Nemko Test Report:	3L0324RUS3
Applicant:	Navini Networks
Equipment Under Test: (E.U.T.)	Ripwave TTA Base Station
In Accordance With:	FCC Part 15, Subpart C, 15.247 Direct Sequence Spread Spectrum Transmitters
Tested By:	Nemko Dallas Inc. 802 N. Kealy Lewisville, Texas 75057-3136
Authorized By:	David Light, Resource Manager
Date:	10/3/03

Table of Contents

Section 1.	Summary of Test Results	3
Section 2.	Equipment Under Test (E.U.T.)	5
Section 3.	Powerline Conducted Emissions	7
Section 4.	Minimum 6 dB Bandwidth	.11
Section 5.	Maximum Peak Output Power	.15
Section 6.	Spurious Emissions (conducted)	. 16
Section 7.	Spurious Emissions (radiated)	.26
Section 8.	Peak Power Spectral Density	.32
Section 9.	Test Equipment List	. 36
ANNEX A -	TEST DETAILS	.37
ANNEX B -	TEST DIAGRAMS	.47

Nemko Dallas

FCC PART 15, SUBPART C DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: Ripwave TTA Base Station REPORT NO.: 3L0324RUS3

Section 1. Summary of Test Resul

Manufacturer: Navini Networks

Model No.: 2400-TTA-BTS

Panel Antenna: 2400-TTA-RFS-P

Serial No.: 00001

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 for Direct Sequence Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-1992. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC.

\boxtimes	New Submission		Production Unit
	Class II Permissive Change	\times	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

NVLAP LAB CODE: 100426-0

Nemko Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	RESULT
Powerline Conducted Emissions	15.207(a)	48 dBμV	Complies
Minimum 6 dB Bandwidth	15.247(a)(2)	>500 kHz	Complies
Maximum Peak Power Output	15.247(b)(1)	<1 Watt	Complies
Spurious Emissions (Antenna Conducted)	15.247(c)	-20 dBc/100kHz	Complies
Spurious Emissions (Restricted Bands)	15.247(c)	< 74 dBuV/m Peak < 54 dBuV/m Avg	Complies
Peak Power Spectral Density	15.247(d)	+8 dBm/3kHz	Complies

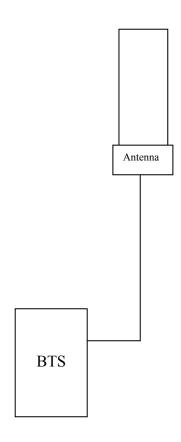
Footnotes:

Section 2. Equipment Under Test (E.U.T.)

General Equipment Information

Frequency Band: 2402.75 – 2480.5 MHz

Channel Spacing: 250kHz


User Frequency Adjustment: Software controlled

Theory of Operation

The EUT is part of a high speed wireless LAN system. Then transmitter uses Direct Sequence Spread Spectrum techniques.

The antenna for this product is mounted on a fixed outdoor structure. The antenna consists of multiple radiating elements fed by multiple transmitters. The antenna system uses beam-forming techniques to optimize the efficiency and coverage of the system.

System Diagram

Nemko Dallas

$\label{eq:fcc} FCC~PART~15,~SUBPART~C$ DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER

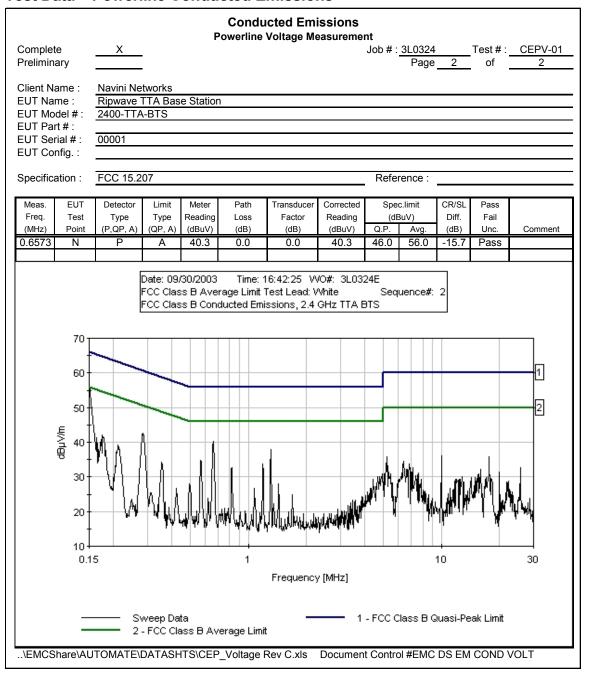
EQUIPMENT: Ripwave TTA Base Station REPORT NO.: 3L0324RUS3

Section 3. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

TESTED BY: Dana Tassler DATE: 9/30/03

Test Results: Complies.


Measurement Data: See attached plots.

Measurement Uncertainty: +/- 1.7 dB


Test Data – Powerline Conducted Emissions

				_		ucted E		-				
Complet Prelimina		X		P	owerline	e Voltage	Measurer		3L0324 Page	1	Test # of	CEPV-01
Client Na	ame :	Navini Ne										
EUT Nai		Ripwave		e Station	า							
EUT Mo		2400-TTA	A-BTS									
EUT Par	t#:											
EUT Ser	ial#:	00001										
EUT Co	nfig. :											
Specifica	ation :	FCC 15.2	07					Refe	rence :			
Transdu	cer#:	703		Temp. (deg. C):	22				Date:	9/30/2003	
HP Filter	#:	1433		Humidit	y (%):	42				Time:	16:30	
Cable 1	#:	1988		EUT Vo		24 VDC				Staff:	Dana Tass	ler
Cable 2	#:	1547	•	EUT Fre	equency:	NA			Lo	cation:	Lab 6	
Detector	1#:	716			andwidth:				Pł	noto ID:	3L0324E C	EPV-01
Detector	2#:	761	•	QP Ban		10kHz				-	_	
Limiter #		NA		Avg. Ba		10kHz						
Meas.	EUT	Detector	Limit	Meter	Path	Transducer	Corrected	Sper	c.limit	CR/SL	Pass	1
Freq.	Test	Туре	Туре	Reading	Loss	Factor	Reading		BuV)	Diff.	Fail	
(MHz)	Point	(P,QP, A)	(QP, A)	(dBuV)	(dB)	(dB)	(dBuV)	Q.P.	Avg.	(dB)	Unc.	Comment
6.787	L	QP	Α	33.0	0	0	33.0	60	50	-17.0	Pass	
7.096	L	QP	A	23.0	0	0	23.0	60	50	-27.0	Pass	
6.674	L	QP	A	31.5	0	0	31.5	60	50	-18.5	Pass	
4.958	L	QP	A	29.5	0	0	29.5	56	46	-16.5	Pass	
6.368	<u> </u>	QP	A	19.5	0	0	19.5	60	50	-30.5	Pass	1
6.201	L	QP	A	27.5	0	0	27.5	60	50	-22.5	Pass	
7.33	Ē	QP	A	29.0	0	0	29.0	60	50	-21.0	Pass	+
5.079	<u> </u>	QP	A	22.5	0	0	22.5	60	50	-27.5	Pass	
5.025	- -	QP	A	29.0	0	0	29.0	60	50	-21.0	Pass	
7.584	L	QP QP	A	29.0	0	0	29.0	60	50	-21.0	Pass	
7.854	L	QP	A	18.0	0	0	18.0	60	50	-32.0	Pass	
8.08	<u> </u>	QP QP	A	13.5	0	0	13.5	60	50	-36.5	Pass	+
4.657	<u>_</u>	QP QP	A	27.5	0	0	27.5	56	46	-18.5	Pass	
8.32	<u> </u>	QP QP	A	18.0	0	0	18.0	60	50	-32.0	Pass	+
0.32	L	Q.F	_ A	10.0	U	U	10.0	00	50	-3∠.0	F d 5 5	+
-										 		+
+										 		+
-												
												+
										-		+
										 		
												+
												1
		 								-		+
												<u> </u>

Test Data - Powerline Conducted Emissions

Photos – Powerline Conducted Emissions Front

Side

Nemko Dallas

$\label{eq:fcc} FCC~PART~15,~SUBPART~C$ DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: Ripwave TTA Base Station REPORT NO.: 3L0324RUS3

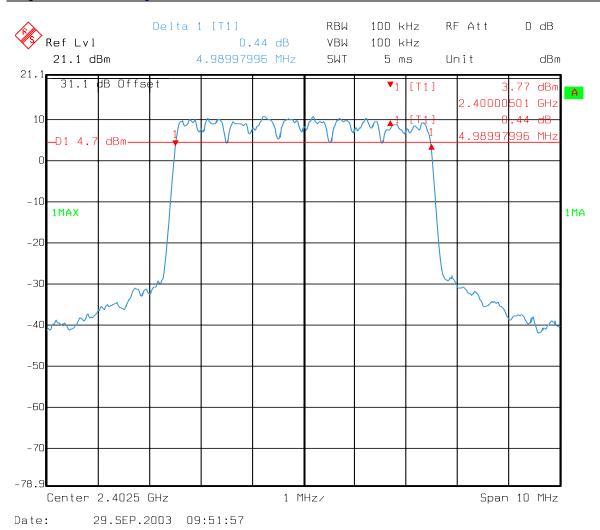
Section 4. Minimum 6 dB Bandwidth

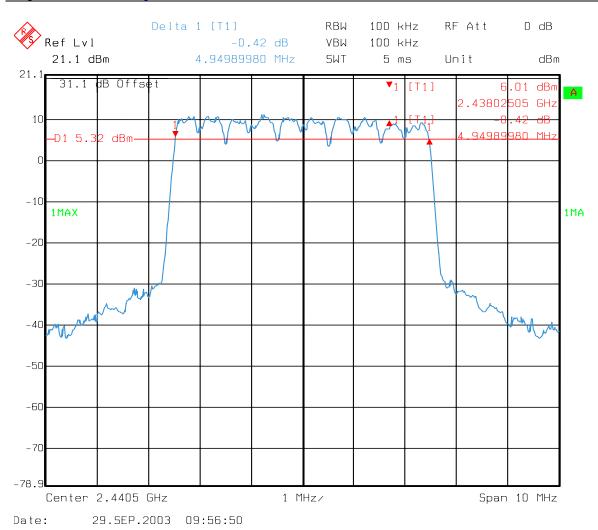
NAME OF TEST: Minimum 6 dB Bandwidth PARA. NO.: 15.247(a)(2)

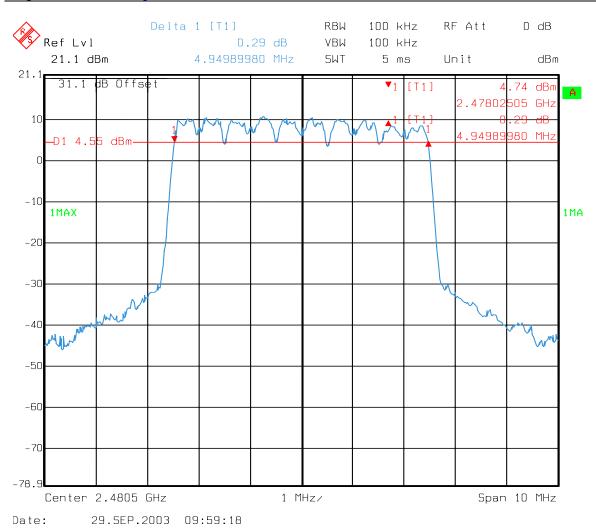
TESTED BY: Dustin Oaks DATE: 09/29/03

Test Results: Complies.

Measurement Data: See 6 dB BW plot


Measured 6 dB bandwidth: 4.989MHz Channel Separation: 250kHz


Equipment Used: 1629, 1478, 1467, 1036


Measurement Uncertainty: +/- <u>0.7</u> dB

Temperature: 21 °C

Relative Humidity: 60 %

Nemko Dallas

FCC PART 15, SUBPART C DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: Ripwave TTA Base Station REPORT NO.: 3L0324RUS3

Section 5. Maximum Peak Output Power

NAME OF TEST: Maximum Peak Output power PARA. NO.: 15.247(b)(1)

TESTED BY: Dustin Oaks DATE: 09/27/03

Test Results: Complies.

Measurement Data:

	Mea	sured Power(watts)		EIRP (watts)			
Antenna Model and Type	2402.5 MHz	2440.5 MHz	2480.5 MHz	Antenna Gain (dBi)	2402.5 MHz	2440.5 MHz	2480.5 MHz	
2400-TTA-RFS-P	0.407	0.419	0.382	17	20.39832	20.99975	19.14535	

EIRP is derived from the r $10^{\left[(10 \log(P) + G)/10\right]}$

where: P = Power at antenna terminal(W) and G = EUT antenna gain(dBi)

Equipment Used: 1629, 1478, 1467, 1036

Measurement Uncertainty: +/- 0.7 dB

Temperature: 21 °C

Relative Humidity: 60 %

Nemko Dallas

FCC PART 15, SUBPART C DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: Ripwave TTA Base Station REPORT NO.: 3L0324RUS3

Section 6. Spurious Emissions (conducted)

NAME OF TEST: Spurious Emissions (conducted)

PARA. NO.: 15.247(c)

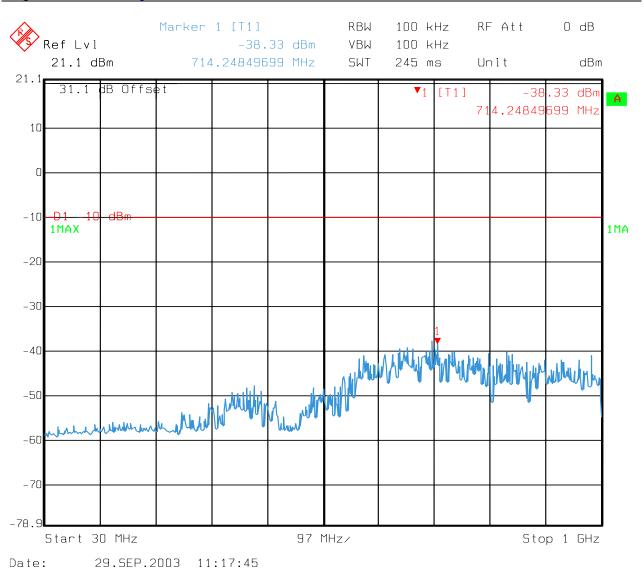
TESTED BY: Dustin Oaks

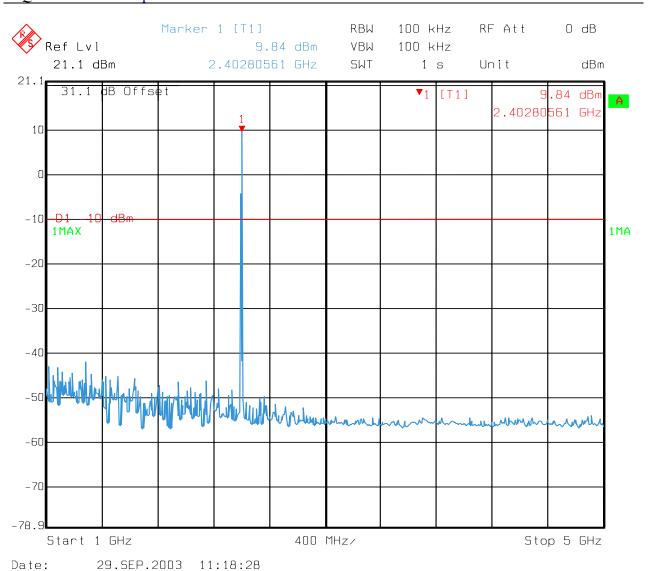
DATE:09/29/03

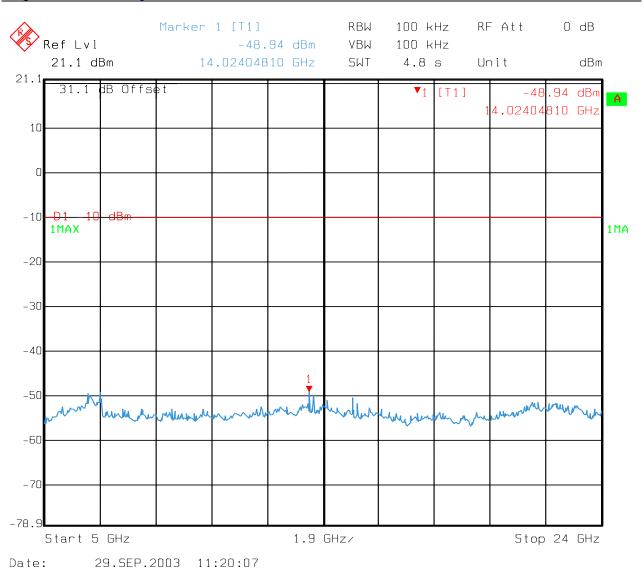
Test Results: Complies.

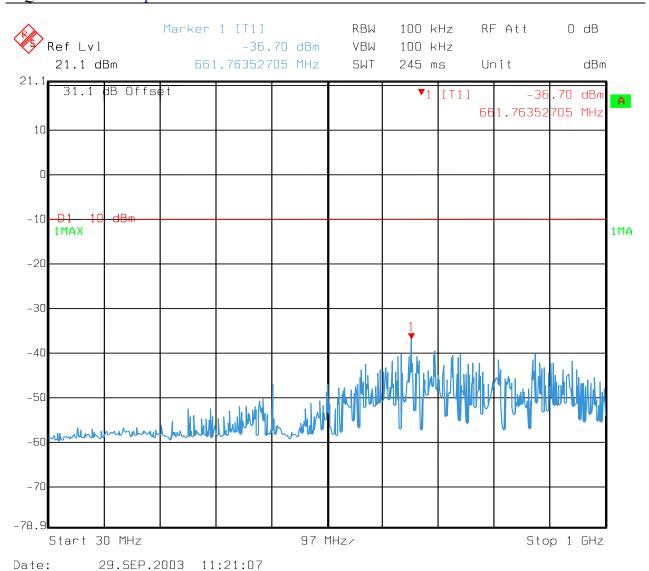
Measurement Data: See attached plots.

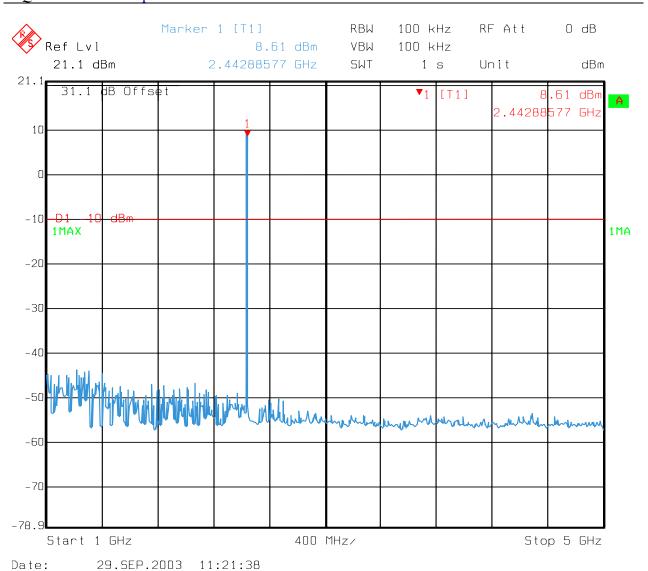
Equipment Used: 1629, 1478, 1467, 1036

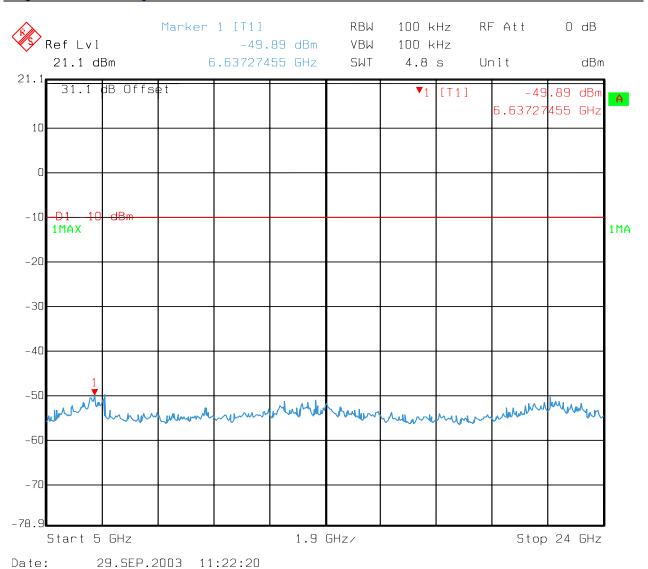

Measurement Uncertainty: +/- 0.7 dB

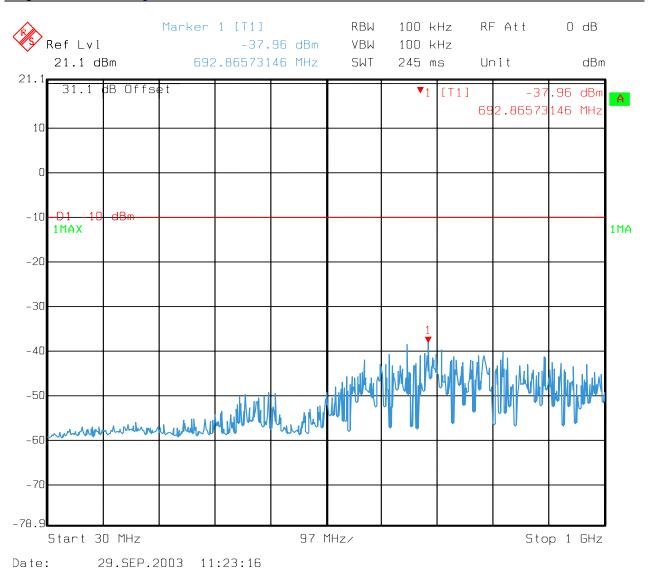

Temperature: 21 °C

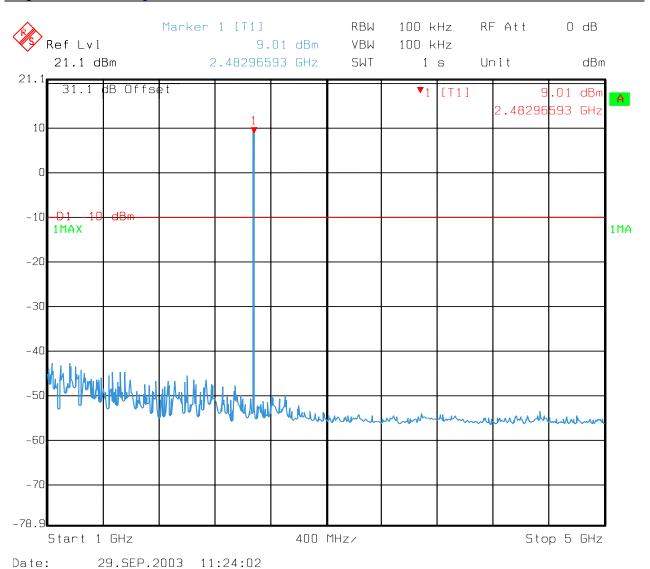

Relative Humidity: 60 %

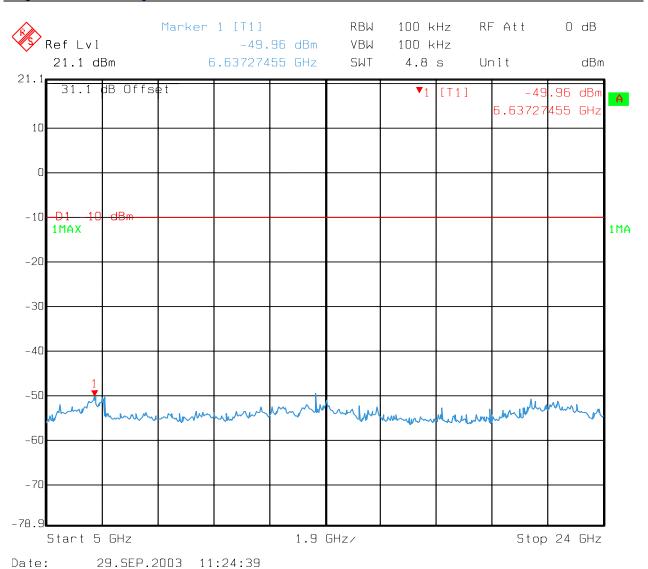

Note:


Test was performed with transmitter power set for the Omni Antenna (highest setting) and the Panel Antenna (lowest setting). Plots represent highest power setting, no change when set to the lower power setting.









Section 7. Spurious Emissions (radiated)

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247 (c)

TESTED BY: Dustin Oaks DATE: 09/27/03

Test Results: Complies.

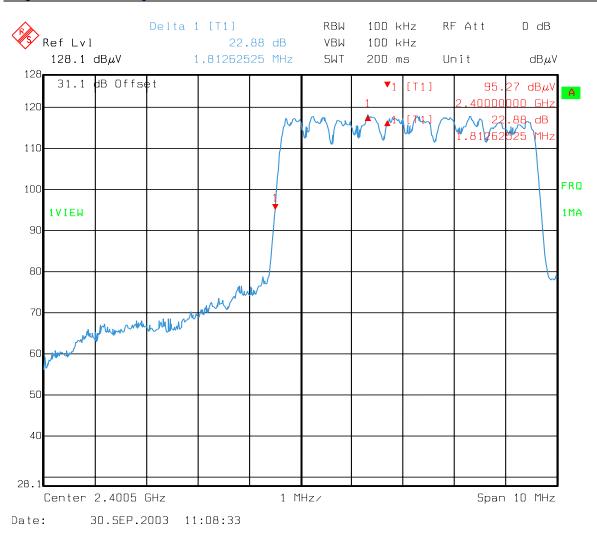
Measurement Data: See attached table.

Equipment Used: 1036, 1484, 1485, 0993, 1016

Measurement Uncertainty: +/- 0.7 dB

Temperature: 21 °C

Relative Humidity: 60 %


Note: Test performed with Omni antenna (Highest Power) and Panel Antenna (Lowest Power). Data listed is from Omni antenna, no change in readings with Panel Antenna.

Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Comment			
4805.875	29.6	33.1	4.2	30.1	36.8	54	-17.2	Vert			
4805.875	29.1	33.1	4.2	30.1	36.3	54	-17.7	Horiz			
7208.875	29.5	35.8	5.1	33.9	36.5	54	-17.5	Vert			
7208.875	28.6	35.8	5.1	33.9	35.6	54	-18.4	Horiz			
12014.88	30.6	39.6	7.3	33.5	44.0	54	-10.0	Vert			
12014.88	31.2	39.6	7.3	33.5	44.6	54	-9.4	Horiz			
14417.88	29.5	41.2	7.2	30.6	47.3	54	-6.7	Vert			
14417.88	27.7	41.2	7.2	30.6	45.5	54	-8.5	Horiz			
Notes:	Notes: Device set on Low Channel, Highest power.										

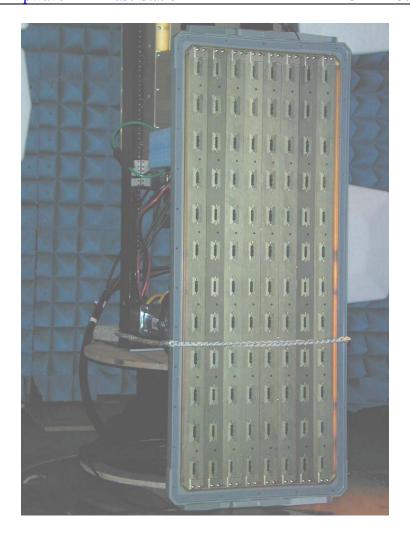
Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)		Limit (dBuV/m)	Delta (dB)	Comment
4805.875	32.4	33.1	4.2	30.1	39.6	54	-14.4	Horiz
4805.875	31.4	33.1	4.2	30.1	38.6	54	-15.4	Vert
7208.875	29.9	35.8	5.1	33.9	36.9	54	-17.1	Horiz
7208.875	30.0	35.8	5.1	33.9	37.0	54	-17.0	Vert
12014.88	31.7	39.6	7.3	33.5	45.1	54	-8.9	Horiz
12014.88	32.7	39.6	7.3	33.5	46.1	54	-7.9	Vert
14417.88	30.7	41.2	7.2	30.6	48.5	54	-5.5	Horiz
14417.88	30.4	41.2	7.2	30.6	48.2	54	-5.8	Vert
Notes:	Device set	on Middle	Channel,	Highest po	wer.	-		

FCC PART 15, SUBPART C DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER

Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)		Limit (dBuV/m)	Delta (dB)	Comment
4960.5	30.4	33.7	4.3	29.6	38.8	54	-15.2	Vert
4960.5	30.9	33.7	4.3	29.6	39.3	54	-14.7	Horiz
7441	30.2	35.9	5.3	34.1	37.3	54	-16.7	Vert
7441	29.7	35.9	5.3	34.1	36.8	54	-17.2	Horiz
12402	28.5	40.1	7.3	32.7	43.2	54	-10.8	Vert
12402	32.3	40.1	7.3	32.7	47.0	54	-7.0	Horiz
17363	28.7	42.6	8.7	31.0	49.0	54	-5.0	Vert
17363	29.6	42.6	8.7	31.0	49.9	54	-4.1	Horiz
Notes:	Device set	on highest	Channel,	Highest po	wer.			



Lower Bandedge (2402.75 MHz CF) Worst case plot


	Meter							
Freq in MHz	dBμV/m	Factors	Corr	Spec	Margin	RType	Notes	
2483.5	41	31.3	72.3	74	-1.7	Peak	Panel Antenna	Vert
2483.5	19	31.3	50.3	54	-3.7	Ave	Panel Antenna	Vert
2483.5	30.2	31.3	61.5	74	-12.5	Peak	Panel Antenna	Horiz
2483.5	13	31.3	44.3	54	-9.7	Ave	Panel Antenna	Horiz

Upper Bandedge (2480.5MHz)

Radiated Photographs (Worst Case Configuration)

Panel Antenna: Radiated Emissions

Panel Antenna: Radiated Emissions

Nemko Dallas

$\label{eq:fcc} FCC~PART~15,~SUBPART~C$ DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: Ripwave TTA Base Station REPORT NO.: 3L0324RUS3

Section 8. Peak Power Spectral Density

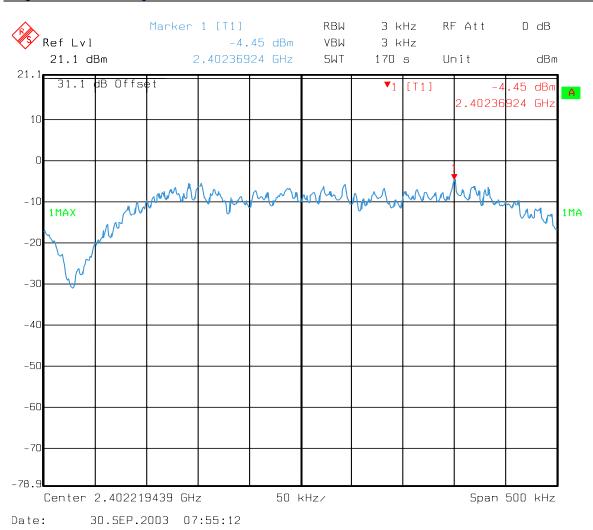
NAME OF TEST: Peak Power Spectral Density PARA. NO.: 15.247(d)

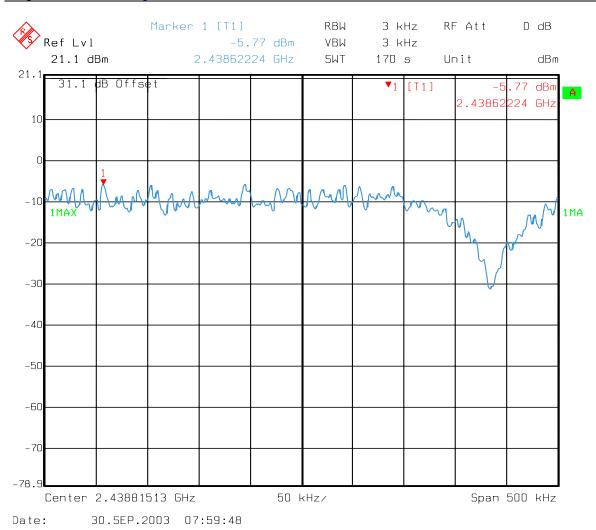
TESTED BY: Dustin Oaks DATE: 09/29/03

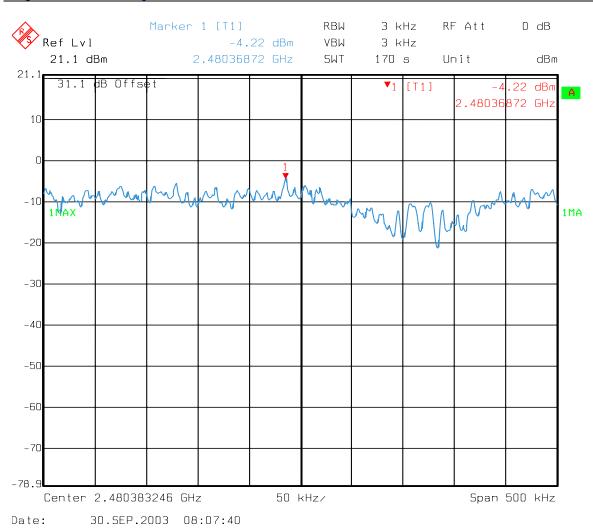
Test Results: Complies.

Measurement Data: See attached plots.

Equipment Used: 1629, 1478, 1467, 1036


Measurement Uncertainty: +/- 0.7 dB


Temperature: 21 °C


Relative Humidity: 60 %

Notes:

Device tested on highest and lowest power settings.

Section 9. Test Equipment List

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date	Calibration Due
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	02/11/03	02/11/05
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	08/28/03	08/23/04
993	Horn antenna	A.H. Systems SAS-200/571	XXX	01/08/02	01/09/04
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	02/11/03	02/11/05
1485	Cable 2.0-18.0 Ghz	Storm PR90-010-216	N/A	07/24/03	07/23/04
1629	CABLE, 6 ft	MEGAPHASE 10311 1GVT4	N/A	CBU	N/A
1478	20db Attenuator DC 18 Ghz	MCL Inc. BW-S20W6	NONE	CBU	N/A
1036	SPECTRUM ANALYZER	ROHDE & SCHWARZ FSEK30	830844/006	12/18/01	12/19/03
283	Environmental Chamber with controller # 1189006	ENVIROTRONICS SH27 & 2030-22844	129010083	04/22/03	04/21/04
599	POWER SUPPLY	XANTREX XFR 60-46	42669	CNR	
703	LISN	Schwarz Beck 8020	8020350	05/04/03	05/03/04
1433	High pass filter	Solar 7930-5.0	933142	02/24/03	02/24/04
1988	CABLE, 6.8m	KTL RG223	N/A	07/02/03	07/01/04
1547	CABLE .6m	KTL RG223	N/A	09/15/03	09/14/04
716	Receiver	Polorad ESH2	879342/005	01/03/03	01/03/04
761	3 module HP stack(Anal/Displ/Q-Peak Adapt)	Hewlett Packard 8567A/Disp/85650A	09/2542A10537/25	11/21/02	11/21/03
791	PREAMP, 25dB	ICC LNA25	398	09/30/02	09/30/03

ANNEX A - TEST DETAILS

FCC PART 15, SUBPART C DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: Ripwave TTA Base Station REPORT NO.: 3L0324RUS3

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

Minimum Standard: The R.F. that is conducted back onto the AC power line on any

frequency within the band 0.45 to 30 MHz shall not exceed $250\mu V$

(48 dBµV) across 50 ohms.

FCC PART 15, SUBPART C DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: Ripwave TTA Base Station REPORT NO.: 3L0324RUS3

NAME OF TEST: Minimum 6 dB bandwidth PARA. NO.: 15.247(a)(2)

Minimum Standard: The minimum 6 dB bandwidth shall be at least 500 kHz

NAME OF TEST: Maximum Peak Output Power PARA. NO.: 15.247(b)(1)

Minimum Standard: The maximum peak output power shall not exceed 1 watt.

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi$ $R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where.

P = the equivalent isotropic radiated power in watts

E =the maximum measured field strength in V/m

R =the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

$\label{eq:fcc} FCC~PART~15,~SUBPART~C$ DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: Ripwave TTA Base Station REPORT NO.: 3L0324RUS3

The RBW of the spectrum analyzer shall be set to a value greater than the measured 6 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: Ripwave TTA Base Station REPORT NO.: 3L0324RUS3

NAME OF TEST: RF Exposure PARA. NO.: 15.247(b)(4)

Minimum Standard: Systems operating under the provisions of this section shall be

operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines

stipulated in 1.1307(b)(1) of CFR 47.

NAME OF TEST: Spurious Emissions(conducted) PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the

transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205

shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM IS SEARCHED TO THE 10th HARMONIC OF THE HIGHEST FREQUENCY GENERATED IN THE EUT.

Method Of Measurement:

30 MHz - 10th harmonic plot

RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level below center frequency.

Upper Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(c)

Minimum Standard:

In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency	Field Strength	Field Strength
(MHz)	(μV/m @ 3m)	(dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

15.205 Restricted Bands

MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

NAME OF TEST: Transmitter Power Density

PARA. NO.: 15.247(d)

Minimum Standard: The transmitted power density averaged over any 1 second

interval shall not be greater than +8 dBm in any 3 kHz bandwidth.

Method Of Measurement: The spectrum analyzer is set as follows:

RBW: 3 kHz VBW: >3 kHz

Span: => measured 6 dB bandwidth

Sweep: Span(kHz)/3 (i.e. for a span of 1.5 MHz the sweep rate is

1500/3 = 500 sec.LOG dB/div.: 2 dB

Note: For devices with spectrum line spacing =< 3 kHz, the RBW of the

analyzer is reduced until the spectral lines are resolved. The measurement data is normalized to 3 kHz by summing the power of all the individual spectral lines within a 3 kHz band in linear

power units.

For Devices With Integral Antenna:

For devices with non-detachable antennas, the received field strength is peaked and the spectrum analyzer is set as above. The peak emission level is then measured and converted to a field strength by adding the appropriate antenna factor and cable loss. This field strength is then converted to an equivalent isotropic radiated power using the same method as described for Peak Power output.

Tuning Range	Number Of Channels Tested	Channel Location In Band
1 MHz or Less	1	Middle
1 to 10 MHz	2	Top And Bottom
More Than 10 MHz	3	Top, Middle, Bottom

NAME OF TEST: Processing Gain PARA. NO.: 15.247(e)

Minimum Standard: The processing gain shall be at least 10 dB.

Method Of Measurement: The CW jamming margin method was used to determine the

processing gain. A CW signal generator is stepped across the passband of the receiver in 50 kHz increments. At each point the signal generator level required to obtain the recommended bit error rate is recorded. The jammer to signal ratio (J/S) is then calculated. The worst 20% of the J/S points is discarded. The lowest remaining J/S ratio is used to calculate the processing gain.

Calculation Of Processing Gain:

The processing gain was determined by measuring the jamming margin of the E.U.T. and using the following formula:

Jamming Margin = G_p - $(S/N)_{out}$ - L_{svs}

For a receiver using non-coherent detection the value $(S/N)_{out}$ is calculated using the formula:

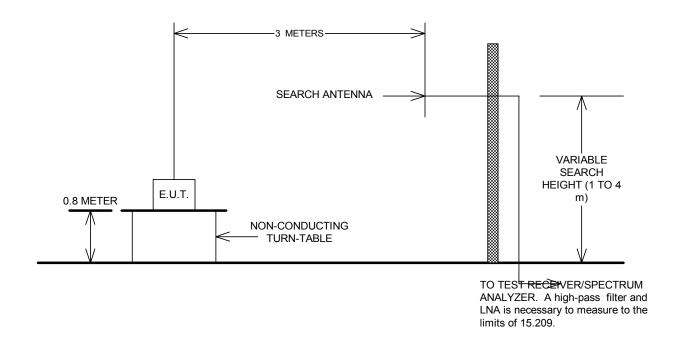
 $P_e = (1/2)EXP\{-E/2N_o\}$ where P_e is the probability of error (minimum Bit Error Rate required for proper operation).

 E/N_0 is $(S/N)_{out}$

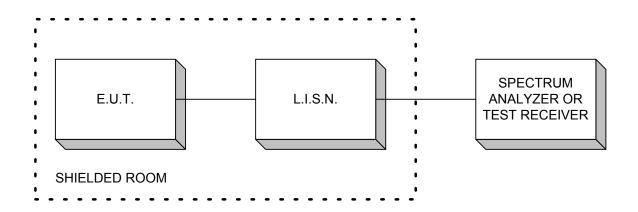
for example, for a bit error rate of 10⁻⁴ a S/N ratio of 12.3 dB is required.

 $L_{\text{sys (system losses)}}$ is assumed to be 2 dB.

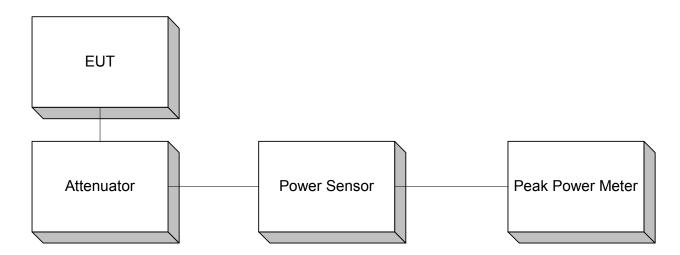
Therefore $G_p = Mj + (S/N)_{out} + L_{sys}$

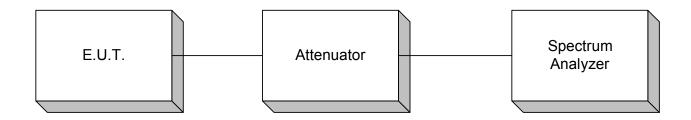

Measurement performed at a channel in the center of the operating band of the EUT.

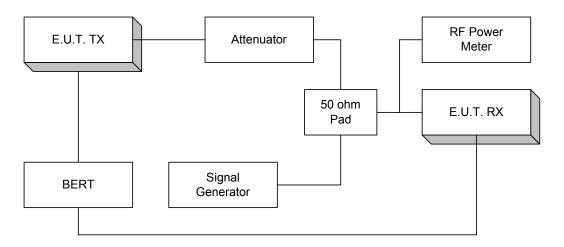
$\label{eq:fcc} FCC~PART~15,~SUBPART~C$ DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER


EQUIPMENT: Ripwave TTA Base Station REPORT NO.: 3L0324RUS3

ANNEX B - TEST DIAGRAMS


Test Site For Radiated Emissions


Conducted Emissions


Peak Power At Antenna Terminals

Minimum 6 dB Bandwidth Peak Power Spectral Density Spurious Emissions (conducted)

Processing Gain

NOTE: This is a typical setup. The setup may vary slightly since many devices have BER test functions built into the device.