

ASYST TECHNOLOGIES TEST REPORT

FOR THE

ADVANTAG 9100

FCC PART 15 SUBPART C SECTIONS 15.207 & 15.209

COMPLIANCE

DATE OF ISSUE: APRIL 7, 2003

PREPARED FOR: PREPARED BY:

Asyst Technologies
48761 Kato Road
CKC Laboratories, Inc.
Fremont, CA 94538
5473A Clouds Rest
Mariposa, CA 95338

P.O. No.: 332081 Date of test: April 2-4, 2003 W.O. No.: 80115

Report No.: FC03-022

This report contains a total of 31 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 39 Report No.: FC03-022

TABLE OF CONTENTS

Administrative Information	3
Summary of Results	4
Conditions for Compliance	4
Approvals	4
15.31 Voltage Variation	5
15.31 Number Of Channels	5
15.33 Frequency Ranges Tested	5
15.35 Analyzer Bandwidth Settings	5
15.203 Antenna Requirements	5
15.205 Restricted Bands	
Eut Operating Frequency	6
Temperature And Humidity During Testing	6
Equipment Under Test (EUT) Description	6
Equipment Under Test	6
Peripheral Devices	6
Report of Measurements	7
Table 1: 15.207 Six Highest Conducted Emission Levels	7
Table 2: 15.209 Fundamental Emission Levels	8
Table 3: 15.209 Six Highest Radiated Emission Levels	9
Measurement Uncertainty	
EUT Setup	10
Correction Factors	10
Table A: Sample Calculations	10
Test Instrumentation and Analyzer Settings	11
Spectrum Analyzer Detector Functions	11
Peak	11
Quasi-Peak	11
Average	11
Testing	12
Mains Conducted Emissions	12
Radiated Emissions	12
Appendix A: Test Setup Photographs	13
Photograph Showing Mains Conducted Emissions	14
Photograph Showing Mains Conducted Emissions	
Photograph Showing Radiated Emissions	
Photograph Showing Radiated Emissions	
Appendix B: Test Equipment List	18
Annendix C: Measurement Data Sheets	

Page 2 of 39 Report No.: FC03-022

ADMINISTRATIVE INFORMATION

DATE OF TEST: April 2-4, 2003

DATE OF RECEIPT: April 3, 2003

PURPOSE OF TEST: To demonstrate the compliance of the

ADVANTAG 9100 with the requirements for FCC

Part 15 Subpart C Sections 15.207 & 15.209

devices.

TEST METHOD: ANSI C63.4 (1992)

MANUFACTURER: Asyst Technologies

48761 Kato Road Fremont, CA 94538

REPRESENTATIVE: Saeed Taghipour

TEST LOCATION: CKC Laboratories, Inc.

5473A Clouds Rest Mariposa, CA 95338

> Page 3 of 39 Report No.: FC03-022

SUMMARY OF RESULTS

As received, the Asyst Technologies ADVANTAG 9100 was found to be fully compliant with the following standards and specifications:

United States

- FCC Part 15 Subpart C Sections 15.207 & 15.209
- > ANSI C63.4 (1992) method

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

QUALITY ASSURANCE:

Steve of Below

TEST PERSONNEL:

Steve Behm, Director of Engineering Services

and Quality Assurance

Randy Clark, EMC Engineer

Joyce Walker, Quality Assurance Administrative Manager

Mike Wilkinson, Lab Manager

15.31(e) Voltage Variations

Voltage Variation on Peak Power								
	CORRECTED READING	CORRECTED READING	CORRECTED READING	SPEC				
FREQUENCY kHz	dBμV/m 85%	dΒμV/m 100%	dBμV/m 115%	LIMIT dBµV/m				
134.205	12.5	12.6	12.5	25.0				

Test ANSI C63.4 (1992)

Method:

Spec FCC Part 15 Subpart C Section

Limit: 15.209/15.31(e)

Test 10 meters

Distance:

15.31(m) Number Of Channels

This device operates on a single channel.

15.33(a) Frequency Ranges Tested

15.207 Conducted: 150 kHz – 30 MHz 15.209 Radiated: 9 kHz – 1000 MHz

FCC SECTION 15.35:									
ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE									
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING						
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz						
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz						

15.203 Antenna Requirements

The antenna is removable and does not employ a unique connector, however the device is professionally installed and maintained. Therefore, the EUT complies with 15.203. For more information, refer to the installation/user's manual.

15.205 Restricted Bands

The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.

Page 5 of 39 Report No.: FC03-022

Eut Operating Frequency

The EUT was operating at 134.2 kHz.

Temperature And Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C.

The relative humidity was between 20% and 75%.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT tested by CKC Laboratories was a production unit.

The following model was tested by CKC Laboratories:

RFID Reader, ATR-9100

Since the time of testing the manufacturer has chosen to use the following model name in its place. Any differences between the names does not affect their EMC characteristics and therefore complies to the level of testing equivalent to the tested model name shown on the data sheets:

ADVANTAG 9100

EQUIPMENT UNDER TEST

RFID Reader

Manuf: Asyst Technologies Model: ADVANTAG 9100

Serial: C1 FCC ID: pending

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Power Supply

Manuf: Sola

Model: SLS-24-012T Serial: 8869 0150

FCC ID: NA

Page 6 of 39 Report No.: FC03-022

REPORT OF MEASUREMENTS

The following tables report the worst case emissions levels recorded during the tests performed on the EUT. All readings taken were peak readings unless otherwise stated. The data sheets from which the emissions tables were compiled are contained in Appendix C.

Table 1: 15.207 Six Highest Conducted Emission Levels									
FREQUENCY	METER READING	COR Lis n	RECTIC	N FACT Cabl e	ORS	CORRECTED READING	SPEC LIMIT	MARGIN	NOTES
MHz	dΒμV	dВ	dВ	dВ	dВ	dΒμV	dΒμV	dВ	
0.150000	50.1	0.2		0.1		50.4	56.0	-5.6	M
17.309170	43.9	0.5		0.2		44.6	50.0	-5.4	W
18.507360	43.7	0.4		0.2		44.3	50.0	-5.7	W
20.119980	43.8	0.4		0.2		44.4	50.0	-5.6	W
21.192050	44.1	0.3		0.2		44.6	50.0	-5.4	M
21.327180	43.9	0.3		0.2		44.4	50.0	-5.6	M

Test ANSI C63.4 (1992) NOTES: W = White Lead

Method:

Spec FCC Part 15 Subpart C Section

Limit: 15.207

COMMENTS: EUT is an RFID reader. Each I/O port is terminated its characteristic impedance. The EUT is powered through a standard DC power supply representative of one used in normal installation. An RFID tag is present in the field. The transmitter is operating continuously at 134.2 kHz. Frequency Range Investigated: 150 kHz to 30 MHz. Temperature 68°F, Humidity 39%.

Page 7 of 39 Report No.: FC03-022

	Table 2: 15.209 Fundamental Emission Levels								
FREQUENCY MHz	METER READING dBμV	COR Ant dB	dB	ON FACT Corr dB	ORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
0.134	63.0	9.6		-60.0		12.6	25.0	-12.4	V
0.134	62.9	9.6		-60.0		12.5	25.0	-12.5	V
0.134	62.9	9.6		-60.0		12.5	25.0	-12.5	V
0.134	55.2	9.6		-60.0		4.8	25.0	-20.2	Н

Test Method: ANSI C63.4 (1992) NOTES: H = Horizontal Polarization
Spec Limit: FCC Part 15 Subpart C Section 15.209 V = Vertical Polarization

Test Distance: 10 Meters

COMMENTS: EUT is an RFID reader. Each I/O port is terminated its characteristic impedance. The EUT is powered through a standard DC power supply representative of one used in normal installation. An RFID tag is present in the field. The transmitter is operating continuously at 134.2 kHz. Data is extrapolated to proper test distance for comparison to the applicable limit in accordance with 15.33, 40dB per decade. Frequency Range Investigated: 9 kHz to 30 MHz. Temperature 68°F, Humidity 37%.

Page 8 of 39 Report No.: FC03-022

Table 3: 15.209 Six Highest Radiated Emission Levels									
FREQUENCY MHz	METER READING dBμV	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
30.040	41.2	12.9	-27.3	0.7	10.0	37.5	40.0	-2.5	VQ
30.315	40.8	12.8	-27.3	0.7	10.0	37.0	40.0	-3.0	VQ
56.835	43.3	9.8	-27.3	1.1	10.0	36.9	40.0	-3.1	V
58.505	43.4	9.6	-27.3	1.1	10.0	36.8	40.0	-3.2	VQ
59.030	45.2	9.6	-27.3	1.1	10.0	38.6	40.0	-1.4	VQ
59.580	44.0	9.5	-27.3	1.1	10.0	37.3	40.0	-2.7	VQ

Test Method: ANSI C63.4 (1992) Spec Limit:

FCC Part 15 Subpart C Section 15.209

Test Distance: 10 Meters NOTES: Q = Quasi Peak Reading

V = Vertical Polarization

COMMENTS: EUT is an RFID reader. Each I/O port is terminated its characteristic impedance. The EUT is powered through a standard DC power supply representative of one used in normal installation. An RFID tag is present in the field. The transmitter is operating continuously at 134.2kHz. Temperature 68°F, Humidity 39%.

Frequency Range Investigated: 9 kHz to 30 MHz. Data is extrapolated to proper test distance for comparison to the applicable limit in accordance with 15.33, 40dB per decade. Data represent noise floor readings. No EUT readings were found below 30 MHz.

Frequency Range Investigated: 30 MHz to 1000 MHz. Data is extrapolated to 3 meters for comparison to the applicable limit in accordance with 15.33, 20dB per decade.

> Page 9 of 39 Report No.: FC03-022

MEASUREMENT UNCERTAINTY

TEST	HIGHEST UNCERTAINTY
Radiated Emissions	+/- 2.94 dB
Conducted Emissions	+/- 1.56 dB

Note: Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Statements of compliance are based on the nominal values only.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated and conducted emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TAI	BLE A: SAMPLE CAL	CULATIONS
	Meter reading	$(dB\mu V)$
+	Antenna Factor	(dB)
+	Cable Loss	(dB)
-	Distance Correction	(dB)
_	Preamplifier Gain	(dB)
=	Corrected Reading	$(dB\mu V/m)$

Page 10 of 39 Report No.: FC03-022

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Appendix B were used to collect both the radiated and conducted emissions data. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. For radiated measurements below 300 MHz, the biconical antenna was used. For frequencies from 300 to 1000 MHz, the log periodic antenna was used. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

Page 11 of 39 Report No.: FC03-022

TESTING

Mains Conducted Emissions

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

The LISNs used were $50~\mu\text{H}$ -/+50~ohms. Above 150~kHz, a $0.15~\mu\text{F}$ series capacitor was added in-line prior to connecting the analyzer to restore the proper impedance for the range. A 30~to~50~s second sweep time was used for automated measurements in the frequency bands of 150~kHz to 500~kHz, and 500~kHz to 30~MHz. All readings within 20~dB of the limit were recorded, and those within 6~dB of the limit were examined with additional measurements using a slower sweep time.

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 88 MHz was scanned with the biconical antenna located about 1.5 meter above the ground plane in the vertical configuration. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. The frequency range of 100 to 300 MHz was then scanned in the same manner using the biconical antenna and the peaks recorded. Lastly, a scan of the FM band from 88 to 110 MHz was made, using a reduced resolution bandwidth and frequency span. The biconical antenna was changed to the horizontal polarity and the above steps were repeated. After changing to the log periodic antenna in the horizontal configuration, the frequency range of 300 to 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 to 1000 MHz was again scanned. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable as needed. The test engineer maximized the readings with respect to the table rotation, antenna height, and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

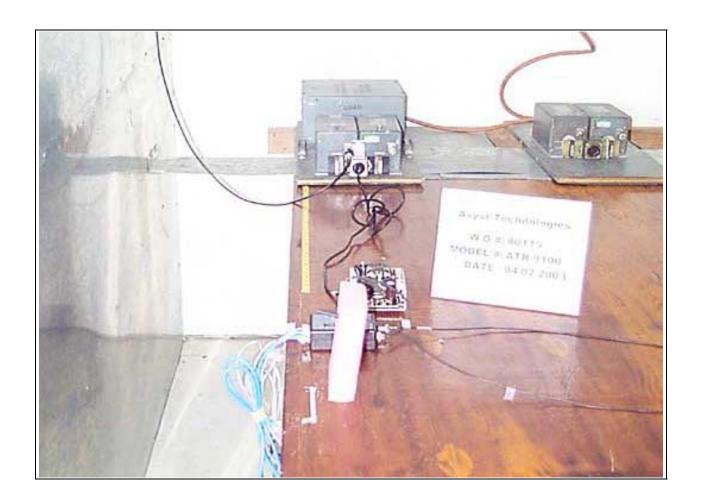
Page 12 of 39 Report No.: FC03-022



APPENDIX A TEST SETUP PHOTOGRAPHS

Page 13 of 39 Report No.: FC03-022

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS



Mains Conducted Emissions - Front View

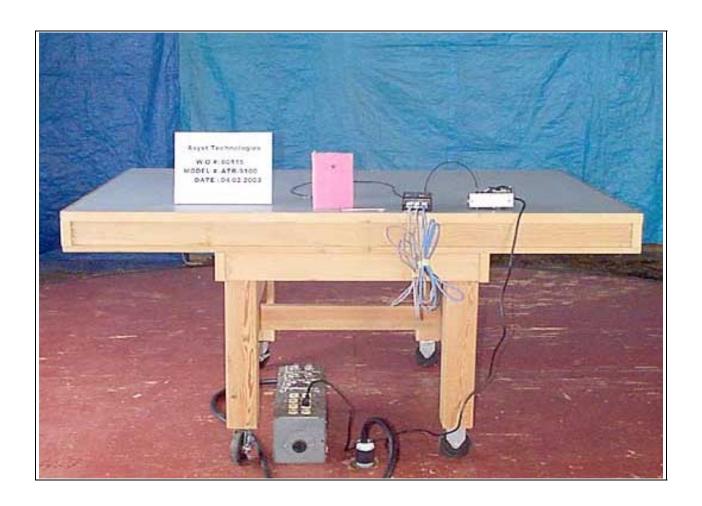
Page 14 of 39 Report No.: FC03-022

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Side View

Page 15 of 39 Report No.: FC03-022

PHOTOGRAPH SHOWING RADIATED EMISSIONS



Radiated Emissions - Front View

Page 16 of 39 Report No.: FC03-022

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

Page 17 of 39 Report No.: FC03-022

APPENDIX B

TEST EQUIPMENT LIST

15.207 Conducted Emissions

Description	Manufacturer	Model #	Serial #	Asset #	Cal Date	Cal Due
LISN's Set	Solar	8028-50-TS-24-BNC	855996, 992	02055	6/5/02	6/5/03
Spectrum Analyzer 100Hz - 22.5GHz	HP	8566B	2209A01404	00490	2/26/03	2/26/04
Spectrum Analyzer Display	HP	8566B	2403A08241	00489	2/26/03	2/26/04
Spectrum Analyzer QP Adapter	HP	85650A	2811A01267	00478	2/26/03	2/26/04

15.209 Radiated Emissions >30 MHz

Description	Manufacturer	Model #	Serial #	Asset #	Cal Date	Cal Due
Antenna, Bicon	A&H	SAS-200/542	156	00225	12/2/02	12/2/03
Antenna, Log Periodic	A&H	SAS-200/510	154	01330	6/19/02	6/19/03
Spectrum Analyzer 100Hz - 22.5GHz	HP	8566B	2209A01404	00490	2/26/03	2/26/04
Spectrum Analyzer Display	HP	8566B	2403A08241	00489	2/26/03	2/26/04
Spectrum Analyzer QP Adapter	HP	85650A	2811A01267	00478	2/26/03	2/26/04
Preamp	HP	8447D	1937A02604	00099	3/7/03	3/6/04

15.209 Radiated Emissions <30 MHz

Description	Manufacturer	Model #	Serial #	Asset #	Cal Date	Cal Due
LISN's Set	Solar	8028-50-TS-24-BNC	855996, 992	02055	6/5/02	6/5/03
Spectrum Analyzer 100Hz - 22.5GHz	HP	8566B	2209A01404	00490	2/26/03	2/26/04
Spectrum Analyzer Display	HP	8566B	2403A08241	00489	2/26/03	2/26/04
Spectrum Analyzer QP Adapter	HP	85650A	2811A01267	00478	2/26/03	2/26/04
Antenna, Loop	EMCO	6502	2078	00432	6/5/02	6/5/03
Power Supply, DC (Programmable)	Leader	LPS-2801	6030090	P01889	6/5/02	6/5/03

Page 18 of 39 Report No.: FC03-022

APPENDIX C:

MEASUREMENT DATA SHEETS

Page 19 of 39 Report No.: FC03-022

Test CKC Laboratories, Inc. • 5473A Clouds Rest • Mariposa, CA

Location: 95338 • 800-500-4362

Customer: Asyst Technologies Specificatio FCC 15.207 - AVE

n:

Work Order **80115** Date: 04/03/2003

#:

Test Type: Conducted Emissions Time: 09:13:45

Equipment: RFID Reader Sequence#: 22

Manufacturer Asyst Technologies Tested By: Randal Clark

Model: ATR-9100 120V 60Hz

S/N: C1

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Reader*	Asyst Technologies	ATR-9100	C1

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply	Sola	SLS-24-012T	8869 0150	

Test Conditions / Notes:

EUT is an RFID reader. Each I/O port is terminated its characteristic impedance. The EUT is powered through a standard DC power supply representative of one used in normal installation. An RFID tag is present in the field. The transmitter is operating continuously at 134.2 kHz. Frequency Range Investigated: 150 kHz to 30 MHz. Temperature 68°F, Humidity 39%.

Transducer Legend:

Tl=Cable & Cap (Bench)	T2=LISN Insertion Loss s/n474

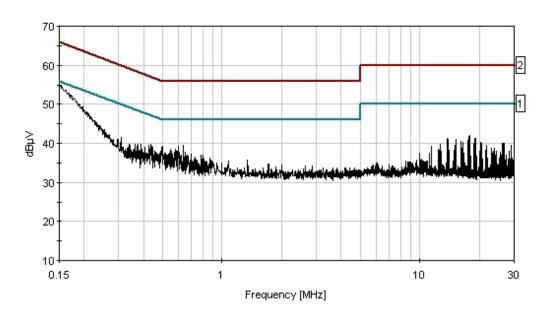
measi	urement	Re		listed	l by	Test Lead: Black					
Data:	:		mai	rgin.							
#	Freq MHz	Rdng dBuV	T1 dB	T2 dB	dВ	dВ	Dist Table	Corr dBuV	Spec dBuV	Margin dB	Polar Ant
1	637.951k	39.2	+0.1	+0.1			+0.0	39.4	46.0	- 6.6	Black
2	601.591k	39.1	+0.1	+0.1			+0.0	39.3	46.0	6.7	Black
3	501.238k	39.1	+0.1	+0.0			+0.0	39.2	46.0	6.8	Black
4	547.051k	38.5	+0.1	+0.0			+0.0	38.6	46.0	7.4	Black
5	577.594k	38.3	+0.1	+0.1			+0.0	38.5	46.0	- 7.5	Black
6	555.778k	37.9	+0.1	+0.1			+0.0	38.1	46.0	7.9	Black
7	17.976M	41.8	+0.2	+0.1			+0.0	42.1	50.0	7.9	Black

Page 20 of 39 Report No.: FC03-022

8 589.956k	37.7	+0.1	+0.1	+0.0	37.9	46.0	8.1	Black
9 17.697M	41.4	+0.2	+0.2	+0.0	41.8	50.0	8.2	Black
10 389.976k	39.7	+0.1	+0.0	+0.0	39.8	48.1	8.3	Black
11 648.859k	37.5	+0.1	+0.1	+0.0	37.7	46.0	8.3	Black

Page 21 of 39 Report No.: FC03-022

12 307.802k	41.4	+0.1	+0.1	+0.0	41.6	50.0	8.4	Black
13 543.415k	37.4	+0.1	+0.0	+0.0	37.5	46.0	8.5	Black
14 563.050k	37.1	+0.1	+0.1	+0.0	37.3	46.0	8.7	Black
15 700.490k	37.2	+0.0	+0.1	+0.0	37.3	46.0	8.7	Black
16 13.832M	40.6	+0.2	+0.5	+0.0	41.3	50.0	8.7	Black
17 18.913M	41.0	+0.2	+0.1	+0.0	41.3	50.0	8.7	Black
18 516.509k	37.1	+0.1	+0.0	+0.0	37.2	46.0	8.8	Black
19 538.325k	37.1	+0.1	+0.0	+0.0	37.2	46.0	8.8	Black
20 19.174M	40.9	+0.2	+0.1	+0.0	41.2	50.0	8.8	Black
21 456.151k	37.8	+0.1	+0.0	+0.0	37.9	46.8	8.9	Black
22 15.291M	40.6	+0.2	+0.3	+0.0	41.1	50.0	8.9	Black
23 362.342k	39.6	+0.1	+0.0	+0.0	39.7	48.7	9.0	Black
24 525.962k	36.9	+0.1	+0.0	+0.0	37.0	46.0	9.0	Black
25 664.130k	36.8	+0.1	+0.1	+0.0	37.0	46.0	9.0	Black
26 784.118k	36.8	+0.0	+0.1	+0.0	36.9	46.0	9.1	Black
27 800.844k	36.8	+0.0	+0.1	+0.0	36.9	46.0	9.1	Black
28 17.570M	40.4	+0.2	+0.2	+0.0	40.8	50.0	9.2	Black
29 16.228M	40.1	+0.2	+0.3	+0.0	40.6	50.0	9.4	Black
30 150.000k Ave	38.8	+0.1	+0.0	+0.0	38.9	56.0	- 17.1	Black


Page 22 of 39 Report No.: FC03-022

^				55.0	56.0	_	Black
150.000k	54.9	+0.1	+0.0	+0.0		1.0	

Date: 04/03/2003 Time: 09:13:45 Asyst Technologies WO#: 80115 FCC 15.207 - AVE Test Lead: Black 120V 60Hz Sequence#: 22 AC powered

1 - FCC 15.207 - AVE 2 - FCC 15.207 - QP

Test CKC Laboratories, Inc. • 5473A Clouds Rest • Mariposa, CA

Location: 95338 • 800-500-4362

Customer: Asyst Technologies Specificatio FCC 15.207 - AVE

n:

Work Order **80115** Date: 04/03/2003

#:

Test Type: Conducted Emissions Time: 09:18:25

Equipment: RFID Reader Sequence#: 23

Manufacturer Asyst Technologies Tested By: Randal Clark

Model: ATR-9100 120V 60Hz

S/N: C1

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Reader*	Asyst Technologies	ATR-9100	C1

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply	Sola	SLS-24-012T	8869 0150	

Test Conditions / Notes:

EUT is an RFID reader. Each I/O port is terminated its characteristic impedance. The EUT is powered through a standard DC power supply representative of one used in normal installation. An RFID tag is present in the field. The transmitter is operating continuously at 134.2 kHz. Frequency Range Investigated: 150 kHz to 30 MHz. Temperature 68°F, Humidity 39%.

Transducer Legend:

T1=Cable & Cap ((Bench)	T2=LISN	Insertion	Loss	s/n493

Measu Data:	ırement :	Reading listed by Test Lead: White margin.									
#	Freq MHz	Rdng dBµV	T1 dB	T2 dB	dВ	dВ	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	17.309M	43.9	+0.2	+0.5			+0.0	44.6	50.0	5.4	White
2	21.192M	44.1	+0.2	+0.3			+0.0	44.6	50.0	5.4	White
3	150.000k	50.1	+0.1	+0.2			+0.0	50.4	56.0	- 5.6	White
4	20.120M	43.8	+0.2	+0.4			+0.0	44.4	50.0	- 5.6	White
5	21.327M	43.9	+0.2	+0.3			+0.0	44.4	50.0	- 5.6	White
6	18.507M	43.7	+0.2	+0.4			+0.0	44.3	50.0	- 5.7	White
7	18.922M	43.6	+0.2	+0.4			+0.0	44.2	50.0	5.8	White

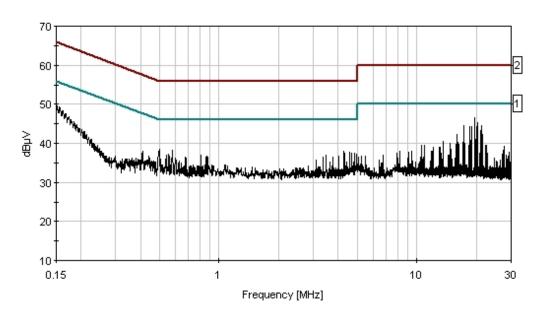
Page 25 of 39 Report No.: FC03-022

8 20.913M	42.8	+0.2	+0.4	+0.0	43.4	50.0	6.6	White
20.71311								
9 497.602k	38.3	+0.1	+0.2	+0.0	38.6	46.0	7.4	White
10 579.048k	38.0	+0.1	+0.2	+0.0	38.3	46.0	7.7	White
11 15.958M	41.5	+0.2	+0.5	+0.0	42.2	50.0	7.8	White

Page 26 of 39 Report No.: FC03-022

12 21.462M	41.7	+0.2	+0.3	+0.0	42.2	50.0	7.8	White
13 4.288M	37.1	+0.1	+0.8	+0.0	38.0	46.0	8.0	White
14 4.556M	36.5	+0.1	+1.2	+0.0	37.8	46.0	8.2	White
15 4.824M	35.9	+0.1	+1.6	+0.0	37.6	46.0	8.4	White
16 4.692M	35.9	+0.1	+1.4	+0.0	37.4	46.0	8.6	White
17 555.050k	36.9	+0.1	+0.2	+0.0	37.2	46.0	8.8	White
18 4.956M	35.4	+0.1	+1.7	+0.0	37.2	46.0	8.8	White
19 19.850M	40.5	+0.2	+0.4	+0.0	41.1	50.0	8.9	White
20 19.985M	40.5	+0.2	+0.4	+0.0	41.1	50.0	8.9	White
21 21.048M	40.6	+0.2	+0.3	+0.0	41.1	50.0	8.9	White
22 811.025k	36.8	+0.0	+0.2	+0.0	37.0	46.0	9.0	White
23 544.142k	36.6	+0.1	+0.2	+0.0	36.9	46.0	9.1	White
24 3.488M	36.5	+0.1	+0.3	+0.0	36.9	46.0	9.1	White
25 4.020M	36.4	+0.1	+0.3	+0.0	36.8	46.0	9.2	White
26 18.778M	40.2	+0.2	+0.4	+0.0	40.8	50.0	9.2	White
27 862.656k	36.5	+0.0	+0.2	+0.0	36.7	46.0	9.3	White
28 3.352M	36.2	+0.1	+0.2	+0.0	36.5	46.0	9.5	White
29 19.737M Ave	35.8	+0.2	+0.4	+0.0	36.4	50.0	- 13.6	White
19.737M	44.6	+0.2	+0.4	+0.0	45.2	50.0	4.8	White
L								

Page 27 of 39 Report No.: FC03-022



31 20.273M Ave	34.2	+0.2	+0.4	+0.0	34.8	50.0	- 15.2	White
^ 20.273M	43.6	+0.2	+0.4	+0.0	44.2	50.0	5.8	White

Page 28 of 39 Report No.: FC03-022

Date: 04/03/2003 Time: 09:18:25 Asyst Technologies WO#: 80115 FCC 15.207 - AVE Test Lead: White 120V 60Hz Sequence#: 23 AC powered

1 - FCC 15.207 - AVE 2 - FCC 15.207 - QP

Test CKC Laboratories, Inc. • 5473A Clouds Rest • Mariposa, CA

Location: 95338 • 800-500-4362

Customer: Asyst Technologies

Specificatio FCC 15.209

n:

Work Order 80115 Date: 04/04/2003

#:

Test Type: Radiated Scan Time: 14:54:19

Equipment: RFID Reader Sequence#: 27

Manufacturer Asyst Technologies Tested By: Randal Clark

:

Model: ATR-9100

S/N: C1

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Reader*	Asyst Technologies	ATR-9100	C1

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply	Sola	SLS-24-012T	8869 0150	

Test Conditions / Notes:

EUT is an RFID reader. Each I/O port is terminated its characteristic impedance. The EUT is powered through a standard DC power supply representative of one used in normal installation. An RFID tag is present in the field. The transmitter is operating continuously at 134.2 kHz. Data is extrapolated to proper test distance for comparison to the applicable limit in accordance with 15.33, 40dB per decade. Frequency Range Investigated: 9 kHz to 30 MHz. Temperature 68°F, Humidity 37%.

Transducer Legend:

T1=Mag Loop A/N 0.0432 .	S/N 2078	T2=15.31	10m 40dB/Dec Correction

Meas	urement	Re	eading	listed	l by	Test Distance: 10 Meters					
Data	:		mai	rgin.							
#	Freq	Rdng	T1	Т2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dВ	dВ	dВ	dВ	Table	dBµV/m	dΒμV/m	dВ	Ant
1				-				12.6	25.0	_	Vert
	134.198k	63.0	+9.6	60.0			+0.0			12.4	
2				-				12.5	25.0	_	Vert
	134.205k	62.9	+9.6	60.0			+0.0			12.5	
									Nominal		
									Voltage	+15%	
3				-				12.5	25.0	_	Vert
	134.205k	62.9	+9.6	60.0			+0.0			12.5	
									Nominal		
									Voltage	-15%	
4	•			_				4.8	25.0	_	Horiz
	134.222k	55.2	+9.6	60.0			+0.0			20.2	

Page 30 of 39 Report No.: FC03-022

Test CKC Laboratories, Inc. • 5473A Clouds Rest • Mariposa, CA

Location: 95338 • 800-500-4362

Customer: Asyst Technologies

Specificatio FCC 15.209

n:

Work Order 80115 Date: 04/04/2003

#:

Test Type: Radiated Scan Time: 09:35:36

Equipment: RFID Reader Sequence#: 25

Manufacturer Asyst Technologies Tested By: Randal Clark

Model: ATR-9100

S/N: C1

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Reader*	Asyst Technologies	ATR-9100	C1

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply	Sola	SLS-24-012T	8869 0150	

Test Conditions / Notes:

EUT is an RFID reader. Each I/O port is terminated its characteristic impedance. The EUT is powered through a standard DC power supply representative of one used in normal installation. An RFID tag is present in the field. The transmitter is operating continuously at 134.2 kHz. Data is extrapolated to 3 meters for comparison to the applicable limit in accordance with 15.33, 20dB per decade. Frequency Range Investigated: 30 MHz to 1000 MHz. Temperature 68°F, Humidity 39%.

Transducer Legend:

	2	
T1=Amp -	S/N 604	T2=Bicon 156
T3=Cable -	10 Meter	

Measurement Data:	Re	Reading listed by margin.				Test Distance: 10 Meters				
# Freq MHz	Rdng dBµV	T1 dB	T2 dB	T3 dB	dВ	Dist Table	Corr	Spec dBµV/m	Margin dB	Polar Ant
1 59.030M QP	45.2	27.3	+9.6	+1.1	<u>ub</u>	+10.0	38.6	40.0	1.4	Vert
59.030M	46.6	27.3	+9.6	+1.1		+10.0	40.0	40.0	+0.0	Vert
3 30.040M QP	41.2	27.3	+12.9	+0.7		+10.0	37.5	40.0	2.5	Vert
30.040M	41.6	27.3	+12.9	+0.7		+10.0	37.9	40.0	2.1	Vert
5 59.580M QP	44.0	27.3	+9.5	+1.1		+10.0	37.3	40.0	2.8	Vert
59.530M	46.2	27.3	+9.5	+1.1		+10.0	39.5	40.0	0.5	Vert
7 30.315M QP	40.8	27.3	+12.8	+0.7		+10.0	37.0	40.0	3.0	Vert

Page 31 of 39 Report No.: FC03-022

^ 30.335M	41.0 27.3	+12.8 +0.7	+10.0	37.2	40.0	2.8	Vert
9 56.835№	- I 43.3 27.3	+9.8 +1.1	+10.0	36.9	40.0	3.1	Vert

Page 32 of 39 Report No.: FC03-022

10 58.505M QP	43.4	27.3 +9.6	+1.1	+10.0	36.8	40.0	3.2	Vert
^	45.5	27.3 +9.6	+1.1	+10.0	38.9	40.0	1.1	Vert
58.585M	42.2	27.3 +9.6	+1.1	+10.0	35.6	40.0	4.4	Vert
58.585M	40.2	27.3 +9.6	+1.1	+10.0	33.6	40.0	6.4	Vert
14 57.370M	42.9	27.3 +9.7	+1.1	+10.0	36.4	40.0	3.6	Vert
15 50.870M	41.6	27.3 +10.3	+1.0	+10.0	35.6	40.0	4.4	Vert
16 50.440M	41.0	27.3 +10.4	+1.0	+10.0	35.1	40.0	4.9	Vert
17 51.200M	40.7	27.3 +10.3	+1.0	+10.0	34.7	40.0	5.3	Vert
18 35.474M	39.9	27.3 +11.3	+0.8	+10.0	34.7	40.0	5.3	Vert
19 49.585M QP	40.5	27.3 +10.4	+1.0	+10.0	34.6	40.0	5.4	Vert
^	42.7	27.3 +10.4	+1.0	+10.0	36.8	40.0	3.2	Vert
21 34.475M	39.5	27.3 +11.5	+0.8	+10.0	34.5	40.0	5.5	Vert
22 50.175M	40.3	27.3 +10.4	+1.0	+10.0	34.4	40.0	- 5.6	Vert
23 34.690M	38.9	27.3 +11.4	+0.8	+10.0	33.8	40.0	6.2	Vert
24 33.735M	38.3	27.3 +11.7	+0.8	+10.0	33.5	40.0	6.5	Vert
25 31.525M	37.2	27.3 +12.4	+0.7	+10.0	33.0	40.0	7.0	Vert
26 36.713M	38.2	27.3 +11.2	+0.8	+10.0	32.9	40.0	7.1	Vert
27 32.505M	37.3	27.3 +12.1	+0.8	+10.0	32.9	40.0	7.1	Vert
28 60.330M	39.6	27.3 +9.4	+1.1	+10.0	32.8	40.0	7.2	Vert
<u> </u>								

Page 33 of 39 Report No.: FC03-022

29	59.570M	39.1	27.3 +9.5	+1.1	+10.0	32.4	40.0	7.6	Horiz
30	54.300M	38.5	27.3 +10.0	+1.0	+10.0	32.2	40.0	7.8	Vert
31	58.730M	38.8	27.3 +9.6	+1.1	+10.0	32.2	40.0	7.8	Horiz
32	53.900M	38.4	27.3 +10.0	+1.0	+10.0	32.1	40.0	- 7.9	Vert
33	51.645M	38.2	27.3 +10.2	+1.0	+10.0	32.1	40.0	- 7.9	Vert
34	54.420M	38.2	27.3 +10.0	+1.0	+10.0	31.9	40.0	8.1	Vert

Page 34 of 39 Report No.: FC03-022

35 59.110M	38.5	27.3 +	9.6	+1.1	+10.0	31.9	40.0	8.1	Horiz
36 52.045M	37.8	27.3 +1	0.2	+1.0	+10.0	31.7	40.0	8.3	Vert
37 59.550M	38.2	27.3 +	9.5	+1.1	+10.0	31.5	40.0	8.5	Horiz
38 232.145I	M 35.0	_ 26.5 +1	6.3	+2.6	+10.0	37.4	46.0	8.6	Horiz
39 233.710I	м 34.7	- 26.5 +1	6.3	+2.6	+10.0	37.1	46.0	8.9	Horiz
40 57.670M	37.6	27.3 +	9.7	+1.1	+10.0	31.1	40.0	8.9	Horiz
41 62.550M	37.5	27.3 +	8.9	+1.2	+10.0	30.3	40.0	9.7	Horiz
42 233.100I	M 33.8	26.5 +1	6.3	+2.6	+10.0	36.2	46.0	9.8	Horiz
43 234.290I	M 33.8	- 26.5 +1	6.2	+2.6	+10.0	36.1	46.0	9.9	Horiz
44 231.590I	M 33.6	26.5 +1	6.3	+2.6	+10.0	36.0	46.0	10.0	Horiz
45 221.690I	M 33.5	26.5 +1	6.5	+2.5	+10.0	36.0	46.0	10.0	Vert
46 230.690I	м 33.5	26.5 +1	6.3	+2.5	+10.0	35.8	46.0	10.2	Horiz
47 219.2901	м 33.2	- 26.5 +1	6.6	+2.5	+10.0	35.8		10.2	Vert
48 231.3351	M 33.3	- 26.5 +1	6.3	+2.6	+10.0	35.7	46.0	10.3	Horiz
49 221.170I	м 33.1	26.5 +1	6.6	+2.5	+10.0	35.7	46.0	10.3	Vert
50 63.030M	36.9	27.3 +	8.8	+1.2	+10.0	29.6	40.0	10.4	Horiz
51 222.770I	м 33.1	- 26.5 +1	6.5	+2.5	+10.0	35.6	46.0	10.4	Vert
52 218.730I	M 33.0	- 26.5 +1	6.6	+2.5	+10.0	35.6	46.0	10.4	Vert
53 55.730M	35.7	27.3 +	9.9	+1.1	+10.0	29.4	40.0	10.6	Horiz

Page 35 of 39 Report No.: FC03-022

54		32.6	26.5	+16.6	+2.5	+10.0	35.2	46.0	10.8	Vert
55	232.705M	32.5	26.5	+16.3	+2.6	+10.0	34.9	46.0	- 11.1	Horiz
56		35.3	27.3	+9.8	+1.1	+10.0	28.9	40.0	11.1	Horiz

Page 36 of 39 Report No.: FC03-022

57			-			34.7	46.0	-	Horiz
	230.170M	32.4	26.5 +16.3	+2.5	+10.0			11.3	
58			-			28.7	40.0	-	Horiz
	65.510M	36.5	27.2 +8.2	+1.2	+10.0			11.3	
59			-			28.4	40.0	_	Horiz
	56.490M	34.8	27.3 +9.8	+1.1	+10.0			11.6	
60			-			26.8	40.0	_	Vert
	52.240M	32.9	27.3 +10.2	+1.0	+10.0			13.2	

Page 37 of 39 Report No.: FC03-022

Test CKC Laboratories, Inc. • 5473A Clouds Rest • Mariposa, CA

Location: 95338 • 800-500-4362

Customer: Asyst Technologies

Specificatio FCC 15.209

n:

Work Order **80115** Date: 04/04/2003

#:

Test Type: Radiated Scan Time: 11:17:53

Equipment: RFID Reader Sequence#: 29

Manufacturer Asyst Technologies Tested By: Randal Clark

Model: ATR-9100

S/N: C1

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
RFID Reader*	Asyst Technologies	ATR-9100	C1	

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply	Sola	SLS-24-012T	8869 0150	

Test Conditions / Notes:

EUT is an RFID reader. Each I/O port is terminated its characteristic impedance. The EUT is powered through a standard DC power supply representative of one used in normal installation. An RFID tag is present in the field. The transmitter is operating continuously at 134.2kHz. Data is extrapolated to proper test distance for comparison to the applicable limit in accordance with 15.33, 40dB per decade. Data represent noise floor readings. No EUT readings were found below 30 MHz. Frequency Range Investigated: 9 kHz to 30 MHz. Temperature 68°F, Humidity 37%.

Transducer Legend:

T1=Mag Loop A/N 00432, S	/N 2078 T2=Cable - 10 Meter
T3=15.31 10m 40dB/Dec (orrection

Meas: Data	urement :	R	_	listed	by		Test D	istance	: 10 Met	cers	
#	Freq MHz	Rdng dBµV	T1 dB	T2 dB	T3 dB	dВ	Dist Table	Corr dBµV/m	Spec dBµV/m	Margin dB	Polar Ant
1	536.830k	25.7	+9.5	+0.0	20.0		+0.0	15.2	33.0	- 17.8	Horiz
2	939.458k	17.6	+10.0	+0.2	20.0		+0.0	7.8	28.1	20.3	Horiz
3	671.040k	18.9	+9.7	+0.0	20.0		+0.0	8.6	31.1	22.5	Horiz
4	805.260k	12.3	+9.9	+0.1	20.0		+0.0	2.3	29.5	- 27.2	Horiz
5	402.620k	22.3	+9.4	+0.1	60.0		+0.0	-28.2	15.5	43.7	Horiz
6	267.810k	20.8	+9.0	+0.1	60.0		+0.0	-30.1	19.0	- 49.1	Horiz

Page 38 of 39 Report No.: FC03-022

Page 39 of 39 Report No.: FC03-022