

TEST REPORT

Test Report No.: UL-RPT-RP85949JD01C V4.0

Manufacturer	:	General Dynamics Broadband UK Ltd
Model No.	:	AMW
FCC ID	:	PKTPEMAMW1
Technology.	:	LTE Band 12, 5 MHz Channel Bandwidth
Test Standard(s)	:	FCC Parts 2.1046, 2.1049, 2.1051, 2.1053, 2.1055, 27.50(c)(9), 27.53(f) & 27.54

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL VS LTD.
- 2. The results in this report apply only to the sample(s) tested.
- 3. The sample tested is in compliance with the above standard(s).
- 4. The test results in this report are traceable to the national or international standards.

рр

5. Version 4.0 supersedes all previous versions.

Date of Issue:

21 March 2014

Checked by:

- Welders. oel

Sarah Williams Engineer, Radio Laboratory

Issued by :

ever and

John Newell Group Quality Manager Basingstoke, UL VS LTD

This laboratory is accredited by UKAS. The tests reported herein have been performed in accordance with its' terms of accreditation.

ISSUE DATE: 21 MARCH 2014

This page has been left intentionally blank.

Table of Contents

1. Customer Information	4
 2. Summary of Testing	5 5 5 5 5
 3. Equipment Under Test (EUT) 3.1. Identification of Equipment Under Test (EUT) 3.2. Description of EUT 3.3. Modifications Incorporated in the EUT 3.4. Additional Information Related to Testing 3.5. Support Equipment 	6 6 6 7 8
 4. Operation and Monitoring of the EUT during Testing	 9 9 9
 5. Measurements, Examinations and Derived Results	10 11 11 19 27 30 36 39 44 48
6. Measurement Uncertainty	49
7. Report Revision History	50

<u>1. Customer Information</u>

Company Name:	General Dynamics Broadband UK Ltd
Address:	Unit 7 Greenways Business Park Bellinger Close Chippenham Wilts SN15 1BN United Kingdom

2. Summary of Testing

2.1. General Information

Specification Reference:	47CFR27
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 27 Subpart C (Miscellaneous Wireless Communication Services)
Site Registration:	209735
Location of Testing:	UL VS LTD, Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom
Test Dates:	13 July 2012 to 04 March 2014

2.2. Summary of Test Results

FCC Reference (47CFR)	Measurement	Result	
27.50(c)(9) / 2.1046	Transmitter Carrier Output Power and Effective Radiated Power (ERP)	Ø	
2.1049	Transmitter Occupied Bandwidth		
27.53(f) / 2.1051	Transmitter Conducted Spurious Emissions		
27.53(f) / 2.1051	Transmitter Conducted Emissions at Band Edges		
27.53(f) / 2.1053	Transmitter Radiated Spurious Emissions		
27.53(f) / 2.1053	Transmitter Radiated Emissions at Band Edges		
27.54 / 2.1055	Transmitter Frequency Stability		
Key to Results	·		
I complied			

2.3. Methods and Procedures

Reference:	ANSI/TIA-603-C-2004	
Title:	Land Mobile Communications Equipment, Measurements and performance Standards	
Reference:	FCC KDB 971168 D01 v02r01, 7 June 2013	
Title:	Measurement Guidance for Certification of Licensed Digital Transmitters	

2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	General Dynamics Broadband
Model Name or Number:	AMW
Serial Number:	AMWGB84001G12
Hardware Version Number:	Pass 1
Software Version Number:	Release 4
FCC ID:	PKTPEMAMW1

Brand Name:	General Dynamics Broadband
Model Name or Number:	AMW
Serial Number:	AMWGB84001F12
Hardware Version Number:	Pass 1
Software Version Number:	Release 4
FCC ID:	PKTPEMAMW1

3.2. Description of EUT

The equipment under test was a LTE PCI Express Mini Modem.

3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.4. Additional Information Related to Testing

Tested Technology:	LTE Band 12			
Type of Equipment	PCI Express mini module			
Channel Bandwidth(s):	5 MHz	5 MHz		
Modulation Type:	QPSK & 16Q	AM		
Duty Cycle:	100%	100%		
Antenna Gain:	2.5 dBi			
Power Supply Requirement:	Nominal 3.3 V			
	Minimum	3.0 V		
	Maximum	3.6 V		
Transmit Frequency Range:	Band 12 (69 Part 27 (698			
Channels Tested:	Channel		N _{ui}	Frequency of Uplink (MHz)
	Bottom		23035	701.5
	Middle		23095	707.5
	Тор		23155	713.5

3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	UE PEM V1 NG Adaptor Board
Brand Name:	IPWireless
Model Name or Number:	AAF Pass3
Serial Number:	AAFK838000V32

Description:	UE PEM V1 NG Adaptor Board – Voltage Variation
Brand Name:	IPWireless
Model Name or Number:	AAF Pass2
Serial Number:	EEMS 022530 0004

Description:	Laptop PC
Brand Name:	Toshiba
Model Name or Number:	PSAAPE-00H00KEN
Serial Number:	67071048Q

Description:	Antenna
Brand Name:	None
Model Name or Number:	OA-LTE-06-01-IPW
Serial Number:	Not stated

4. Operation and Monitoring of the EUT during Testing

4.1. Operating Modes

The EUT was tested in the following operating mode(s):

 Transmit Mode - the EUT was set to transmit with maximum output power using a 5 MHz channel bandwidth. QPSK and 16QAM modulations were both tested, along with the Resource Blocks set to 1 and 25.

4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

- The EUT was connected to the UE PEM V1 NG Adaptor Board, for all tests.
- The EUT was controlled from a laptop PC, using bespoke software supplied by the customer.
- The EUT was connected to a test laptop by using a USB extension cable and the laptop was connected to 120 VAC 60 Hz AC supply.
- The EUT has two U.FL connector ports, the customer supplied two short U.FL to SMA cables, to allow conducted measurements to be performed where necessary.
- The EUT was connected to a Rohde & Schwarz CMW500 LTE system simulator for output power and occupied bandwidth tests. All other tests were performed using an Anristu LTE system simulator, both operating in a transceiver mode.
- For Resource Block setting of 1, testing was carried out on starting block numbers of 1 and 25.
- The EUT has a main RF port and a Receiver Diversity port. Transmitter testing was performed on the main RF port which is a transmit and receive port. The diversity port was terminated for all bench testing.
- For radiated emissions testing, the customer supplied two OA-LTE-06-01-IPW antennas', which were connected to the main and diversity ports. The antenna gain was declared as 2.5 dBi.
- The customer supplied a modified UE PEM V1NG Adaptor Board, which allowed voltage variation directly to the PEM, this was used for Transmitter Frequency Stability Voltage Variation testing only.

5. Measurements, Examinations and Derived Results

5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to *Section 6* for Measurement Uncertainty details.

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

5.2. Test Results

5.2.1. Transmitter Carrier Output Power and Effective Radiated Power (ERP)

Test Summary:

Test Engineer:	Nick Steele	Test Date:	13 February 2014
Test Sample Serial Number:	AMWGB84001F12		

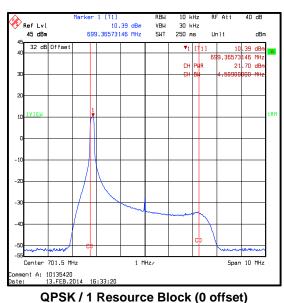
FCC Reference:	Parts 2.1046 and 27.50(c)(9)
Test Method Used:	As detailed in KDB 971168 Section 5.2.1

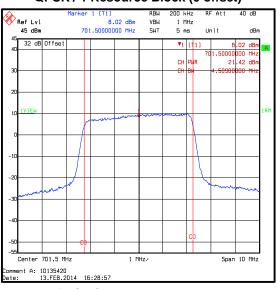
Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	39

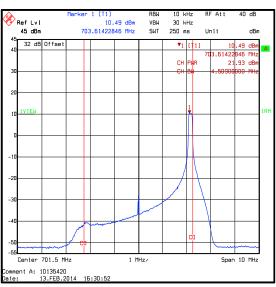
Note(s):

- 1. Measurements were performed with the EUT transmitting with QPSK and 16QAM modulation schemes, with resource blocks of 1 and 25. For single resource blocks, measurements were performed with the starting of blocks 1 and 25.
- 2. The customer stated a maximum antenna gain of 8.6 dBi. As the limit is an ERP limit the gain in dBi has been converted to dBd. The dBd was calculated as:


 $8.6 \, dBi - 2.15 \, dB = 6.45 \, dBd$

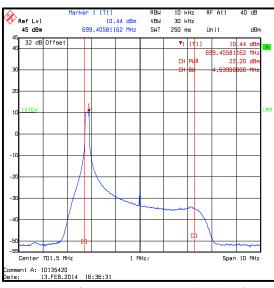

3. The plots have an incorrect job number.

Transmitter Carrier Output Power and Effective Radiated Power (ERP) (continued)

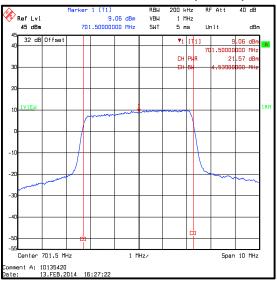

Frequency (MHz)	Resource Block(s)	Resource Block Offset	Conducted RF Power (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP Limit (dBm)	Margin (dB)	Result
701.5	1	0	21.7	6.45	28.15	44.77	16.62	Complied
701.5	1	25	21.9	6.45	28.35	44.77	16.42	Complied
701.5	25	0	21.4	6.45	27.85	44.77	16.92	Complied

Results: 5 MHz Channel Bandwidth / Bottom Channel / QPSK

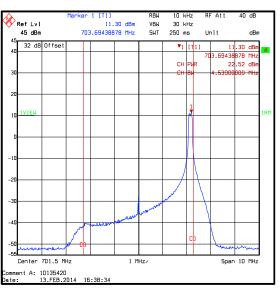
QPSK / 25 Resource Blocks

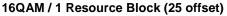


QPSK / 1 Resource Block (25 offset)


Transmitter Carrier Output Power and Effective Radiated Power (ERP) (continued)

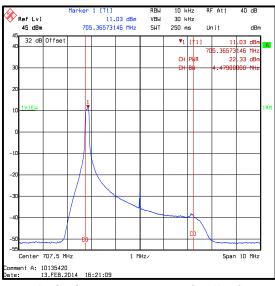
Frequency (MHz)	Resource Block(s)	Resource Block Offset	Conducted RF Power (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP Limit (dBm)	Margin (dB)	Result
701.5	1	0	22.2	6.45	28.65	44.77	16.12	Complied
701.5	1	25	22.5	6.45	28.95	44.77	15.82	Complied
701.5	25	0	21.6	6.45	28.05	44.77	16.72	Complied

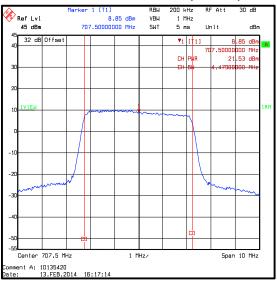

Results: 5 MHz Channel Bandwidth / Bottom Channel / 16QAM



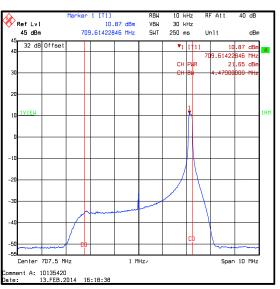
16QAM / 1 Resource Block (0 offset)

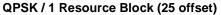
16QAM / 25 Resource Blocks




Transmitter Carrier Output Power and Effective Radiated Power (ERP) (continued)

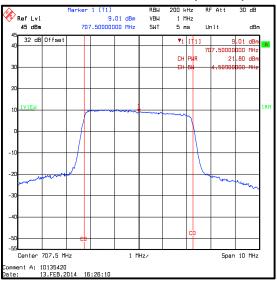
Frequency (MHz)	Resource Block(s)	Resource Block Offset	Conducted RF Power (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP Limit (dBm)	Margin (dB)	Result
707.5	1	0	22.3	6.45	28.75	44.77	16.02	Complied
707.5	1	25	21.7	6.45	28.15	44.77	16.62	Complied
707.5	25	0	21.5	6.45	27.95	44.77	16.82	Complied


Results: 5 MHz Channel Bandwidth / Middle Channel / QPSK

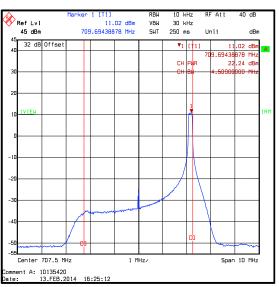


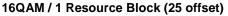
QPSK / 1 Resource Block (0 offset)

QPSK / 25 Resource Blocks


Transmitter Carrier Output Power and Effective Radiated Power (ERP) (continued)

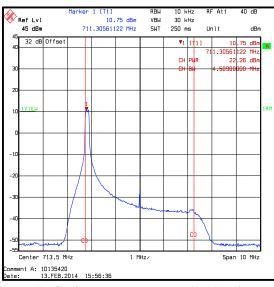
Frequency (MHz)	Resource Block(s)	Resource Block Offset	Conducted RF Power (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP Limit (dBm)	Margin (dB)	Result
707.5	1	0	22.4	6.45	28.85	44.77	15.92	Complied
707.5	1	25	22.2	6.45	28.65	44.77	16.12	Complied
707.5	25	0	21.8	6.45	28.25	44.77	16.52	Complied

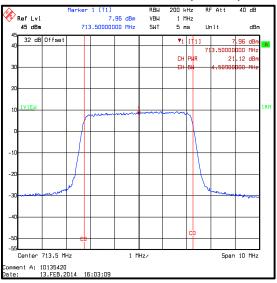

Results: 5 MHz Channel Bandwidth / Middle Channel / 16QAM



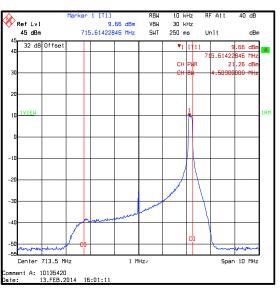
16QAM / 1 Resource Block (0 offset)

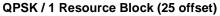
16QAM / 25 Resource Blocks




Transmitter Carrier Output Power and Effective Radiated Power (ERP) (continued)

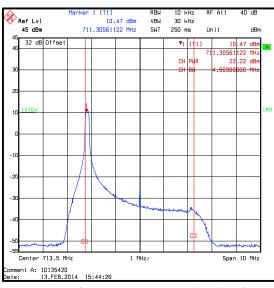
Frequency (MHz)	Resource Block(s)	Resource Block Offset	Conducted RF Power (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP Limit (dBm)	Margin (dB)	Result
713.5	1	0	22.3	6.45	28.75	44.77	16.02	Complied
713.5	1	25	21.3	6.45	27.75	44.77	17.02	Complied
713.5	25	0	21.1	6.45	27.55	44.77	17.22	Complied

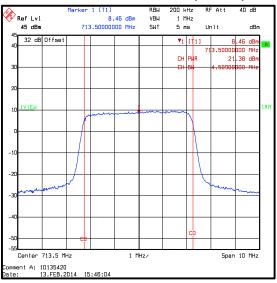

Results: 5 MHz Channel Bandwidth / Top Channel / QPSK



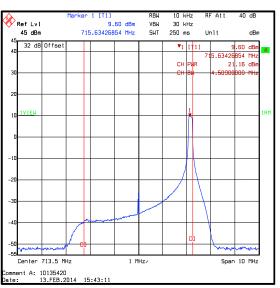
QPSK / 1 Resource Block (0 offset)

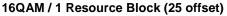
QPSK / 25 Resource Blocks




Transmitter Carrier Output Power and Effective Radiated Power (ERP) (continued)

Frequency (MHz)	Resource Block(s)	Resource Block Offset	Conducted RF Power (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP Limit (dBm)	Margin (dB)	Result
713.5	1	0	22.2	6.45	28.65	44.77	16.12	Complied
713.5	1	25	21.2	6.45	27.65	44.77	17.12	Complied
713.5	25	0	21.4	6.45	27.85	44.77	16.92	Complied


Results: 5 MHz Channel Bandwidth / Top Channel / 16QAM



16QAM / 1 Resource Block (0 offset)

16QAM / 25 Resource Blocks

Transmitter Carrier Output Power and Effective Radiated Power (ERP) (continued)

<u>Test</u>	Eq	<u>uipm</u>	ent	Used:	

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	24 May 2014	12
M127	Spectrum Analyser	Rohde & Schwarz	FSEB 30	842659/016	19 Aug 2014	12
A1999	Attenuator	Huber + Suhner	6820.17.B	07101	05 Apr 2014	12
A1368	Directional Coupler	Pasternack Enterprises	PE2214-10	None stated	Calibrated before use	-
M199	Power Meter	Rohde & Schwarz	NRVS	827023/075	15 May 2014	12
M1267	Power Sensor	Rohde & Schwarz	NRV-Z52	100155	14 May 2014	12
M260	Signal Generator	Rohde & Schwarz	SMP02	829076/008	25 Jun 2014	12

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

5.2.2. Transmitter Occupied Bandwidth

Test Summary:

Test Engineer:	Nick Steele	Test Dates:	13 February 2014 & 03 March 2014
Test Sample Serial Number:	AMWGB84001F12		

FCC Reference:	Part 2.1049
Test Method Used:	As detailed in KDB 971168 Section 4.2

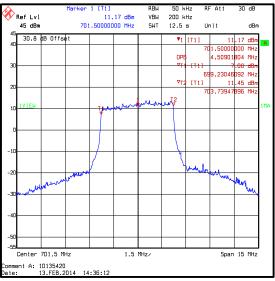
Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	39

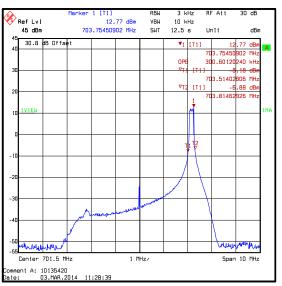
Note(s):


- 1. Occupied bandwidth (99% bandwidth) was measured using a test receiver occupied bandwidth function.
- 2. Measurements were performed with the EUT transmitting with QPSK and 16QAM modulation schemes, with resource blocks of 1 and 25. For single resource blocks, measurements were performed with the block starting of blocks 1 and 25.
- 3. The plots have an incorrect job number.

ISSUE DATE: 21 MARCH 2014

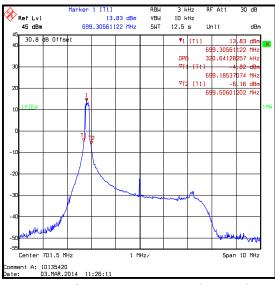

Transmitter Occupied Bandwidth (continued)

Results: 5 MHz Channel Bandwidth / Bottom Channel / QPSK

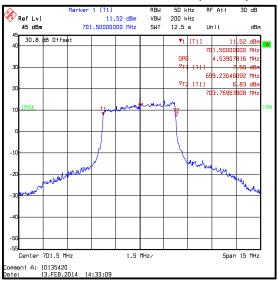

Frequency (MHz)	Resource Block(s)	Resource Block Offset	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (MHz)
701.5	1	0	3	10	0.301
701.5	1	25	3	10	0.301
701.5	25	0	50	200	4.509

QPSK / 1 Resource Blocks (0 offset)

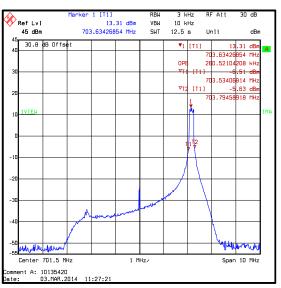
QPSK / 25 Resource Blocks

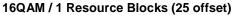


QPSK / 1 Resource Blocks (25 offset)


Transmitter Occupied Bandwidth (continued)

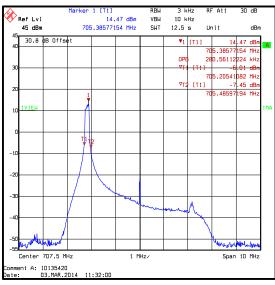
Results: 5 MHz Channel Bandwidth / Bottom Channel / 16QAM

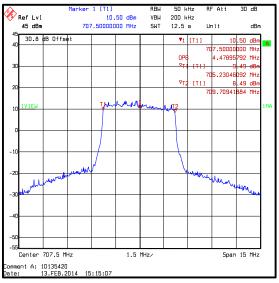

Frequency (MHz)	Resource Block(s)	Resource Block Offset	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (MHz)
701.5	1	0	3	10	0.321
701.5	1	25	3	10	0.261
701.5	25	0	50	200	4.539



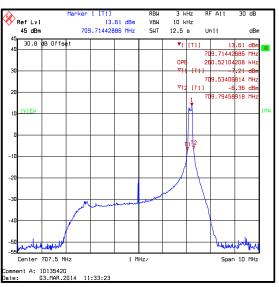
16QAM / 1 Resource Blocks (0 offset)

16QAM / 25 Resource Blocks



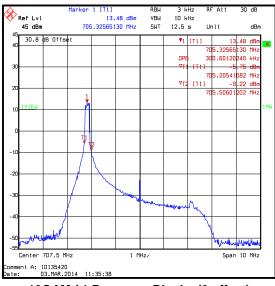

Transmitter Occupied Bandwidth (continued)

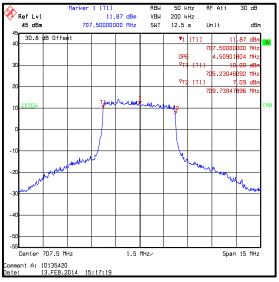
Results: 5 MHz Channel Bandwidth / Middle Channel / QPSK


Frequency (MHz)	Resource Block(s)	Resource Block Offset	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (MHz)
707.5	1	0	3	10	0.281
707.5	1	25	3	10	0.261
707.5	25	0	50	200	4.479

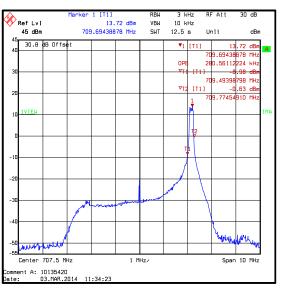
QPSK / 1 Resource Blocks (0 offset)

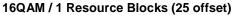
QPSK / 25 Resource Blocks




Transmitter Occupied Bandwidth (continued)

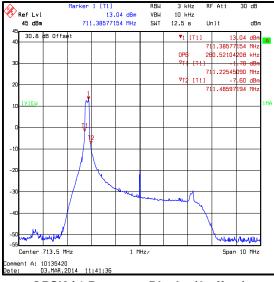
Results: 5 MHz Channel Bandwidth / Middle Channel / 16QAM

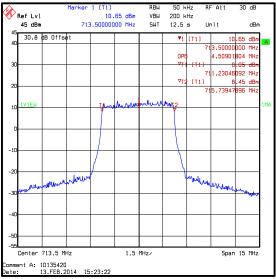

Frequency (MHz)	Resource Block(s)	Resource Block Offset	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (MHz)
707.5	1	0	3	10	0.301
707.5	1	25	3	10	0.281
707.5	25	0	50	200	4.509



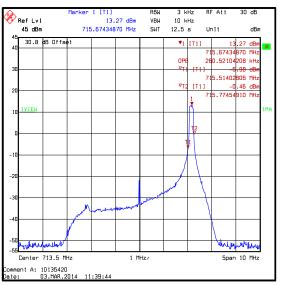
16QAM / 1 Resource Blocks (0 offset)

16QAM / 25 Resource Blocks



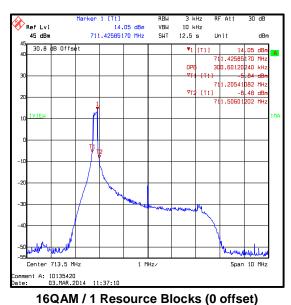

Transmitter Occupied Bandwidth (continued)

Results: 5 MHz Channel Bandwidth / Top Channel / QPSK


Frequency (MHz)	Resource Block(s)	Resource Block Offset	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (MHz)
713.5	1	0	3	10	0.261
713.5	1	25	3	10	0.261
713.5	25	0	50	200	4.509

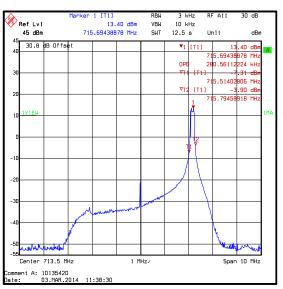
QPSK / 1 Resource Blocks (0 offset)

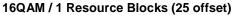
QPSK / 25 Resource Blocks



QPSK / 1 Resource Blocks (25 offset)

Transmitter Occupied Bandwidth (continued)


Results: 5 MHz Channel Bandwidth / Top Channel / 16QAM


Frequency (MHz)	Resource Block(s)	Resource Block Offset	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (MHz)
713.5	1	0	3	10	0.301
713.5	1	25	3	10	0.281
713.5	25	0	50	200	4.509

50 kHz 200 kHz RBW 1 [T1 Ref Lv1 45 dBm 11.14 dBm VBW 713.50000000 MHz SWT 12.5 s Unlt dBm 30.8 dB Offset ▼1 [T1] 11.14 dBm 713.50000000 MH OPI 4.50901804 MH 711.23046092 MHz B.23 dBr <u>م</u> 715.73947896 MH w when who -55 Center 713.5 MHz 1.5 MHz/ Span 15 MHz Comment A: 10135420 Date: 13.FEB.2014 15:21:19

16QAM / 25 Resource Blocks

Transmitter Occupied Bandwidth (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	24 May 2014	12
M127	Spectrum Analyser	Rohde & Schwarz	FSEB 30	842659/016	19 Aug 2014	12
A1999	Attenuator	Huber + Suhner	6820.17.B	07101	05 Apr 2014	12
A1368	Directional Coupler	Pasternack Enterprises	PE2214-10	None stated	Calibrated before use	-

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

5.2.3. Transmitter Conducted Spurious Emissions

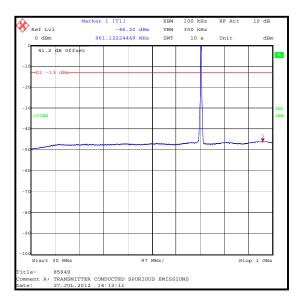
Test Summary:

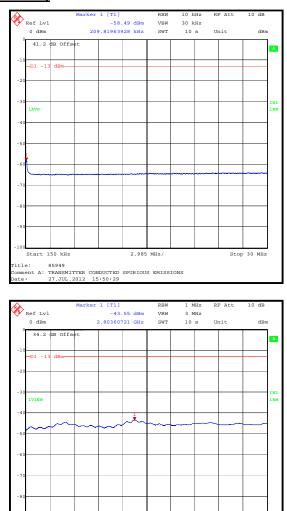
Test Engineer:	Nick Steele	Test Date:	27 July 2012
Test Sample Serial Number:	AMWGB84001G12		

FCC Reference:	Parts 2.1051 and 27.53(f)
Test Method Used:	As detailed in ANSI TIA-603.C-2004 Section 2.2.13 referencing FCC Part 2.1051
Frequency Range:	9 kHz to 8 GHz

Environmental Conditions:

Temperature (°C):	28
Relative Humidity (%):	39


Note(s):


- 1. The EUT was transmitting using 16QAM Modulation scheme, with resource blocks set to 25, as this produced the highest power level and was therefore deemed worst case.
- 2. Pre scans were performed with the EUT transmitting at maximum power on the top channel.
- 3. The emission seen on the 30 MHz to 1 GHz plot at approximately 713.5 MHz is the EUT carrier.
- 4. All emissions were >20 dB below the applicable limit or below the level of the noise floor of the measuring receiver, therefore the highest level of noise floor is recorded in the table below.

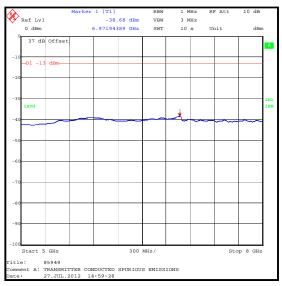
Results: 5 MHz Channel Bandwidth / Top Channel

Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
6971.944	-38.7	-13.0	25.7	Complied

Ref Lvl 0 dBm 1 [T1] RBW 1 kHz RF Att 10 dB -64.39 dBm 9.00000000 kHz VBW SWT 3 kHz 10 s Unit dBm 41.2 dB Offse -D1 -13 dBm VIEW Made 41mm/d 10 Start 9 kHz 14.1 kHz/ Stop 150 kHz Fitle: 85949 Comment A: TRANSMITTER CONDUCTED SPURIOUS EMISSIONS Date: 27.JUL.2012 15:47:36

400 MHz

ttle: 85949 mmment A: TRANSMITTER CONDUCTED SPURIOUS EMISSIONS tte: 27.JUL.2012 14:57:07


Start 1 GHz

itle:

Transmitter Conducted Spurious Emissions (continued)

Stop 5 GHz

Transmitter Conducted Spurious Emissions (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
A1368	Directional Coupler	Pasternack Enterprises	PE2214-10	None stated	Calibrated before use	-
A1999	Attenuator	Huber + Suhner	6820.17.B	07101	04 Apr 2013	12
L1067	Test Receiver	Rohde & Schwarz	ESIB 40	100262	29 May 2013	12
M199	Power Meter	Rohde & Schwarz	NRVS	827023/075	07 Jun 2013	12
M1021	Signal Generator	Rohde & Schwarz	SMP02	833286/004	09 Jan 2013	12
M1267	Power Sensor	Rohde & Schwarz	NRV-Z52	100155	07 Jun 2013	12

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

5.2.4. Transmitter Conducted Emissions at Band Edges

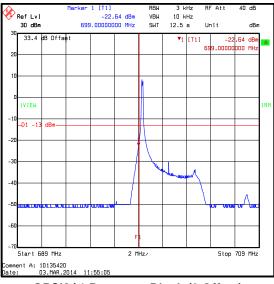
Test Summary:

Test Engineer:	Nick Steele	Test Dates:	27 July 2012, 30 July 2012 & 03 March 2014	
Test Sample Serial Numbers:	AMWGB84001G12 & AMWGB84001F12			

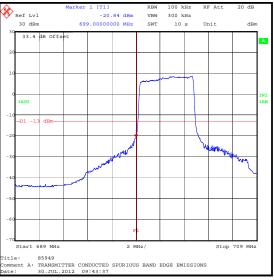
FCC Reference:	Parts 2.1051 and 27.53(f)
Test Method Used:	As detailed in ANSI TIA-603.C-2004 Section 2.2.13 referencing FCC Part 2.1051

Environmental Conditions:

Temperature (°C):	24 to 29
Relative Humidity (%):	35 to 38


Note(s):

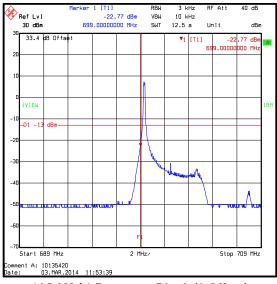
- 1. Measurements were performed with the EUT transmitting with QPSK and 16QAM modulation schemes, with resource blocks of 1 and 25. For single resource blocks, measurements were performed with the block starting of blocks of 1 for the lower band edge and 25 for the upper band edge.
- 2. Where a single Resource Block of 1 for the lower Band edge and Resource Block of 25 for the upper band edge was applied, the Resolution Bandwidth was adjusted to be between 1% and 5% of the measured occupied bandwidth. The Video Bandwidth was set to three times the Resolution Bandwidth.
- 3. The plots for measurements performed on the 3rd March have an incorrect job number.


Transmitter Conducted Emissions at Band Edges (continued)

Frequency (MHz)	Resource Block(s)	Resource Block Offset	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
699	1	0	-22.6	-13.0	9.6	Complied
699	25	0	-20.8	-13.0	7.8	Complied

Results: 5 MHz Channel Bandwidth / Bottom Channel / QPSK

QPSK / 1 Resource Block (0 Offset)



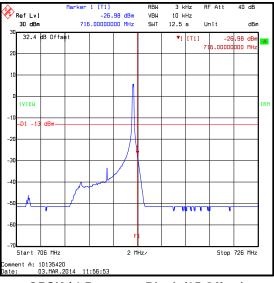
QPSK / 25 Resource Blocks

Transmitter Conducted Emissions at Band Edges (continued)

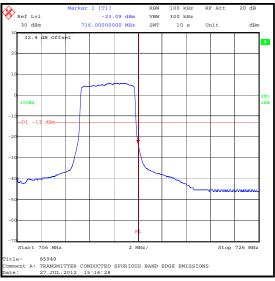
Results: 5 MHz Channel Bandwidth / Bottom Channel / 16QAM Frequency Resource Resource Emission Limit Margin (dB (IIII) Disal (c) Disal (c) Disal (c) Disal (c) Disal (c)

Frequency (MHz)	Resource Block(s)	Resource Block Offset	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
699	1	0	-22.8	-13.0	9.8	Complied
699	25	0	-19.0	-13.0	6.0	Complied

16QAM / 1 Resource Block (0 Offset)



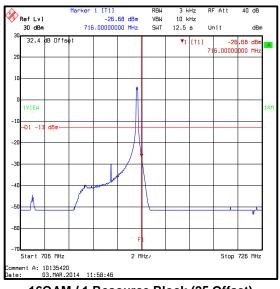
16QAM / 25 Resource Blocks


Transmitter Conducted Emissions at Band Edges (continued)

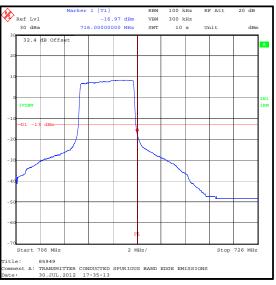
Frequency (MHz)	Resource Block(s)	Resource Block Offset	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
716	1	25	-27.0	-13.0	14.0	Complied
716	25	0	-23.1	-13.0	10.1	Complied

Results: 5 MHz Channel Bandwidth / Top Channel / QPSK

QPSK / 1 Resource Block (25 Offset)



QPSK / 25 Resource Blocks


Transmitter Conducted Emissions at Band Edges (continued)

Frequency (MHz)	Resource Block(s)	Resource Block Offset	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
716	1	25	-26.7	-13.0	13.7	Complied
716	25	0	-17.0	-13.0	4.0	Complied

Results: 5 MHz Channel Bandwidth / Top Channel / 16QAM

16QAM / 1 Resource Block (25 Offset)

16QAM / 25 Resource Blocks

Transmitter Conducted Emissions at Band Edges (continued)

Test Equipment Used 27 July 2012:

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
A1368	Directional Coupler	Pasternack Enterprises	PE2214-10	None stated	Calibrated before use	-
A1999	Attenuator	Huber + Suhner	6820.17.B	07101	04 Apr 2013	12
M127	Test Receiver	Rohde & Schwarz	FSEB30	842 659/016	11 Sept 2012	12
M199	Power Meter	Rohde & Schwarz	NRVS	827023/075	07 Jun 2013	12
M1021	Signal Generator	Rohde & Schwarz	SMP02	833286/004	09 Jan 2013	12
M1267	Power Sensor	Rohde & Schwarz	NRV-Z52	100155	07 Jun 2013	12

Test Equipment Used 03 March 2014:

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	24 May 2014	12
M127	Spectrum Analyser	Rohde & Schwarz	FSEB 30	842659/016	19 Aug 2014	12
A1999	Attenuator	Huber + Suhner	6820.17.B	07101	05 Apr 2014	12
A1368	Directional Coupler	Pasternack Enterprises	PE2214-10	None stated	Calibrated before use	-
M199	Power Meter	Rohde & Schwarz	NRVS	827023/075	15 May 2014	12
M1267	Power Sensor	Rohde & Schwarz	NRV-Z52	100155	14 May 2014	12
M260	Signal Generator	Rohde & Schwarz	SMP02	829076/008	25 Jun 2014	12

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

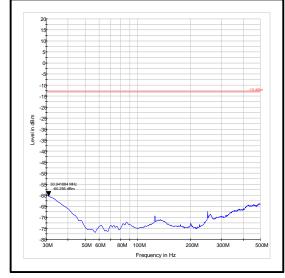
ISSUE DATE: 21 MARCH 2014

Test Summary:

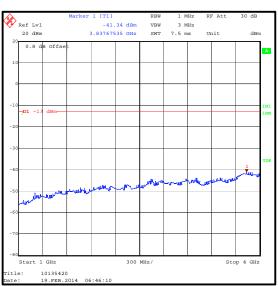
Test Engineer:	David Doyle	Test Dates:	19 February 2014 & 20 February 2014
Test Sample Serial Number:	AMWGB84001F12		

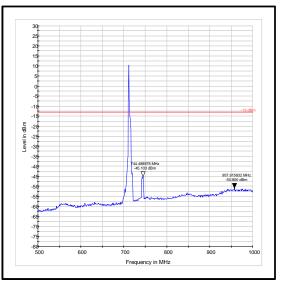
FCC Reference:	Parts 2.1053 & 27.53(f)	
Test Method Used:	As detailed in ANSI TIA-603-C-2004 Section 2.2.12. referencing FCC CFR Part 2.1053	
Frequency Range:	30 MHz to 8 GHz	

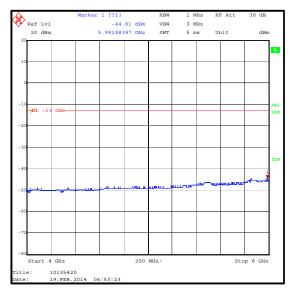
Environmental Conditions:


Temperature (°C):	21 to 22
Relative Humidity (%):	35 to 38

Note(s):


- 1. The EUT was set to transmit with 16QAM modulation applied with 1 Resource Blocks, as this was found to be the worst case modulation scheme with regards to emissions after preliminary investigations and, as this mode emits the highest transmit output power level, it was deemed to be the worst case.
- 2. For radiated emissions testing, the customer supplied two OA-LTE-06-01-IPW antennas', which were connected to the main and diversity ports. The antenna gain was declared as 2.5 dBi.
- 3. The emission seen on the 500 MHz to 1 GHz plot at approximately 713.5 MHz is the EUT carrier.
- 4. The emission seen on the 500 MHz to 1 GHz plot at approximately 744.5 MHz is the downlink from the LTE test set.
- 5. No spurious emissions were detected above the noise floor of the measuring receiver therefore the highest noise floor reading of the measuring receiver was recorded as shown in the table below.
- 6. Measurements below 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 7. Pre-scans above 1 GHz were performed in a fully anechoic chamber (Asset Number K0002) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT. Final measurements above 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 8. The plots have an incorrect job number.


Results:


Frequency (MHz)	Antenna Polarisation	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
3837.675	Vertical	-41.3	-13.0	28.3	Complied

Transmitter Out of Band Radiated Emissions (continued)

Marker 1 [T] REW 1 MHz RF ALL 30 dB 20 dBm 6.94589178 GHz SWT 11.5 ms Unit dBm 20 dBm 6.94589178 GHz SWT 11.5 ms Unit dBm 20 dBm 6.94589178 GHz SWT 11.5 ms Unit dBm 20 dBm 6.94589178 GHz SWT 11.5 ms Unit dBm 20 dBm 6.94589178 GHz SWT 11.5 ms Unit dBm 20 dBm 6.94589178 GHz SWT 11.5 ms Unit dBm 20 dBm 10 dBm 10 dBm 10 dBm INIt INIt -10 dBm 10 dBm 10 dBm 10 dBm INIt INIt -20 dBm 10 dBm 10 dBm INIt INIt INIt -30 dBm 10 dBm 10 dBm 10 dBm INIt INIt INIt -30 dBm 10 dBm 10 dBm 10 dBm INIt INIt INIt -30 dBm 10 dBm 10 dBm 10 dBm INIt INIt INIt INIt

Transmitter Out of Band Radiated Emissions (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
K0001	5m RSE Chamber	Rainford EMC	N/A	N/A	26 Nov 2014	12
M1622	Thermohygrometer	JM Handelspunkt	30.5015.06	None stated	31 Dec 2014	12
G0543	Amplifier	Sonoma	310N	230801	18 May 2014	3
A1834	Attenuator	Hewlett Packard	8491B	10444	15 Nov 2014	12
A490	Antenna	Chase	CBL6111A	1590	18 Apr 2014	12
M1273	Test Receiver	Rohde & Schwarz	ESIB 26	100275	11 Feb 2015	12
K0002	3m RSE Chamber	Rainford EMC	N/A	N/A	14 Nov 2014	12
M1656	Thermohygrometer	JM Handelspunkt	30.5015.13	Not stated	24 May 2014	12
M1124	Test Receiver	Rohde & Schwarz	ESIB 26	100046K	01 Oct 2014	12
A1534	Pre-Amplifier	Hewlett Packard	8449B	3008A00405	14 Nov 2014	12
A1818	Antenna	EMCO	3115	00075692	14 Nov 2014	12
A253	Antenna	Flann Microwave	12240-20	128	14 Nov 2014	12
A254	Antenna	Flann Microwave	14240-20	139	14 Nov 2014	12
A1974	High Pass Filter	AtlanTecRF	AFH-01000	09000283	19 Apr 2014	12

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

5.2.6. Transmitter Radiated Emissions at Band Edges

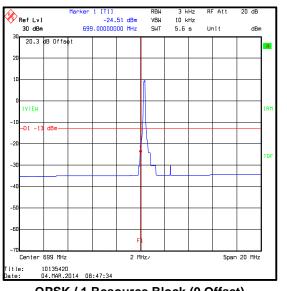
Test Summary:

Test Engineer:	David Doyle Test Date: 04 March 2014		
Test Sample Serial Number:	AMWGB84001F12		
FCC Reference:	Parts 2.1053 and 27.53(f)		

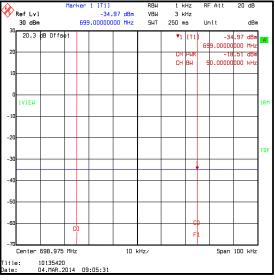
Test Method Used:	As detailed in KDB 971168 Section 6.0 referencing FCC Part 27.53
rest method Osed.	As detailed in RDB 97 1100 Section 0.0 referencing 1 CC 1 at 27.55

Environmental Conditions:

Temperature (°C):	24
Relative Humidity (%):	31

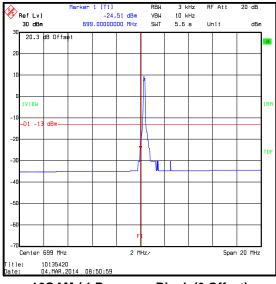

Note(s):

- 1. For radiated emissions testing, the customer supplied two OA-LTE-06-01-IPW antennas', which were connected to the main and diversity ports. The antenna gain was declared as 2.5 dBi.
- 2. Measurements were performed with the EUT transmitting with QPSK and 16QAM modulation schemes, with resource blocks of 1 and 25. For single resource blocks, measurements were performed with the block starting of blocks of 1 for the lower band edge and 25 for the upper band edge.
- 3. In accordance with KDB 971168 Section 6.0, a relaxation of the reference bandwidth has been applied at the edge of the authorised frequency band. The test receivers channel power function was used to integrate over the first 50 kHz outside of the frequency band.
- 4. The plots have an incorrect job number.

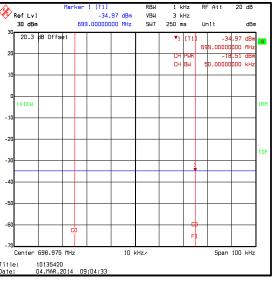

Transmitter Radiated Emissions at Band Edges (continued)

Frequency (MHz)	Resource Block(s)	Resource Block Offset	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
699	1	0	-24.5	-13.0	11.5	Complied
699	25	0	-18.5	-13.0	5.5	Complied

Results: 5 MHz Channel Bandwidth / Bottom channel / QPSK


QPSK / 25 Resource Blocks

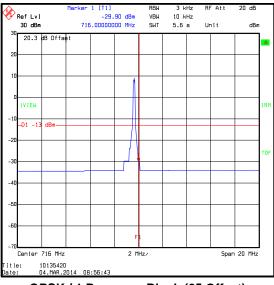
ISSUE DATE: 21 MARCH 2014

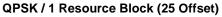

Transmitter Conducted Emissions at Band Edges (continued)

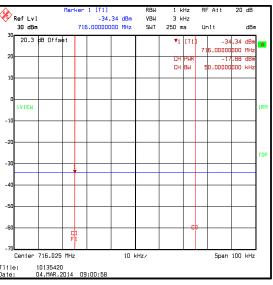
Results: 5 MHz Channel Bandwidth / Bottom Channel / 16QAM

Frequency (MHz)	Resource Block(s)	Resource Block Offset	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
699	1	0	-24.5	-13.0	11.5	Complied
699	25	0	-18.5	-13.0	5.5	Complied

16QAM / 1 Resource Block (0 Offset)




16QAM / 25 Resource Blocks

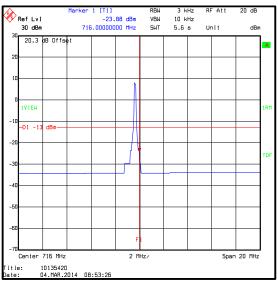

Transmitter Conducted Emissions at Band Edges (continued)

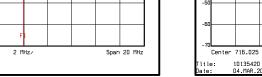
Frequency (MHz)	Resource Block(s)	Resource Block Offset	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
699	1	25	-29.9	-13.0	16.9	Complied
699	25	0	-17.9	-13.0	4.9	Complied

Results: 5 MHz Channel Bandwidth / Top Channel / QPSK

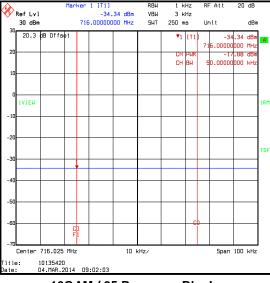
QPSK / 25 Resource Blocks

ISSUE DATE: 21 MARCH 2014


20 dB


RF Att

Transmitter Conducted Emissions at Band Edges (continued)


Frequency (MHz)	Resource Block(s)	Resource Block Offset	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
716	1	25	-23.9	-13.0	10.9	Complied
716	25	0	-17.9	-13.0	4.9	Complied

Results: 5 MHz Channel Bandwidth / Top Channel / 16QAM

16QAM / 1 Resource Block (25 Offset)

RBL

1 kHz

Test Equipment Used:

16QANI/	25	Resour	се в	IOCKS

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1656	Thermohygrometer	JM Handelspunkt	30.5015.13	Not stated	24 May 2014	12
K0002	3m RSE Chamber	Rainford EMC	N/A	N/A	14 Nov 2014	12
A288	Antenna	Chase	CBL6111A	1589	20 Aug 2014	12
M127	Test Receiver	Rohde & Schwarz	FSEB 30	842 659/016	19 Aug 2014	12
A1393	Attenuator	Huber & Suhner	6820.17.B	757456	10 May 2014	12

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

5.2.7. Transmitter Frequency Stability (Temperature Variation)

Test Summary:

Test Engineer:	Nick Steele	Test Dates:	26 July 2012 & 01 August 2012
Test Sample Serial Number:	AMWGB84001G12		

FCC Reference:	Parts 2.1055 & 27.54
Test Method Used:	As detailed in ANSI TIA-603-C-2004 Section 2.2.2 referencing FCC CFR Part 2.1055

Environmental Conditions:

Temperature (°C):	25 to 30
Relative Humidity (%):	33 to 34

Note(s):

- 1. Temperature was monitored throughout the test with a calibrated digital thermometer.
- 2. Measurements were made using the Anristu MT8820C Radio Communications Analyser.
- 3. The transmit frequency was monitored throughout the test and did not drift outside of the frequency limits of LTE Band 12 699 MHz to 716 MHz.

Transmitter Frequency Stability (Temperature Variation) (continued)

	Results	: Bottom	Channel
--	----------------	----------	----------------

Temperature		Time after Start-up				
(°C)	0 minutes (MHz)	1 minute (MHz)	2 minutes (MHz)	3 minutes (MHz)	4 minutes (MHz)	5 minutes (MHz)
-30	701.499983	701.499996	701.500006	701.500005	701.500013	701.500012
-20	701.500008	701.500009	701.500012	701.500013	701.500012	701.500009
-10	701.499994	701.500006	701.500007	701.500011	701.500014	701.500004
0	701.500001	701.500007	701.500011	701.500014	701.500011	701.500009
10	701.500002	701.500006	701.500009	701.500013	701.500014	701.500010
20	701.499995	701.499988	701.499992	701.499990	701.499991	701.499987
30	701.499987	701.499996	701.499987	701.499997	701.499998	701.499987
40	701.499986	701.499998	701.499997	701.499995	701.499996	701.499994
50	701.499988	701.499996	701.500013	701.500006	701.500008	701.500010

Temperature		Time after Start-up					
(°C)	6 minutes (MHz)	7 minutes (MHz)	8 minutes (MHz)	9 minutes (MHz)	10 minutes (MHz)		
-30	701.500003	701.499998	701.499999	701.500000	701.499999		
-20	701.500010	701.500006	701.500008	701.500007	701.500006		
-10	701.500003	701.500007	701.500006	701.500002	701.500003		
0	701.500007	701.500004	701.500005	701.500003	701.500002		
10	701.500009	701.500009	701.500005	701.500006	701.500005		
20	701.499993	701.499986	701.499994	701.499996	701.499997		
30	701.499989	701.499993	701.499992	701.499997	701.499999		
40	701.499992	701.499994	701.499990	701.499994	701.499992		
50	701.500012	701.500007	701.500007	701.500005	701.500003		

Frequency closest to Lower Band 12 Edge (MHz)	Lower Band Edge Limit (MHz)	Margin (MHz)	Result
701.499983	699.0	2.499983	Complied

Transmitter Frequency Stability (Temperature Variation) (continued)

Results: Top Channel

Temperature		Time after Start-up				
(°C)	0 minutes (MHz)	1 minute (MHz)	2 minutes (MHz)	3 minutes (MHz)	4 minutes (MHz)	5 minutes (MHz)
-30	713.500005	713.500008	713.500010	713.500008	713.500007	713.500005
-20	713.499990	713.499992	713.499996	713.499999	713.500003	713.500005
-10	713.499989	713.499993	713.499998	713.500002	713.500006	713.500004
0	713.499994	713.499991	713.500008	713.500004	713.500004	713.500002
10	713.499998	713.499994	713.500012	713.500005	713.500006	713.500007
20	713.500013	713.500009	713.500007	713.500002	713.499998	713.499999
30	713.499988	713.499990	713.500000	713.499997	713.499994	713.499990
40	713.499994	713.499999	713.500003	713.500009	713.500011	713.500010
50	713.499987	713.499992	713.499998	713.500002	713.500006	713.500011

Temperature		Time after Start-up					
(°C)	6 minutes (MHz)	7 minutes (MHz)	8 minutes (MHz)	9 minutes (MHz)	10 minutes (MHz)		
-30	713.500003	713.500002	713.500002	713.500002	713.500001		
-20	713.500003	713.500001	713.500002	713.500002	713.500002		
-10	713.500002	713.500003	713.500001	713.500001	713.500001		
0	713.500001	713.500002	713.500001	713.500002	713.500001		
10	713.500005	713.500006	713.500003	713.500002	713.500002		
20	713.500001	713.500002	713.500002	713.500001	713.500001		
30	713.500000	713.500001	713.500003	713.500000	713.500000		
40	713.500007	713.500000	713.500003	713.500001	713.500001		
50	713.500015	713.500005	713.500004	713.500002	713.500002		

Frequency closest to Upper Band 12 Edge (MHz)	Upper Band Edge Limit (MHz)	Margin (MHz)	Result
713.500015	716.0	2.499985	Complied

Transmitter Frequency Stability (Temperature Variation) (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
E013	Environmental Chamber	Sanyo	MTH- 4200PR	None Stated	Calibrated before use	-
L1068	LTE Test Set	Anritsu	MT8820A	6201127386	15 May 2013	12
M1068	Thermometer	Iso-Tech	RS55	93102884	08 Mar 2013	12
M1229	Digital Multimeter	Fluke	179	87640015	18 Jun 2013	12
S0537	DC Power Supply	ТТІ	EL302D	249928	Calibrated before use	12

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

5.2.8. Transmitter Frequency Stability (Voltage Variation)

Test Summary:

Test Engineer:	Nick Steele	Test Dates:	27 July 2012 & 01 August 2012
Test Sample Serial Number:	AMWGB84001G12		

FCC Reference:	Parts 2.1055 & 27.54
Test Method Used:	As detailed in ANSI TIA-603-C-2004 Section 2.2.2 referencing FCC CFR Part 2.1055

Environmental Conditions:

Temperature (°C):	28 to 30
Relative Humidity (%):	34 to 40

Note(s):

- 1. Voltage was monitored throughout the test with a calibrated digital voltmeter.
- 2. Measurements were made using the Anristu MT8820C Radio Communications Analyser.
- 3. The transmit frequency was monitored throughout the test and did not drift outside of the frequency limits of LTE Band 12 699 MHz to 716 MHz.

Results: Bottom Channel

Supply Voltage (V)	Measured Frequency (MHz)	Lower Band Edge Limit (MHz)	Margin (MHz)	Result
3.0	701.500007	699.0	2.500007	Complied
3.6	701.500004	699.0	2.500004	Complied

Results: Top Channel

Supply Voltage (V)	Measured Frequency (MHz)	Upper Band Edge Limit (MHz)	Margin (MHz)	Result
3.0	713.499998	716.0	2.500002	Complied
3.6	713.500004	716.0	2.499996	Complied

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
L1068	LTE Test Set	Anritsu	MT8820A	6201127386	15 May 2013	12
M1229	Digital Multimeter	Fluke	179	87640015	18 Jun 2013	12
S0537	DC Power Supply	ТТІ	EL302D	249928	Calibrated before use	12

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

6. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Conducted Carrier Output Power	699 MHz to 716 MHz	95%	±1.13 dB
Occupied Bandwidth	699 MHz to 716 MHz	95%	±3.92 %
Conducted Spurious Emissions	9 kHz to 8 GHz	95%	±2.64 dB
Radiated Spurious Emissions	30 MHz to 1 GHz	95%	±5.65 dB
Radiated Spurious Emissions	1 GHz to 8 GHz	95%	±2.94 dB
Frequency Stability	699 MHz to 716 MHz	95%	±0.92 ppm

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

7. Report Revision History

Version	Revision Details			
Number	Page No(s)	Clause	Details	
1.0	-	-	Initial Version	
2.0	-	-	Remove Antenna Type	
2.0	8	3.4	Update Antenna Gain from 0 dBi to 19 dBi and recalculate ERP	
3.0	8, 10, 24 to 30	3.4, 4.2, 5.2.5	Update Antenna Gain detail and recalculate ERP	
4.0	-	-	Updated to UL VS LTD format Receiver tests removed as now covered in UL-RPT- RP10135420JD02A Output power and Occupied bandwidth tests repeated using KDB 971168 Conducted Band edge with single resource blocks repeated Radiated Spurious Emissions repeated Radiated Emissions at Band edge repeated MUs for output power and occupied bandwidth updated Part 27.53 references updated	