

ASYST TECHNOLOGIES TEST REPORT

FOR THE

8 ANTENNA INDUSTRIAL RADIO, ATR9800

FCC PART 15 SUBPART C SECTION 15.209

COMPLIANCE

DATE OF ISSUE: DECEMBER 15, 2005

PREPARED FOR:

PREPARED BY:

Asyst Technologies 48633 Warm Springs Blvd. Fremont, CA 94539

P.O. No.: 337116 W.O. No.: 84302 Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Date of test: October 17 - December 9, 2005

Report No.: FC05-075

This report contains a total of 24 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	.3
Conditions for Compliance	.4
Approvals	.4
FCC 15.31(e) Voltage Variation	.5
FCC 15.31(m) Number Of Channels	.5
FCC 15.33(a) Frequency Ranges Tested	.5
FCC 15.35 Analyzer Bandwidth Settings	.5
EUT Operating Frequency	.5
Temperature And Humidity During Testing	.5
Equipment Under Test (EUT) Description	.6
Equipment Under Test	.6
Peripheral Devices	.6
Report of Measurements	.7
Table 1: FCC 15.209 Six Highest Radiated Emission Levels: 9 kHz - 30 MHz.	.7
Table 2: FCC 15.209 Six Highest Radiated Emission Levels: 30-1000 MHz	.8
Occupied Bandwidth	.9
EUT Setup	.10
Correction Factors	.10
Table A: Sample Calculations	.10
Test Instrumentation and Analyzer Settings	.11
Spectrum Analyzer Detector Functions	.11
Peak	.11
Quasi-Peak	.11
Average	.11
EUT Testing	.12
Radiated Emissions	.12
Appendix A: Test Setup Diagram and Photographs	.13
Test Set Up Diagram for Outdoor 9 kHz to 30 MHz Testing	.14
Photograph Showing Radiated Emissions	.15
Photograph Showing Radiated Emissions	.16
Appendix B: Test Equipment List	.17
Appendix C: Measurement Data Sheets	.18

ADMINISTRATIVE INFORMATION

DATE OF TEST: October 17 - December 9, 2005

DATE OF RECEIPT: October 17, 2005

MANUFACTURER:

Asyst Technologies 48633 Warm Springs Blvd. Fremont, CA 94539

REPRESENTATIVE:

TEST LOCATION:

TEST METHOD:

ANSI C63.4 (2003)

CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Bhavin Shah

PURPOSE OF TEST:

To demonstrate the compliance of the 8 Antenna Industrial Radio, ATR9800 with the requirements for FCC Part 15 Subpart C Section 15.209 devices.

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply. Conducted emissions not required for this device.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

TEST PERSONNEL:

after

Joyce Walker, Quality Assurance Administrative Manager

Stepher J. Douled

Stephen J. Goulet, EMC Technician

FCC 15.31(e) Voltage Variations

Voltages were varied from 85 -115% of normal and no notable variations in RF output were observed.

FCC 15.31(m) Number Of Channels

This device operates on a single channel.

FCC 15.33(a) Frequency Ranges Tested 15.209 Radiated Emissions: 9 kHz – 1000 MHz

FCC SECTION 15.35:						
ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			

EUT Operating Frequency

The EUT was operating at 134 kHz.

Temperature And Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

8 Antenna Industrial Radio

Manuf:Asyst TechnologiesModel:ATR9800Serial:A1FCC ID:pending

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Ethernet Hub

Manuf:Air LinkModel:asw105/A2Serial:035A2A40573

EUT Power Supply

Manuf: Ault Inc. Model: PW102 Serial: 3443A

Laptop PC

Manuf:	Dell
Model:	PPI
Serial:	48DK0

AC Adapter for Laptop PC

Manuf:	Dell
Model:	AA20031
Serial:	12761-04R-1374

Serial Port Multiplexer

Manuf:	Asyst Technologies
Model:	HS-60
Serial:	LM1

REPORT OF MEASUREMENTS

The following tables report the worst case emissions levels recorded during the tests performed on the EUT. All readings taken were peak readings unless otherwise stated. The data sheets from which the emissions tables were compiled are contained in Appendix C.

Table 1: FCC 15.209 Six Highest Radiated Emission Levels: 9 kHz - 30 MHz									
FREQUENCY MHz	METER READING dBµV	COR Cable dB	Ant dB	ON FACT Corr dB	TORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
0.134	76.1	0.1	9.6	-80.0		5.8	25.0	-19.2	V
0.536	32.7	0.1	9.5	-40.0		2.3	33.0	-30.7	V
0.669	38.4	0.2	9.7	-40.0		8.3	31.1	-22.8	V
0.808	33.0	0.2	9.9	-40.0		3.1	29.4	-26.3	V
0.938	32.5	0.2	10.0	-40.0		2.7	28.1	-25.4	V
13.621	32.6	0.3	8.9	-40.0		1.8	29.5	-27.7	V

Test Method:ANSI C63.4 (2003)Spec Limit:FCC Part 15 Subpart C Section 15.209Test Distance:3 Meters

COMMENTS: The ATR9800 8 Antenna Industrial Radio: the host Dell PC is running Secsim Pro software and sending Read ID Commands over the ethernet connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. This is a maximized emissions measurement taken outdoors over the ground.

NOTES:

V = Vertical Polarization

Table 2: FCC 15.209 Six Highest Radiated Emission Levels: 30-1000 MHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
47.391	51.9	9.9	-26.1	0.8		36.5	40.0	-3.5	VQ
47.392	50.3	9.9	-26.1	0.8		34.9	40.0	-5.1	VQ
47.674	50.5	9.8	-26.0	0.7		35.0	40.0	-5.0	VQ
124.015	53.9	11.2	-25.8	1.1		40.4	43.5	-3.1	HQ
125.005	54.4	11.2	-25.7	1.1		41.0	43.5	-2.5	HQ
168.000	53.1	9.5	-25.6	1.2		38.2	43.5	-5.3	V

Test Method: Spec Limit: Test Distance:

T

ANSI C63.4 (2003) FCC Part 15 Subpart C Section 15.209 3 Meters NOTES:

H = Horizontal Polarization V = Vertical Polarization Q = Quasi Peak Reading

COMMENTS: The ATR9800 8 Antenna Industrial Radio: the host Dell PC is running Secsim Pro software and sending Read ID Commands over the ethernet connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. This is a maximized emissions measurement.

OCCUPIED BANDWIDTH

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated and conducted emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TAI	TABLE A: SAMPLE CALCULATIONS					
	Meter reading	(dBµV)				
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBµV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Appendix B were used to collect both the radiated and conducted emissions data. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. For frequencies from 30 to 1000 MHz, the biconilog antenna was used. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dBµV, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

EUT TESTING

Radiated Emissions

For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. The equipment under test was set up on a non conductive surface 80 cm off the ground. The Magnetic Loop Antenna was located 3 meters away on a tripod one meter off the ground to the center of the loop. This antenna was placed first in the vertical polarization and then in the horizontal polarization and rotated to obtain the worst case emissions emanating from the EUT. The EUT was also rotated to find the worst case emissions.

The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters. During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. Care was taken to ensure that no frequencies were missed within the FM and TV bands.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable and raising and lowering the antenna from one to four meters as needed. The test engineer maximized the readings with respect to the table rotation, antenna height, and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

APPENDIX A

TEST SETUP DIAGRAM AND PHOTOGRAPHS

Page 13 of 24 Report No.: FC05-075

TEST SET UP DIAGRAM FOR OUTDOOR 9 kHz TO 30 MHz TESTING

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

APPENDIX B

TEST EQUIPMENT LIST

15 209	9	kH_7 –	30	MH_7
13.207	,	NII4. –	50	171114.

Function	S/N	Calibration Date	Cal Due Date	Asset #
Chase Bilog CBL6111C	2630	01/24/2005	01/24/2007	00852
HP8447F opt H64 preamp	2944A03850	03/05/2005	03/05/2007	00501
E4446A Spectrum Analyzer	US44300408	01/13/2005	01/13/2007	02668
Mag Loop Antenna EMCO	2078	05/13/2005	05/13/2007	00432

15.209 30-1000 MHz

Function	S/N	Calibration Date	Cal Due Date	Asset #
Chase Bilog CBL6111C	2630	01/24/2005	01/24/2007	00852
HP8447F opt H64 preamp	2944A03850	03/05/2005	03/05/2007	00501
QP Adapter HP-85650A	2043A00188	10/23/2004	10/23/2006	01508
S.A., RF Section HP-8568B	2601A02378	06/20/2005	06/20/2007	01377
S.A., Display HP-85662A	2542A10641	06/20/2005	06/20/2007	01377A

APPENDIX C:

MEASUREMENT DATA SHEETS

Page 18 of 24 Report No.: FC05-075

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Asyst Technologies		
Specification:	FCC 15.209		
Work Order #:	84302	Date:	10/21/2005
Test Type:	Magnetic Loop Measurement	Time:	15:20:23
Equipment:	8 Antenna Industrial Radio	Sequence#:	7
Manufacturer:	Asyst Technologies	Tested By:	S. Goulet
Model:	ATR9800		
S/N:	A1		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
8 Antenna Industrial	Asyst Technologies	ATR9800	A1
Radio*			

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
Ethernet Hub	Air Link	asw105/A2	035A2A40573
EUT power supply	Ault Inc.	PW102	3443A
AC Adapter for Laptop PC	Dell	AA20031	12761-04R-1374
Laptop PC	Dell	PPI	48DK0
Serial Port Multiplexer	Asyst	HS-60	LM1

Test Conditions / Notes:

The ATR9800 8 Antenna Industrial Radio: the host Dell PC is running Secsim Pro software and sending Read ID Commands over the ethernet connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. This is a maximized emissions measurement taken outdoors over the ground.

Transducer Legend:

T1=Cable P05296 25' RG214 N-N	T2=Cable P05300 12' RG214 N-N
T3=Mag Loop A/N 00432, S/N 2078	T4=15.31 3m 40dB/Dec Correction

Measur	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	134.290k	76.1	+0.0	+0.1	+9.6	-80.0	+0.0	5.8	25.0	-19.2	Vert
2	668.830k	38.4	+0.1	+0.1	+9.7	-40.0	+0.0	8.3	31.1	-22.8	Vert
3	937.590k	32.5	+0.1	+0.1	+10.0	-40.0	+0.0	2.7	28.1	-25.4	Vert
4	808.080k	33.0	+0.1	+0.1	+9.9	-40.0	+0.0	3.1	29.4	-26.3	Vert
5	13.621M	32.6	+0.2	+0.1	+8.9	-40.0	+0.0	1.8	29.5	-27.7	Vert
6	536.000k	32.7	+0.0	+0.1	+9.5	-40.0	+0.0	2.3	33.0	-30.7	Vert
7	15.563M	22.2	+0.2	+0.1	+8.8	-40.0	+0.0	-8.7	29.5 Ambient	-38.2	Horiz

I	8	13.629M	21.2	+0.2	+0.1	+8.9	-40.0	+0.0	-9.6	29.5	-39.1	Horiz
ļ												
	9	403.740k	45.9	+0.0	+0.1	+9.4	-80.0	+0.0	-24.6	15.5	-40.1	Vert
ſ	10	16.000M	16.5	+0.2	+0.1	+8.8	-40.0	+0.0	-14.4	29.5	-43.9	Vert
ľ	11	271.030k	45.5	+0.0	+0.1	+9.0	-80.0	+0.0	-25.4	18.9	-44.3	Vert
I	12	265.100k	45.0	+0.0	+0.1	+9.0	-80.0	+0.0	-25.9	19.1	-45.0	Vert
ľ	13	25.000M	16.0	+0.2	+0.1	+7.6	-40.0	+0.0	-16.1	29.5	-45.6	Vert
	15		10.0				.0.0	. 5.0	10.1	_>.5	.0.0	. 011
L												

Test Location:	CKC Laboratories, Inc.	•1120 Fulton Place •	Fremont, CA 94539 •	510-249-1170
----------------	------------------------	----------------------	---------------------	--------------

Customer:	Asyst Technologies		
Specification:	FCC 15.209		
Work Order #:	84302	Date:	10/18/2005
Test Type:	Maximized Emissions	Time:	14:52:14
Equipment:	8 Antenna Industrial Radio	Sequence#:	5
Manufacturer:	Asyst Technologies	Tested By:	S. Goulet
Model:	ATR9800	-	
S/N:			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
8 Antenna Industrial Radio	Asyst Technologies	ATR9800	A1

Support Devices:			
Function	Manufacturer	Model #	S/N
EUT power supply	Ault Inc.	PW102	3443A
AC Adapter for Laptop PC	Dell	AA20031	12761-04R-1374
Laptop PC	Dell	PPI	48DK0

Test Conditions / Notes:

The ATR9800 8 Antenna Industrial Radio: the host Dell PC is running Secsim Pro software and sending Read ID Commands over the ethernet connection. Only antenna #1 is active during communications. The remaining seven antennas are connected but not energized. This is a maximized emissions measurement.

Transducer Legend:

T1=Cable P05296 25' RG214 N-N	T2=Cable P05300 12' RG214 N-N
T3=Cable P05299 2' RG214 N-N	T4=0852-Bi-Log Antenna
T5=Amp Cal.HP-8447F OPT H64- AN 00501	

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	6	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	125.005M	54.4	+0.6	+0.4	+0.1	+11.2	+0.0	41.0	43.5	-2.5	Horiz
	QP		-25.7				188				260
^	125.013M	56.3	+0.6	+0.4	+0.1	+11.2	+0.0	42.9	43.5	-0.6	Horiz
			-25.7				188				260
3	124.015M	53.9	+0.6	+0.4	+0.1	+11.2	+0.0	40.4	43.5	-3.1	Horiz
	QP		-25.8				269				260
^	124.025M	57.0	+0.6	+0.4	+0.1	+11.2	+0.0	43.5	43.5	+0.0	Horiz
			-25.8				269				260
5	47.391M	51.9	+0.4	+0.3	+0.1	+9.9	+0.0	36.5	40.0	-3.5	Vert
	QP		-26.1				290				226
6	47.674M	50.5	+0.4	+0.2	+0.1	+9.8	+0.0	35.0	40.0	-5.0	Vert
	QP		-26.0				316				145
7	47.392M	50.3	+0.4	+0.3	+0.1	+9.9	+0.0	34.9	40.0	-5.1	Vert
	QP		-26.1				89				198
^	47.384M	62.6	+0.4	+0.3	+0.1	+9.9	+0.0	47.2	40.0	+7.2	Vert
			-26.1				290				226
9	168.000M	53.1	+0.7	+0.4	+0.1	+9.5	+0.0	38.2	43.5	-5.3	Vert
			-25.6				179				180

CKC AM Testing the Future

10	200.023M	52.9	+0.8 -25.6	+0.5	+0.1	+8.6	+0.0 244	37.3	43.5	-6.2	Horiz 248
11	250.014M	51.1	+0.9 -25.1	+0.5	+0.1	+12.3	+0.0	39.8	46.0	-6.2	Horiz 179
12	500.059M OP	46.5	+1.3 -26.7	+0.7	+0.2	+17.5	+0.0 306	39.5	46.0	-6.5	Horiz 242
^	499.997M	49.2	+1.3 -26.7	+0.7	+0.2	+17.5	+0.0 306	42.2	46.0	-3.8	Horiz 242
14	46.856M	48.5	+0.4 -26.1	+0.3	+0.1	+10.2	+0.0 151	33.4	40.0	-6.6	Horiz 311
15	100.012M QP	52.0	+0.5 -25.7	+0.2	+0.0	+9.6	+0.0 234	36.6	43.5	-6.9	Horiz 290
^	100.004M	60.8	+0.5 -25.7	+0.2	+0.0	+9.6	+0.0 234	45.4	43.5	+1.9	Horiz 290
17	124.038M QP	49.7	+0.6 -25.8	+0.4	+0.1	+11.2	+0.0 139	36.2	43.5	-7.3	Vert 99
^	124.034M	52.6	+0.6 -25.8	+0.4	+0.1	+11.2	+0.0 139	39.1	43.5	-4.4	Vert 99
19	170.332M	51.2	+0.7 -25.5	+0.4	+0.1	+9.3	+0.0 10	36.2	43.5	-7.3	Vert 140
20	47.385M QP	48.0	+0.4 -26.1	+0.3	+0.1	+9.9	+0.0 82	32.6	40.0	-7.4	Vert 117
21	500.010M QP	45.6	+1.3 -26.7	+0.7	+0.2	+17.5	+0.0 170	38.6	46.0	-7.5	Vert 280
^	500.012M	49.3	+1.3 -26.7	+0.7	+0.2	+17.5	+0.0 170	42.3	46.0	-3.7	Vert 280
^	500.013M	47.9	+1.3 -26.7	+0.7	+0.2	+17.5	+0.0 15	40.9	46.0	-5.1	Vert 100
24	150.008M QP	49.8	+0.7 -25.7	+0.4	+0.1	+10.7	+0.0 142	36.0	43.5	-7.5	Vert 99
^	150.008M	51.7	+0.7 -25.7	+0.4	+0.1	+10.7	+0.0 258	37.9	43.5	-5.6	Vert 132
^	150.013M	46.6	+0.7 -25.7	+0.4	+0.1	+10.7	+0.0 135	32.8	43.5	-10.7	Vert 100
27	47.397M QP	47.9	+0.4 -26.1	+0.3	+0.1	+9.9	+0.0 82	32.5	40.0	-7.5	Vert 117
28	150.000M	49.5	+0.7 -25.7	+0.4	+0.1	+10.7	+0.0 166	35.7	43.5	-7.8	Horiz 272
29	175.013M QP	51.0	+0.7 -25.6	+0.4	+0.1	+9.0	+0.0 327	35.6	43.5	-7.9	Vert 99
^	175.004M	52.2	+0.7 -25.6	+0.4	+0.1	+9.0	+0.0 327	36.8	43.5	-6.7	Vert 173
31	125.022M QP	48.8	+0.6 -25.7	+0.4	+0.1	+11.2	+0.0 140	35.4	43.5	-8.1	Vert 99
^	125.008M	53.8	+0.6 -25.7	+0.4	+0.1	+11.2	+0.0 140	40.4	43.5	-3.1	Vert 99
^	124.990M	53.0	+0.6 -25.7	+0.4	+0.1	+11.2	+0.0 158	39.6	43.5	-3.9	Vert 235
^	125.017M	52.1	+0.6 -25.7	+0.4	+0.1	+11.2	+0.0 146	38.7	43.5	-4.8	Vert 100

CKC AM Testing the Future

35	943.721M	37.5	+1.8 -26.5	+1.0	+0.2	+23.4	+0.0 370	37.4	46.0	-8.6	Horiz 130
36	250.000M	47.9	+0.9 -25.1	+0.5	+0.1	+12.3	+0.0 370	36.6	46.0	-9.4	Vert 170
37	937.975M	36.6	+1.8 -26.5	+1.0	+0.2	+23.3	+0.0 370	36.4	46.0	-9.6	Horiz 130
38	46.860M QP	45.4	+0.4 -26.1	+0.3	+0.1	+10.2	+0.0 159	30.3	40.0	-9.7	Vert 165
^	46.859M	56.4	+0.4	+0.3	+0.1	+10.2	+0.0 159	41.3	40.0	+1.3	Vert 165
40	168.086M QP	48.7	+0.7 -25.6	+0.4	+0.1	+9.5	+0.0 184	33.8	43.5	-9.7	Horiz 199
٨	168.068M	54.9	+0.7 -25.6	+0.4	+0.1	+9.5	+0.0 184	40.0	43.5	-3.5	Horiz 199
42	159.996M	47.6	+0.7 -25.8	+0.4	+0.1	+10.2	+0.0 370	33.2	43.5	-10.3	Vert 100
43	250.002M	46.9	+0.9 -25.1	+0.5	+0.1	+12.3	+0.0 336	35.6	46.0	-10.4	Vert 215
44	46.046M QP	43.8	+0.4 -26.2	+0.3	+0.1	+10.7	+0.0 82	29.1	40.0	-10.9	Vert 117
45	155.074M QP	46.8	+0.7 -25.8	+0.4	+0.1	+10.4	+0.0 164	32.6	43.5	-10.9	Horiz 272
^	155.098M	57.3	+0.7 -25.8	+0.4	+0.1	+10.4	+0.0 164	43.1	43.5	-0.4	Horiz 272
47	100.004M QP	47.4	+0.5 -25.7	+0.2	+0.0	+9.6	+0.0 167	32.0	43.5	-11.5	Vert 99
^	100.006M	57.0	+0.5 -25.7	+0.2	+0.0	+9.6	+0.0 167	41.6	43.5	-1.9	Vert 99
^	100.002M	53.2	+0.5 -25.7	+0.2	+0.0	+9.6	+0.0 266	37.8	43.5	-5.7	Vert 132
50	947.360M	34.3	+1.8 -26.4	+1.0	+0.2	+23.5	+0.0 370	34.4	46.0	-11.6	Vert 130
51	155.085M QP	45.7	+0.7 -25.8	+0.4	+0.1	+10.4	+0.0 162	31.5	43.5	-12.0	Vert 220
^	155.102M	56.0	+0.7 -25.8	+0.4	+0.1	+10.4	+0.0 162	41.8	43.5	-1.7	Vert 244
^	155.040M	54.4	+0.7 -25.8	+0.4	+0.1	+10.4	+0.0 179	40.2	43.5	-3.3	Vert 180
54	949.823M	33.7	+1.8 -26.4	+1.0	+0.2	+23.6	+0.0 370	33.9	46.0	-12.1	Vert 130
55	47.386M QP	43.1	+0.4 -26.1	+0.3	+0.1	+9.9	+0.0 61	27.7	40.0	-12.3	Horiz 272
٨	47.392M	51.8	+0.4 -26.1	+0.3	+0.1	+9.9	+0.0 61	36.4	40.0	-3.6	Horiz 272
57	952.719M	33.5	+1.8 -26.5	+1.0	+0.2	+23.6	+0.0 370	33.6	46.0	-12.4	Vert 130
58	200.015M QP	46.6	+0.8 -25.6	+0.5	+0.1	+8.6	+0.0 195	31.0	43.5	-12.5	Vert 100
^	200.014M	51.6	+0.8	+0.5	+0.1	+8.6	+0.0	36.0	43.5	-7.5	Vert

60	946.234M	33.4	+1.8	+1.0	+0.2	+23.5	+0.0	33.5	46.0	-12.5	Horiz
			-26.4				370				130
61	125.016M	44.1	+0.6	+0.4	+0.1	+11.2	+0.0	30.7	43.5	-12.9	Vert
QP			-25.7				158				235
62	170.182M	44.2	+0.7	+0.4	+0.1	+9.4	+0.0	29.3	43.5	-14.2	Vert
QP			-25.5				10				140
63	152.255M	41.9	+0.7	+0.4	+0.1	+10.6	+0.0	28.0	43.5	-15.5	Vert
QP			-25.7				30				133
^	152.281M	49.5	+0.7	+0.4	+0.1	+10.6	+0.0	35.6	43.5	-7.9	Vert
			-25.7				30				133