tiles. Braden Shielding Systems of Tulsa, Oklahoma manufactured the chamber.

Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report		
Equipment Tested (Company, Model, Product Name): DCSI, EMTR, UHF Ttransmitter	Document No.: RP-5648A Rev. 2	Page: 6 of 28

A separate ten-foot long, brass plated, steel ground rod attached via a 6 inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

Open Area Test Site (OATS): Is located on 8625 Helmar Road in Newark, Illinois, USA and measures 56' L X 24' W X 17' H. The entire open field test site has a metal ground screen. The FCC has accepted these sites as test site number 31040/SIT 1300F2. The FCC test site Registration Number is 90897. Details of the site characteristics are on file with the Industry Canada as file number IC3124.

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

8 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

9 TEST EQUIPMENT TABLE

RMC ID	Manufacturer	Description	Model No.	Serial No.	Frequency Range	Cal Period	Cal Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	12/07/04
AMP-16	MITEQ	Pre-amplifier	AM-1300	608852	0.01-1000MHz	12 Mo.	12/29/04
ANT-06	EMCO	Log-Periodic Ant.	3146	1248	200-1000MHz	24 mo	11/17/05
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	10/13/04
ANT-42	EMCO	Bicon Antenna	3104C	9512-4713	25-300MHz	24 Mo.	11/17/05
ANT-44	Impossible Machine	Super Log Antenna	SL-20M2G	1002	20-2000MHz	24 Mo.	06/15/04
LSN-01	Electrometrics	50 uH LISN	FCC/VDE 50/2	1001	0.01-30MHz	24 Mo.	04/25/05
LSN-03	Farnell	50 uH LISN	1EXLSN30B	000314	0.01-30MHz	24 Mo.	04/08/05
PRE-01	Hewlett Packard	Preselector	85685A	2510A00143	20 Hz-2GHz	12 Mo.	01/20/05
REC-07	Anritsu	Spectrum Analyzer	MS2601A	MT53067	0.01-2200MHz	12 Mo.	01/04/05
REC-08	Hewlett Packard	Spectrum Analyzer	8566B	2648A13481 2209A01436	30Hz-22GHz	12 Mo.	06/14/05
THM-01	Extech Inst.	Temp/Humid Meter	4465CF	001106557	N/A	24 Mo.	01/28/04

Note: All calibrated equipment is subject to periodic checks.

NCR – No Calibration Required. Device monitored by calibrated equipment. N/A: Not Applicable.

10 TEST SECTIONS

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report		
Equipment Tested (Company, Model, Product Name): DCSI, EMTR, UHF Transmitter	Document No.: RP-5648A Rev. 2	Page: 7 of 28

10.1 AC Conducted Emissions; Section 15.207

A computer-controlled analyzer was used to perform the conducted emissions measurements. The frequency range was divided into 500 subranges equally spaced on a logarithmic scale. The computer recorded the peak of each subrange. This data was then plotted on semi-log graph paper generated by the computer and plotter. Adjusting the positions of the cables and orientation of the test system then maximizes the highest emissions.

Mains Conducted emission measurements were performed using a 50 Ohm/50 uH Line Impedance Stabilization Network (LISN) as the pick-up device. Measurements were repeated on both leads within the power cord. If the EUT power cord exceeded 80 cm in length, the excess length of the power cord was made into a 30 to 40 cm bundle near the center of the cord. The LISN was placed on the floor at the base of the test platform and electrically bonded to the ground plane.

Broadband conducted emissions may exceed the following limits by no more than 13 dB. An emission is defined as broadband if the average detector amplitude is 6 dB or more under the quasi-peak detector amplitude.

FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range (MHz)	Class B Limits (dBuV)	
	Quasi-Peak	Average
0.150 - 0.50*	66 - 56	56 - 46
0.5 - 5.0	56	46
5.0 - 30	60	50

* The limit decreases linearly with the logarithm of the frequency in this range.

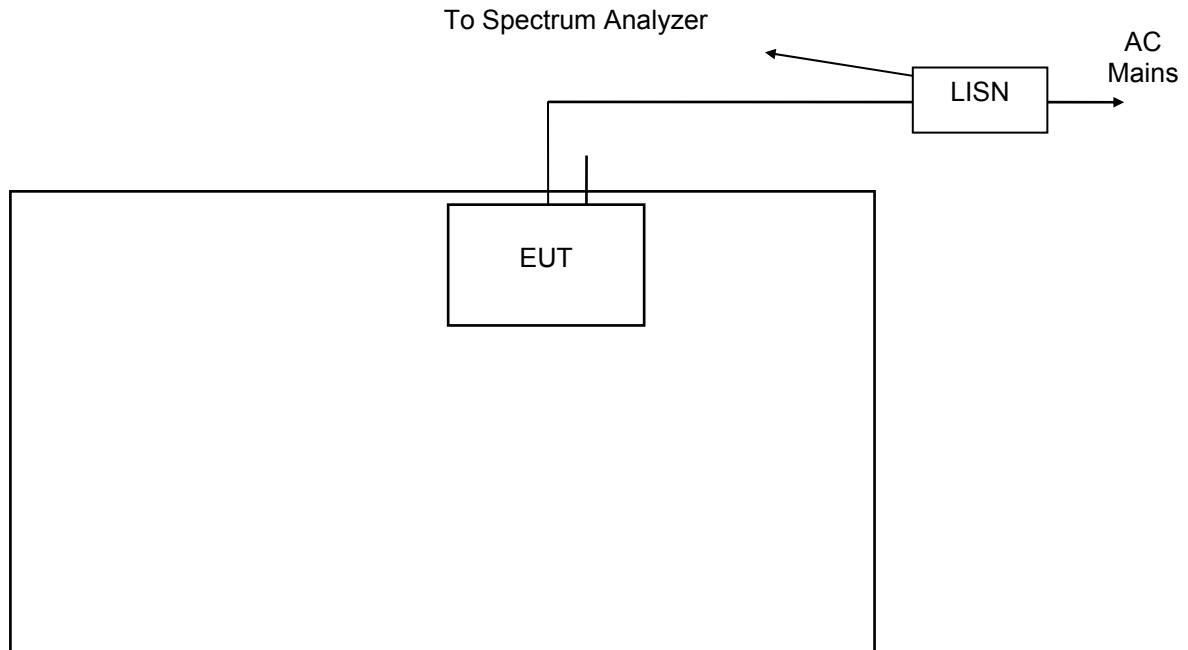
The initial step in collecting conducted data is a peak detector scan and the plotting of the measurement range. Significant peaks are then marked as shown on the following table, and these signals are then measured with the quasi-peak detector. The following represents the worst case emissions from power cord, after testing all modes of operation.

Test Date : December 9, 2005

The Amplitude is the final corrected value with cable and LISN Loss.

Lead Tested	Frequency MHz	QP Amplitude	QP Limit	Average Amplitude	Average Limit
AC Neutral	0.15	42.86	65.92	26.49	55.92
AC Neutral	0.41	38.31 #	57.64	18.63	47.64
AC Neutral	2.02	31.23	56.00	27.85	46.00
AC Neutral	22.15	38.19 #	60.00	17.87	50.00
AC Hot	0.15	41.03	65.98	28.74	55.98
AC Hot	0.53	32.14	56.00	15.86	46.00
AC Hot	8.08	36.15	60.00	34.56	50.00

The above are the worst case results with three frequencies test for each EUT


* QP readings are quasi-peak with a 9 kHz bandwidth and no video filter.

Peak Reading; QP not performed at this frequency since peak is under QP Limit.

Judgment: Passed by 15.44 dB

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report		
Equipment Tested (Company, Model, Product Name):	Document No.:	Page:
DCSI, EMTR, UHF Transmitter	RP-5648A Rev. 2	8 of 28

Figure 1. Conducted Emissions Test Setup

Notes:

- LISN's at least 80 cm from EUT chassis
- Vertical conductive plane 40 cm from rear of table top
- EUT power cord bundled

1x1.5m surface

10.2 Radiated Emissions

Radiated emission measurements were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. Below 1 GHz, when a radiated emission is detected approaching the specification limit, the measurement of the emission is repeated using a tuned dipole antenna with a Roberts Balun. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists.

From 30 to 1000 MHz, an Anritsu Spectrum analyzer and a MITEQ AM-1431 amplifier with a 10 dB attenuator connected to the input were used. The out of band emissions and the ambient emissions were below the level of input overload (80 dBuV).

For tests from 1 to 9.3 GHz, an HP8566A spectrum analyzer was used with a Celeritek uWave amplifier. The out of band emissions and the ambient emissions were below the level of input overload (72 dBuV).

Radiated emission measurements are performed with linearly polarized broadband antennas. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report		
Equipment Tested (Company, Model, Product Name): DCSI, EMTR, UHF Transmitter	Document No.: RP-5648A Rev. 2	Page: 9 of 28

Final radiated emissions measurements were performed in the open area test site at a test distance of 3 meters. The entire frequency range from 30 to 9300 MHz was slowly scanned and the emissions in the restricted frequency bands were recorded. Measurements were performed using the peak detector function. The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground. The open area test site used to collect the radiated data is located on 8625 Helmar Road in Newark, Illinois. The open field test site has a metal ground screen. All other tests are performed at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

10.2.1 Radiated Emissions Field Strength Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where: FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

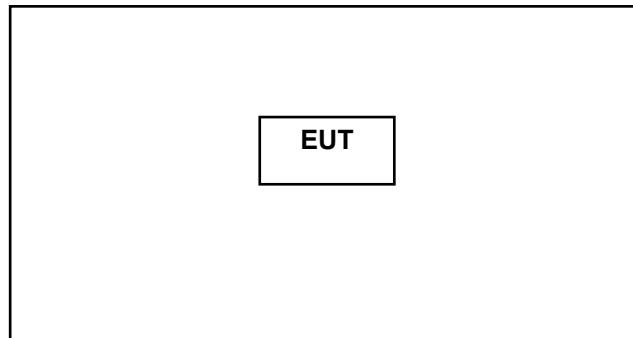
CF = Cable Attenuation Factor

AG = Amplifier Gain

Assume a receiver reading of 49.5 dBuV is obtained. The Antenna Factor of 8.1 and a Cable Factor of 1.7 is added. The Amplifier Gain of 23.3 dB is subtracted, giving a field strength of 36 dBuV/m. The 36 dBuV/m can be mathematically converted to its corresponding level in uV/m.

$$FS = 49.5 + 8.1 + 1.7 - 23.3 = 36.0 \text{ dBuV/m}$$

$$\text{Level in uV/m} = \text{Common Antilogarithm} [(36 \text{ dBuV/m})/20] = 63.1 \text{ uV/m}$$


RADIOMETRICS MIDWEST CORPORATION - EMC Test Report

Equipment Tested (Company, Model, Product Name):
DCSI, EMTR, UHF Ttransmitter

Document No.:
RP-5648A Rev. 2

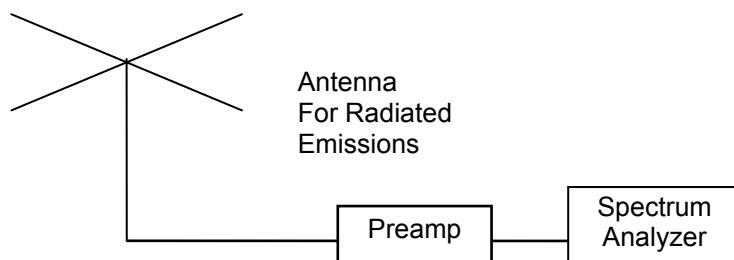

Page:
10 of 28

Figure 2. Drawing of Radiated Emissions Setup

Notes:

- AC outlet with low-pass filter at the base of the turntable
- Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report			
Equipment Tested (Company, Model, Product Name): DCSI, EMTR, UHF Transmitter		Document No.: RP-5648A Rev. 2	Page: 11 of 28

10.2.2 Spurious Radiated Emissions Test Results

The following spectrum analyzer settings were used:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \geq 1$ GHz, 120 kHz for $f < 1$ GHz

VBW = 1 kHz for Average Measurements

VBW = 3 MHz for Peak Measurements

Sweep = auto

Manufacturer	DCSI	Specification	FCC Part 15 Subpart C & RSS-210
Model	EMTR	Test Date	September 14, November 4, and 14, 2005
Serial Number	None	Test Distance	3 Meters
Abbreviations	Pol = Antenna Polarization; Vert = Vertical; Horz = Horizontal; QP = Quasi-Peak		
Antennas used	30 to 200 MHz Biconical (ANT-42); 200 to 1000 MHz Log-Periodic (ANT-6) 1 to 18 GHz Double Ridged Guide Horn (ANT-13)		
Notes	; The Amplitude is the final corrected value with cable and the preamp gain subtracted.		

EUT	Tx Freq	Ant Pol.	Detector Function	Emission Freq. MHz	dBuV/m	Limit	Margin under limit
EMTR	914.9	Vert	QP	113.3	26.8	43.5	16.7
EMTR	914.9	Vert	QP	130.0	28.7	43.5	14.8
EMTR	927.8	Horz	QP	327.5	22.4	46.0	23.6
EMTR	927.8	Vert	QP	113.3	28.5	43.5	15.0
EMTR	927.8	Vert	QP	130.0	32.5	43.5	11.0
EMTR	902.6	Vert	QP	901.9	42.0	46.0	4.0
EMTR	902.6	Horz	QP	901.9	41.2	46.0	4.8
EMTR	902.7	Horz	QP	902.7	85.4	94.0	8.6
EMTR	902.7	Horz	Ave	1805.4	47.5	54.0	6.5
EMTR	902.7	Horz	Ave	2708.0	47.9	54.0	6.1
EMTR	902.7	Horz	Ave	3610.7	42.5	54.0	11.5
EMTR	902.7	Horz	Ave	4513.4	47.5	54.0	6.5
EMTR	902.7	Horz	Ave	5416.1	43.5	54.0	10.5
EMTR	902.7	Vert	QP	902.7	86.4	94.0	7.6
EMTR	902.7	Vert	Ave	1805.4	45.9	54.0	8.1
EMTR	902.7	Vert	Ave	2708.0	43.5	54.0	10.5
EMTR	902.7	Vert	Ave	3610.7	42.7	54.0	11.3
EMTR	902.7	Vert	Ave	4513.4	45.9	54.0	8.1
EMTR	902.7	Vert	Ave	5416.1	42.0	54.0	12.0
EMTR	914.9	Horz	QP	914.9	85.6	94.0	8.4
EMTR	914.9	Horz	Ave	1829.8	47.6	54.0	6.4
EMTR	914.9	Horz	Ave	2744.7	46.9	54.0	7.1
EMTR	914.9	Horz	Ave	3659.5	44.1	54.0	9.9
EMTR	914.9	Horz	Ave	4574.4	47.2	54.0	6.8
EMTR	914.9	Horz	Ave	7319.1	44.8	54.0	9.2
EMTR	914.9	Vert	QP	914.9	89.4	94.0	4.6
EMTR	914.9	Vert	Ave	1829.8	45.9	54.0	8.1
EMTR	914.9	Vert	Ave	2744.7	43.7	54.0	10.3
EMTR	914.9	Vert	Ave	3659.5	43.8	54.0	10.2
EMTR	914.9	Vert	Ave	4574.4	44.8	54.0	9.2
EMTR	914.9	Vert	Ave	7319.1	43.9	54.0	10.1

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report

Equipment Tested (Company, Model, Product Name):

DCSI, EMTR, UHF Ttransmitter

Document No.:

RP-5648A Rev. 2

Page:

12 of 28

EMTR	927.8	Vert	QP	928.1	44.0	46.0	2.0
EMTR	927.8	Horz	QP	928.1	43.1	46.0	2.9
EMTR	927.8	Horz	QP	927.8	89.2	94.0	4.8
EMTR	927.8	Horz	Ave	1855.6	43.3	54.0	10.7
EMTR	927.8	Horz	Ave	2783.4	47.8	54.0	6.2
EMTR	927.8	Horz	Ave	3711.2	44.2	54.0	9.8
EMTR	927.8	Horz	Ave	4639.0	46.5	54.0	7.5
EMTR	927.8	Horz	Ave	7422.3	45.9	54.0	8.1
EMTR	927.8	Vert	QP	927.8	90.1	94.0	3.9
EMTR	927.8	Vert	Ave	1855.6	43.5	54.0	10.5
EMTR	927.8	Vert	Ave	2783.4	44.4	54.0	9.6
EMTR	927.8	Vert	Ave	3711.2	44.1	54.0	9.9
EMTR	927.8	Vert	Ave	4639.0	46.1	54.0	7.9
EMTR	927.8	Vert	Ave	7422.3	45.8	54.0	8.2
EMTR	902.7	Horz	Peak	1805.4	47.9	74.0	26.1
EMTR	902.7	Horz	Peak	2783.4	48.3	74.0	25.7
EMTR	902.7	Horz	Peak	3711.2	43.4	74.0	30.6
EMTR	902.7	Horz	Peak	4639.0	47.7	74.0	26.3
EMTR	902.7	Horz	Peak	7422.3	44.2	74.0	29.8
EMTR	902.7	Vert	Peak	1805.4	46.1	74.0	27.9
EMTR	902.7	Vert	Peak	2783.4	44.4	74.0	29.6
EMTR	902.7	Vert	Peak	3711.2	42.7	74.0	31.3
EMTR	902.7	Vert	Peak	4639.0	46.9	74.0	27.1
EMTR	902.7	Vert	Peak	7422.3	42.2	74.0	31.8
EMTR	914.9	Horz	Peak	1829.8	48.2	74.0	25.8
EMTR	914.9	Horz	Peak	2783.4	47.0	74.0	27.0
EMTR	914.9	Horz	Peak	3711.2	44.3	74.0	29.7
EMTR	914.9	Horz	Peak	4639.0	47.9	74.0	26.1
EMTR	914.9	Horz	Peak	7422.3	45.1	74.0	28.9
EMTR	914.9	Vert	Peak	1829.8	46.3	74.0	27.7
EMTR	914.9	Vert	Peak	2783.4	43.8	74.0	30.2
EMTR	914.9	Vert	Peak	3711.2	44.1	74.0	29.9
EMTR	914.9	Vert	Peak	4639.0	45.6	74.0	28.4
EMTR	914.9	Vert	Peak	7422.3	43.9	74.0	30.1
EMTR	927.8	Horz	Peak	1855.6	44.3	74.0	29.7
EMTR	927.8	Horz	Peak	2783.4	47.8	74.0	26.2
EMTR	927.8	Horz	Peak	3711.2	44.5	74.0	29.5
EMTR	927.8	Horz	Peak	4639.0	46.7	74.0	27.3
EMTR	927.8	Horz	Peak	7422.3	46.7	74.0	27.3
EMTR	927.8	Vert	Peak	1855.6	43.6	74.0	30.4
EMTR	927.8	Vert	Peak	2783.4	45.3	74.0	28.7
EMTR	927.8	Vert	Peak	3711.2	44.5	74.0	29.5
EMTR	927.8	Vert	Peak	4639.0	46.4	74.0	27.6
EMTR	927.8	Vert	Peak	7422.3	46.2	74.0	27.8

The Emissions at 902 and 928 MHz are the band edges.

Judgment: Passed by 2.0 dB