

ROGERS LABS, INC.

4405 West 259th Terrace
Louisburg, KS 66053
Phone / Fax (913) 837-3214

**ENGINEERING TEST REPORT
FOR
APPLICATION of
GRANT of CERTIFICATION**

**FOR
CFR 47, PART 15C - INTENTIONAL RADIATORS
Paragraph 15.231
Periodic Operation above 70 MHz**

For

NEVCO SCOREBOARD COMPANY

301 East Harris Avenue
Greenville, IL 62246
Gayla Moore,
President

Wireless Controller for Outdoor Portable Scoreboard
Model: USC OUTDOOR PORTABLE SCOREBOARD CONTROLLER

Frequency 902-928 MHz
FCC ID#: PLH-USC

Test Date: August 11, 2005

Certifying Engineer: *Scot D Rogers*

Scot D. Rogers
ROGERS LABS, INC.
4405 West 259th Terrace
Louisburg, KS 66053
Phone: (913) 837-3214
FAX: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Table of Contents

TABLE OF CONTENTS.....	2
FORWARD:	3
1) APPLICABLE STANDARDS & TEST PROCEDURES.....	3
2.1033(b) Application for Certification.....	4
2) EQUIPMENT TESTED	5
3) EQUIPMENT FUNCTION AND TESTING PROCEDURES.....	5
4) EQUIPMENT AND CABLE CONFIGURATIONS.....	5
Conducted Emission Test Procedure.....	5
Radiated Emission Test Procedure:	6
5) LIST OF TEST EQUIPMENT.....	6
6) UNITS OF MEASUREMENTS.....	7
7) TEST SITE LOCATIONS.....	7
8) SUBPART B – UNINTENTIONAL RADIATORS	8
Conducted EMI.....	8
Radiated EMI.....	8
Data: Conducted Emissions (Highest Emissions)	11
Data: General Radiated Emissions from EUT (Highest Emissions).....	11
Summary of Results for Conducted Emissions	12
Summary of Results for Radiated Emissions	12
Statement of Modifications and Deviations	12
9) SUBPART C - INTENTIONAL RADIATORS	12
15.203 Antenna Requirements	12
15.205 Restricted Bands of Operation.....	13
Data: Emissions in Restricted Bands	13
Summary of Results for Radiated Emissions in Restricted Bands:.....	14
15.209 Radiated Emissions Limits; General Requirements	14
Radiated EMI.....	14
Data: General Radiated Emissions from EUT (Highest Emissions).....	15
Summary of Results for Radiated Emissions:	15
15.231 Periodic Operation Above 70 MHz	16
Data: Radiated Emissions from EUT	17
Summary of Results for Radiated Emissions of Intentional Radiator	17
Statement of Modifications and Deviations	18
APPENDIX.....	20

Forward:

The following is submitted for consideration in obtaining a Grant of Certification for an intentional radiator operating in the periodic operation per CFR Paragraph 15.231 in the 902 - 928MHz.

Name of Applicant: NEVCO SCOREBOARD COMPANY
301 East Harris Avenue
Greenville, IL 62246

Model: USC OUTDOOR PORTABLE SCOREBOARD CONTROLLER.

FCC I.D.: PLH-USC.

Frequency Range: 902-928 MHz.

Operating Power: 72.3 dB μ V/m @ 3 meters under 15.231.

1) Applicable Standards & Test Procedures

a) In accordance with the Federal Communications Code of Federal Regulations, dated October 1, 2004, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, applicable parts of paragraph 15, Part 15C paragraphs 15.231 the following information is submitted.

b) Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in the ANSI 63.4-1992 Document FCC and documents DA00-1407 and DA00-705.

2.1033(b) Application for Certification

(1) Manufacturer: NEVCO SCOREBOARD COMPANY
301 East Harris Avenue
Greenville, IL 62246

(2) Identification:
Model: USC OUTDOOR PORTABLE SCOREBOARD CONTROLLER
FCC I.D.: PLH-USC

(3) Instruction Book:
Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:
Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:
Refer to Exhibit of Operational Description.

(6) Report of Measurements:
Follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:
Refer to Exhibit for photographs of equipment.

(8) No Peripheral Equipment was Necessary.

(9) Transition Provisions of 15.37 are not being requested.

(10) Not Applicable. The device is not a scanning receiver, only a transmitter used for periodic transmission to control a display.

(11) Not Applicable. The EUT does not operate in the 59 - 64 GHz frequency band.

2) Equipment Tested

<u>Equipment Model</u>	<u>FCC I.D.#</u>
EUT USC PORTABLE SCOREBOARD CONTROLLER	PLH-USC

3) Equipment Function and Testing Procedures

The EUT is a 902-928 MHz radio transmitter used to transmit control codes to a remote scoreboard display. The USC OUTDOOR PORTABLE SCOREBOARD CONTROLLER is a wireless link used for transmitting control information from one location to another. The unit typically operates from a two double A batteries and has no provision to connect to the utility power source. The unit has no provision to connect to external peripheral equipment. The EUT was tested in all standard equipment configurations and through all modes of operation with the worst-case data presented in this report.

4) Equipment and Cable Configurations

Conducted Emission Test Procedure

The unit operates from the two double A batteries located inside the unit and has no provision to connect to the utility power system. Therefore, conducted emission testing is not required and the unit complies with the rules and regulations.

Radiated Emission Test Procedure:

The EUT was placed on a rotating 1 x 1.5-meter wooden platform, 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. Refer to photographs in the test setup exhibit for EUT placement.

5) List of Test Equipment

A Hewlett Packard 8591EM Spectrum Analyzer was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of Test Equipment.

HP 8591 EM ANALYZER SETTINGS		
CONDUCTED EMISSIONS:		
RBW	AVG. BW	DETECTOR FUNCTION
9 kHz	30 kHz	Peak / Quasi Peak
RADIATED EMISSIONS:		
RBW	AVG. BW	DETECTOR FUNCTION
120 kHz	300 kHz	Peak / Quasi Peak
HP 8562A ANALYZER SETTINGS		
RBW	VIDEO BW	DETECTOR FUNCTION
100 kHz	100 kHz	PEAK
1 MHz	1 MHz	Peak / Average

6) Units of Measurements

Conducted EMI: Data is in dB μ V; dB referenced to one microvolt.

Radiated EMI: Data is in dB μ V/m; dB/m referenced to one microvolt per meter.

7) Test Site Locations

Conducted EMI: The AC power line conducted emissions tests were performed in a shielded screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS.

Radiated EMI: The radiated emissions tests were performed at the 3 meters, Open Area Test Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS.

Site Approval: Refer to Appendix for FCC Site Approval Letter, Reference # 90910.

ROGERS LABS, INC.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214

Nevco Scoreboard Company
MODEL: USC Wireless Controller for Outdoor Portable
Test #: 050811 FCCID#: PLH-USC SN: ENG 1
Test to: FCC Parts 2 and 15c (15.231) Page 7 of 23
Certification\Nevco USC TstRpt.doc 8/19/2005

8) Subpart B – Unintentional Radiators

Conducted EMI

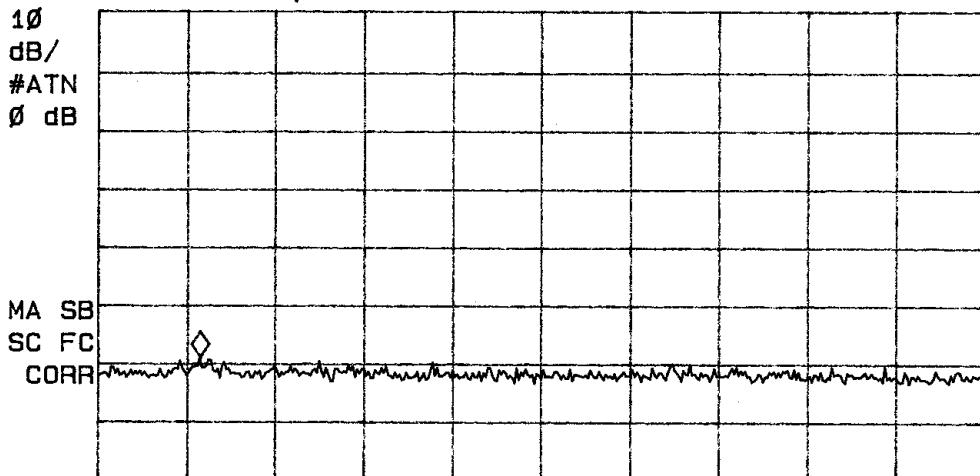
The unit operates from the two double A batteries located inside the unit and has no provision to connect to the utility power system. Therefore, conducted emission testing is not required and the unit complies with the rules and regulations.

Radiated EMI

The EUT was arranged in a typical equipment configuration and operated through all of its various modes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Plots were made of the frequency spectrum from 30 MHz to 10,000 MHz for the preliminary testing. Refer to figures one through four for plots of the radiated emissions spectrum taken in a screen room. The highest radiated emission was then re-maximized at this location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 30 MHz to 10,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360

degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 5 GHz and or, pyramidal horns and mixers from 4 GHz to 10 GHz, notch filters and appropriate amplifiers were utilized.

Sample Calculations:


RFS = Radiated Field Strength

$$\begin{aligned}
 \text{dB}\mu\text{V/m} @ 3\text{m} &= \text{dB}\mu\text{V} + \text{A.F.} - \text{Amplifier Gain} \\
 \text{dB}\mu\text{V/m} @ 3\text{m} &= 45.1 + 5.4 - 30 \\
 &= 20.5
 \end{aligned}$$

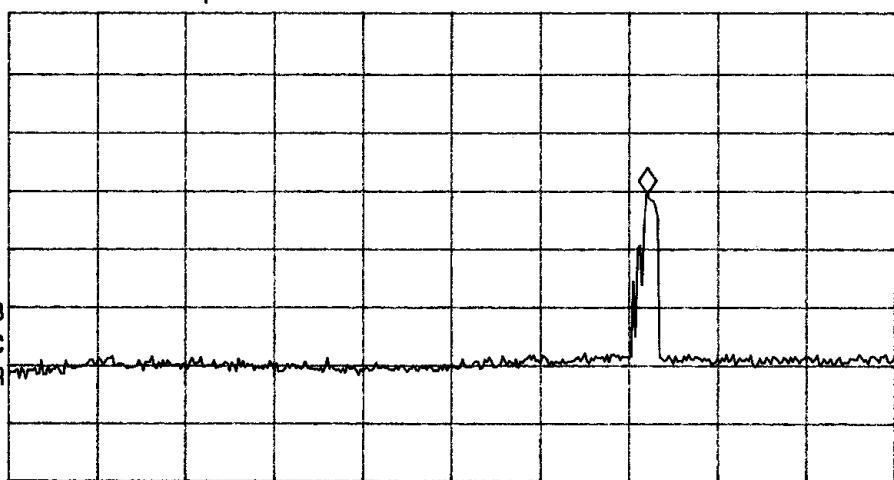
MARKER
 53.0 MHz
 21.00 dB μ V

ACTV DET: PEAK
 MEAS DET: PEAK QP
 MKR 53.0 MHz
 21.00 dB μ V

LOG REF 80.0 dB μ V

START 30.0 MHz
 #IF BW 120 kHz
 AVG BW 300 kHz
 STOP 230.0 MHz
 SWP 41.7 msec

Figure one Radiated Emissions taken at 1 meter in screen room


MARKER
920 MHz
49.25 dB μ V

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 920 MHz
49.25 dB μ V

LOG REF 80.0 dB μ V

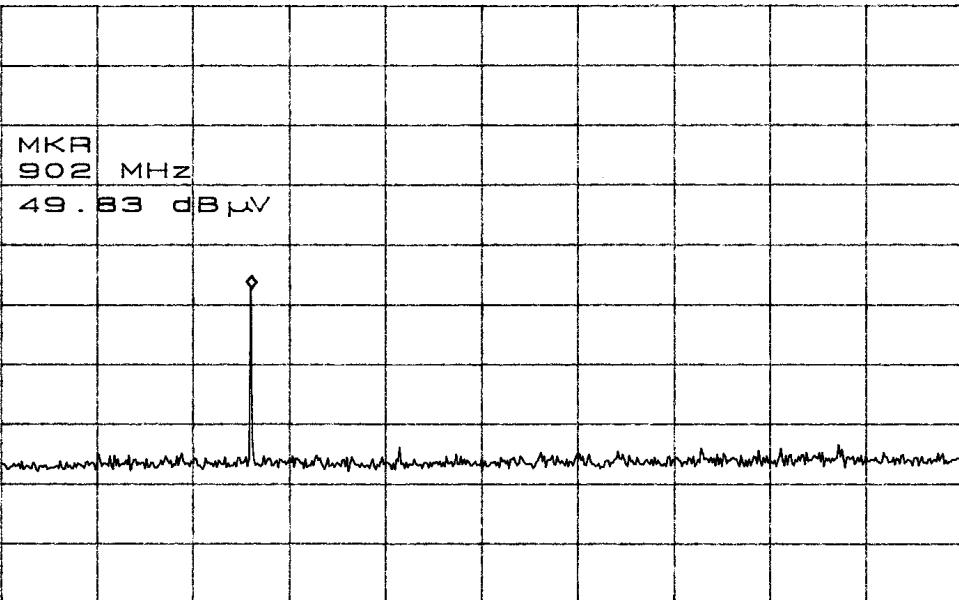
10
dB/
#ATN
0 dB

VA SB
SC FC
CORR

START 200 MHz

#IF BW 120 kHz AVG BW 300 kHz SWP 208 msec

STOP 1.200 GHz


Figure two Radiated Emissions taken at 1 meter in screen room

*ATTEN 0dB
RL 97.0dB μ V

10dB/

MKR 49.83dB μ V
902MHz

D

START 200MHz

*RBW 100KHz VBW 100KHz SWP 700ms

STOP 2.900GHz

Figure three Radiated Emissions taken at 1 meter in screen room

ROGERS LABS, INC.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214

Nevco Scoreboard Company
MODEL: USC Wireless Controller for Outdoor Portable
Test #: 050811 FCCID#: PLH-USC SN: ENG 1
Test to: FCC Parts 2 and 15c (15.231) Page 10 of 23
Certification\Nevco USC TstRpt.doc 8/19/2005

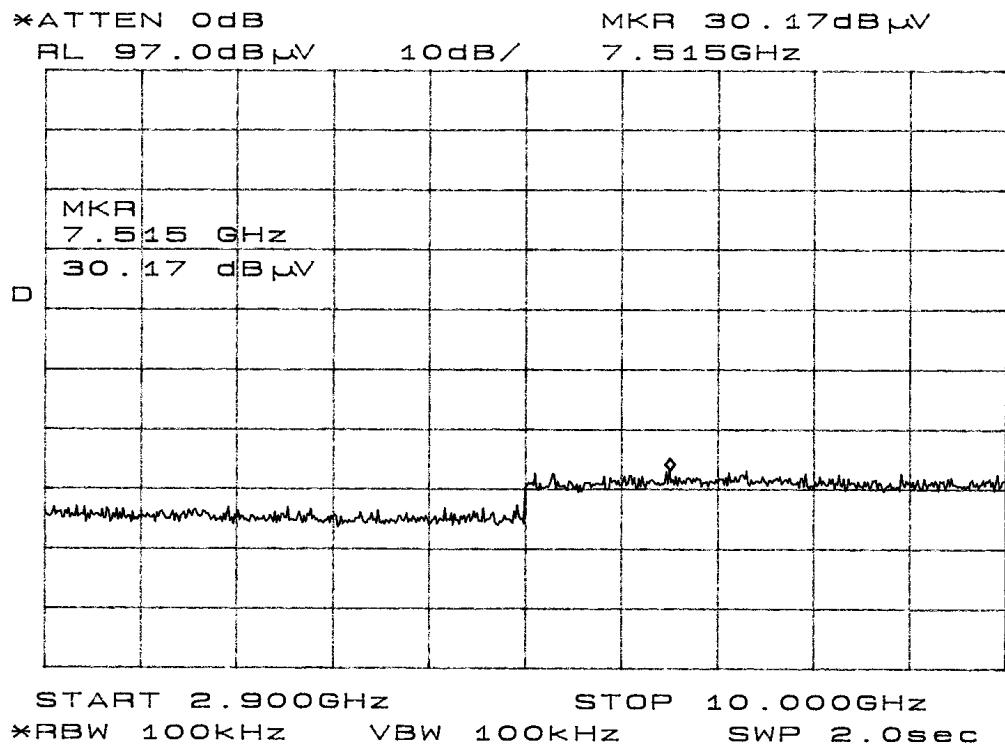


Figure four Radiated Emissions taken at 1 meter in screen room

Data: Conducted Emissions (Highest Emissions)

Frequency band (MHz)	L1 Level (dB μ V)			L2 Level (dB μ V)			CISPR 22 Limit Q.P. Ave(dB μ V)
	Peak	Q.P.	AVE	Peak	Q.P.	AVE	
0.15 - 0.5							66 - 56 / 56 - 46
0.5 - 5							56 / 46
5 - 10							60 / 50
10 - 15							60 / 50
15 - 20							60 / 50
20 - 25							60 / 50
25 - 30							60 / 50

Other emissions present had amplitudes at least 10 dB below the limit.

Data: General Radiated Emissions from EUT (Highest Emissions)

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
50.0	45.1	44.6	5.4	30	20.5	20.0	40

Other emissions present had amplitudes at least 20 dB below the limit.

ROGERS LABS, INC.

Nevco Scoreboard Company

4405 W. 259th Terrace

MODEL: USC Wireless Controller for Outdoor Portable

Louisburg, KS 66053

Test #: 050811 FCCID#: PLH-USC SN: ENG 1

Phone/Fax: (913) 837-3214

Test to: FCC Parts 2 and 15c (15.231) Page 11 of 23

Summary of Results for Conducted Emissions

The conducted emissions for the EUT meet the requirements for CISPR 22 and FCC Part 15B CLASS B Digital Devices.

Summary of Results for Radiated Emissions

The radiated emissions for the EUT meet the requirements for CISPR 22 and FCC Part 15B CLASS B Digital Devices. The EUT had at least a 19.5 dB minimum margin below the Quasi-Peak limit. Other emissions were present with amplitudes at least 20 dB below the limit.

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to meet the CISPR 22 or FCC Part 15B Class B emissions standards. There were no deviations to the specifications.

9) Subpart C - Intentional Radiators

As per CFR Part 15, Subpart C, paragraph 15.231 the following information is submitted.

15.203 Antenna Requirements

The unit is produced with a permanently attached antenna and is not user serviceable, alterable, or removable. The requirements of 15.203 are met there are no deviations or exceptions to the specification.

15.205 Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in the restricted bands. Emissions were checked at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. No other significant emission was observed which fell into the restricted bands of operation.

Sample Calculations:

$$\begin{aligned}
 \text{RFS (dB}\mu\text{V/m @ 3m)} &= \text{FSM(dB}\mu\text{V)} + \text{A.F. (dB)} - \text{Gain (dB)} \\
 &= 11.0 + 35.5 - 20 \\
 &= 26.5
 \end{aligned}$$

Data: Emissions in Restricted Bands

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
2708.7	11.0	11.0	35.5	20	26.5	26.5	54.0
2745.0	10.3	10.3	35.3	20	25.6	25.6	54.0
2781.3	10.2	10.8	35.5	20	25.7	26.3	54.0
3611.6	11.5	12.3	39.8	20	31.3	32.1	54.0
3660.0	12.3	11.5	39.8	20	32.1	31.3	54.0
3708.4	11.6	12.5	39.8	20	31.4	32.3	54.0
4514.5	12.0	12.3	44.3	20	36.3	36.6	54.0
4575.0	11.5	11.8	44.2	20	36.0	36.0	54.0
4635.5	11.1	11.3	44.0	20	35.1	35.3	54.0

Summary of Results for Radiated Emissions in Restricted Bands:

The radiated emissions for the EUT meet the requirements for FCC Part 15C Intentional Radiators. The EUT had a 17.4-dB minimum margin below the limits. No other emissions were found in the restricted frequency bands. Other emissions were present with amplitudes at least 20 dB below the FCC Limits.

15.209 Radiated Emissions Limits; General Requirements**Radiated EMI**

The EUT was arranged in a typical equipment configuration and operated through all of its various modes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Emissions were checked in the screen room from 30 to 10,000 MHz and plots were made of the frequency spectrum from 30 MHz to 10,000 MHz for the preliminary testing. The highest radiated emission was then re-maximized at this location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the open field test site at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 30 MHz to 10,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table,

ROGERS LABS, INC. Nevco Scoreboard Company
4405 W. 259th Terrace MODEL: USC Wireless Controller for Outdoor Portable
Louisburg, KS 66053 Test #: 050811 FCCID#: PLH-USC SN: ENG 1
Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.231) Page 14 of 23
Certification\Nevco USC TstRpt.doc 8/19/2005

rotating the turntable through 360 degrees degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna polarization between horizontal and vertical. Antennas used were Broadband Biconical from 30 MHz to 200 MHz, Biconilog from 30 MHz to 1000 MHz, Log Periodic from 200 MHz to 5 GHz, and/or Pyramidal Horns from 4 GHz to 10 GHz.

Sample Calculations:

$$\begin{aligned}
 \text{RFS} &= \text{Radiated Field Strength} \\
 \text{dB}\mu\text{V/m} @ 3\text{m} &= \text{dB}\mu\text{V} + \text{A.F.} - \text{Amplifier Gain} \\
 \text{dB}\mu\text{V/m} @ 3\text{m} &= 45.1 + 5.4 - 30 \\
 &= 20.5
 \end{aligned}$$

Data: General Radiated Emissions from EUT (Highest Emissions)

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
50.0	45.1	44.6	5.4	30	20.5	20.0	40

Other emissions present had amplitudes at least 10 dB below the limit.

Summary of Results for Radiated Emissions:

The radiated emissions for the EUT meet the requirements for FCC Part 15C Intentional Radiators. The EUT had a 19.5 dB minimum margin below the quasi-peak limits. Other emissions were present with amplitudes at least 20 db below the FCC limits.

15.231 Periodic Operation Above 70 MHz

The power output was measured on an open field test site @ 3 meters. Data was taken per Paragraphs 2 and 15.231.

(a) The EUT was placed on a wooden turntable 0.8 meters above the ground plane and at a distance of 3 meters from the FSM antenna. The amplitude of the carrier frequency was measured using a spectrum analyzer. The amplitude of the emission was then recorded from the analyzer display.

(b) Emissions radiated outside of the specified bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in 15.209, whichever is the lesser attenuation. The amplitudes of each spurious emission were measured at a distance of 3 meters from the FSM antenna at the OATS. The amplitude of each spurious emission was maximized by varying the FSM antenna height, polarization, and by rotating the turntable. A Biconilog Antenna was used for measuring emissions from 30 to 1000 MHz, a Log Periodic Antenna for 200 to 5000 MHz, and Pyramidal Horn Antennas from 4 GHz to 10 GHz. Emissions were measured in dB μ V/m @ 3 meters.

Sample calculation.

$$\begin{aligned}\text{dB}\mu\text{V/m}@ 3\text{m} &= \text{FSM} + \text{A.F.} - \text{cable loss} - \text{amplifier Gain} \\ &= 78.2 + 23.3 - 30 \\ &= 71.5\end{aligned}$$

Data: Radiated Emissions from EUT

Emission Frequency (MHz)	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	Ant. Factor (dB)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	Limit @ 3m (dB μ V/m)
902.9	78.2	60.4	23.3	30	71.5	53.7	81.9
1805.8	26.3	25.3	29.9	20	36.2	35.2	54.0
2708.7	11.0	11.0	35.5	20	26.5	26.5	54.0
3611.6	11.5	12.3	39.8	20	31.3	32.1	54.0
4514.5	12.0	12.3	44.3	20	36.3	36.6	54.0
5417.4	8.3	11.0	33.1	20	21.4	24.1	54.0
915.0	77.8	57.8	23.7	30	71.5	51.5	81.9
2745.0	10.3	10.3	35.3	20	25.6	25.6	54.0
3660.0	12.3	11.5	39.8	20	32.1	31.3	54.0
4575.0	11.5	11.8	44.2	20	36.0	36.0	54.0
5490.0	11.0	10.8	34.2	20	25.2	25.0	54.0
927.1	78.2	59.8	24.1	30	72.3	53.9	81.9
2781.3	10.2	10.8	35.5	20	25.7	26.3	54.0
3708.4	11.6	12.5	39.8	20	31.4	32.3	54.0
4635.5	11.1	11.3	44.0	20	35.1	35.3	54.0
5562.6	11.5	10.1	33.1	20	24.6	23.2	54.0

Note: Level was measured @ 3-meter site.

Summary of Results for Radiated Emissions of Intentional Radiator

The EUT had a 9.6 dB margin below the limit for the fundamental emission and a 17.4 dB margin below the limit for the harmonic emissions. The radiated emissions for the EUT meet the requirements for FCC part 15.231 Intentional Radiators. There are no measurable emissions in the restricted bands other than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the FCC Limits. The specification of 15.231 are met, there are no deviations or exceptions to the requirements.

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to meet the FCC Part 15C emissions standards. There were no deviations to the specifications.

MARKER
915.00 MHz
49.54 dB μ V

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 915.00 MHz
49.54 dB μ V

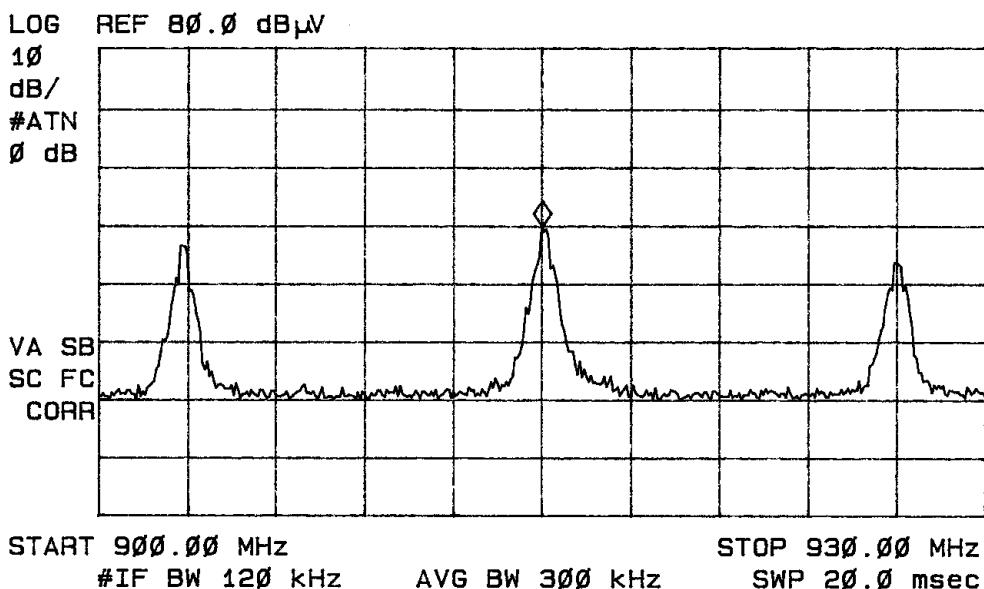
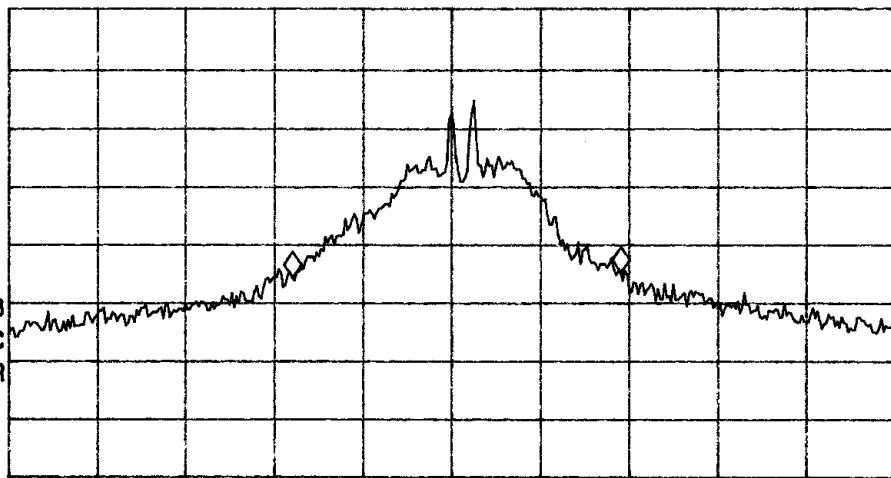


Figure five Maximum Power output
(data taken with in screen room at 1-meter distance).


MARKER Δ
1.850 MHz
.89 dB

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 1.850 MHz
.89 dB

LOG REF 80.0 dB μ V

10
dB/
#ATN
0 dB

VA SB
SC FC
CORR

CENTER 915.000 MHz
#IF BW 10 kHz

AVG BW 10 kHz

SPAN 5.000 MHz
SWP 150 msec

Figure six 99.5% power bandwidth.

Appendix

Model: USC OUTDOOR PORTABLE SCOREBOARD CONTROLLER

1. Test Equipment List
2. Rogers Qualifications
3. FCC Site Approval Letter

ROGERS LABS, INC.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214

Nevco Scoreboard Company
MODEL: USC Wireless Controller for Outdoor Portable
Test #: 050811 FCCID#: PLH-USC SN: ENG 1
Test to: FCC Parts 2 and 15c (15.231) Page 20 of 23
Certification\Nevco USC TstRpt.doc 8/19/2005

TEST EQUIPMENT LIST FOR ROGERS LABS, INC.

The test equipment used is maintained in calibration and good operating condition. Use of this calibrated equipment ensures measurements are traceable to national standards.

<u>List of Test Equipment:</u>	<u>Calibration Date:</u>
Scope: Tektronix 2230	2/05
Wattmeter: Bird 43 with Load Bird 8085	2/05
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140	2/05
H/V Power Supply: Fluke Model: 408B (SN: 573)	2/05
R.F. Generator: HP 606A	2/05
R.F. Generator: HP 8614A	2/05
R.F. Generator: HP 8640B	2/05
Spectrum Analyzer: HP 8562A,	2/05
Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W	
HP Adapters: 11518, 11519, 11520	
Spectrum Analyzer: HP 8591 EM	5/05
Frequency Counter: Leader LDC 825	2/05
Antenna: EMCO Biconilog Model: 3143	5/05
Antenna: EMCO Log Periodic Model: 3147	10/04
Antenna: Antenna Research Biconical Model: BCD 235	10/04
Antenna: EMCO Dipole Set 3121C	2/05
Antenna: C.D. B-101	2/05
Antenna: Solar 9229-1 & 9230-1	2/05
Antenna: EMCO 6509	2/05
Audio Oscillator: H.P. 201CD	2/05
R.F. Power Amp 65W Model: 470-A-1010	2/05
R.F. Power Amp 50W M185- 10-501	2/05
R.F. PreAmp CPPA-102	2/05
LISN 50 μ Hy/50 ohm/0.1 μ f	10/04
LISN Compliance Eng. 240/20	2/05
LISN Fischer Custom Communications FCC-LISN-50-16-2-08	6/05
Peavey Power Amp Model: IPS 801	2/05
Power Amp A.R. Model: 10W 1010M7	2/05
Power Amp EIN Model: A301	2/05
ELGAR Model: 1751	2/05
ELGAR Model: TG 704A-3D	2/05
ESD Test Set 2010i	2/05
Fast Transient Burst Generator Model: EFT/B-101	2/05
Current Probe: Singer CP-105	2/05
Current Probe: Solar 9108-1N	2/05
Field Intensity Meter: EFM-018	2/05
KEYTEK Ecat Surge Generator	2/05
Shielded Room 5 M x 3 M x 3.0 M (101 dB Integrity)	
6/8/2005	

QUALIFICATIONS
of
SCOT D. ROGERS, ENGINEER
ROGERS LABS, INC.

Mr. Rogers has approximately 16 years experience in the field of electronics. Six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

POSITIONS HELD:

Systems Engineer: A/C Controls Mfg. Co., Inc.
 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc.
 5 Years

Electrical Engineer: Rogers Labs, Inc.
 Current

EDUCATIONAL BACKGROUND:

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot D Rogers
Scot D. Rogers

August 11, 2005
Date

1/11/03

FEDERAL COMMUNICATIONS COMMISSION

**Laboratory Division
7435 Oakland Mills Road
Columbia, MD 21046**

August 15, 2003

Registration Number: 90910

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053

Attention: Scot Rogers

Re: Measurement facility located at Louisburg
3 & 10 meter site
Date of Renewal: August 15, 2003

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Ms. Phyllis Parrish
Information Technician