

ASYST TECHNOLOGIES TEST REPORT

FOR THE

SINGLE ANTENNA MULTIPLEXER, ATR-9100 ROHS

FCC PART 15 SUBPART C SECTIONS 15.207 & 15.209, SUBPART B SECTIONS 15.107 & 15.109 CLASS A AND RSS-210

COMPLIANCE

DATE OF ISSUE: AUGUST 17, 2006

PREPARED FOR:

PREPARED BY:

Asyst Technologies 46897 Bayside Parkway Fremont, CA 94538-6572 Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

P.O. No.: 45418 W.O. No.: 85518 Date of test: August 4-10, 2006

Report No.: FC06-046

This report contains a total of 47 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	4
FCC to Canada Standard Correlation Matrix	5
Conditions for Compliance	5
Approvals	5
FCC 15.31(m) Number Of Channels	
FCC 15.33(a) Frequency Ranges Tested	6
FCC 15.35 Analyzer Bandwidth Settings	
FCC 15.203 Antenna Requirements	6
FCC 15.205 Restricted Bands	6
EUT Operating Frequency	6
Temperature And Humidity During Testing	6
Equipment Under Test (EUT) Description	7
Equipment Under Test	7
Peripheral Devices	7
Report of Measurements	8
FCC 15.31(e) Voltage Variation	8
Table 1: FCC 15.107 Six Highest Conducted Emission Levels	.11
Table 2: FCC 15.109 Six Highest Radiated Emission Levels	12
Table 3: FCC 15.207 Six Highest Conducted Emission Levels	13
Table 4: FCC 15.209 Fundamental Emission Levels	14
Table 5: FCC 15.209 Six Highest Radiated Emission Levels: 9 kHz - 30 MHz	.15
Table 6: FCC 15.209 Six Highest Radiated Emission Levels: 30-1000 MHz	.16
20dB Bandwidth Plot	17
EUT Setup	18
Correction Factors	18
Table A: Sample Calculations	.18
Test Instrumentation and Analyzer Settings	.19
Spectrum Analyzer Detector Functions	.19
Peak	.19
Quasi-Peak	19
Average	10
11, 01460	.19
EUT Testing	
-	20
EUT Testing	20 20
EUT Testing Mains Conducted Emissions Radiated Emissions	20 20 20
EUT Testing Mains Conducted Emissions	20 20 20 21
EUT Testing Mains Conducted Emissions Radiated Emissions Appendix A: Test Setup Photographs	20 20 20 21 22
EUT Testing Mains Conducted Emissions Radiated Emissions Appendix A: Test Setup Photographs Photograph Showing Mains Conducted Emissions	20 20 20 21 22 23
EUT Testing Mains Conducted Emissions Radiated Emissions Appendix A: Test Setup Photographs Photograph Showing Mains Conducted Emissions Photograph Showing Mains Conducted Emissions	20 20 21 22 23 24
EUT Testing Mains Conducted Emissions Radiated Emissions Appendix A: Test Setup Photographs Photograph Showing Mains Conducted Emissions Photograph Showing Mains Conducted Emissions Photograph Showing Mains Conducted Emissions	20 20 21 22 23 24 25

Photograph Showing Radiated Emissions	
Photograph Showing Radiated Emissions	
Appendix B: Test Equipment List	
Appendix C: Measurement Data Sheets	
Appendix C. Measurement Data Sheets	

ADMINISTRATIVE INFORMATION

Tou Vang

DATE OF TEST: August 4-10, 2006

DATE OF RECEIPT: August 4, 2006

MANUFACTURER:

Asyst Technologies 46897 Bayside Parkway Fremont, CA 94538-6572

REPRESENTATIVE:

TEST LOCATION:

TEST METHOD:

PURPOSE OF TEST:

CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

ANSI C63.4 (2003), RSS GEN and RSS-210

To demonstrate the compliance of the Single Antenna Multiplexer, ATR-9100 RoHS with the requirements for FCC Part 15 Subpart C Sections 15.207 & 15.209, Subpart B Sections 15.107 & 15.109 Class A and RSS-210 devices.

Canadian	Canadian	FCC	FCC	Test Description
Standard	Section	Standard	Section	
RSS GEN	7.1.4	47CFR	15.203	Antenna Connector Requirements
RSS GEN	7.2.1	47CFR	15.35(c)	Pulsed Operation
RSS GEN	7.2.2	47CFR	15.207	AC Mains Conducted Emissions Requirement
RSS 210	2.1	47CFR	15.215(c)	Frequency Stability Recommendation
RSS 210	2.2	47CFR	15.205	Restricted Bands of Operation
RSS 210	2.6	47CFR	15.209	General Radiated Emissions Requirement
	IC 5933		958979	Site File No.

FCC TO CANADA STANDARD CORRELATION MATRIX

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

TEST PERSONNEL:

Joyce Walker, Quality Assurance Administrative Manager

Amrinder Brar, Lab Manager

ñ

Art Rice, EMC Test Engineer

FCC 15.31(m) Number Of Channels

This device operates on a single channel.

FCC 15.33(a) Frequency Ranges Tested

15.107 Conducted Emissions: 150 kHz - 30 MHz

15.109 Radiated Emissions: 30 MHz – 1000 MHz

15.207 Conducted Emissions: 150 kHz – 30 MHz

15.209 Radiated Emissions: 9 kHz - 1000 MHz

FCC SECTION 15.35: ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE									
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING						
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz						
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz						

FCC 15.203 Antenna Requirements

The antenna is removable and does not employ a unique connector, however the device is professionally installed and maintained. Therefore the EUT complies with 15.203. For more information refer to the installation/user's manual.

FCC 15.205 Restricted Bands

The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.

EUT Operating Frequency

The EUT was operating at 135 kHz.

Temperature And Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Single Anten	<u>na Multiplexer</u>	<u>Antenna</u>	
Manuf:	Asyst Technologies	Manuf:	Asyst Technologies
Model:	ATR-9100 RoHS	Model:	PN: 9700-9097-03
Serial:	10-1907-104391	Serial:	None
FCC ID:	pending		

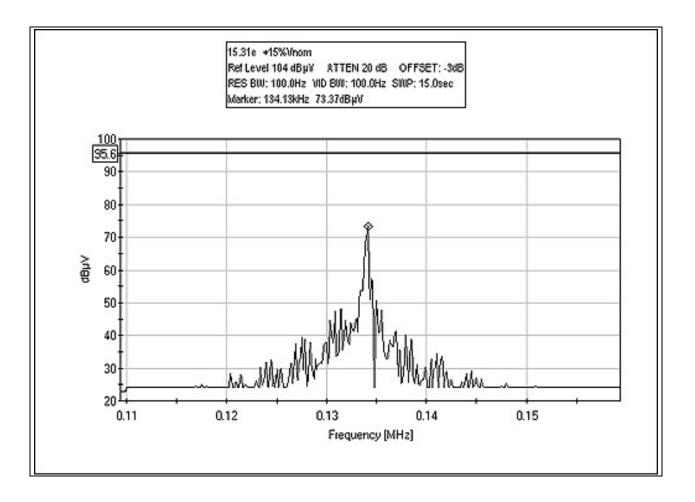
PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

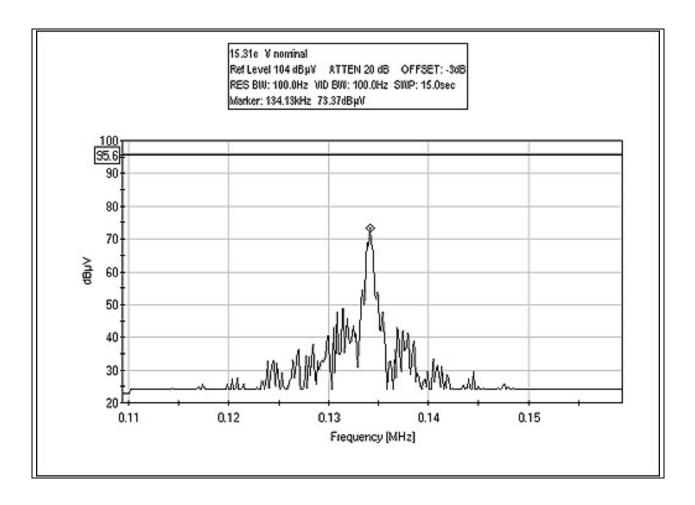
<u>Laptop PS</u>		<u>Laptop</u>	
Manuf:	Compaq	Manuf:	Compaq
Model:	PP2040	Model:	PN 386315-002
Serial:	3J08FBJ34803S88	Serial:	00035544

32mm Glass Transponder

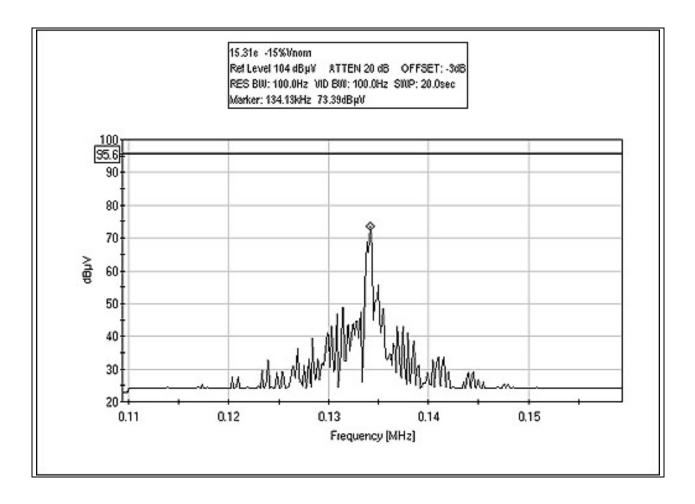
Manuf:Texas InstrumentsModel:RI-TRP-RR2BSerial:NA


<u>PS</u>

Manuf:ITEModel:PW102Serial:06151A/Rev B


REPORT OF MEASUREMENTS

FCC 15.31(e) VOLTAGE VARIATION +15%



FCC 15.31(e) VOLTAGE VARIATION

FCC 15.31(e) VOLTAGE VARIATION -15%

The following tables report the worst case emissions levels recorded during the tests performed on the EUT. All readings taken were peak readings unless otherwise stated. The data sheets from which the emissions tables were compiled are contained in Appendix C.

	Table 1: FCC 15.107 Six Highest Conducted Emission Levels											
FREQUENCY MHz	METER READING dBµV	COR Att dB	RECTIC Cable dB	ON FACT Lisn dB	TORS HPF dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES			
2.145000	30.4	10.1		0.1		40.6	60.0	-19.4	BA			
2.191000	30.6	10.1		0.1		40.8	60.0	-19.2	BA			
2.234000	30.1	10.1		0.1		40.3	60.0	-19.7	BA			
2.589000	30.2	10.2		0.1		40.5	60.0	-19.5	BA			
2.633000	30.4	10.2		0.1		40.7	60.0	-19.3	BA			
2.679000	30.1	10.2		0.1		40.4	60.0	-19.6	BA			

Test Method: Spec Limit: ANSI C63.4 (2003) FCC Part 15 Subpart B Section 15.107 Class A A = Average Reading B = Black Lead

NOTES:

W = White Lead

COMMENTS: EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT. Conducted emissions 0.15-30 MHz.

	Table 2: FCC 15.109 Six Highest Radiated Emission Levels											
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES			
43.514	50.4	12.0	-26.2	0.8	-10.0	27.0	39.1	-12.1	Н			
125.009	60.9	11.2	-25.7	1.1	-10.0	37.5	43.5	-6.0	VQ			
140.017	54.0	11.1	-25.6	1.2	-10.0	30.7	43.5	-12.8	V			
250.010	53.3	12.3	-25.1	1.5	-10.0	32.0	46.4	-14.4	Н			
500.006	54.9	17.5	-26.7	2.2	-10.0	37.9	46.4	-8.5	V			
500.007	56.3	17.5	-26.7	2.2	-10.0	39.3	46.4	-7.1	HQ			

Test Method: Spec Limit: Test Distance:

T

ANSI C63.4 (2003) FCC Part 15 Subpart B Section 15.109 Class A 3 Meters

NOTES:

H = Horizontal Polarization V = Vertical Polarization Q = Quasi Peak Reading

COMMENTS: EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT.

	Table 3: FCC 15.207 Six Highest Conducted Emission Levels												
FREQUENCY MHz	METER READING dBµV	COR Att dB	RECTIC Cable dB	ON FACT Lisn dB	TORS HPF dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES				
0.415000	32.3	9.7	0.1	0.3	0.0	42.4	47.5	-5.1	WA				
0.416000	32.5	9.7	0.1	0.3	0.0	42.6	47.5	-4.9	BA				
0.460000	34.4	9.7	0.1	0.3	0.0	44.5	46.7	-2.2	BA				
0.460000	34.0	9.7	0.1	0.3	0.0	44.1	46.7	-2.6	WA				
2.191000	30.6	9.7	0.1	0.3	0.1	40.8	46.0	-5.2	BA				
2.633000	30.4	9.7	0.1	0.4	0.1	40.7	46.0	-5.3	BA				

Test Method: Spec Limit: ANSI C63.4 (2003) FCC Part 15 Subpart C Section 15.207 NOTES:

A = Average Reading B = Black Lead W = White Lead

COMMENTS: EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT. Conducted emissions 0.15-30 MHz.

	Table 4: FCC 15.209 Fundamental Emission Levels											
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTION FAC Cable dB	TORS Corr dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES				
0.135	73.0	9.3	0.1	-80.0	2.4	25.0	-22.6	Н				
0.135	71.0	9.3	0.1	-80.0	0.4	25.0	-24.6	V				
Test Method: Spec Limit: Test Distance:	ANSI C63.4 FCC Part 15 3 Meters		C Section 15.209)	NOTES:		ontal Polariza cal Polarizatic					

COMMENTS: EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT. Fall off factor of 40dB/decade applied to readings.

	Table 5: FC	CC 15.20	9 Six Hi	ghest Ra	diated E	mission Levels: 9) kHz - 30 N	ſHz	
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIO	DN FACT Cable dB	CORS Corr dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
0.265	52.6	9.4		0.1	-80.0	-17.9	19.1	-37.0	Н
4.786	35.7	9.2		0.3	-40.0	5.2	29.5	-24.3	V
5.342	38.6	9.2		0.3	-40.0	8.1	29.5	-21.4	Н
6.381	31.0	9.2		0.3	-40.0	0.5	29.5	-29.0	Н
7.461	35.3	9.1		0.4	-40.0	4.8	29.5	-24.7	V
15.592	32.9	8.5		0.6	-40.0	2.0	29.5	-27.5	v

Test Method: Spec Limit: Test Distance:

T

ANSI C63.4 (2003) FCC Part 15 Subpart C Section 15.209 3 Meters NOTES:

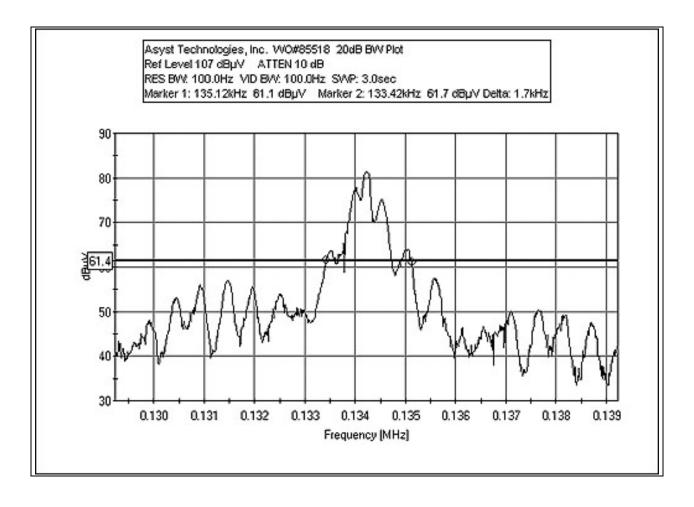
H = Horizontal Polarization V = Vertical Polarization

COMMENTS: EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT. Fall off factor of 40dB/decade applied to readings.

	Table 6: F	CC 15.2	209 Six H	lighest R	adiated	Emission Levels:	30-1000 M	Hz	
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
42.027	45.2	12.8	-26.2	0.7		32.5	40.0	-7.5	HQ
49.524	45.1	8.8	-26.1	0.7		28.5	40.0	-11.5	V
124.985	48.5	11.2	-25.7	1.1		35.1	43.5	-8.4	V
139.994	47.5	11.1	-25.6	1.2		34.2	43.5	-9.3	V
499.984	52.2	17.5	-26.7	2.2		45.2	46.0	-0.8	VQ
499.985	47.0	17.5	-26.7	2.2		40.0	46.0	-6.0	HQ

Test Method: Spec Limit: Test Distance:

T


ANSI C63.4 (2003) FCC Part 15 Subpart C Section 15.209 3 Meters NOTES:

H = Horizontal Polarization V = Vertical Polarization Q = Quasi Peak Reading

COMMENTS: EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT.

20dB BANDWIDTH PLOT

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated and conducted emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TAI	TABLE A: SAMPLE CALCULATIONS									
	Meter reading	(dBµV)								
+	Antenna Factor	(dB)								
+	Cable Loss	(dB)								
-	Distance Correction	(dB)								
-	Preamplifier Gain	(dB)								
=	Corrected Reading	$(dB\mu V/m)$								

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Appendix B were used to collect both the radiated and conducted emissions data. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. For frequencies from 30 to 1000 MHz, the biconilog antenna was used. The horn antenna was used for frequencies above 1000 MHz. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data. **Peak**

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

<u>Quasi-Peak</u>

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

<u>Average</u>

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

EUT TESTING

Mains Conducted Emissions

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

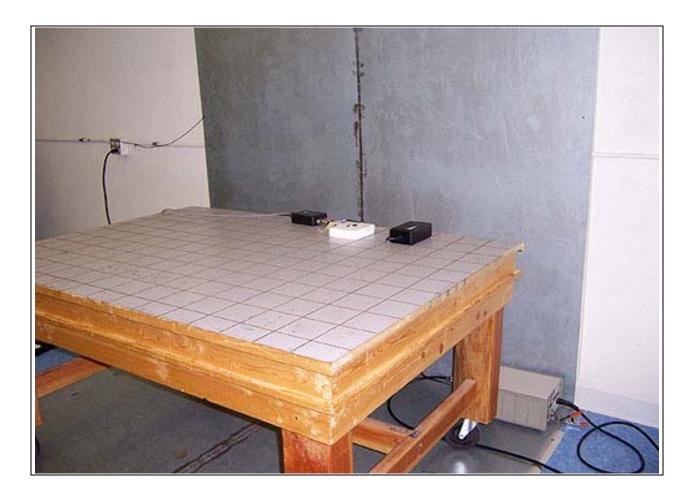
The LISNs used were 50 μ H-/+50 ohms. A 30 to 50 second sweep time was used for automated measurements in the frequency bands of 150 kHz to 500 kHz, and 500 kHz to 30 MHz. All readings within 20 dB of the limit were recorded, and those within 6 dB of the limit were examined with additional measurements using a slower sweep time.

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. Care was taken to ensure that no frequencies were missed within the FM and TV bands.

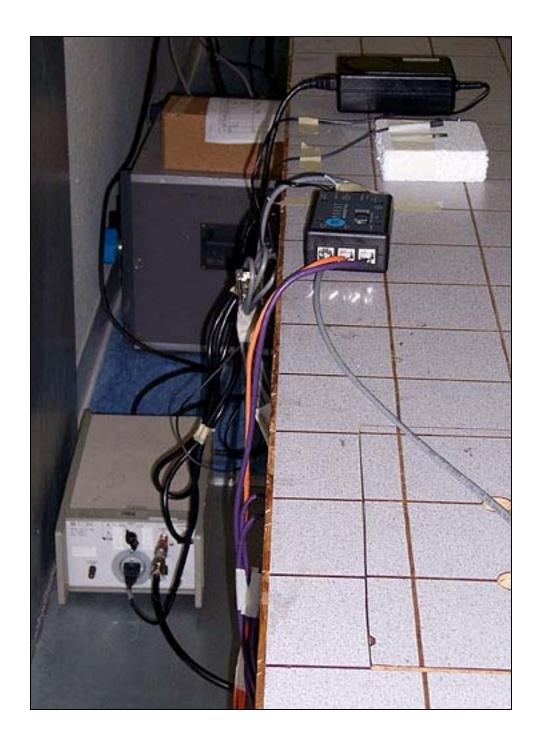
A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable and raising and lowering the antenna from one to four meters as needed. The test engineer maximized the readings with respect to the table rotation, antenna height, and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.



APPENDIX A

TEST SETUP PHOTOGRAPHS

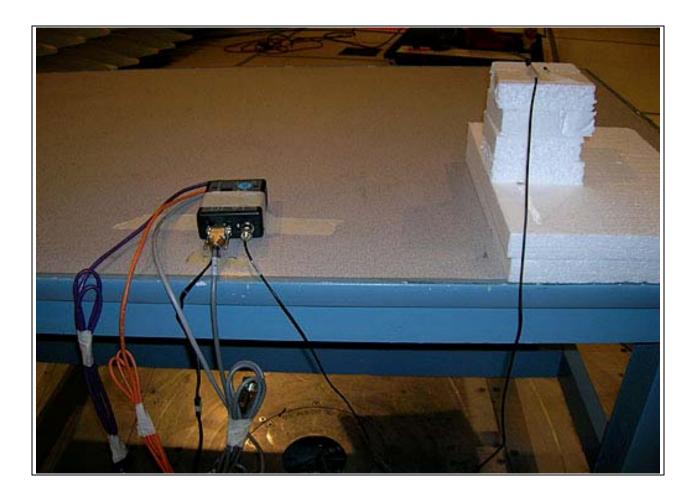
Page 21 of 47 Report No.: FC06-046


Mains Conducted Emissions - Front View

Mains Conducted Emissions - Front View

Mains Conducted Emissions - Side View

Mains Conducted Emissions - Side View



Radiated Emissions - Front View

Page 26 of 47 Report No.: FC06-046

Radiated Emissions - Back View

Page 27 of 47 Report No.: FC06-046

Radiated Emissions - Mag Loop

Radiated Emissions - Mag Loop

Page 29 of 47 Report No.: FC06-046

APPENDIX B

TEST EQUIPMENT LIST

FCC 15.31(e)

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., Display HP-85662A	2542A12169	11/28/2005	11/28/2007	02662
S.A., RF Section HP-8568B	2601A02492	11/28/2005	11/28/2007	02663
QP Adapter HP-85650A	2043A00188	10/23/2004	10/23/2006	01508
CABLE	82' RG8	08/24/2005	08/24/2007	05012
Mag Loop - 6502	2078	05/13/2005	05/13/2007	00432
Digital Multi-Meter	65380320	7/18/06	7/18/08	02361
Tenma	0201714	NCR	NCR	Customer
				equipment

NCR = No Cal Required

FCC 15.107/15.207

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., RF Section HP-8568B	2517A01665	04/21/2005	04/21/2007	02468
S.A., Display HP-85662A	2534A10178	04/21/2005	04/21/2007	2444
QP Adapter HP-85650A	2043A00286	11/18/2004	11/18/2006	00445
10 dB Pad		10/20/2005	10/20/2007	02223
15' RG214		03/01/2006	03/01/2008	P00875
TTE High Pass Filter	H4120	04/20/2005	04/20/2007	05258
LISN, Emco 3816/2	9408-1006	05/23/2005	05/13/2007	00493

FCC 15.209 9 kHz - 30 MHz

Function	S/N	Calibration Date	Cal Due Date	Asset #					
S.A., Display HP-85662A	2542A12169	11/28/2005	11/28/2007	02662					
S.A., RF Section HP-8568B	2601A02492	11/28/2005	11/28/2007	02663					
QP Adapter HP-85650A	2043A00188	10/23/2004	10/23/2006	01508					
CABLE	82' RG8	08/24/2005	08/24/2007	05012					
Mag Loop - 6502	2078	05/13/2005	05/13/2007	00432					

FCC 15.109/15.209 30-1000 MHz

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., Display HP-85662A	2542A12169	11/28/2005	11/28/2007	02662
S.A., RF Section HP-8568B	2601A02492	11/28/2005	11/28/2007	02663
HP8447F opt H64 preamp	2944A03850	03/05/2005	03/05/2007	00501
QP Adapter HP-85650A	2043A00188	10/23/2004	10/23/2006	01508
Cable	None	06/21/2005	06/21/2007	P05299
Cable	None	06/21/2005	06/21/2007	P05300
Cable	None	06/21/2005	06/21/2007	P05296
Chase Bilog CBL6111C	2630	01/24/2005	01/24/2007	00852

APPENDIX C:

MEASUREMENT DATA SHEETS

Page 31 of 47 Report No.: FC06-046

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: Specification: Work Order #: Test Type: Equipment: Manufacturer: Model:	Asyst Technologies FCC 15.107A COND [AVE] 85518 Conducted Emissions Single Antenna Multiplexer Asyst Technologies ATR-9100RoHS	
S/N:	10-1907-104391	120 / 00112

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Antenna	Asyst Technologies	PN: 9700-9097-03	None
Single Antenna	Asyst Technologies	ATR-9100RoHS	10-1907-104391
Multiplexer*			

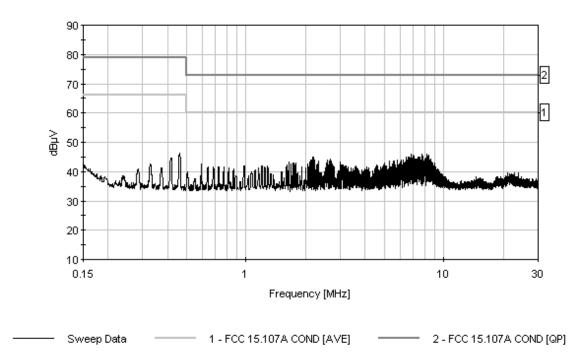
Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
32mm Glass Transponder	Texas Instruments	RI-TRP-RR2B	None
PS	ITE	PW102	06151A/Rev B
Laptop PS	Compaq	PP2040	3J08FBJ34803S88
Laptop	Compaq	PN 386315-002	00035544

Test Conditions / Notes:

EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT. Conducted emissions 0.15-30 MHz.

T1=ANP02223 10dB Attenuator	T2=Cable P00875, 15' RG214/U
T3=LISN - AN00493 - Black - ELC "OUT"	T4=TTE HP Filter P05258


Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2.191M	30.6	+9.7	+0.1	+0.3	+0.1	+0.0	40.8	60.0	-19.2	Black
1	Ave										
^	2.183M	34.6	+9.7	+0.1	+0.3	+0.1	+0.0	44.8	60.0	-15.2	Black
3	2.633M	30.4	+9.7	+0.1	+0.4	+0.1	+0.0	40.7	60.0	-19.3	Black
	Ave	22.4	.07	.0.1	.0.4	.0.1	. 0. 0	40.7	(0.0	16.2	D1 1
~	2.633M	33.4	+9.7	+0.1	+0.4	+0.1	+0.0	43.7	60.0	-16.3	Black
5	2.145M	30.4	+9.7	+0.1	+0.3	+0.1	+0.0	40.6	60.0	-19.4	Black
1	Ave										
^	2.142M	33.6	+9.7	+0.1	+0.3	+0.1	+0.0	43.8	60.0	-16.2	Black
7	2.589M	30.2	+9.7	+0.1	+0.4	+0.1	+0.0	40.5	60.0	-19.6	Black
1	Ave								- · -		
^	2.582M	33.7	+9.7	+0.1	+0.4	+0.1	+0.0	44.0	60.0	-16.0	Black

9	2.679M	30.1	+9.7	+0.1	+0.4	+0.1	+0.0	40.4	60.0	-19.6	Black
A	Ave										
^	2.676M	34.1	+9.7	+0.1	+0.4	+0.1	+0.0	44.4	60.0	-15.6	Black
11	2.234M	30.1	+9.7	+0.1	+0.3	+0.1	+0.0	40.3	60.0	-19.7	Black
ŀ	Ave										
^	2.231M	33.9	+9.7	+0.1	+0.3	+0.1	+0.0	44.1	60.0	-15.9	Black
13	460.000k	34.4	+9.7	+0.1	+0.3	+0.0	+0.0	44.5	66.0	-21.5	Black
Ā	Ave										
^	463.423k	36.3	+9.7	+0.1	+0.3	+0.0	+0.0	46.4	66.0	-19.6	Black
15	416.000k	32.5	+9.7	+0.1	+0.3	+0.0	+0.0	42.6	66.0	-23.4	Black
ŀ	Ave										
^	416.882k	34.6	+9.7	+0.1	+0.3	+0.0	+0.0	44.7	66.0	-21.3	Black
17	991.000k	24.6	+9.8	+0.0	+0.3	+0.0	+0.0	34.7	60.0	-25.3	Black
	Ave										
^	994.819k	31.8	+9.8	+0.0	+0.3	+0.0	+0.0	41.9	60.0	-18.1	Black
19	594.000k	24.6	+9.7	+0.1	+0.3	+0.0	+0.0	34.7	60.0	-25.3	Black
	Ave										
^	594.319k	32.5	+9.7	+0.1	+0.3	+0.0	+0.0	42.6	60.0	-17.4	Black

CKC Laboratories, Inc. Date: 8/7/2006 Time: 16:28:21 Asyst Technologies WO#: 85518 FCC 15.107A COND [AVE] Test Lead: Black 120V 60Hz Sequence#: 11 AC Adapter is connected to LISN

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: Specification: Work Order #: Test Type: Equipment:	Asyst Technologies FCC 15.107A COND [AVE] 85518 Conducted Emissions Single Antenna Multiplexer		8/7/2006 16:45:35 12
Manufacturer: Model: S/N:	Asyst Technologies ATR-9100RoHS 10-1907-104391	Tested By:	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Antenna	Asyst Technologies	PN: 9700-9097-03	None	
Single Antenna	Asyst Technologies	ATR-9100RoHS	10-1907-104391	
Multiplexer*				

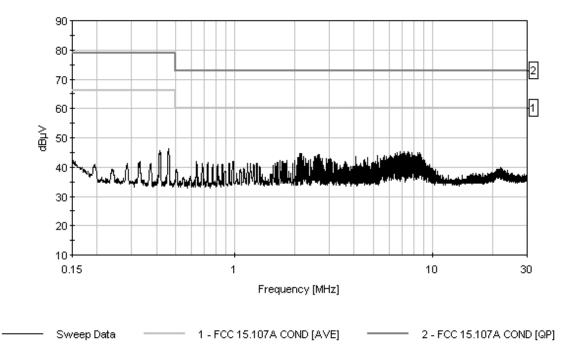
Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
PS	ITE	PW102	06151A/Rev B
Laptop PS	Compaq	PP2040	3J08FBJ34803S88
Laptop	Compaq	PN 386315-002	00035544
32mm Glass Transponder	Texas Instruments	RI-TRP-RR2B	None

Test Conditions / Notes:

EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT. Conducted emissions 0.15-30 MHz.

Transducer 1	Legend:
--------------	---------


0	
T1=ANP02223 10dB Attenuator	T2=Cable P00875, 15' RG214/U
T3=LISN - AN00493 - White - ELC "OUT"	T4=TTE HP Filter P05258

Measur	ement Data:	R	eading lis	ted by ma	argin.			Test Lea	d: White		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2.188M	30.0	+9.7	+0.1	+0.3	+0.1	+0.0	40.2	60.0	-19.9	White
A	Ave										
^	2.178M	34.4	+9.7	+0.1	+0.3	+0.1	+0.0	44.6	60.0	-15.4	White
3	2.144M	29.9	+9.7	+0.1	+0.3	+0.1	+0.0	40.1	60.0	-19.9	White
A	Ave										
^	2.142M	34.5	+9.7	+0.1	+0.3	+0.1	+0.0	44.7	60.0	-15.3	White
5	2.631M	29.6	+9.7	+0.1	+0.4	+0.1	+0.0	39.9	60.0	-20.1	White
A	Ave										
^	2.625M	34.1	+9.7	+0.1	+0.4	+0.1	+0.0	44.4	60.0	-15.6	White
7	2.676M	29.5	+9.7	+0.1	+0.4	+0.1	+0.0	39.8	60.0	-20.2	White
A	Ave										
^	2.668M	33.9	+9.7	+0.1	+0.4	+0.1	+0.0	44.2	60.0	-15.8	White

9 4	460.000k	34.0	+9.7	+0.1	+0.3	+0.0	+0.0	44.1	66.0	-22.0	White
Av	'e										
^ _	461.242k	36.1	+9.7	+0.1	+0.3	+0.0	+0.0	46.2	66.0	-19.8	White
11 4	415.000k	32.3	+9.7	+0.1	+0.3	+0.0	+0.0	42.4	66.0	-23.6	White
Av	ve										
^ _	414.701k	35.4	+9.7	+0.1	+0.3	+0.0	+0.0	45.5	66.0	-20.5	White

CKC Laboratories, Inc. Date: 8/7/2006 Time: 16:45:35 Asyst Technologies WO#: 85518 FCC 15.107A COND [AVE] Test Lead: White 120V 60Hz Sequence#: 12 AC Adapter is connected to LISN

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: Specification: Work Order #: Test Type: Equipment: Manufacturer: Model:	Asyst Technologies FCC 15.109 Class A Radiated 85518 Maximized Emissions Single Antenna Multiplexer Asyst Technologies ATR-9100RoHS	
S/N:	10-1907-104391	

Compaq

Texas Instruments

Equipment Under Test (* = EUT):										
Function	Manufacturer	Model #	S/N							
Single Antenna	Asyst Technologies	ATR-9100RoHS	10-1907-104391							
Multiplexer*										
Antenna	Asyst Technologies	PN: 9700-9097-03	None							
Support Devices:										
Function	Manufacturer	Model #	S/N							
PS	ITE	PW102	06151A/Rev B							
Laptop PS	Compaq	PP2040	3J08FBJ34803S88							

32mm Glass Transponder Test Conditions / Notes:

Laptop

EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT.

PN 386315-002

RI-TRP-RR2B

Transducer Legend:		
T1=0852-Bi-Log Antenna	T2=Cable P05296 25' RG214 N-N	
T3=Cable P05299 2' RG214 N-N	T4=Cable P05300 12' RG214 N-N	
T5=Amp Cal.HP-8447F OPT H64- AN 00501		

Measu	surement Data: Reading listed by margin.				argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	125.009M	60.9	+11.2	+0.6	+0.1	+0.4	-10.0	37.4	43.5	-6.0	Vert
	QP		-25.7				305				99
^	125.009M	61.4	+11.2	+0.6	+0.1	+0.4	-10.0	38.0	43.5	-5.5	Vert
			-25.7				305				99
3	500.007M	56.3	+17.5	+1.3	+0.2	+0.7	-10.0	39.3	46.4	-7.1	Horiz
	QP		-26.7				186				147
^	500.007M	57.5	+17.5	+1.3	+0.2	+0.7	-10.0	40.5	46.4	-5.9	Horiz
			-26.7				186				147
5	500.006M	54.9	+17.5	+1.3	+0.2	+0.7	-10.0	37.9	46.4	-8.5	Vert
			-26.7				146				99
6	43.514M	50.4	+12.0	+0.4	+0.1	+0.3	-10.0	27.0	39.1	-12.1	Horiz
			-26.2				40				121

00035544

None

7	140.017M	54.0	+11.1 -25.6	+0.7	+0.1	+0.4	-10.0 276	30.7	43.5	-12.8	Vert 99
8	250.010M	53.3	+12.3 -25.1	+0.9	+0.1	+0.5	-10.0 200	32.0	46.4	-14.4	Horiz 101
9	150.014M	50.2	+10.7 -25.7	+0.7	+0.1	+0.4	-10.0 130	26.4	43.5	-17.1	Vert 99
10	50.015M	46.5	+8.5 -26.1	+0.4	+0.1	+0.2	-10.0 271	19.6	39.1	-19.5	Vert 100

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: Specification: Work Order #: Test Type:	Asyst Technologies FCC 15.207 COND [AVE] 85518 Conducted Emissions	Time:	8/7/2006 16:28:21
Equipment: Manufacturer: Model:	Single Antenna Multiplexer Asyst Technologies ATR-9100RoHS	Sequence#: Tested By:	
S/N:	10-1907-104391		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Antenna	Asyst Technologies	PN: 9700-9097-03	None
Single Antenna	Asyst Technologies	ATR-9100RoHS	10-1907-104391
Multiplexer*			

Support Devices:

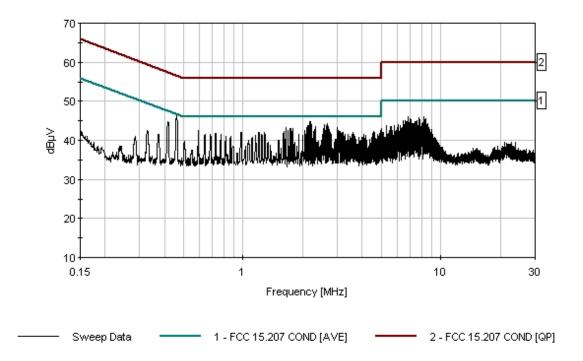
Support Devices.			
Function	Manufacturer	Model #	S/N
32mm Glass Transponder	Texas Instruments	RI-TRP-RR2B	None
PS	ITE	PW102	06151A/Rev B
Laptop PS	Compaq	PP2040	3J08FBJ34803S88
Laptop	Compaq	PN 386315-002	00035544

Test Conditions / Notes:

EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT. Conducted emissions 0.15-30 MHz.

Transduc	er Legend:
<i>Li unsuu</i>	er Legenu.

T1=ANP02223 10dB Attenuator	T2=Cable P00875, 15' RG214/U
T3=LISN - AN00493 - Black - ELC "OUT"	T4=TTE HP Filter P05258


Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	460.000k	34.4	+9.7	+0.1	+0.3	+0.0	+0.0	44.5	46.7	-2.2	Black
	Ave										
^	463.423k	36.3	+9.7	+0.1	+0.3	+0.0	+0.0	46.4	46.6	-0.2	Black
3	416.000k	32.5	+9.7	+0.1	+0.3	+0.0	+0.0	42.6	47.5	-4.9	Black
	Ave										
^	416.882k	34.6	+9.7	+0.1	+0.3	+0.0	+0.0	44.7	47.5	-2.8	Black
5	2.191M	30.6	+9.7	+0.1	+0.3	+0.1	+0.0	40.8	46.0	-5.2	Black
	Ave										
^	2.183M	34.6	+9.7	+0.1	+0.3	+0.1	+0.0	44.8	46.0	-1.2	Black
7	2.633M	30.4	+9.7	+0.1	+0.4	+0.1	+0.0	40.7	46.0	-5.3	Black
	Ave										
^	2.633M	33.4	+9.7	+0.1	+0.4	+0.1	+0.0	43.7	46.0	-2.3	Black

9	2.145M	30.4	+9.7	+0.1	+0.3	+0.1	+0.0	40.6	46.0	-5.4	Black
A	Ave										
۸	2.142M	33.6	+9.7	+0.1	+0.3	+0.1	+0.0	43.8	46.0	-2.2	Black
11	2.589M	30.2	+9.7	+0.1	+0.4	+0.1	+0.0	40.4	46.0	-5.6	Black
A	Ave										
^	2.582M	33.7	+9.7	+0.1	+0.4	+0.1	+0.0	44.0	46.0	-2.0	Black
13	2.679M	30.1	+9.7	+0.1	+0.4	+0.1	+0.0	40.4	46.0	-5.6	Black
A	Ave										
^	2.676M	34.1	+9.7	+0.1	+0.4	+0.1	+0.0	44.4	46.0	-1.6	Black
15	2.234M	30.1	+9.7	+0.1	+0.3	+0.1	+0.0	40.3	46.0	-5.7	Black
A	Ave										
^	2.231M	33.9	+9.7	+0.1	+0.3	+0.1	+0.0	44.1	46.0	-1.9	Black
17	991.000k	24.6	+9.8	+0.0	+0.3	+0.0	+0.0	34.7	46.0	-11.3	Black
-	Ave										
^	994.819k	31.8	+9.8	+0.0	+0.3	+0.0	+0.0	41.9	46.0	-4.1	Black
19	594.000k	24.6	+9.7	+0.1	+0.3	+0.0	+0.0	34.7	46.0	-11.3	Black
	Ave										
^	594.319k	32.5	+9.7	+0.1	+0.3	+0.0	+0.0	42.6	46.0	-3.4	Black

CKC Laboratories, Inc. Date: 8/7/2006 Time: 16:28:21 Asyst Technologies WO#: 85518 FCC 15:207 COND [AVE] Test Lead: Black 120V 60Hz Sequence#: 11 AC Adapter is connected to LISN

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Antenna	Asyst Technologies	PN: 9700-9097-03	None	
Single Antenna	Asyst Technologies	ATR-9100RoHS	10-1907-104391	
Multiplexer*				

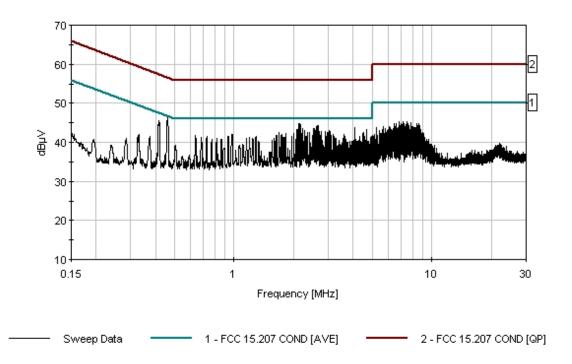
Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
32mm Glass Transponder	Texas Instruments	RI-TRP-RR2B	None
PS	ITE	PW102	06151A/Rev B
Laptop PS	Compaq	PP2040	3J08FBJ34803S88
Laptop	Compaq	PN 386315-002	00035544

Test Conditions / Notes:

EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT. Conducted emissions 0.15-30 MHz.

Transducer Legend:


T1=ANP02223 10dB Attenuator	T2=Cable P00875, 15' RG214/U
T3=LISN - AN00493 - White - ELC "OUT"	T4=TTE HP Filter P05258

Meası	urement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: White		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	460.000k	34.0	+9.7	+0.1	+0.3	+0.0	+0.0	44.1	46.7	-2.6	White
	Ave										
^	461.242k	36.1	+9.7	+0.1	+0.3	+0.0	+0.0	46.2	46.7	-0.5	White
3	415.000k	32.3	+9.7	+0.1	+0.3	+0.0	+0.0	42.4	47.5	-5.1	White
	Ave										
^	414.701k	35.4	+9.7	+0.1	+0.3	+0.0	+0.0	45.5	47.6	-2.1	White
5	2.188M	30.0	+9.7	+0.1	+0.3	+0.1	+0.0	40.2	46.0	-5.8	White
	Ave										
^	2.178M	34.4	+9.7	+0.1	+0.3	+0.1	+0.0	44.6	46.0	-1.4	White
7	2.144M	29.9	+9.7	+0.1	+0.3	+0.1	+0.0	40.1	46.0	-5.9	White
	Ave										
^	2.142M	34.5	+9.7	+0.1	+0.3	+0.1	+0.0	44.7	46.0	-1.3	White

9	2.631M	29.6	+9.7	+0.1	+0.4	+0.1	+0.0	39.9	46.0	-6.1	White
A	ve										
۸	2.625M	34.1	+9.7	+0.1	+0.4	+0.1	+0.0	44.4	46.0	-1.6	White
11	2.676M	29.5	+9.7	+0.1	+0.4	+0.1	+0.0	39.8	46.0	-6.2	White
А	ve										
^	2.668M	33.9	+9.7	+0.1	+0.4	+0.1	+0.0	44.2	46.0	-1.8	White

CKC Laboratories, Inc. Date: 8/7/2006 Time: 16:45:35 Asyst Technologies WO#: 85518 FCC 15:207 COND [AVE] Test Lead: White 120V 60Hz Sequence#: 12 AC Adapter is connected to LISN

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: Specification:	Asyst Technologies FCC 15.209		
Work Order #:	85518	Date:	8/8/2006
Test Type:	Maximized Emissions	Time:	16:59:44
Equipment:	Single Antenna Multiplexer	Sequence#:	20
Manufacturer:	Asyst Technologies	Tested By:	A. Brar
Model:	ATR-9100RoHS		
S/N:	10-1907-104391		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Antenna	Asyst Technologies	PN: 9700-9097-03	None	
Single Antenna	Asyst Technologies	ATR-9100RoHS	10-1907-104391	
Multiplexer*				

Support Devices:

Support Derices.			
Function	Manufacturer	Model #	S/N
32mm Glass Transponder	Texas Instruments	RI-TRP-RR2B	None
PS	ITE	PW102	06151A/Rev B
Laptop PS	Compaq	PP2040	3J08FBJ34803S88
Laptop	Compaq	PN 386315-002	00035544

Test Conditions / Notes:

EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT. Fall off factor of 40dB/decade applied to readings.

Transducer Legend:

T1=Mag Loop - AN 00432- 9kHz-30M	T2=Cable 82' RG8 PN 05012
T3=15.31 3m 40dB/Dec Correction	

Measur	ement Data:	Re	ading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	5.342M	38.6	+9.2	+0.3	-40.0		+0.0	8.1	29.5	-21.4	Horiz
2	135.130k	73.0	+9.3	+0.1	-80.0		+0.0	2.4	25.0	-22.6	Horiz
									Fundament	tal	
3	4.786M	35.7	+9.2	+0.3	-40.0		+0.0	5.2	29.5	-24.3	Vert
4	135.130k	71.0	+9.3	+0.1	-80.0		+0.0	0.4	25.0	-24.6	Vert
									Fundament	tal	
5	7.461M	35.3	+9.1	+0.4	-40.0		+0.0	4.8	29.5	-24.7	Vert
6	15.592M	32.9	+8.5	+0.6	-40.0		+0.0	2.0	29.5	-27.5	Vert
7	6.381M	31.0	+9.2	+0.3	-40.0		+0.0	0.5	29.5	-29.0	Horiz
8	265.200k	52.6	+9.4	+0.1	-80.0		+0.0	-17.9	19.1	-37.0	Horiz

9	313.100k	50.1	+9.4	+0.1	-80.0	+0.0	-20.4	17.7	-38.1	Horiz
10	264.800k	51.3	+9.4	+0.1	-80.0	+0.0	-19.2	19.1	-38.3	Horiz
11	403.100k	47.2	+9.3	+0.1	-80.0	+0.0	-23.4	15.5	-38.9	Horiz
12	57.960k	62.9	+9.9	+0.1	-80.0	+0.0	-7.1	32.3	-39.4	Horiz
13	400.600k	45.7	+9.3	+0.1	-80.0	+0.0	-24.9	15.5	-40.4	Horiz
14	378.600k	45.3	+9.3	+0.1	-80.0	+0.0	-25.3	16.0	-41.3	Horiz
15	286.500k	47.4	+9.4	+0.1	-80.0	+0.0	-23.1	18.5	-41.6	Horiz
16	102.350k	44.9	+9.3	+0.1	-80.0	+0.0	-25.7	27.4	-53.1	Horiz
17	17.740k	54.6	+12.5	+0.0	-80.0	+0.0	-12.9	42.6	-55.5	Horiz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: Specification:	Asyst Technologies FCC 15.209 30MHz to 1 GHz		
Work Order #:	85518	Date	8/7/2006
	00010		
Test Type:	Maximized Emissions		10:10:09
Equipment:	Single Antenna Multiplexer	Sequence#:	10
Manufacturer:	Asyst Technologies	Tested By:	A. Brar
Model:	ATR-9100RoHS		
S/N:	10-1907-104391		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Antenna	Asyst Technologies	PN: 9700-9097-03	None	
Single Antenna	Asyst Technologies	ATR-9100RoHS	10-1907-104391	
Multiplexer*				

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
32mm Glass Transponder	Texas Instruments	RI-TRP-RR2B	None
PS	ITE	PW102	06151A/Rev B
Laptop PS	Compaq	PP2040	3J08FBJ34803S88
Laptop	Compaq	PN 386315-002	00035544

Test Conditions / Notes:

EUT, antenna & transponder are on the test table. The antenna and transponder are 1 inch away from each other and they are sitting on a 20 cm foam standoff. The laptop is outside of the chamber connected to the EUT via Ethernet cable. The laptop is used to control communications between the transponder and the EUT.

Transducer Legend:		
T1=0852-Bi-Log Antenna	T2=Cable P05296 25' RG214 N-N	
T3=Cable P05299 2' RG214 N-N	T4=Cable P05300 12' RG214 N-N	
T5=Amp Cal.HP-8447F OPT H64- AN 00501		

Measurement Data:		Reading listed by margin.				Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
			T5									
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant	
1	499.984M	52.2	+17.5	+1.3	+0.2	+0.7	+0.0	45.2	46.0	-0.8	Vert	
QP			-26.7				153				99	
^	499.984M	53.6	+17.5	+1.3	+0.2	+0.7	+0.0	46.6	46.0	+0.6	Vert	
			-26.7				153				99	
3	499.985M	47.0	+17.5	+1.3	+0.2	+0.7	+0.0	40.0	46.0	-6.0	Horiz	
QP			-26.7				-11				99	
^	499.985M	47.8	+17.5	+1.3	+0.2	+0.7	+0.0	40.8	46.0	-5.2	Horiz	
			-26.7				-11				99	
5	42.027M	45.2	+12.8	+0.4	+0.1	+0.2	+0.0	32.5	40.0	-7.5	Horiz	
	QP		-26.2				147				98	
^	42.027M	49.0	+12.8	+0.4	+0.1	+0.2	+0.0	36.3	40.0	-3.7	Horiz	
			-26.2				147				98	

7	124.985M	48.5	+11.2	+0.6	+0.1	+0.4	+0.0	35.1	43.5	-8.4	Vert
			-25.7				113				100
8	139.994M	47.5	+11.1	+0.7	+0.1	+0.4	+0.0	34.2	43.5	-9.3	Vert
			-25.6				-9				100
9	49.524M	45.1	+8.8	+0.4	+0.1	+0.2	+0.0	28.5	40.0	-11.5	Vert
			-26.1				329				100
10	249.983M	42.1	+12.3	+0.9	+0.1	+0.5	+0.0	30.8	46.0	-15.2	Horiz
			-25.1				68				99