

ADDENDUM TO ASYST TECHNOLOGIES TEST REPORT FC07-086

FOR THE

RFID TAG READER/MULTIPLEXER, ATR 9880

FCC PART 15 SUBART B SECTIONS 15.107 & 15.109 CLASS B AND FCC PART 15 SUBPART C SECTION 15.207 & 15.209

TESTING

DATE OF ISSUE: NOVEMBER 30, 2007

PREPARED FOR:

PREPARED BY:

Asyst Technologies 46897 Bayside Parkway Fremont, CA 94538-6572

W.O. No.: 87011

Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Date of test: August 31 - October 11, 2007

Report No.: FC07-086A

This report contains a total of 49 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 49 Report No.: FC07-086A

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Conditions During Testing	3
FCC 15.31(e) Voltage Variation	4
FCC 15.31(m) Number Of Channels	4
FCC 15.33(a) Frequency Ranges Tested	4
FCC 15.35 Analyzer Bandwidth Settings	.4
FCC 15.203 Antenna Requirements	4
EUT Operating Frequency	4
Temperature And Humidity During Testing	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	5
Report of Emissions Measurements	6
Testing Parameters	6
FCC 15.107 Conducted Emissions	8
FCC 15.109 Radiated Emissions	17
FCC 15.207 Conducted Emissions	23
FCC 15.209 Radiated Emissions	32
Occupied Bandwidth	

ADMINISTRATIVE INFORMATION

DATE OF TEST: August 31 - October 11, 2007

DATE OF RECEIPT: August 31, 2007

REPRESENTATIVE: Tou Vang

MANUFACTURER: Asyst Technologies 46897 Bayside Parkway Fremont, CA 94538-6572 **TEST LOCATION:**

CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

TEST METHOD: ANSI C63.4 (2003)

PURPOSE OF TEST:

Original Report: To perform the testing of the RFID Tag Reader/Multiplexer, ATR 9880 with the requirements for FCC Part 15 Subpart B Sections 15.107 & 15.109 Class B and FCC Part 15 Subpart C Section 15.207 & 15.209 devices.

Addendum A: To revise the 15.203 statement on page 4 with no new testing.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Joyce Walker, Quality Assurance Administrative Manager

Amrinder Brar, EMC Engineer/Lab Manager

TEST PERSONNEL:

Art Rice, EMC Engineer

Norberto Gamez Jr., Test Technologist

Christine Nicklas, Senior EMC Engineer/Consultant

CONDITIONS DURING TESTING

During radiated emissions caps were added to enet.

Page 3 of 49 Report No.: FC07-086A

FCC 15.31(e) Voltage Variations

Transmit fundamental was also measured at -/+15% (20.4 and 27.6 Volts) and no change in the level was seen.

Test Equipment

Function	Model/Type	Manufacturer	Serial No.	Cal Date	Cal Due
Spectrum Analyzer	E4446A	Agilent	US44300408	03-05-07	03-05-09
Active loop	6502	EMCO	2078	06-11-07	06-11-09
Cable	RG214/U	Pasternack	ANP05300	04-05-07	04-05-09
Cable	RG214/U	Pasternack	ANP05296	04-05-07	04-05-09
Digital Multimeter	23	Fluke	54541580	07-18-06	07-18-08
DC supply	72-6610	Tenma	0201714	09-07-06	09-07-08
Cable	RG214/U	Pasternack	ANP05299	04-05-07	04-05-09

FCC 15.31(m) Number Of Channels

This device operates on a single channel.

FCC 15.33(a) Frequency Ranges Tested

- 15.107 Conducted Emissions: 150 kHz 30 MHz
- 15.109 Radiated Emissions: 9 kHz 1000 MHz
- 15.207 Conducted Emissions: 150 kHz 30 MHz
- 15.209 Radiated Emissions: 9 kHz 1000 MHz

FCC SECTION 15.35:				
ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	1 MHz	

FCC 15.203 Antenna Requirements

The antenna requires professional installation; therefore the EUT complies with Section 15.203 of the FCC rules.

EUT Operating Frequency

The EUT was operating at 134.205 kHz.

Temperature And Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

RFID Tag Reader/MultiplexerManuf:Asyst Technologies ATR 9880 Model: Serial: 001 FCC ID: pending

Antenna Manuf:

Model:

Serial:

Asyst Technologies PN 9701-2883-04 Rev 002 4

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

<u>Antenna (7 each)</u>		Host PC	
Manuf:	Asyst Technologies	Manuf:	Compaq
Model:	PN 9701-2883-02	Model:	Armada M700
Serial:	2, 3, 4, 5 (3 with no serial number)	Serial:	01811

AC Adapter for PC

Manuf:	Compaq
Model:	Series PPP0002D
Serial:	386315-001

24CDV Power Supply

AULT
PW102
NA

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS			
	Meter reading	(dBµV)	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
=	Corrected Reading	$(dB\mu V/m)$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the spectrum analyzer/receiver readings were recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

FCC 15.107 CONDUCTED EMISSIONS

Test Setup Photos

Page 8 of 49 Report No.: FC07-086A

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: Specification: Work Order #: Test Type: Equipment: Manufacturer:	Asyst Technologies FCC 15.107 B COND [AVE] 87011 Conducted Emissions RFID Tag Reader/Multiplexer Asyst Technologies	Date: Time: Sequence#: Tested By:	9/10/2007 16:12:48 20 Robert Gamez
Model: S/N:	ATR 9880 001	Tested Dy.	120V 60Hz

Test Equipment:

1 1				
Function	S/N	Calibration Date	Cal Due Date	Asset #
SA - E4440A	MH46186315	02/15/2007	02/15/2009	02870
TTE High Pass Filter	H4120	01/17/2007	01/17/2009	05258
LISN	9408-1006	04/01/2007	04/01/2009	00493
Cable	none	06/13/2006	06/13/2008	0880
Attenuator	none	10/20/2005	10/20/2007	02223

Equipment Under Test (* = EUT):

	,		
Function	Manufacturer	Model #	S/N
RFID Tag	Asyst Technologies	ATR 9880	001
Reader/Multiplexer*			
Antenna	Asyst Technologies	PN 9701-2883-04 Rev 002	4
Support Devices:			

Support Deriversi				
Function	Manufacturer	Model #	S/N	
Antenna	Asyst Technologies	PN 9701-2883-02	2	
Antenna	Asyst Technologies	PN 9701-2883-02	3	
Antenna	Asyst Technologies	PN 9701-2883-02	4	
Antenna	Asyst Technologies	PN 9701-2883-02	5	
Antenna	Asyst Technologies	PN 9701-2883-02	none	
Antenna	Asyst Technologies	PN 9701-2883-02	none	
Antenna	Asyst Technologies	PN 9701-2883-02	none	
Host PC	Compaq	Armada M700	01811	
AC Adapter for PC	Compaq	Series PPP0002D	386315-001	
24CDV Power Supply	AULT	PW102	none	

Test Conditions / Notes:

The ATR9800 8 Antenna Multiplexer: The host Dell PC is running Secsim Pro software and sending Read ID Commands over the serial connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. An unterminated Ethernet cable is attached. The EUT is powered by 24 VDC from a power supply on the floor. Notes: 1) Unterminated cables are connected to two of the remote I/O ports. 2) EUT is in Active Mode. Conducted Emissions 0.15-30 MHz. Temperature: 23°C, Humidity: 50%.

Transducer Legend:		
T1=LISN - AN00493 - Black - ELC "OUT"	T2=ANP02223-082707	
T3=Cable P00880	T4=TTE HP Filter	

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	680.199k QP	31.9	+0.0	+10.1	+0.1	+0.1	+0.0	42.2	46.0	-3.8	Black
2	859.026k OP	31.2	+0.0	+10.0	+0.2	+0.2	+0.0	41.6	46.0	-4.4	Black
3	809.576k	31.1	+0.0	+10.1	+0.2	+0.2	+0.0	41.6	46.0	-4.4	Black
4	4.407M	31.4	+0.0	+10.0	+0.1	+0.1	+0.0	41.6	46.0	-4.4	Black
5	4.705M	31.0	+0.1	+10.1	+0.2	+0.1	+0.0	41.5	46.0	-4.5	Black
6	4.105M	31.0	+0.0	+10.0	+0.1	+0.1	+0.0	41.2	46.0	-4.8	Black
7	4.875M	30.6	+0.1	+10.1	+0.2	+0.1	+0.0	41.1	46.0	-4.9	Black
8	4.492M	30.5	+0.1	+10.1	+0.2	+0.1	+0.0	41.0	46.0	-5.0	Black
9	4.062M	30.7	+0.0	+10.0	+0.1	+0.1	+0.0	40.9	46.0	-5.1	Black
10	3.931M	30.6	+0.0	+10.0	+0.1	+0.1	+0.0	40.8	46.0	-5.2	Black
11	4.662M	30.3	+0.1	+10.1	+0.2	+0.1	+0.0	40.8	46.0	-5.2	Black
12	3.718M	30.3	+0.0	+10.0	+0.1	+0.1	+0.0	40.5	46.0	-5.5	Black
13	4.747M	30.0	+0.1	+10.1	+0.2	+0.1	+0.0	40.5	46.0	-5.5	Black
14	4.618M QP	29.7	+0.1	+10.1	+0.2	+0.1	+0.0	40.2	46.0	-5.8	Black
15	3.463M	29.9	-0.1	+10.1	+0.2	+0.1	+0.0	40.2	46.0	-5.8	Black
16	2.778M	29.8	-0.1	+10.1	+0.2	+0.1	+0.0	40.1	46.0	-5.9	Black
17	4.830M QP	29.5	+0.1	+10.1	+0.2	+0.1	+0.0	40.0	46.0	-6.0	Black
18	4.960M	29.5	+0.1	+10.1	+0.2	+0.1	+0.0	40.0	46.0	-6.0	Black
19	3.854M	29.7	+0.0	+10.0	+0.1	+0.1	+0.0	39.9	46.0	-6.1	Black
20	4.275M	29.7	+0.0	+10.0	+0.1	+0.1	+0.0	39.9	46.0	-6.1	Black
21	5.734M	33.4	+0.1	+10.1	+0.2	+0.1	+0.0	43.9	50.0	-6.1	Black
22	427.793k	30.8	+0.1	+10.0	+0.2	+0.1	+0.0	41.2	47.3	-6.1	Black

23	4.360M	29.5	+0.0	+10.0	+0.1	+0.1	+0.0	39.7	46.0	-6.3	Black
24	4.577M	29.2	+0.1	+10.1	+0.2	+0.1	+0.0	39.7	46.0	-6.3	Black
25	3.595M	29.4	+0.0	+10.0	+0.1	+0.1	+0.0	39.6	46.0	-6.4	Black
26	3.892M	29.4	+0.0	+10.0	+0.1	+0.1	+0.0	39.6	46.0	-6.4	Black
27	3.977M	29.4	+0.0	+10.0	+0.1	+0.1	+0.0	39.6	46.0	-6.4	Black
28	1.881M	29.1	+0.0	+10.1	+0.2	+0.1	+0.0	39.5	46.0	-6.5	Black
29	4.322M	29.3	+0.0	+10.0	+0.1	+0.1	+0.0	39.5	46.0	-6.5	Black
30	2.953M	29.1	-0.1	+10.1	+0.2	+0.1	+0.0	39.4	46.0	-6.6	Black
31	4.998M	28.9	+0.1	+10.1	+0.2	+0.1	+0.0	39.4	46.0	-6.6	Black
32	3.080M	28.8	-0.1	+10.1	+0.2	+0.1	+0.0	39.1	46.0	-6.9	Black
33	3.293M	28.8	-0.1	+10.1	+0.2	+0.1	+0.0	39.1	46.0	-6.9	Black
34	3.552M	28.9	+0.0	+10.0	+0.1	+0.1	+0.0	39.1	46.0	-6.9	Black
35	5.436M	32.6	+0.1	+10.1	+0.2	+0.1	+0.0	43.1	50.0	-6.9	Black
36	3.510M	28.7	+0.0	+10.0	+0.1	+0.1	+0.0	38.9	46.0	-7.1	Black
37	3.165M	28.5	-0.1	+10.1	+0.2	+0.1	+0.0	38.8	46.0	-7.2	Black
38	3.208M	28.5	-0.1	+10.1	+0.2	+0.1	+0.0	38.8	46.0	-7.2	Black
39	680.199k Ave	28.4	+0.0	+10.1	+0.1	+0.1	+0.0	38.7	46.0	-7.3	Black
^	680.199k	35.5	+0.0	+10.1	+0.1	+0.1	+0.0	45.8	46.0	-0.2	Black
41	4.618M Ave	28.2	+0.1	+10.1	+0.2	+0.1	+0.0	38.7	46.0	-7.3	Black
^	4.618M	31.9	+0.1	+10.1	+0.2	+0.1	+0.0	42.4	46.0	-3.6	Black
43	3.123M	28.2	-0.1	+10.1	+0.2	+0.1	+0.0	38.5	46.0	-7.5	Black
44	4.020M	28.2	+0.0	+10.0	+0.1	+0.1	+0.0	38.4	46.0	-7.6	Black
45	859.026k Ave	27.8	+0.0	+10.0	+0.2	+0.2	+0.0	38.2	46.0	-7.8	Black
^	859.026k	34.5	+0.0	+10.0	+0.2	+0.2	+0.0	44.9	46.0	-1.1	Black
47	2.608M	27.9	-0.1	+10.1	+0.2	+0.1	+0.0	38.2	46.0	-7.8	Black

48	4.237M	28.0	+0.0	+10.0	+0.1	+0.1	+0.0	38.2	46.0	-7.8	Black
49	2.051M	27.8	+0.0	+10.1	+0.2	+0.1	+0.0	38.2	46.0	-7.8	Black
50	5.472M	31.6	+0.1	+10.1	+0.2	+0.1	+0.0	42.1	50.0	-7.9	Black
51	3.250M	27.7	-0.1	+10.1	+0.2	+0.1	+0.0	38.0	46.0	-8.0	Black
52	5.301M	31.5	+0.1	+10.1	+0.2	+0.1	+0.0	42.0	50.0	-8.0	Black
53	1.239M	27.5	+0.0	+10.0	+0.1	+0.2	+0.0	37.8	46.0	-8.2	Black
54	4.194M	27.6	+0.0	+10.0	+0.1	+0.1	+0.0	37.8	46.0	-8.2	Black
55	5.346M	31.2	+0.1	+10.1	+0.2	+0.1	+0.0	41.7	50.0	-8.3	Black
56	5.860M	31.1	+0.1	+10.1	+0.2	+0.1	+0.0	41.6	50.0	-8.4	Black
57 A	4.830M Ave	25.6	+0.1	+10.1	+0.2	+0.1	+0.0	36.1	46.0	-9.9	Black
^	4.830M	32.7	+0.1	+10.1	+0.2	+0.1	+0.0	43.2	46.0	-2.8	Black

CKC Laboratories, Inc. Date: 9/10/2007 Time: 16:12:48 Asyst Technologies WO#: 87011 FCC 15:107 B COND [AVE] Test Lead: Black 120V 60Hz Sequence#: 20 Active Mode-120V

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: Specification:	Asyst Technologies FCC 15.107 B COND [AVE]		
Work Order #:	87011	Date:	9/10/2007
Test Type:	Conducted Emissions	Time:	16:24:53
Equipment:	RFID Tag Reader/Multiplexer	Sequence#:	21
Manufacturer:	Asyst Technologies	Tested By:	Robert Gamez
Model:	ATR 9880		120V 60Hz
S/N:	001		
Test Equipment:			

Function	S/N	Calibration Date	Cal Due Date	Asset #
SA - E4440A	MH46186315	02/15/2007	02/15/2009	02870
TTE High Pass Filter	H4120	01/17/2007	01/17/2009	05258
LISN	9408-1006	04/01/2007	04/01/2009	00493
Cable	none	06/13/2006	06/13/2008	0880
Attenuator	none	10/20/2005	10/20/2007	02223

Equipment Under Test (* = EUT):

1 1	/		
Function	Manufacturer	Model #	S/N
RFID Tag	Asyst Technologies	ATR 9880	001
Reader/Multiplexer*			
Antenna	Asyst Technologies	PN 9701-2883-04 Rev 002	4
Support Devices:			
Function	Manufacturer	Model #	S/N
Antenna	Asyst Technologies	PN 9701-2883-02	2
Antenna	Asyst Technologies	PN 9701-2883-02	3

Antenna	Asyst Technologies	PN 9701-2883-02	4
Antenna	Asyst Technologies	PN 9701-2883-02	5
Antenna	Asyst Technologies	PN 9701-2883-02	none
Antenna	Asyst Technologies	PN 9701-2883-02	none
Antenna	Asyst Technologies	PN 9701-2883-02	none
Host PC	Compaq	Armada M700	01811
AC Adapter for PC	Compaq	Series PPP0002D	386315-001
24CDV Power Supply	AULT	PW102	none

Test Conditions / Notes:

The ATR9800 8 Antenna Multiplexer: The host Dell PC is running Secsim Pro software and sending Read ID Commands over the serial connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. An unterminated Ethernet cable is attached. The EUT is powered by 24 VDC from a power supply on the floor. Notes: 1) Unterminated cables are connected to two of the remote I/O ports. 2) EUT is in Active Mode. Conducted Emissions 0.15-30 MHz. Temperature: 23°C, Humidity: 50%.

Transducer Legend:

8	
T1=LISN - AN00493 - White - ELC "OUT"	T2=ANP02223-082707
T3=Cable P00880	T4=TTE HP Filter

Measu	rement Data:	R	Reading listed by margin.				Test Lead: White					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant	
1	680.160k	32.1	+0.0	+10.1	+0.1	+0.1	+0.0	42.4	46.0	-3.6	White	
	QP											

2	810.115k OP	31.2	+0.0	+10.1	+0.2	+0.2	+0.0	41.7	46.0	-4.3	White
3	4.828M	31.1	+0.0	+10.1	+0.2	+0.1	+0.0	41.5	46.0	-4.5	White
4	4.615M	30.7	+0.0	+10.1	+0.2	+0.1	+0.0	41.1	46.0	-4.9	White
5	4.318M	30.5	+0.1	+10.0	+0.1	+0.1	+0.0	40.8	46.0	-5.2	White
6	3.675M	30.3	+0.1	+10.0	+0.1	+0.1	+0.0	40.6	46.0	-5.4	White
7	4.062M	30.3	+0.1	+10.0	+0.1	+0.1	+0.0	40.6	46.0	-5.4	White
8	4.275M	30.2	+0.1	+10.0	+0.1	+0.1	+0.0	40.5	46.0	-5.5	White
9	859.025k	30.0	+0.0	+10.0	+0.2	+0.2	+0.0	40.4	46.0	-5.6	White
10	4.445M	30.1	+0.1	+10.0	+0.1	+0.1	+0.0	40.4	46.0	-5.6	White
11	4.747M	30.0	+0.0	+10.1	+0.2	+0.1	+0.0	40.4	46.0	-5.6	White
12	4.488M	29.8	+0.0	+10.1	+0.2	+0.1	+0.0	40.2	46.0	-5.8	White
13	3.463M	29.6	+0.1	+10.1	+0.2	+0.1	+0.0	40.1	46.0	-5.9	White
14	4.705M	29.5	+0.0	+10.1	+0.2	+0.1	+0.0	39.9	46.0	-6.1	White
15	4.662M	29.4	+0.0	+10.1	+0.2	+0.1	+0.0	39.8	46.0	-6.2	White
16	4.871M	29.4	+0.0	+10.1	+0.2	+0.1	+0.0	39.8	46.0	-6.2	White
17	4.998M	29.4	+0.0	+10.1	+0.2	+0.1	+0.0	39.8	46.0	-6.2	White
18	3.033M	29.2	+0.1	+10.1	+0.2	+0.1	+0.0	39.7	46.0	-6.3	White
19	4.233M	29.4	+0.1	+10.0	+0.1	+0.1	+0.0	39.7	46.0	-6.3	White
20	2.136M	29.3	+0.0	+10.1	+0.2	+0.1	+0.0	39.7	46.0	-6.3	White
21	4.573M	29.3	+0.0	+10.1	+0.2	+0.1	+0.0	39.7	46.0	-6.3	White
22	3.208M	29.1	+0.1	+10.1	+0.2	+0.1	+0.0	39.6	46.0	-6.4	White
23	3.505M	29.3	+0.1	+10.0	+0.1	+0.1	+0.0	39.6	46.0	-6.4	White
24	3.637M	29.3	+0.1	+10.0	+0.1	+0.1	+0.0	39.6	46.0	-6.4	White
25	3.420M	29.0	+0.1	+10.1	+0.2	+0.1	+0.0	39.5	46.0	-6.5	White
26	427.065k	30.4	+0.0	+10.0	+0.2	+0.1	+0.0	40.7	47.3	-6.6	White

27	3.935M	29.1	+0.1	+10.0	+0.1	+0.1	+0.0	39.4	46.0	-6.6	White
28	3.548M	29.0	+0.1	+10.0	+0.1	+0.1	+0.0	39.3	46.0	-6.7	White
29	3.846M	29.0	+0.1	+10.0	+0.1	+0.1	+0.0	39.3	46.0	-6.7	White
30	3.888M	28.7	+0.1	+10.0	+0.1	+0.1	+0.0	39.0	46.0	-7.0	White
31	4.360M	28.7	+0.1	+10.0	+0.1	+0.1	+0.0	39.0	46.0	-7.0	White
32	4.960M	28.6	+0.0	+10.1	+0.2	+0.1	+0.0	39.0	46.0	-7.0	White
33	680.160k Ave	28.6	+0.0	+10.1	+0.1	+0.1	+0.0	38.9	46.0	-7.1	White
٨	680.160k	36.0	+0.0	+10.1	+0.1	+0.1	+0.0	46.3	46.0	+0.3	White
35	2.434M	28.5	+0.0	+10.1	+0.2	+0.1	+0.0	38.9	46.0	-7.1	White
36	3.165M	28.4	+0.1	+10.1	+0.2	+0.1	+0.0	38.9	46.0	-7.1	White
37	3.977M	28.6	+0.1	+10.0	+0.1	+0.1	+0.0	38.9	46.0	-7.1	White
38	1.881M	28.4	+0.0	+10.1	+0.2	+0.1	+0.0	38.8	46.0	-7.2	White
39	3.293M	28.3	+0.1	+10.1	+0.2	+0.1	+0.0	38.8	46.0	-7.2	White
40	2.863M	28.0	+0.1	+10.1	+0.2	+0.1	+0.0	38.5	46.0	-7.5	White
41	2.736M	27.9	+0.1	+10.1	+0.2	+0.1	+0.0	38.4	46.0	-7.6	White
42	5.346M	31.9	+0.0	+10.1	+0.2	+0.1	+0.0	42.3	50.0	-7.7	White
43	3.076M	27.6	+0.1	+10.1	+0.2	+0.1	+0.0	38.1	46.0	-7.9	White
44	5.256M	31.7	+0.0	+10.1	+0.2	+0.1	+0.0	42.1	50.0	-7.9	White
45	5.679M	31.6	+0.1	+10.1	+0.2	+0.1	+0.0	42.1	50.0	-7.9	White
46	2.778M	27.5	+0.1	+10.1	+0.2	+0.1	+0.0	38.0	46.0	-8.0	White
47	3.803M	27.7	+0.1	+10.0	+0.1	+0.1	+0.0	38.0	46.0	-8.0	White
48	5.045M	31.6	+0.0	+10.1	+0.2	+0.1	+0.0	42.0	50.0	-8.0	White
49	2.651M	27.4	+0.1	+10.1	+0.2	+0.1	+0.0	37.9	46.0	-8.1	White
50	770.306k	27.3	+0.0	+10.1	+0.2	+0.1	+0.0	37.7	46.0	-8.3	White

51	4 403M	273	± 0.1	± 10.0	± 0.1	± 0.1	± 0.0	37.6	46.0	-8 /	White
51	4.405WI	21.5	10.1	110.0	10.1	10.1	10.0	57.0	-0.0	-0	winte
52	5 770M	31.1	+0.1	+10.1	+0.2	+0.1	+0.0	41.6	50.0	-84	White
52	2177011	01.1	10.1	110.1	10.2	10.1	10.0	11.0	20.0	0.1	··· mice
				10.1							** ** *
53	810.115k	26.5	+0.0	+10.1	+0.2	+0.2	+0.0	37.0	46.0	-9.0	White
	Ave										
	010 1151	210	0.0	10.1	0.0	0.0	0.0	15 1	16.0	0.6	XX 71 .
~	810.115k	54.9	+0.0	+10.1	+0.2	+0.2	+0.0	45.4	46.0	-0.6	white

CKC Laboratories, Inc. Date: 9/10/2007 Time: 16:24:53 Asyst Technologies WO#: 87011 FCC 15.107 B COND [AVE] Test Lead: White 120V 60Hz Sequence#: 21 Active Mode-120V

FCC 15.109 RADIATED EMISSIONS

Test Setup Photos

Page 17 of 49 Report No.: FC07-086A

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Asyst Technologies		
Specification:	FCC 15.109 Class B Radiated		
Work Order #:	87011	Date:	9/7/2007
Test Type:	Radiated Scan	Time:	17:10:17
Equipment:	RFID Tag Reader/Multiplexer	Sequence#:	12
Manufacturer:	Asyst Technologies	Tested By:	C. Nicklas
Model:	ATR 9880		
S/N:	002		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Chase Bilog CBL6111C	2630	12/30/2006	12/30/2008	00852
HP8447F opt H64 preamp	2944A03850	01/02/2007	01/02/2009	00501
SA - E4440A	MH46186315	02/15/2007	02/15/2009	02870

<u>Equipment Under Test (* :</u>	= EUT):		
Function	Manufacturer	Model #	S/N
Antenna	Asyst Technologies	PN 9701-2883-04 Rev 002	4
RFID Tag	Asyst Technologies	ATR 9880	002
Reader/Multiplexer*	-		

Support Devices:

Function	Manufacturer	Model #	S/N
Antenna	Asyst Technologies	PN 9701-2883-02	2
Antenna	Asyst Technologies	PN 9701-2883-02	3
Antenna	Asyst Technologies	PN 9701-2883-02	4
Antenna	Asyst Technologies	PN 9701-2883-02	5
Antenna	Asyst Technologies	PN 9701-2883-02	none
Antenna	Asyst Technologies	PN 9701-2883-02	none
Antenna	Asyst Technologies	PN 9701-2883-02	none
Host PC	Compaq	Armada M700	01811
AC Adapter for PC	Compaq	Series PPP0002D	386315-001
24VDC Power Supply	AULT	PW102	none
Antenna	Asyst Technologies	PN 9701-2883-02	none

Test Conditions / Notes:

The ATR9800 8 Antenna Multiplexer: The host Compaq PC is running Secsim Pro software and sending Read ID Commands over the RS232/COMM serial connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. An unterminated Ethernet cable is attached. The EUT is powered by 24 VDC from a power supply on the floor. The PC is setup outside the test chamber. Notes: 1) The outer two remote I/O ports have ethernet cables connected with loop-back plugs. The remaining 6 remote I/O ports have loop-back plugs directly connected to the ports. With the loop-back plugs installed, the remote I/O ports are fully functional. 2) Added caps to enet. Radiated emissions: Spurious emissions 30-1000 MHz. Temperature: 20°C, Humidity: 53%.

Transducer Legend:

T1=AMP-ANP00501-010207 Top Portion T3=Cable Calibration ANP05296 T5=Cable Calibration ANP05300 T2=ANT AN00852 25-1000MHz T4=Cable Calibration ANP05299

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	399.987M	52.0	-27.1	+16.3	+1.3	+0.1	+0.0	43.1	46.0	-2.9	Vert
	QP		+0.5				41				126
^	399.987M	52.7	-27.1	+16.3	+1.3	+0.1	+0.0	43.8	46.0	-2.2	Vert
			+0.5				41				126
3	127.120M	53.0	-26.6	+11.8	+0.7	+0.1	+0.0	39.3	43.5	-4.2	Vert
	QP		+0.3				115				99
^	127.120M	55.5	-26.6	+11.8	+0.7	+0.1	+0.0	41.8	43.5	-1.7	Vert
			+0.3				115				99
5	126.288M	52.7	-26.6	+11.8	+0.7	+0.1	+0.0	39.0	43.5	-4.5	Vert
	QP		+0.3				115				99
^	126.288M	55.8	-26.6	+11.8	+0.7	+0.1	+0.0	42.1	43.5	-1.4	Vert
			+0.3				115				99
7	128.018M	52.5	-26.6	+11.8	+0.7	+0.1	+0.0	38.8	43.5	-4.7	Vert
	QP		+0.3				115				99
^	128.018M	55.6	-26.6	+11.8	+0.7	+0.1	+0.0	41.9	43.5	-1.6	Vert
			+0.3				115				99
9	50.468M	52.5	-26.9	+8.9	+0.5	+0.0	+0.0	35.2	40.0	-4.8	Vert
	QP		+0.2				78				100
^	50.468M	56.9	-26.9	+8.9	+0.5	+0.0	+0.0	39.6	40.0	-0.4	Vert
			+0.2				78				100

11	49.535M	52.2	-26.9	+9.2	+0.5	+0.0	+0.0	35.2	40.0	-4.8	Horiz
	QP		+0.2		0.7		9	20.0	10.0	1.0	400
~	49.535M	56.0	-26.9	+9.2	+0.5	+0.0	+0.0	39.0	40.0	-1.0	Horiz
12	100.02014	52.2	+0.2	. 11.0	.07	.0.1	9	20 5	42 E	5.0	400
13	128.830M	52.2	-26.6	+11.8	+0./	+0.1	+0.0	38.5	43.5	-5.0	Vert
	<u>QP</u>	EE 1	+0.5	. 11.0	.07	.0.1	115	41 7	42 E	1.0	99
Λ	128.830M	55.4	-20.0	+11.8	+0.7	+0.1	+0.0	41./	43.5	-1.8	vert
15	44 (12)	40.5	+0.5	117	0.5	+0.1	113	25.0	40.0	5.0	99 Vart
15	44.015M	49.5	-20.9	+11./	+0.5	+0.1	+0.0	55.0	40.0	-5.0	vert
	<u>QP</u>	54.2	+0.1	+11.7	+0.5	+0.1	21	20.7	40.0	0.2	99 Vort
	44.015M	34.2	-20.9	+11./	+0.3	+0.1	+0.0	39.7	40.0	-0.5	ven
17	21 100M	517	+0.1	161	0.5	+0.1	21	25.0	40.0	5.0	99 Vort
17	01.100M	34.7	-20.9	+0.4	+0.3	+0.1	+0.0	55.0	40.0	-3.0	ven
^	<u>Qr</u> 61 199M	577	+0.2	16.4	+0.5	+0.1		28.0	40.0	2.0	Vort
	01.100101	57.7	-20.9	+0.4	± 0.5	+0.1	+0.0 65	38.0	40.0	-2.0	
10	56 273M	53.5	+0.2	173	+0.5	+0.1		347	40.0	53	Vort
19	OP	55.5	-20.9	+7.5	± 0.5	± 0.1	+0.0 65	54.7	40.0	-5.5	00
^	<u>Qr</u> 56.272M	577	+0.2	17.2	+0.5	+0.1		28.0	40.0	1 1	Vort
	J0.27 JIVI	51.1	-20.9 ±0.2	+7.5	± 0.5	± 0.1	+0.0 65	30.9	40.0	-1.1	
21	300 087M	/0.3	27.1	⊥ 16.3	±1.3	+0.1	+0.0	40.4	46.0	5.6	Horiz
21	OP	49.5	+0.5	+10.5	71.5	± 0.1	+0.0	40.4	40.0	-5.0	190
^	300 087M	50.0	_27.1	⊥163	±1 3	⊥ 0 1	+0.0	/1.1	46.0	_1 9	Horiz
	577.707WI	50.0	+0.5	110.5	11.5	10.1	67	71.1	+0.0	-4.7	190
23	65 976M	53.6	-26.8	+6.5	+0.6	+0.1	+0.0	34.2	40.0	-5.8	Vert
23	OP	55.0	+0.2	10.5	10.0	10.1	65	51.2	10.0	5.0	99
^	65 976M	56.9	-26.8	+6.5	+0.6	+0.1	+0.0	37.5	40.0	-2.5	Vert
	001970101	5017	+0.2	10.0	10.0	10.1	65	07.0	10.0	2.0	99
25	104.933M	52.7	-26.7	+10.6	+0.7	+0.1	+0.0	37.6	43.5	-5.9	Vert
	OP		+0.2				288			• • •	112
^	104.933M	56.2	-26.7	+10.6	+0.7	+0.1	+0.0	41.1	43.5	-2.4	Vert
			+0.2				288				112
27	106.681M	52.3	-26.7	+10.7	+0.7	+0.1	+0.0	37.3	43.5	-6.2	Vert
	QP		+0.2				288				112
^	106.681M	55.2	-26.7	+10.7	+0.7	+0.1	+0.0	40.2	43.5	-3.3	Vert
			+0.2				288				112
29	50.509M	51.1	-26.9	+8.9	+0.5	+0.0	+0.0	33.8	40.0	-6.2	Horiz
	QP		+0.2				9				400
^	50.509M	54.9	-26.9	+8.9	+0.5	+0.0	+0.0	37.6	40.0	-2.4	Horiz
			+0.2				9				400
31	141.387M	50.7	-26.5	+11.8	+0.8	+0.2	+0.0	37.2	43.5	-6.3	Vert
	QP		+0.2				115				99
^	141.387M	53.4	-26.5	+11.8	+0.8	+0.2	+0.0	39.9	43.5	-3.6	Vert
			+0.2				115				99
33	105.610M	51.3	-26.7	+10.6	+0.7	+0.1	+0.0	36.2	43.5	-7.3	Vert
	QP		+0.2				288				112
^	105.610M	55.6	-26.7	+10.6	+0.7	+0.1	+0.0	40.5	43.5	-3.0	Vert
			+0.2				288				112

35 217.617M	52.9	-26.2	+10.6	+0.9	+0.1	+0.0	38.7	46.0	-7.3	Horiz
QP		+0.4				259				191
^ 217.617M	56.1	-26.2	+10.6	+0.9	+0.1	+0.0	41.9	46.0	-4.1	Horiz
27 216 221M	52.0	+0.4	105	.0.0	.0.1	259	20 5	16.0	75	191 Vert
3/ 216.321M	52.8	-26.2	+10.5	+0.9	+0.1	+0.0	38.5	46.0	-7.5	Vert
QP	FFC	+0.4	. 10 5	.0.0	.0.1	195	41.0	16.0	4 7	112 V
^A 216.321M	55.6	-26.2	+10.5	+0.9	+0.1	+0.0	41.3	46.0	-4.7	Vert
	50 0	+0.4			0.1	195	20.2	16.0		112
39 224.260M	52.0	-26.2	+11.1	+0.9	+0.1	+0.0	38.3	46.0	-7.7	Horiz
QP		+0.4				270				117
^ 224.260M	54.8	-26.2	+11.1	+0.9	+0.1	+0.0	41.1	46.0	-4.9	Horiz
		+0.4				270				117
41 174.571M	51.3	-26.4	+9.5	+0.9	+0.2	+0.0	35.8	43.5	-7.7	Vert
QP		+0.3				114				99
^ 174.571M	54.1	-26.4	+9.5	+0.9	+0.2	+0.0	38.6	43.5	-4.9	Vert
		+0.3				114				99
43 51.389M	49.8	-26.9	+8.6	+0.5	+0.0	+0.0	32.2	40.0	-7.8	Horiz
QP		+0.2				9				400
^ 51.389M	53.5	-26.9	+8.6	+0.5	+0.0	+0.0	35.9	40.0	-4.1	Horiz
		+0.2				9				400
45 603.245M	43.6	-28.0	+20.1	+1.7	+0.2	+0.0	38.2	46.0	-7.8	Vert
QP		+0.6				262				100
^ 603.245M	46.1	-28.0	+20.1	+1.7	+0.2	+0.0	40.7	46.0	-5.3	Vert
		+0.6				262				100
47 79.491M	50.0	-26.9	+8.0	+0.7	+0.1	+0.0	32.1	40.0	-7.9	Vert
QP		+0.2				80				101
^ 79.491M	54.1	-26.9	+8.0	+0.7	+0.1	+0.0	36.2	40.0	-3.8	Vert
		+0.2				80				101
49 115.302M	49.5	-26.6	+11.4	+0.7	+0.1	+0.0	35.4	43.5	-8.1	Vert
QP		+0.3				263				100
^ 115.302M	52.8	-26.6	+11.4	+0.7	+0.1	+0.0	38.7	43.5	-4.8	Vert
		+0.3				263				100
51 219.960M	51.2	-26.2	+10.8	+0.9	+0.1	+0.0	37.2	46.0	-8.8	Horiz
QP		+0.4				270				117
^ 219.960M	54.1	-26.2	+10.8	+0.9	+0.1	+0.0	40.1	46.0	-5.9	Horiz
		+0.4				270				117
53 73.709M	49.7	-26.8	+7.1	+0.7	+0.1	+0.0	31.0	40.0	-9.0	Vert
QP		+0.2				80				101
^ 73.709M	52.8	-26.8	+7.1	+0.7	+0.1	+0.0	34.1	40.0	-5.9	Vert
		+0.2				80				101
55 225.327M	50.0	-26.1	+11.2	+0.9	+0.1	+0.0	36.5	46.0	-9.5	Vert
QP		+0.4				200				99
^ 225.327M	53.0	-26.1	+11.2	+0.9	+0.1	+0.0	39.5	46.0	-6.5	Vert
		+0.4				200				99
57 157.162M	48.0	-26.4	+11.1	+0.8	+0.2	+0.0	33.9	43.5	-9.6	Vert
QP		+0.2				72				99
^ 157.162M	51.3	-26.4	+11.1	+0.8	+0.2	+0.0	37.2	43.5	-6.3	Vert
		+0.2				72				99

59 70.744M	48.7	-26.8	+6.6	+0.7	+0.1	+0.0	29.5	40.0	-10.5	Vert
QP		+0.2				80				101
^ 70.744M	52.8	-26.8	+6.6	+0.7	+0.1	+0.0	33.6	40.0	-6.4	Vert
		+0.2				80				101
61 36.370M	38.5	-26.9	+16.7	+0.4	+0.0	+0.0	28.9	40.0	-11.1	Vert
QP		+0.2				304				99
^ 36.370M	42.4	-26.9	+16.7	+0.4	+0.0	+0.0	32.8	40.0	-7.2	Vert
		+0.2				304				99
63 182.274M	48.1	-26.4	+9.3	+0.9	+0.2	+0.0	32.4	43.5	-11.1	Vert
OP		+0.3				161				99
^ 182.274M	51.2	-26.4	+9.3	+0.9	+0.2	+0.0	35.5	43.5	-8.0	Vert
		+0.3				161				99
65 129.100M	45.6	-26.6	+11.8	+0.7	+0.1	+0.0	31.9	43.5	-11.6	Horiz
OP		+0.3				85				149
^ 129.100M	48.3	-26.6	+11.8	+0.7	+0.1	+0.0	34.6	43.5	-8.9	Horiz
		+0.3				85				149
67 101.964M	47.2	-26.7	+10.4	+0.7	+0.1	+0.0	31.9	43.5	-11.6	Vert
OP		+0.2				76				99
^ 101 964M	50.3	-26.7	+104	+0.7	+0.1	+0.0	35.0	43 5	-8 5	Vert
101000101	0010	+0.2				76	0010		0.0	99
69 56 277M	47.2	-26.9	+7.3	+0.5	+0.1	+0.0	28.4	40.0	-11.6	Horiz
OP	17.2	+0.2	17.5	10.5	10.1	9	20.1	10.0	11.0	400
^ 56.277M	50.8	-26.9	+7.3	+0.5	+0.1	+0.0	32.0	40.0	-8.0	Horiz
001277111	0010	+0.2		1010		9	0210		0.0	400
71 199.996M	47.6	-26.4	+9.1	+0.9	+0.1	+0.0	31.6	43.5	-11.9	Vert
OP		+0.3	.,			198				99
^ 199.996M	51.0	-26.4	+9.1	+0.9	+0.1	+0.0	35.0	43.5	-8.5	Vert
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0110	+0.3	.,,,,,			198	0010		0.0	99
73 115.394M	45.3	-26.6	+11.4	+0.7	+0.1	+0.0	31.2	43.5	-12.3	Horiz
OP	1010	+0.3				222	0112		1210	169
^ 115 394M	48.5	-26.6	+114	+0.7	+0.1	+0.0	34.4	43 5	-91	Horiz
110.09 101	10.2	+0.3		10.7	10.1	222	5111	10.0	<i></i>	169
75 167 790M	457	-26.4	+10.2	+0.9	+0.2	+0.0	30.9	43 5	-12.6	Vert
OP	1017	+0.3	110.2	10.9	10.2	192	5017	10.0	12.0	176
^ 167 790M	48.4	-26.4	+10.2	+0.9	+0.2	+0.0	33.6	43.5	_9.9	Vert
107.790101	10.1	+0.3	110.2	10.9	10.2	192	55.0	15.5		176
77 123.062M	44.3	-26.6	+11.8	+0.7	+0.1	+0.0	30.6	43.5	-12.9	Horiz
OP	11.5	± 0.3	111.0	10.7	10.1	85	50.0	15.5	12.9	149
^ 123.062M	47 1	-26.6	+11.8	+0.7	+0.1	+0.0	33.4	43.5	-10.1	Horiz
125.002141	1/11	+0.3	111.0	10.7	10.1	85	55.7	10.0	10.1	149
79 174 502M	44.6	_26.0	₊ 0 5	+0 0	± 0.2	+0.0	20.1	43.5	-14.4	Horiz
OP	- - .0	±0.4 +0.3	17.5	10.7	10.2	155	27.1	-J.J	17.7	219
^ 174 502M	<u>47 8</u>	_26.0	_+Q 5	+0 0	± 0.2	+0.0	32.3	43.5	_11.2	Horiz
1/4.30211	т/.0	-20.4 +0.3	19.5	10.2	10.2	155	54.5	-J.J	-11.4	219
Ļ		10.5				155				217

FCC 15.207 CONDUCTED EMISSIONS

Test Setup Photos

Page 23 of 49 Report No.: FC07-086A

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: Specification: Work Order #:	Asyst Technologies FCC 15.207 COND [AVE] 87011 Conducted Emissions	Date:	9/10/2007
Equipment	RFID Tag Reader/Multiplexer	Sequence#:	20
Manufacturer: Model:	Asyst Technologies ATR 9880	Tested By:	Robert Gamez
S/N:	001		

Test Equipment:

1 1				
Function	S/N	Calibration Date	Cal Due Date	Asset #
SA - E4440A	MH46186315	02/15/2007	02/15/2009	02870
TTE High Pass Filter	H4120	01/17/2007	01/17/2009	05258
LISN	9408-1006	04/01/2007	04/01/2009	00493
Cable	none	06/13/2006	06/13/2008	0880
Attenuator	none	10/20/2005	10/20/2007	02223

Equipment Under Test (* = EUT):

	,		
Function	Manufacturer	Model #	S/N
RFID Tag	Asyst Technologies	ATR 9880	001
Reader/Multiplexer*			
Antenna	Asyst Technologies	PN 9701-2883-04 Rev 002	4
Support Devices:			

Support Derices.				
Function	Manufacturer	Model #	S/N	
Antenna	Asyst Technologies	PN 9701-2883-02	2	
Antenna	Asyst Technologies	PN 9701-2883-02	3	
Antenna	Asyst Technologies	PN 9701-2883-02	4	
Antenna	Asyst Technologies	PN 9701-2883-02	5	
Antenna	Asyst Technologies	PN 9701-2883-02	none	
Antenna	Asyst Technologies	PN 9701-2883-02	none	
Antenna	Asyst Technologies	PN 9701-2883-02	none	
Host PC	Compaq	Armada M700	01811	
AC Adapter for PC	Compaq	Series PPP0002D	386315-001	
24CDV Power Supply	AULT	PW102	none	

Test Conditions / Notes:

The ATR9800 8 Antenna Multiplexer: The host Dell PC is running Secsim Pro software and sending Read ID Commands over the serial connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. An unterminated Ethernet cable is attached. The EUT is powered by 24 VDC from a power supply on the floor. Notes: 1) Unterminated cables are connected to two of the remote I/O ports. 2) EUT is in Active Mode. Conducted Emissions 0.15-30 MHz. Temperature: 23°C Humidity: 50%.

Transducer Legend:		
T1=LISN - AN00493 - Black - ELC "OUT"	T2=ANP02223-082707	
T3=Cable P00880	T4=TTE HP Filter	

Measurement Data: Reading listed by margin.								Test Lea	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	680.199k	31.9	+0.0	+10.1	+0.1	+0.1	+0.0	42.2	46.0	-3.8	Black
	QP	21.0	.0.0	. 10.0	.0.2	.0.2		41.6	16.0	4 4	D1. 1
2	859.026K	31.2	+0.0	+10.0	+0.2	+0.2	+0.0	41.6	46.0	-4.4	Black
3	800 576k	31.1	+0.0	+10.1	+0.2	+0.2	+0.0	41.6	46.0	4.4	Black
5	009.J/0K	51.1	± 0.0	+10.1	+0.2	± 0.2	+0.0	41.0	40.0	-4.4	DIACK
4	4.407M	31.4	+0.0	+10.0	+0.1	+0.1	+0.0	41.6	46.0	-4.4	Black
5	4.705M	31.0	+0.1	+10.1	+0.2	+0.1	+0.0	41.5	46.0	-4.5	Black
	4 4 9 7 9	21.0		10.0	0.1	0.1	0.0	41.0	14.0	1.0	DI 1
6	4.105M	31.0	+0.0	+10.0	+0.1	+0.1	+0.0	41.2	46.0	-4.8	Black
7	1 875M	30.6	±0.1	±10.1	+0.2	±0.1	+0.0	/1.1	46.0	_/ 9	Black
,	4.075WI	50.0	10.1	10.1	10.2	10.1	10.0	41.1	+0.0	-4.7	DIACK
8	4.492M	30.5	+0.1	+10.1	+0.2	+0.1	+0.0	41.0	46.0	-5.0	Black
9	4.062M	30.7	+0.0	+10.0	+0.1	+0.1	+0.0	40.9	46.0	-5.1	Black
10	3.931M	30.6	+0.0	+10.0	+0.1	+0.1	+0.0	40.8	46.0	-5.2	Black
11	1 662M	20.2	+0.1	+ 10.1	+0.2	+0.1		40.8	46.0	5.2	Plack
11	4.002101	30.3	+0.1	+10.1	+0.2	+0.1	+0.0	40.8	40.0	-3.2	DIACK
12	3.718M	30.3	+0.0	+10.0	+0.1	+0.1	+0.0	40.5	46.0	-5.5	Black
13	4.747M	30.0	+0.1	+10.1	+0.2	+0.1	+0.0	40.5	46.0	-5.5	Black
14	4.618M	29.7	+0.1	+10.1	+0.2	+0.1	+0.0	40.2	46.0	-5.8	Black
15	<u>QP</u>	20.0	0.1	+ 10.1	0.2	+0.1		40.2	16.0	5.0	Dlasla
15	3.463M	29.9	-0.1	+10.1	+0.2	+0.1	+0.0	40.2	46.0	-5.8	Black
16	2.778M	29.8	-0.1	+10.1	+0.2	+0.1	+0.0	40.1	46.0	-5.9	Black
10	2.,,,0.01	27.0	0.1	110.1	10.2	10.1	10.0	10.1	10.0	5.7	Diach
17	4.830M	29.5	+0.1	+10.1	+0.2	+0.1	+0.0	40.0	46.0	-6.0	Black
	QP										
18	4.960M	29.5	+0.1	+10.1	+0.2	+0.1	+0.0	40.0	46.0	-6.0	Black
10	2.0543.6	20.5		10.0	0.1	0.1	0.0	20.0	160	1	DI 1
19	3.854M	29.7	+0.0	+10.0	+0.1	+0.1	+0.0	39.9	46.0	-6.1	Black
20	4 275M	20.7	+0.0	+10.0	+0.1	±0.1	+0.0	30.0	46.0	61	Black
20	T.2/J1VI	29.1	10.0	10.0	10.1	10.1	10.0	57.7	-0.0	-0.1	DIACK
21	5.734M	33.4	+0.1	+10.1	+0.2	+0.1	+0.0	43.9	50.0	-6.1	Black
		· ·									
22	427.793k	30.8	+0.1	+10.0	+0.2	+0.1	+0.0	41.2	47.3	-6.1	Black

23	4.360M	29.5	+0.0	+10.0	+0.1	+0.1	+0.0	39.7	46.0	-6.3	Black
24	4.577M	29.2	+0.1	+10.1	+0.2	+0.1	+0.0	39.7	46.0	-6.3	Black
25	3.595M	29.4	+0.0	+10.0	+0.1	+0.1	+0.0	39.6	46.0	-6.4	Black
26	3.892M	29.4	+0.0	+10.0	+0.1	+0.1	+0.0	39.6	46.0	-6.4	Black
27	3.977M	29.4	+0.0	+10.0	+0.1	+0.1	+0.0	39.6	46.0	-6.4	Black
28	1.881M	29.1	+0.0	+10.1	+0.2	+0.1	+0.0	39.5	46.0	-6.5	Black
29	4.322M	29.3	+0.0	+10.0	+0.1	+0.1	+0.0	39.5	46.0	-6.5	Black
30	2.953M	29.1	-0.1	+10.1	+0.2	+0.1	+0.0	39.4	46.0	-6.6	Black
31	4.998M	28.9	+0.1	+10.1	+0.2	+0.1	+0.0	39.4	46.0	-6.6	Black
32	3.080M	28.8	-0.1	+10.1	+0.2	+0.1	+0.0	39.1	46.0	-6.9	Black
33	3.293M	28.8	-0.1	+10.1	+0.2	+0.1	+0.0	39.1	46.0	-6.9	Black
34	3.552M	28.9	+0.0	+10.0	+0.1	+0.1	+0.0	39.1	46.0	-6.9	Black
35	5.436M	32.6	+0.1	+10.1	+0.2	+0.1	+0.0	43.1	50.0	-6.9	Black
36	3.510M	28.7	+0.0	+10.0	+0.1	+0.1	+0.0	38.9	46.0	-7.1	Black
37	3.165M	28.5	-0.1	+10.1	+0.2	+0.1	+0.0	38.8	46.0	-7.2	Black
38	3.208M	28.5	-0.1	+10.1	+0.2	+0.1	+0.0	38.8	46.0	-7.2	Black
39	680.199k Ave	28.4	+0.0	+10.1	+0.1	+0.1	+0.0	38.7	46.0	-7.3	Black
^	680.199k	35.5	+0.0	+10.1	+0.1	+0.1	+0.0	45.8	46.0	-0.2	Black
41	4.618M Ave	28.2	+0.1	+10.1	+0.2	+0.1	+0.0	38.7	46.0	-7.3	Black
^	4.618M	31.9	+0.1	+10.1	+0.2	+0.1	+0.0	42.4	46.0	-3.6	Black
43	3.123M	28.2	-0.1	+10.1	+0.2	+0.1	+0.0	38.5	46.0	-7.5	Black
44	4.020M	28.2	+0.0	+10.0	+0.1	+0.1	+0.0	38.4	46.0	-7.6	Black
45	859.026k Ave	27.8	+0.0	+10.0	+0.2	+0.2	+0.0	38.2	46.0	-7.8	Black
^	859.026k	34.5	+0.0	+10.0	+0.2	+0.2	+0.0	44.9	46.0	-1.1	Black
47	2.608M	27.9	-0.1	+10.1	+0.2	+0.1	+0.0	38.2	46.0	-7.8	Black

48	4.237M	28.0	+0.0	+10.0	+0.1	+0.1	+0.0	38.2	46.0	-7.8	Black
49	2.051M	27.8	+0.0	+10.1	+0.2	+0.1	+0.0	38.2	46.0	-7.8	Black
50	5.472M	31.6	+0.1	+10.1	+0.2	+0.1	+0.0	42.1	50.0	-7.9	Black
51	3.250M	27.7	-0.1	+10.1	+0.2	+0.1	+0.0	38.0	46.0	-8.0	Black
52	5.301M	31.5	+0.1	+10.1	+0.2	+0.1	+0.0	42.0	50.0	-8.0	Black
53	1.239M	27.5	+0.0	+10.0	+0.1	+0.2	+0.0	37.8	46.0	-8.2	Black
54	4.194M	27.6	+0.0	+10.0	+0.1	+0.1	+0.0	37.8	46.0	-8.2	Black
55	5.346M	31.2	+0.1	+10.1	+0.2	+0.1	+0.0	41.7	50.0	-8.3	Black
56	5.860M	31.1	+0.1	+10.1	+0.2	+0.1	+0.0	41.6	50.0	-8.4	Black
57 A	4.830M Ave	25.6	+0.1	+10.1	+0.2	+0.1	+0.0	36.1	46.0	-9.9	Black
^	4.830M	32.7	+0.1	+10.1	+0.2	+0.1	+0.0	43.2	46.0	-2.8	Black

CKC Laboratories, Inc. Date: 9/10/2007 Time: 16:12:48 Asyst Technologies WO#: 87011 FCC 15:207 COND [AVE] Test Lead: Black 120V 60Hz Sequence#: 20 Active Mode-120V

Page 27 of 49 Report No.: FC07-086A

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: Specification:	Asy FC	rst Technologies C 15.207 COND [AVI	E]			
Work Order #:	870	11		Date:	9/10/2007	
Test Type:	Cor	nducted Emissions		Time:	16:24:53	
Equipment:	RF	ID Tag Reader/Multij	plexer	Sequence#:	21	
Manufacturer:	Asy	st Technologies		Tested By:	Robert Game	ez
Model:	AT	R 9880			120V 60Hz	
S/N:	001					
Test Equipment:						
Function		S/N	Calibration Date	Cal Due	Date	Asset #
SA - E4440A		MH46186315	02/15/2007	02/15/20)09	02870
TTE High Pass Fil	lter	H4120	01/17/2007	01/17/20)09	05258
LISN		9408-1006	04/01/2007	04/01/20)09	00493
Cable		none	06/13/2006	06/13/20	008	0880
Attenuator		none	10/20/2005	10/20/20	007	02223
Equipment Unde	r Te	st (* = EUT):			C 0.1	

Function	Manufacturer	Model #	S/N
RFID Tag	Asyst Technologies	ATR 9880	001
Reader/Multiplexer*			
Antenna	Asyst Technologies	PN 9701-2883-04 Rev 002	4
Support Davicas			

Support Devices:			
Function	Manufacturer	Model #	S/N
Antenna	Asyst Technologies	PN 9701-2883-02	2
Antenna	Asyst Technologies	PN 9701-2883-02	3
Antenna	Asyst Technologies	PN 9701-2883-02	4
Antenna	Asyst Technologies	PN 9701-2883-02	5
Antenna	Asyst Technologies	PN 9701-2883-02	none
Antenna	Asyst Technologies	PN 9701-2883-02	none
Antenna	Asyst Technologies	PN 9701-2883-02	none
Host PC	Compaq	Armada M700	01811
AC Adapter for PC	Compaq	Series PPP0002D	386315-001
24CDV Power Supply	AULT	PW102	none

Test Conditions / Notes:

The ATR9800 8 Antenna Multiplexer: The host Dell PC is running Secsim Pro software and sending Read ID Commands over the serial connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. An unterminated Ethernet cable is attached. The EUT is powered by 24 VDC from a power supply on the floor. Notes: 1) Unterminated cables are connected to two of the remote I/O ports. 2) EUT is in Active Mode. Conducted Emissions 0.15-30 MHz. Temperature: 23°C, Humidity: 50%.

Transducer Legend:

T1=LISN - AN00493 - White - ELC "OUT"	T2=ANP02223-082707
T3=Cable P00880	T4=TTE HP Filter

Measu	rement Data:	R	eading lis	ted by ma	argin.			Test Lead: White			
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	680.160k	32.1	+0.0	+10.1	+0.1	+0.1	+0.0	42.4	46.0	-3.6	White
	QP										

2	810.115k OP	31.2	+0.0	+10.1	+0.2	+0.2	+0.0	41.7	46.0	-4.3	White
3	4.828M	31.1	+0.0	+10.1	+0.2	+0.1	+0.0	41.5	46.0	-4.5	White
4	4.615M	30.7	+0.0	+10.1	+0.2	+0.1	+0.0	41.1	46.0	-4.9	White
5	4.318M	30.5	+0.1	+10.0	+0.1	+0.1	+0.0	40.8	46.0	-5.2	White
6	3.675M	30.3	+0.1	+10.0	+0.1	+0.1	+0.0	40.6	46.0	-5.4	White
7	4.062M	30.3	+0.1	+10.0	+0.1	+0.1	+0.0	40.6	46.0	-5.4	White
8	4.275M	30.2	+0.1	+10.0	+0.1	+0.1	+0.0	40.5	46.0	-5.5	White
9	859.025k	30.0	+0.0	+10.0	+0.2	+0.2	+0.0	40.4	46.0	-5.6	White
10	4.445M	30.1	+0.1	+10.0	+0.1	+0.1	+0.0	40.4	46.0	-5.6	White
11	4.747M	30.0	+0.0	+10.1	+0.2	+0.1	+0.0	40.4	46.0	-5.6	White
12	4.488M	29.8	+0.0	+10.1	+0.2	+0.1	+0.0	40.2	46.0	-5.8	White
13	3.463M	29.6	+0.1	+10.1	+0.2	+0.1	+0.0	40.1	46.0	-5.9	White
14	4.705M	29.5	+0.0	+10.1	+0.2	+0.1	+0.0	39.9	46.0	-6.1	White
15	4.662M	29.4	+0.0	+10.1	+0.2	+0.1	+0.0	39.8	46.0	-6.2	White
16	4.871M	29.4	+0.0	+10.1	+0.2	+0.1	+0.0	39.8	46.0	-6.2	White
17	4.998M	29.4	+0.0	+10.1	+0.2	+0.1	+0.0	39.8	46.0	-6.2	White
18	3.033M	29.2	+0.1	+10.1	+0.2	+0.1	+0.0	39.7	46.0	-6.3	White
19	4.233M	29.4	+0.1	+10.0	+0.1	+0.1	+0.0	39.7	46.0	-6.3	White
20	2.136M	29.3	+0.0	+10.1	+0.2	+0.1	+0.0	39.7	46.0	-6.3	White
21	4.573M	29.3	+0.0	+10.1	+0.2	+0.1	+0.0	39.7	46.0	-6.3	White
22	3.208M	29.1	+0.1	+10.1	+0.2	+0.1	+0.0	39.6	46.0	-6.4	White
23	3.505M	29.3	+0.1	+10.0	+0.1	+0.1	+0.0	39.6	46.0	-6.4	White
24	3.637M	29.3	+0.1	+10.0	+0.1	+0.1	+0.0	39.6	46.0	-6.4	White
25	3.420M	29.0	+0.1	+10.1	+0.2	+0.1	+0.0	39.5	46.0	-6.5	White
26	427.065k	30.4	+0.0	+10.0	+0.2	+0.1	+0.0	40.7	47.3	-6.6	White

27	3.935M	29.1	+0.1	+10.0	+0.1	+0.1	+0.0	39.4	46.0	-6.6	White
28	3.548M	29.0	+0.1	+10.0	+0.1	+0.1	+0.0	39.3	46.0	-6.7	White
29	3.846M	29.0	+0.1	+10.0	+0.1	+0.1	+0.0	39.3	46.0	-6.7	White
30	3.888M	28.7	+0.1	+10.0	+0.1	+0.1	+0.0	39.0	46.0	-7.0	White
31	4.360M	28.7	+0.1	+10.0	+0.1	+0.1	+0.0	39.0	46.0	-7.0	White
32	4.960M	28.6	+0.0	+10.1	+0.2	+0.1	+0.0	39.0	46.0	-7.0	White
33	680.160k Ave	28.6	+0.0	+10.1	+0.1	+0.1	+0.0	38.9	46.0	-7.1	White
٨	680.160k	36.0	+0.0	+10.1	+0.1	+0.1	+0.0	46.3	46.0	+0.3	White
35	2.434M	28.5	+0.0	+10.1	+0.2	+0.1	+0.0	38.9	46.0	-7.1	White
36	3.165M	28.4	+0.1	+10.1	+0.2	+0.1	+0.0	38.9	46.0	-7.1	White
37	3.977M	28.6	+0.1	+10.0	+0.1	+0.1	+0.0	38.9	46.0	-7.1	White
38	1.881M	28.4	+0.0	+10.1	+0.2	+0.1	+0.0	38.8	46.0	-7.2	White
39	3.293M	28.3	+0.1	+10.1	+0.2	+0.1	+0.0	38.8	46.0	-7.2	White
40	2.863M	28.0	+0.1	+10.1	+0.2	+0.1	+0.0	38.5	46.0	-7.5	White
41	2.736M	27.9	+0.1	+10.1	+0.2	+0.1	+0.0	38.4	46.0	-7.6	White
42	5.346M	31.9	+0.0	+10.1	+0.2	+0.1	+0.0	42.3	50.0	-7.7	White
43	3.076M	27.6	+0.1	+10.1	+0.2	+0.1	+0.0	38.1	46.0	-7.9	White
44	5.256M	31.7	+0.0	+10.1	+0.2	+0.1	+0.0	42.1	50.0	-7.9	White
45	5.679M	31.6	+0.1	+10.1	+0.2	+0.1	+0.0	42.1	50.0	-7.9	White
46	2.778M	27.5	+0.1	+10.1	+0.2	+0.1	+0.0	38.0	46.0	-8.0	White
47	3.803M	27.7	+0.1	+10.0	+0.1	+0.1	+0.0	38.0	46.0	-8.0	White
48	5.045M	31.6	+0.0	+10.1	+0.2	+0.1	+0.0	42.0	50.0	-8.0	White
49	2.651M	27.4	+0.1	+10.1	+0.2	+0.1	+0.0	37.9	46.0	-8.1	White
50	770.306k	27.3	+0.0	+10.1	+0.2	+0.1	+0.0	37.7	46.0	-8.3	White

51	4.403M	27.3	+0.1	+10.0	+0.1	+0.1	+0.0	37.6	46.0	-8.4	White
52	5.770M	31.1	+0.1	+10.1	+0.2	+0.1	+0.0	41.6	50.0	-8.4	White
53	810.115k	26.5	+0.0	+10.1	+0.2	+0.2	+0.0	37.0	46.0	-9.0	White
	Ave										
^	810.115k	34.9	+0.0	+10.1	+0.2	+0.2	+0.0	45.4	46.0	-0.6	White

CKC Laboratories, Inc. Date: 9/10/2007 Time: 16:24:53 Asyst Technologies WO#: 87011 FCC 15:207 COND [AVE] Test Lead: White 120V 60Hz Sequence#: 21 Active Mode-120V

FCC 15.209 RADIATED EMISSIONS

Test Setup Photos

Page 32 of 49 Report No.: FC07-086A

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Asyst Technologies		
Work Order #:	97011	Deter	8/21/2007
work Order #.	0/011	Date.	8/31/2007
Test Type:	Maximized Emissions	Time:	11:27:15
Equipment:	RFID Tag Reader/Multiplexer	Sequence#:	1
Manufacturer:	Asyst Technologies	Tested By:	Art Rice
Model:	ATR 9880		
S/N:	001		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Mag Loop - 6502	2078	06/11/2007	06/11/2009	00432
SA - E4440A	MH46186315	02/15/2007	02/15/2009	02870
Cable	None	04/05/2007	04/05/2009	P05300
Cable	None	04/02/2007	04/02/2009	P05296
Cable	None	04/02/2007	04/02/2009	P05299

Equipment Under Test (* = EUT):										
Function	Manufacturer	Model #	S/N							
RFID Tag	Asyst Technologies	ATR 9880	001							
Reader/Multiplexer*										
Antenna	Asyst Technologies	PN 9701-2883-04 Rev 002	4							

Support Devices:

Function	Manufacturer	Model #	S/N
Antenna	Asyst Technologies	PN 9701-2883-02	2
Antenna	Asyst Technologies	PN 9701-2883-02	3
Antenna	Asyst Technologies	PN 9701-2883-02	4
Antenna	Asyst Technologies	PN 9701-2883-02	5
Antenna	Asyst Technologies	PN 9701-2883-02	none
Antenna	Asyst Technologies	PN 9701-2883-02	none
Host PC	Compaq	Armada M700	01811
AC Adapter for PC	Compaq	Series PPP0002D	386315-001
24CDV Power Supply	AULT	PW102	none
Antenna	Asyst Technologies	PN 9701-2883-02	none

Test Conditions / Notes:

The ATR9800 8 Antenna Multiplexer: The host Dell PC is running Secsim Pro software and sending Read ID Commands over the serial connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. An unterminated Ethernet cable is attached. The EUT is powered by 24 VDC from a power supply on the floor. Radiated emissions: Carrier. Transmit fundamental was also measured at -/+15% (20.4 and 27.6 Volts) and no change in the level was seen.

Transa	Transducer Legend:											
T1=Cat	ole Calibratio	n ANP052	296			T2=Mag Loop - AN 00432- 9kHz-30M						
<i>Measurement Data:</i> Reading listed by margin.						Те	est Distanc	e: 3 Meters				
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar	
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant	
1	134.205k	90.5	+0.1	+9.5			-80.0	20.1	25.0	-4.9	Horiz	
						90 EUT antenna					100	
						horizontal						
2	134.205k	85.8	+0.1	+9.5			-80.0	15.4	25.0	-9.6	Vert	
							49		EUT anten	na	100	
									horizontal			
3	134.203k	83.0	+0.1	+9.5			-80.0	12.6	25.0	-12.4	Horiz	
							90		EUT anten	na	100	
									vertical			
4	134.205k	73.8	+0.1	+9.5			-80.0	3.4	25.0	-21.6	Vert	
							64		EUT anten	na	100	
									vertical			

Test Location:	CKC Laboratories, Inc.	•1120 Fulton Place	 Fremont, CA 94539 	510-249-1170
----------------	------------------------	--------------------	---------------------------------------	--------------

Customer:	Asyst Technologies					
Specification:	FCC 15.209					
Work Order #:	87011		Date:	8/31/200	07	
Test Type:	Radiated Scan		Time:	7:25:28	PM	
Equipment:	RFID Tag Reader/Multi	iplexer	Sequence#:	6		
Manufacturer:	Asyst Technologies		Tested By:	Art Rice		
Model:	ATR 9880					
S/N:	001					
Test Equipment:						
Function	S/N	Calibration	Date Cal Due	Date	Asset #	
SA - E4440A	MH46186315	02/15/2007	02/15/20)09	02870	
Mag Loop - 6502	2078	06/11/2007	06/11/20)09	00432	
Cable	None	04/05/2007	04/05/20)09	P05300	
Cable	None	04/02/2007	04/02/20)09	P05296	
Cable	None	04/02/2007	04/02/20)09	P05299	
Equipment Unde	er Test (* = EUT):					
Function	Manufacturer	1	Model #	S	S/N	
RFID Tag	Asyst Technolo	gies 4	ATR 9880	(001	
Reader/Multiplexe	er*					
Antenna	Asyst Technolo	gies l	PN 9701-2883-04 R	ev 002 4	ļ	
Support Devices:	•					
Function	Manufacturer	1	Model #	S	S/N	
Antenna	Asyst Technolo	gies l	PN 9701-2883-02	2	2	
Antenna	Asyst Technolo	gies l	PN 9701-2883-02	3	3	
Antenna	Asyst Technolo	gies l	PN 9701-2883-02	4	ŀ	
Antenna	Asyst Technolo	gies l	PN 9701-2883-02	4	5	
Antenna	Asyst Technolo	gies l	PN 9701-2883-02	r	none	
Antenna	Asyst Technolo	gies l	PN 9701-2883-02	r	none	
Host PC	Compaq	1	Armada M700	(01811	
AC Adapter for P	C Compaq		Series PPP0002D	3	386315-001	
24CDV Power Su	pply AULT]	PW102	r	none	
Antenna	Asyst Technolo	gies l	PN 9701-2883-02	r	none	

Test Conditions / Notes:

The ATR9800 8 Antenna Multiplexer: The host Dell PC is running Secsim Pro software and sending Read ID Commands over the serial connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. An unterminated Ethernet cable is attached. The EUT is powered by 24 VDC from a power supply on the floor. Notes: 1) Unterminated cables are connected to two of the remote I/O ports. 2) The transmit fundamental signal was deleted from the list of signals. 3) Performed 9 kHz-30 MHz scan with loop vertical (parallel to line drawn to the EUT), with the EUT at the worst case angle for the transmitter fundamental signal. Radiated emissions: Spurious. Temperature: 23°C Humidity: 50% relative humidity.

Transducer Legend: T1=Cable Calibration ANP05296 T3=Cable Calibration ANP05300

T2=Cable Calibration ANP05299 T4=Mag Loop - AN 00432- 9kHz-30M

Measu	urement Data: Reading listed by margin.				argin.	. Test Distance: 3 Meters					
#	Freq MHz	Rdng dBuV	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dBuV/m	Spec dBuV/m	Margin dB	Polar Ant
1	601.592k	<u>38.3</u>	+0.1	+0.0	+0.0	+9.9	-40.0 89	8.3	32.0	-23.7	Vert 99
2	580.685k	38.3	+0.1	+0.0	+0.0	+9.8	-40.0 89	8.2	32.3	-24.1	Vert 99
3	549.324k	38.5	+0.1	+0.0	+0.0	+9.8	-40.0 89	8.4	32.8	-24.4	Vert 99
4	520.054k	38.9	+0.1	+0.0	+0.0	+9.7	-40.0 89	8.7	33.3	-24.6	Vert 99
5	1.076M	30.7	+0.2	+0.1	+0.0	+10.4	-40.0 89	1.4	26.9	-25.5	Vert 99
6	1.070M	30.7	+0.2	+0.1	+0.0	+10.4	-40.0 89	1.4	27.0	-25.6	Vert 99
7	948.648k	31.4	+0.2	+0.0	+0.1	+10.3	-40.0 89	2.0	28.0	-26.0	Vert 99
8	1.321M	27.7	+0.2	+0.1	+0.0	+10.4	-40.0 89	-1.6	25.1	-26.7	Vert 99
9	1.369M	26.4	+0.2	+0.1	+0.0	+10.4	-40.0 89	-2.9	24.8	-27.7	Vert 99
10	1.906M	23.8	+0.2	+0.0	+0.1	+10.4	-40.0 89	-5.5	29.5	-35.0	Vert 99
11	2.193M	23.4	+0.2	+0.0	+0.1	+10.4	-40.0 89	-5.9	29.5	-35.4	Vert 99
12	16.024M	22.3	+0.3	+0.0	+0.1	+9.5	-40.0 89	-7.8	29.5	-37.3	Vert 99
13	15.970M	21.1	+0.3	+0.0	+0.1	+9.5	-40.0 89	-9.0	29.5	-38.5	Vert 99
14	16.907M	19.8	+0.3	+0.0	+0.1	+9.3	-40.0 89	-10.5	29.5	-40.0	Vert 99
15	16.106M	19.4	+0.3	+0.0	+0.1	+9.5	-40.0 89	-10.7	29.5	-40.2	Vert 99
16	17.042M	18.4	+0.3	+0.0	+0.1	+9.3	-40.0 89	-11.9	29.5	-41.4	Vert 99
17	183.451k	48.4	+0.2	+0.0	+0.1	+9.8	-80.0 89	-21.5	22.3	-43.8	Vert 99
18	465.696k	40.3	+0.1	+0.0	+0.0	+9.6	-80.0 89	-30.0	14.2	-44.2	Vert 99
19	154.181k	49.4	+0.2	+0.0	+0.1	+9.7	-80.0 89	-20.6	23.8	-44.4	Vert 99
20	379.977k	41.1	+0.2	+0.1	+0.0	+9.7	-80.0 89	-28.9	16.0	-44.9	Vert 99
21	319.347k	42.2	+0.2	+0.1	+0.0	+9.6	-80.0 89	-27.9	17.5	-45.4	Vert 99
22	133.769k	49.2	+0.1	+0.0	+0.0	+9.6	-80.0 89	-21.1	25.1	-46.2	Vert 99

23	132.933k	42.2	+0.1	+0.0	+0.0	+9.6	-80.0 89	-28.1	25.1	-53.2	Vert 99
24	136.278k	37.5	+0.1	+0.0	+0.0	+9.4	-80.0 89	-33.0	24.9	-57.9	Vert 99
25	43.312k	41.6	+0.1	+0.0	+0.0	+11.5	-80.0 89	-26.8	34.9	-61.7	Vert 99
26	42.754k	41.6	+0.1	+0.0	+0.0	+11.5	-80.0 89	-26.8	35.0	-61.8	Vert 99
27	19.478k	42.4	+0.0	+0.0	+0.0	+16.1	-80.0 89	-21.5	41.8	-63.3	Vert 99
28	39.409k	40.4	+0.1	+0.0	+0.0	+11.8	-80.0 89	-27.7	35.7	-63.4	Vert 99
29	45.124k	39.5	+0.1	+0.0	+0.0	+11.3	-80.0 89	-29.1	34.5	-63.6	Vert 99
30	22.405k	42.0	+0.0	+0.0	+0.0	+15.0	-80.0 89	-23.0	40.6	-63.6	Vert 99
31	17.805k	42.8	+0.0	+0.0	+0.0	+16.1	-80.0 89	-21.1	42.6	-63.7	Vert 99
32	23.938k	41.3	+0.0	+0.0	+0.0	+14.4	-80.0 89	-24.3	40.0	-64.3	Vert 99
33	17.108k	42.3	+0.0	+0.0	+0.0	+16.1	-80.0 89	-21.6	42.9	-64.5	Vert 99
34	32.858k	40.6	+0.0	+0.0	+0.0	+12.1	-80.0 89	-27.3	37.3	-64.6	Vert 99
35	35.785k	39.7	+0.1	+0.0	+0.0	+12.0	-80.0 89	-28.2	36.5	-64.7	Vert 99
36	24.914k	40.8	+0.0	+0.0	+0.0	+14.0	-80.0 89	-25.2	39.7	-64.9	Vert 99
37	18.363k	41.3	+0.0	+0.0	+0.0	+16.1	-80.0 89	-22.6	42.3	-64.9	Vert 99
38	24.496k	40.6	+0.0	+0.0	+0.0	+14.2	-80.0 89	-25.2	39.8	-65.0	Vert 99
39	21.569k	40.3	+0.0	+0.0	+0.0	+15.4	-80.0 89	-24.3	40.9	-65.2	Vert 99
40	15.575k	42.3	+0.0	+0.0	+0.0	+16.1	-80.0 89	-21.6	43.7	-65.3	Vert 99
41	22.684k	40.2	+0.0	+0.0	+0.0	+14.9	-80.0 89	-24.9	40.5	-65.4	Vert 99
42	20.732k	40.1	+0.0	+0.0	+0.0	+15.8	-80.0 89	-24.1	41.3	-65.4	Vert 99
43	26.726k	40.1	+0.0	+0.0	+0.0	+13.4	-80.0 89	-26.5	39.1	-65.6	Vert 99
44	12.369k	43.6	+0.0	+0.0	+0.0	+16.1	-80.0 89	-20.3	45.7	-66.0	Vert 99
45	13.763k	42.4	+0.0	+0.0	+0.0	+16.1	-80.0 89	-21.5	44.8	-66.3	Vert 99
46	13.485k	42.2	+0.0	+0.0	+0.0	+16.1	-80.0 89	-21.7	45.0	-66.7	Vert 99

47	9.690k	44.0	+0.0	+0.0	+0.0	+16.1	-80.0	-19.9	47.9	-67.8	Vert
							89				99
48	10.000k	43.4	+0.0	+0.0	+0.0	+16.1	-80.0	-20.5	47.6	-68.1	Vert
							89				99
49	9.002k	43.7	+0.0	+0.0	+0.0	+16.1	-80.0	-20.2	48.5	-68.7	Vert
							89				99
50	9.367k	42.2	+0.0	+0.0	+0.0	+16.1	-80.0	-21.7	48.2	-69.9	Vert
							89				99

CKC Laboratories, Inc. Date: 8/31/2007 Time: 7:25:28 PM Asyst Technologies WO#: 87011 FCC 15.209 Test Distance: 3 Meters Sequence#: 6 V

Test Location:	CKC Laboratories, Inc.	•1120 Fulton Place	 Fremont, CA 94539 	510-249-1170
----------------	------------------------	--------------------	---------------------------------------	--------------

Customer:	Asyst Technologies					
Specification:	FCC 15.209					
Work Order #:	87011		Date:	8/31/20	007	
Test Type:	Radiated Scan		Time:	7:40:29	PM	
Equipment:	RFID Tag Reader/Multi	plexer	Sequence#:	7		
Manufacturer:	Asyst Technologies		Tested By:	Art Ric	e	
Model:	ATR 9880					
S/N:	001					
Test Equipment:						
Function	S/N	Calibration	Date Cal Due	Date	Asset	#
SA - E4440A	MH46186315	02/15/2007	02/15/20)09	02870	
Mag Loop - 6502	2078	06/11/2007	06/11/20)09	00432	
Cable	None	04/05/2007	04/05/20)09	P0530	0
Cable	None	04/02/2007	04/02/20)09	P0529	6
Cable	None	04/02/2007	04/02/20)09	P0529	9
Equipment Under	• <i>Test</i> (* = EUT):					
Function	Manufacturer		Model #		S/N	
RFID Tag	Asyst Technolog	gies	ATR 9880		001	
Reader/Multiplexer	r*					
Antenna	Asyst Technolo	gies	PN 9701-2883-04 R	ev 002	4	
Support Devices:						
Function	Manufacturer	-	Model #		S/N	
Antenna	Asyst Technolo	gies	PN 9701-2883-02		2	
Antenna	Asyst Technolo	gies	PN 9701-2883-02		3	
Antenna	Asyst Technolo	gies	PN 9701-2883-02		4	
Antenna	Asyst Technolog	gies	PN 9701-2883-02		5	
Antenna	Asyst Technolog	gies	PN 9701-2883-02		none	
Antenna	Asyst Technolo	gies	PN 9701-2883-02		none	
Host PC	Compaq		Armada M700		01811	
AC Adapter for PC	Compaq		Series PPP0002D		386315-001	
24CDV Power Sup	ply AULT		PW102		none	
Antenna	Asyst Technolo	gies	PN 9701-2883-02		none	

Test Conditions / Notes:

The ATR9800 8 Antenna Multiplexer: The host Dell PC is running Secsim Pro software and sending Read ID Commands over the serial connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. An unterminated Ethernet cable is attached. The EUT is powered by 24 VDC from a power supply on the floor. Notes: 1) Unterminated cables are connected to two of the remote I/O ports. 2) The transmit fundamental signal was deleted from the list of signals. 3) Performed 9 kHz-30 MHz scan with loop horizontal (perpendicular to line drawn to the EUT), with the EUT rotated 360 degrees. Radiated emissions: Spurious Temperature: 23°C, Humidity: 50% relative humidity.

eke sting the Future PRATORIES, INC.

Transducer Legend: T1=Cable Calibration ANP05296 T2=Cable Calibration ANP05299 T3=Cable Calibration ANP05300 T4=Mag Loop - AN 00432- 9kHz-30M

Measur	<i>leasurement Data:</i> Reading listed by m				argin.	gin. Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant	
1	670.585k	42.9	+0.2	+0.1	+0.0	+10.0	-40.0	13.2	31.1	-17.9	Horiz	
							-10				99	
2	940.285k	36.4	+0.2	+0.0	+0.1	+10.3	-40.0	7.0	28.1	-21.1	Horiz	
							-10				99	
3	520.054k	40.6	+0.1	+0.0	+0.0	+9.7	-40.0	10.4	33.3	-22.9	Horiz	
							-10				99	
4	641.315k	38.3	+0.2	+0.0	+0.0	+9.9	-40.0	8.4	31.4	-23.0	Horiz	
	004 0001	25.0	0.0	0.1	0.0	10.1	-10		20.5		99	
5	804.390k	35.9	+0.2	+0.1	+0.0	+10.1	-40.0	6.3	29.5	-23.2	Horiz	
	700 7 (0)	265	.0.2	.0.1	.0.0	. 10.0	-10	6.0	20.4	22.5	99	
6	/20./62k	36.5	+0.3	+0.1	+0.0	+10.0	-40.0	6.9	30.4	-23.5	Horiz	
7	690 4011-	26.0	+0.2	+0.1		10.0	-10	7.2	20.0	22.5	99 11ani-	
/	089.401K	30.9	+0.3	+0.1	+0.0	+10.0	-40.0	7.5	30.8	-23.5	HOFIZ	
0	566 0501	20.1	+0.1			10.8	-10	0.0	22.5	22.5	Horiz	
0	300.030K	39.1	± 0.1	+0.0	+0.0	+9.0	-40.0	9.0	52.5	-23.3	00	
9	517 233k	39./	±0.1	±0.0	+0.0	±9.7	-10	9.2	32.8	-23.6	Horiz	
,	J-1.255K	57.4	10.1	10.0	10.0	1.7.7	-10).2	52.0	-25.0	90	
10	1 476M	29.5	+0.2	+0.0	+0.1	+10.4	-40.0	0.2	24.2	-24.0	Horiz	
10	1.470101	27.5	10.2	10.0	10.1	110.4	-10	0.2	27.2	24.0	99	
11	791 846k	35.1	+0.2	+0.1	+0.0	+10.1	-40.0	5 5	29.6	-24 1	Horiz	
	// 110 1011	0011		1011	1010	1011	-10	0.0	_>	2	99	
12	915.197k	33.3	+0.2	+0.0	+0.1	+10.3	-40.0	3.9	28.3	-24.4	Horiz	
							-10				99	
13	856.657k	34.0	+0.2	+0.0	+0.1	+10.2	-40.0	4.5	28.9	-24.4	Horiz	
							-10				99	
14	896.381k	33.4	+0.2	+0.0	+0.1	+10.3	-40.0	4.0	28.5	-24.5	Horiz	
							-10				99	
15	877.564k	33.5	+0.2	+0.0	+0.1	+10.3	-40.0	4.1	28.7	-24.6	Horiz	
							-10				99	
16	781.392k	34.5	+0.2	+0.1	+0.0	+10.1	-40.0	4.9	29.7	-24.8	Horiz	
							-10				99	
17	1.074M	31.3	+0.2	+0.1	+0.0	+10.4	-40.0	2.0	26.9	-24.9	Horiz	
							-10				99	
18	1.126M	30.6	+0.2	+0.1	+0.0	+10.4	-40.0	1.3	26.5	-25.2	Horiz	
							-10				99	
19	1.204M	29.7	+0.2	+0.1	+0.0	+10.4	-40.0	0.4	25.9	-25.5	Horiz	
							-10				99	
20	1.013M	31.1	+0.2	+0.1	+0.0	+10.4	-40.0	1.8	27.4	-25.6	Horiz	
	10505	20.5	0.0	0.1	0.0	10.4	-10		25.0	07.0	99	
21	1.064M	30.5	+0.2	+0.1	+0.0	+10.4	-40.0	1.2	27.0	-25.8	Horiz	
	126 0701	(2.0	.0.1			.0.4	-10	7.6	24.0	22.5	99	
22	136.278k	62.9	+0.1	+0.0	+0.0	+9.4	-80.0	-/.6	24.9	-32.5	Horiz	
							-10				99	

23	405.066k	50.5	+0.2	+0.1	+0.0	+9.7	-80.0	-19.5	15.5	-35.0	Horiz
2.1	1.50 0011	560	0.0	0.0	0.1	0.7	-10	10.1	24.0	07.1	99
24	152.091k	56.9	+0.2	+0.0	+0.1	+9.7	-80.0 -10	-13.1	24.0	-37.1	Horiz 99
25	156.272k	56.2	+0.2	+0.0	+0.1	+9.7	-80.0	-13.8	23.7	-37.5	Horiz
							-10				99
26	131.261k	57.8	+0.1	+0.0	+0.0	+9.7	-80.0	-12.4	25.2	-37.6	Horiz
		41.0	0.1	0.0	0.0	0.6	-10	20.1	14.0	10.0	99
27	467.787k	41.2	+0.1	+0.0	+0.0	+9.6	-80.0 -10	-29.1	14.2	-43.3	Horiz 99
28	390 431k	42.5	+0.2	+0.1	+0.0	+97	-80.0	-27.5	15.8	-43.3	Horiz
20	570.151R	12.0	10.2	10.1	10.0	12.1	-10	27.3	10.0	10.0	99
29	250.354k	46.3	+0.2	+0.1	+0.0	+9.7	-80.0	-23.7	19.6	-43.3	Horiz
							-10				99
30	204.358k	47.9	+0.2	+0.0	+0.1	+9.9	-80.0	-21.9	21.4	-43.3	Horiz
							-10				99
31	193.905k	47.8	+0.2	+0.0	+0.1	+9.9	-80.0	-22.0	21.8	-43.8	Horiz
							-10				99
32	308.893k	43.8	+0.2	+0.1	+0.0	+9.6	-80.0	-26.3	17.8	-44.1	Horiz
							-10		10 7		99
33	283.805k	44.1	+0.2	+0.1	+0.0	+9.6	-80.0	-26.0	18.5	-44.5	Horiz
24	452 1521	40.1	.0.1	.0.0	.0.0	.0.6	-10	20.2	145	447	99
54	455.152K	40.1	+0.1	+0.0	+0.0	+9.0	-80.0	-30.2	14.5	-44./	HOFIZ
35	230 0001/	45.0	+0.2	+0.0	+0.1	+0.8	-10 -10	24.0	20.0	11.0	Horiz
55	239.900K	45.0	+0.2	± 0.0	± 0.1	+9.0	-30.0	-24.9	20.0	-++.9	90
36	227 356k	45.3	+0.2	+0.0	+0.1	+9.8	-80.0	-24.6	20.5	-45 1	Horiz
50	227.550K	10.0	10.2	10.0	10.1	17.0	-10	21.0	20.5	13.1	99
37	223.175k	45.2	+0.2	+0.0	+0.1	+9.8	-80.0	-24.7	20.6	-45.3	Horiz
							-10				99
38	42.894k	55.9	+0.1	+0.0	+0.0	+11.5	-80.0	-12.5	34.9	-47.4	Horiz
							-10				99
39	138.369k	45.3	+0.1	+0.0	+0.0	+9.3	-80.0	-25.3	24.8	-50.1	Horiz
							-10				99
40	127.219k	43.8	+0.1	+0.0	+0.0	+9.7	-80.0	-26.4	25.5	-51.9	Horiz
							-10	• • •			99
41	140.042k	42.5	+0.1	+0.0	+0.0	+9.2	-80.0	-28.2	24.7	-52.9	Horiz
42	1 47 1501	10.0	.0.2	.0.0	.0.1	.0.6	-10	20.2	24.2	52.4	99
42	147.150K	40.9	+0.2	+0.0	+0.1	+9.6	-80.0	-29.2	24.2	-55.4	HOIIZ
12	10 7011-	17 1				16 1	-10	16 9	12 1	58.0	99 Uoria
43	10./01K	4/.1	± 0.0	± 0.0	± 0.0	+10.1	-00.0	-10.8	42.1	-30.9	00 00
44	36 4821	43.6	+0.1	+0.0	+0.0	+12.0	-80.0	-24.3	36.3	-60.6	Horiz
	JU. 402K	-J.U	10.1	10.0	10.0	112.0	-10	27.3	50.5	00.0	99
45	13.206k	47.0	+0.0	+0.0	+0.0	+16.1	-80.0	-16.9	45.2	-62.1	Horiz
							-10				99
·											

46	10.279k	46.0	+0.0	+0.0	+0.0	+16.1	-80.0	-17.9	47.3	-65.2	Horiz
							-10				99
47	9.409k	46.0	+0.0	+0.0	+0.0	+16.1	-80.0	-17.9	48.1	-66.0	Horiz
							-10				99
48	9.818k	45.2	+0.0	+0.0	+0.0	+16.1	-80.0	-18.7	47.7	-66.4	Horiz
							-10				99
49	9.983k	45.1	+0.0	+0.0	+0.0	+16.1	-80.0	-18.8	47.6	-66.4	Horiz
							-10				99

CKC Laboratories, Inc. Date: 8/31/2007 Time: 7:40:29 PM Asyst Technologies WO#: 87011 FCC 15.209 Test Distance: 3 Meters Sequence#: 7 H

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: Specification:	Asyst Technologies FCC 15.209 30Mhz to 100 GHz		
Work Order #:	87011	Date:	9/7/2007
Test Type:	Radiated Scan	Time:	17:10:17
Equipment:	RFID Tag Reader/Multiplexer	Sequence#:	12
Manufacturer:	Asyst Technologies	Tested By:	C. Nicklas
Model:	ATR 9880		
S/N:	002		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Chase Bilog CBL6111C	2630	12/30/2006	12/30/2008	00852
HP8447F opt H64 preamp	2944A03850	1/2/2007	1/2/2009	00501
SA - E4440A	MH46186315	02/15/2007	02/15/2009	02870

Equipment Under Test (* = EUT):										
Function	Manufacturer	Model #	S/N							
Antenna	Asyst Technologies	PN 9701-2883-04 Rev 002	4							
RFID Tag	Asyst Technologies	ATR 9880	002							
Reader/Multiplexer*										

Support Devices:				
Function	Manufacturer	Model #	S/N	
Antenna	Asyst Technologies	PN 9701-2883-02	2	
Antenna	Asyst Technologies	PN 9701-2883-02	3	
Antenna	Asyst Technologies	PN 9701-2883-02	4	
Antenna	Asyst Technologies	PN 9701-2883-02	5	
Antenna	Asyst Technologies	PN 9701-2883-02	none	
Antenna	Asyst Technologies	PN 9701-2883-02	none	
Host PC	Compaq	Armada M700	01811	
AC Adapter for PC	Compaq	Series PPP0002D	386315-001	
24VDC Power Supply	AULT	PW102	none	
Antenna	Asyst Technologies	PN 9701-2883-02	none	

Test Conditions / Notes:

The ATR9800 8 Antenna Multiplexer: The host Compaq PC is running Secsim Pro software and sending Read ID Commands over the RS232/COMM serial connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. An unterminated Ethernet cable is attached. The EUT is powered by 24 VDC from a power supply on the floor. The PC is setup outside the test chamber. Notes: 1) The outer two remote I/O ports have ethernet cables connected with loop-back plugs. The remaining 6 remote I/O ports have loop-back plugs directly connected to the ports. With the loop-back plugs installed, the remote I/O ports are fully functional 2) Added caps to enet Radiated emissions: Spurious emissions 30-1000 MHz. Temperature: 20°C, Humidity: 53%.

Transducer Legend: T1=AMP-ANP00501-010207 Top Portion T3=Cable Calibration ANP05296 T5=Cable Calibration ANP05300

T2=ANT AN00852 25-1000MHz

T4=Cable Calibration ANP05299

Measurement Data: Reading listed by margin.					Test Distance: 3 Meters						
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	399.987M	52.0	-27.1	+16.3	+1.3	+0.1	+0.0	43.1	46.0	-2.9	Vert
	QP		+0.5				41				126
^	399.987M	52.7	-27.1	+16.3	+1.3	+0.1	+0.0	43.8	46.0	-2.2	Vert
			+0.5				41				126
3	127.120M	53.0	-26.6	+11.8	+0.7	+0.1	+0.0	39.3	43.5	-4.2	Vert
•	<u>QP</u>	5 5 <i>5</i>	+0.3	. 11.0	.07	.0.1	115	41.0	42 E	17	99 Vort
~	127.120M	55.5	-20.0	+11.8	+0.7	+0.1	+0.0	41.8	43.5	-1./	vert
5	126 288M	52.7	26.6	±11.8	+0.7	+0.1	+0.0	30.0	13.5	15	Vort
5	OP	52.7	+0.3	111.0	10.7	10.1	115	57.0	ч 3 .5		99
^	126.288M	55.8	-26.6	+11.8	+0.7	+0.1	+0.0	42.1	43.5	-1.4	Vert
			+0.3				115				99
7	128.018M	52.5	-26.6	+11.8	+0.7	+0.1	+0.0	38.8	43.5	-4.7	Vert
	QP		+0.3				115				99
^	128.018M	55.6	-26.6	+11.8	+0.7	+0.1	+0.0	41.9	43.5	-1.6	Vert
			+0.3				115				99
9	50.468M	52.5	-26.9	+8.9	+0.5	+0.0	+0.0	35.2	40.0	-4.8	Vert
	QP		+0.2		0.7	0.0	78	20.4	10.0	0.4	100
~	50.468M	56.9	-26.9	+8.9	+0.5	+0.0	+0.0	39.6	40.0	-0.4	Vert
11	40.525M	52.2	+0.2	+0.2	+0.5	+0.0	/8	25.0	40.0	1.9	Horiz
11	49.555M	32.2	-20.9 ±0.2	+9.2	+0.3	+0.0	+0.0 9	55.2	40.0	-4.0	400
٨	49 535M	56.0	-26.9	+9.2	+0.5	+0.0	+0.0	39.0	40.0	-1.0	Horiz
	17.000111	20.0	+0.2		10.5	10.0	9	5710	10.0	1.0	400
13	128.830M	52.2	-26.6	+11.8	+0.7	+0.1	+0.0	38.5	43.5	-5.0	Vert
	QP		+0.3				115				99
٨	128.830M	55.4	-26.6	+11.8	+0.7	+0.1	+0.0	41.7	43.5	-1.8	Vert
			+0.3				115				99
15	44.613M	49.5	-26.9	+11.7	+0.5	+0.1	+0.0	35.0	40.0	-5.0	Vert
	QP	54.0	+0.1	11.7	0.5	0.1	21	20.7	40.0	0.0	99
~	44.613M	54.2	-26.9	+11.7	+0.5	+0.1	+0.0	39.7	40.0	-0.3	Vert
17	61 188M	547	+0.1	16.4	+0.5	+0.1	21	35.0	40.0	5.0	Vort
17	OP	54.7	+0.2	+0.4	+0.3	± 0.1	+0.0 65	35.0	40.0	-5.0	99
^	61 188M	57.7	-26.9	+64	+0.5	+0.1	+0.0	38.0	40.0	-2.0	Vert
	01110011	27.7	+0.2	10.1	10.0	10.1	65	20.0	10.0	2.0	99
19	56.273M	53.5	-26.9	+7.3	+0.5	+0.1	+0.0	34.7	40.0	-5.3	Vert
	QP		+0.2				65				99
۸	56.273M	57.7	-26.9	+7.3	+0.5	+0.1	+0.0	38.9	40.0	-1.1	Vert
			+0.2				65				99

21 399.987M OP	49.3	-27.1 +0.5	+16.3	+1.3	+0.1	+0.0	40.4	46.0	-5.6	Horiz 190
^ 399.987M	50.0	-27.1 +0.5	+16.3	+1.3	+0.1	+0.0	41.1	46.0	-4.9	Horiz 190
23 65.976M QP	53.6	-26.8 +0.2	+6.5	+0.6	+0.1	+0.0 65	34.2	40.0	-5.8	Vert 99
^ 65.976M	56.9	-26.8 +0.2	+6.5	+0.6	+0.1	+0.0 65	37.5	40.0	-2.5	Vert 99
25 104.933M QP	52.7	-26.7 +0.2	+10.6	+0.7	+0.1	+0.0 288	37.6	43.5	-5.9	Vert 112
^ 104.933M	56.2	-26.7 +0.2	+10.6	+0.7	+0.1	+0.0 288	41.1	43.5	-2.4	Vert 112
27 106.681M QP	52.3	-26.7 +0.2	+10.7	+0.7	+0.1	+0.0 288	37.3	43.5	-6.2	Vert 112
^ 106.681M	55.2	-26.7 +0.2	+10.7	+0.7	+0.1	+0.0 288	40.2	43.5	-3.3	Vert 112
29 50.509M QP	51.1	-26.9 +0.2	+8.9	+0.5	+0.0	+0.0 9	33.8	40.0	-6.2	Horiz 400
^ 50.509M	54.9	-26.9 +0.2	+8.9	+0.5	+0.0	+0.0 9	37.6	40.0	-2.4	Horiz 400
31 141.387M QP	50.7	-26.5 +0.2	+11.8	+0.8	+0.2	+0.0 115	37.2	43.5	-6.3	Vert 99
^ 141.387M	53.4	-26.5 +0.2	+11.8	+0.8	+0.2	+0.0 115	39.9	43.5	-3.6	Vert 99
33 105.610M QP	51.3	-26.7 +0.2	+10.6	+0.7	+0.1	+0.0 288	36.2	43.5	-7.3	Vert 112
^ 105.610M	55.6	-26.7 +0.2	+10.6	+0.7	+0.1	+0.0 288	40.5	43.5	-3.0	Vert 112
35 217.617M QP	52.9	-26.2 +0.4	+10.6	+0.9	+0.1	+0.0 259	38.7	46.0	-7.3	Horiz 191
^ 217.617M	56.1	-26.2 +0.4	+10.6	+0.9	+0.1	+0.0 259	41.9	46.0	-4.1	Horiz 191
37 216.321M QP	52.8	-26.2 +0.4	+10.5	+0.9	+0.1	+0.0 195	38.5	46.0	-7.5	Vert 112
^ 216.321M	55.6	-26.2 +0.4	+10.5	+0.9	+0.1	+0.0 195	41.3	46.0	-4.7	Vert 112
39 224.260M QP	52.0	-26.2 +0.4	+11.1	+0.9	+0.1	+0.0 270	38.3	46.0	-7.7	Horiz 117
^ 224.260M	54.8	-26.2 +0.4	+11.1	+0.9	+0.1	+0.0 270	41.1	46.0	-4.9	Horiz 117
41 174.571M QP	51.3	-26.4 +0.3	+9.5	+0.9	+0.2	+0.0 114	35.8	43.5	-7.7	Vert 99
^ 174.571M	54.1	-26.4 +0.3	+9.5	+0.9	+0.2	+0.0 114	38.6	43.5	-4.9	Vert 99
43 51.389M QP	49.8	-26.9 +0.2	+8.6	+0.5	+0.0	+0.0 9	32.2	40.0	-7.8	Horiz 400
^ 51.389M	53.5	-26.9 +0.2	+8.6	+0.5	+0.0	+0.0 9	35.9	40.0	-4.1	Horiz 400

45 603.245M	43.6	-28.0	+20.1	+1.7	+0.2	+0.0	38.2	46.0	-7.8	Vert
QP		+0.6				262				100
^ 603.245M	46.1	-28.0	+20.1	+1.7	+0.2	+0.0	40.7	46.0	-5.3	Vert
		+0.6				262				100
47 79.491M	50.0	-26.9	+8.0	+0.7	+0.1	+0.0	32.1	40.0	-7.9	Vert
OP		+0.2				80				101
^ 79.491M	54 1	-26.9	+8.0	+0.7	+0.1	+0.0	36.2	40.0	-3.8	Vert
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.111	+0.2				80	0012		010	101
49 115 302M	49 5	-26.6	+114	+0.7	+0.1	+0.0	35.4	43.5	-8.1	Vert
OP	17.5	± 0.3	111.1	10.7	10.1	263	55.1	15.5	0.1	100
^ 115 302M	52.8	-26.6	±11 <i>1</i>	±0.7	±0.1	+0.0	38.7	/3.5	-18	Vert
115.502101	52.0	-20.0 ±0.3	111.7	10.7	10.1	263	50.7	чэ.э	-4.0	100
51 210.060M	51.2	26.2	10.9	+0.0	+0.1	203	27.2	46.0	00	Horiz
OP	31.2	-20.2	+10.8	+0.9	+0.1	+0.0	57.2	40.0	-0.0	117
	541	+0.4	10.0	.0.0	.0.1	270	40.1	46.0	5.0	11/ U
A 219.960M	54.1	-26.2	+10.8	+0.9	+0.1	+0.0	40.1	46.0	-5.9	HOriz
50 70 7001 6	10.7	+0.4	- 1	0.7	0.1	270	01.0	10.0	0.0	11/
53 73.709M	49.7	-26.8	+7.1	+0.7	+0.1	+0.0	31.0	40.0	-9.0	Vert
QP		+0.2				80				101
^ 73.709M	52.8	-26.8	+7.1	+0.7	+0.1	+0.0	34.1	40.0	-5.9	Vert
		+0.2				80				101
55 225.327M	50.0	-26.1	+11.2	+0.9	+0.1	+0.0	36.5	46.0	-9.5	Vert
QP		+0.4				200				99
^ 225.327M	53.0	-26.1	+11.2	+0.9	+0.1	+0.0	39.5	46.0	-6.5	Vert
		+0.4				200				99
57 157.162M	48.0	-26.4	+11.1	+0.8	+0.2	+0.0	33.9	43.5	-9.6	Vert
QP		+0.2				72				99
^ 157.162M	51.3	-26.4	+11.1	+0.8	+0.2	+0.0	37.2	43.5	-6.3	Vert
		+0.2				72			0.0	99
59 70.744M	48.7	-26.8	+6.6	+0.7	+0.1	+0.0	29.5	40.0	-10.5	Vert
OP	1017	+0.2				80	2210		1010	101
^ 70 744M	52.8	-26.8	+6.6	+0.7	+0.1	+0.0	33.6	40.0	-64	Vert
/0./ 1101	52.0	± 0.2	10.0	10.7	10.1	80	55.0	10.0	0.1	101
61 36 370M	38.5	26.0	+167	+0.4	+0.0	+0.0	28.0	40.0	11.1	Vort
OP	50.5	$^{-20.9}$	110.7	10.4	10.0	304	20.7	+0.0	-11.1	00
QI A 26.270M	12.4	26.0	167	+0.4		100	22.8	40.0	7.2	Vort
50.570IVI	42.4	-20.9	+10.7	+0.4	± 0.0	+0.0	52.0	40.0	-1.2	
(2 192.274)	40.1	+0.2	+0.2		0.0	504	20.4	12 5	11.1	yy Mart
03 182.274M	48.1	-20.4	+9.3	+0.9	+0.2	+0.0	32.4	43.5	-11.1	vert
QP	51.0	+0.3	0.0	0.0	0.0	161	25.5	10.5	0.0	99
^ 182.274M	51.2	-26.4	+9.3	+0.9	+0.2	+0.0	35.5	43.5	-8.0	Vert
		+0.3				161				99
65 129.100M	45.6	-26.6	+11.8	+0.7	+0.1	+0.0	31.9	43.5	-11.6	Horiz
QP		+0.3				85				149
^ 129.100M	48.3	-26.6	+11.8	+0.7	+0.1	+0.0	34.6	43.5	-8.9	Horiz
		+0.3				85				149
67 101.964M	47.2	-26.7	+10.4	+0.7	+0.1	+0.0	31.9	43.5	-11.6	Vert
QP		+0.2				76				99
^ 101.964M	50.3	-26.7	+10.4	+0.7	+0.1	+0.0	35.0	43.5	-8.5	Vert
		+0.2				76				99
·										

69	56.277M	47.2	-26.9	+7.3	+0.5	+0.1	+0.0	28.4	40.0	-11.6	Horiz
QF	2		+0.2				9				400
^	56.277M	50.8	-26.9	+7.3	+0.5	+0.1	+0.0	32.0	40.0	-8.0	Horiz
			+0.2				9				400
71 1	199.996M	47.6	-26.4	+9.1	+0.9	+0.1	+0.0	31.6	43.5	-11.9	Vert
QF	2		+0.3				198				99
^ 1	199.996M	51.0	-26.4	+9.1	+0.9	+0.1	+0.0	35.0	43.5	-8.5	Vert
			+0.3				198				99
73 1	15.394M	45.3	-26.6	+11.4	+0.7	+0.1	+0.0	31.2	43.5	-12.3	Horiz
QF	þ		+0.3				222				169
^ 1	15.394M	48.5	-26.6	+11.4	+0.7	+0.1	+0.0	34.4	43.5	-9.1	Horiz
			+0.3				222				169
75 1	l67.790M	45.7	-26.4	+10.2	+0.9	+0.2	+0.0	30.9	43.5	-12.6	Vert
QF	2		+0.3				192				176
^ 1	l67.790M	48.4	-26.4	+10.2	+0.9	+0.2	+0.0	33.6	43.5	-9.9	Vert
			+0.3				192				176
77 1	123.062M	44.3	-26.6	+11.8	+0.7	+0.1	+0.0	30.6	43.5	-12.9	Horiz
QF	2		+0.3				85				149
^ 1	123.062M	47.1	-26.6	+11.8	+0.7	+0.1	+0.0	33.4	43.5	-10.1	Horiz
			+0.3				85				149
79 1	174.502M	44.6	-26.4	+9.5	+0.9	+0.2	+0.0	29.1	43.5	-14.4	Horiz
QF	2		+0.3				155				219
^ 1	174.502M	47.8	-26.4	+9.5	+0.9	+0.2	+0.0	32.3	43.5	-11.2	Horiz
			+0.3				155				219

OCCUPIED BANDWIDTH

Test Equipment

<u>+ +</u>				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Mag Loop - 6502	2078	06/11/2007	06/11/2009	00432
SA - E4440A	MH46186315	02/15/2007	02/15/2009	02870
Cable	None	04/05/2007	04/05/2009	P05300
Cable	None	04/02/2007	04/02/2009	P05296
Cable	None	04/02/2007	04/02/2009	P05299

Test Conditions: The ATR9800 8 Antenna Multiplexer: The host Dell PC is running Secsim Pro software and sending Read ID Commands over the serial connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. An unterminated Ethernet cable is attached. The EUT is powered by 24 VDC from a power supply on the floor.

Test Setup Photos

Plots

Tested By: Art Rice