

TEST REPORT FROM RADIO FREQUENCY INVESTIGATION LTD.

Test of: IP Wireless UK Ltd. 2600 MHz PCMCIA Modem

(Body Measurements Only)

To: OET Bulletin 65 Supplement C: (2001-01)

Measurements were performed on the DASY4 System

Test Report Serial No: RFI/SARB1/RP45219JD02A

This Test Report Is Issued Under The Authority Of Richard Jacklin, Operations Director:	Checked By: Joe Lomako
Tested By: Scott D Adamo	Release Version No: PDF001
fatt Diddamo	
Issue Date: 02 April 2004	Test Dates: 17 March 2004 to 19 March 2004

It should be noted that the standard, OET Bulletin 65 Supplement C: (2001-01) is not listed on RFI's current UKAS schedule and is therefore "not UKAS accredited".

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields. Furthermore, the date of creation must match the issue date stated above.

This report may be copied in full. The results in this report apply only to the sample(s) tested.

Radio Frequency Investigation Ltd, Ewhurst Park, Ramsdell, Basingstoke, Hampshire, RG26 5RQ, ENGLAND. Tel: +44 (0) 1256 851193 Fax: +44 (0) 1256 851192	Registered in England, No. 211 7901. Registered Office: Ewhurst Park, Ramsdell, Basingstoke, Hampshire RG26 5RQ	
---	--	--

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 2 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

This page has been left intentionally blank.

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 3 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

Table of Contents

1. Client Information4	ŀ
2. Equipment Under Test (EUT)5	5
3. Test Specification, Methods And Procedures9)
4. Deviations From The Test Specification10)
5. Operation Of The EUT During Testing11	I
6. Summary Of Test Results12	2
7. SAR Measurement System21	
8. SAR Safety Limits	2
9. Details of SAR Evaluation23	;
10. Evaluation Procedures	ŀ
11. System Validation25	;
12. Simulated Tissues26	;
13. Tissue Parameters	,
14. DASY4 Systems Specifications28	3
15. Validation results – 2450 MHz MSL Body)
16. Validation results – 2450 MHz MSL Body31	I
17. Validation results – 2450 MHz MSL Body)
18. Measurement Uncertainty32	2
Appendix 1. Test Equipment Used34	ŀ
Appendix 2. SAR Distribution Scans)
Appendix 3. Test Configuration Photograph38	}
Appendix 4 Photographs of EUT40)

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 4 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

1. Client Information

1.1. Client Details

Company Name:	IP Wireless UK Ltd.
Address:	3-6 Charlton Business Park Crudwell Road Malmesbury Wiltshire SN16 9RU
Contact Name:	Mr P Warburg

1.2. Test Laboratory

Company Name:	Radio Frequency Investigation Ltd.
Address:	Ewhurst Park Ramsdell Basingstoke Hampshire RG26 5RQ.
Contact Name:	Mr J Lomako

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 5 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

2. Equipment Under Test (EUT)

The following information (with the exception of the Date of Receipt) has been supplied by the client:

2.1. Identification Of Equipment Under Test (EUT)

Brand Name	IP Wireless Broadband Modem
Model Name or Number	FD
Unique type Identification:	None Stated
FCC Identification	PKTPCMCIAFD1
Serial Number	FD5D34100F213
Battery Serial Number	Not Applicable
Country Of Manufacture	UK
Date Of Receipt	17 March 2004

2.2. Modifications Incorporated In EUT

During the course of testing the EUT was not modified.

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 6 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

2.3. Additional Information Related to the EUT

Equipment Class:	PCMCIA Modem
FCC Rule Part(s):	OET Bulletin 65 Supplement C
Device Category:	Portable
Application Type	Not Applicable
Maximum Power Output:	2600 MHz – 24 dBm
Transmit Frequency Allocation Of EUT	2600 MHz Band:
	 3.84Mcps / 6MHz Channel 0 – Bottom Channel – 2503 MHz 1 – Middle channel – 2596 MHz 2 – Top channel – 2683 MHz 7.68Mcps / 12MHz Channel 0 – Bottom channel – 2506 MHz 1 – Middle – 2596 MHz 2 – Top channel – 2680 MHz
	Note: - Channel numbers are for indication only.
Modulation(s):	100 Hz
Modulation Scheme (Crest Factor)	3 (TDCDMA)
Battery Type(s):	Not Applicable
Antenna Length and Type:	Internal
Number Of Antenna Positions	1
Intended Operating Environment:	Commercial
Weight:	Approx 56.59g
Dimensions (without Antenna) mm:	Approx 116 (L) x 54 (W) x 22 (H) mm
Power Supply Requirement:	
DC Supply (Volts/Amps)	3.3V /1A supplied by host laptop
AC Supply (Volts/Amps)	230V / 1A supplied to host laptop via AC mains adapter
Internal Battery Supply:	Not Applicable
Port(s):	SIM PCMCIA Conducted RF test connector

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 7 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

2.4. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description	Laptop (270 Series Travel Mate)
Brand Name	ACer
Model Name or Number	BY25
Serial Number	00045 – 156 – 974 - 599
Cable Length And Type	1.5m 2 Core Cable
Connected to Port	DC Input

Description	AC Adapter
Brand Name	ASTEC
Model Name or Number	SA80-3115
Serial Number	B386490 60H01B
Cable Length And Type	1m AC Mains Cable
Connected to Port	AC Input

Description	Laptop (Notebook Computer)
Brand Name	SONY
Model Name or Number	PCG - 5201
Serial Number	28308530 3101633
Cable Length And Type	1.5m 2 Core Cable
Connected to Port	DC Input

Description	AC Adapter
Brand Name	SONY
Model Name or Number	PCGA - AC19V1
Serial Number	0031 D 0005652
Cable Length And Type	1.5m mains cable
Connected to Port	AC Input

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 8 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

Support Equipment (Continued)

Description	Laptop (Action Book 345T)
Brand Name	UMAX
Model Name or Number	2000
Serial Number	PD0402096
Cable Length And Type	1.5m 2 Core Cable
Connected to Port	DC Input

Description	AC Adapter	
Brand Name	Lien Electronics Inc.	
Model Name or Number	LE - 9702A - 05	
Serial Number	None Stated	
Cable Length And Type	1.0m AC Mains Cable	
Connected to Port	AC Input	

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 9 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

3. Test Specification, Methods And Procedures

3.1. Test Specification

Reference:	OET Bulletin 65 Supplement C: (2001-01)
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
Purpose of Test:	To determine whether the equipment complied with the requirements of the specification.

3.2. Methods And Procedures

The methods and procedures used were as detailed in:

EN 50361: 2001

Title: Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz).

ANSI/IEEE C95.1: 1999

IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz.

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with know precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

3.3. Definition Of Measurement Equipment

The measurement equipment used complied with the requirements as detailed in OET Bulletin 65 Supplement C, Appendix D.

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 10 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

4. Deviations From The Test Specification

At the clients request the EUT was exercised and tested at 2600 MHz Tranceive (5 TX and 10 RX) mode only in a body worn configuration. The 2450 MHz dipole verification system was used with 2450 MHz muscle simulating liquid. Measurements were performed with an E-field probe with conversion factors correlating to 2600 MHz band.

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 11 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

5. Operation Of The EUT During Testing

5.1. Operating Modes

The EUT was tested using the following operated mode:

Tranceive Mode (5 TX and 10 RX) with PCMCIA modem exercised at 3.84Mcps / 6MHz channel and 7.68Mcps / 12MHz channel data rates consecutively.

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 12 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

6. Summary Of Test Results

6.1. Summary Of Tests

Test Name	Specification Reference	Compliancy Status
Specific Absorption Rate (SAR)	OET Bulletin 65 Supplement C	Complied

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 13 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

<u>6.2. Test Results For Specific Absorption Rate – 2600 MHz ACer Host:-</u> <u>3.84Mcps / 6MHz Channel</u>

Temperature Variation in Lab (°C):	25.0 to 25.0
Temperature Variation in Liquid (°C):	24.0 to 24.0

Conducted Power Measurement Before Test:	Refer to Section 6.8
--	----------------------

Position	Section	Frequency Channel No	Distance from antenna to phantom (mm)	SAR Level (W/kg) 1g	SAR Limit (W/kg) 1g	Margin (W/kg) 1g	Result
0 Degrees to Phantom	Flat	2596 MHz	15	0.132	1.6	1.468	Complied
90 Degrees to Phantom	Flat	2596 MHz	15	0.611	1.6	0.989	Complied
90 Degrees to Phantom	Flat	2503 MHz	15	0.408	1.6	1.192	Complied
90 Degrees to Phantom	Flat	2683 MHz	15	0.616	1.6	0.984	Complied

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 14 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

<u>6.3. Test Results For Specific Absorption Rate – 2600 MHz ACer Host:</u> <u>7.68Mcps / 6MHz Channel</u>

Temperature Variation in Lab (°C):	25.0 to 25.0
Temperature Variation in Liquid (°C):	24.0 to 24.0

Conducted Power Measurement Before Test:	Refer to Section 6.8
--	----------------------

Position	Section	Frequency Channel No	Distance from antenna to phantom (mm)	SAR Level (W/kg) 1g	SAR Limit (W/kg) 1g	Margin (W/kg) 1g	Result
0 Degrees to Phantom	Flat	2596 MHz	15	0.204	1.6	1.396	Complied
90 Degrees to Phantom	Flat	2596 MHz	15	0.610	1.6	0.990	Complied
90 Degrees to Phantom	Flat	2506 MHz	15	0.403	1.6	1.197	Complied
90 Degrees to Phantom	Flat	2680 MHz	15	0.582	1.6	1.018	Complied

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 15 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

<u>6.4. Test Results For Specific Absorption Rate – 2600 MHz SONY Host:-</u> <u>3.84Mcps / 6MHz Channel</u>

Temperature Variation in Lab (°C):	24.0 to 24.0
Temperature Variation in Liquid (°C):	24.0 to 23.9

Conducted Power Measurement Before Test:	Refer to Section 6.8
--	----------------------

Position	Section	Frequency Channel No	Distance from antenna to phantom (mm)	SAR Level (W/kg) 1g	SAR Limit (W/kg) 1g	Margin (W/kg) 1g	Result
90 Degrees to Phantom	Flat	2596 MHz	15	0.521	1.6	1.079	Complied
0 Degrees to Phantom	Flat	2596 MHz	15	0.215	1.6	1.385	Complied
90 Degrees to Phantom	Flat	2503 MHz	15	0.433	1.6	1.167	Complied
90 Degrees to Phantom	Flat	2683 MHz	15	0.468	1.6	1.132	Complied

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 16 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

<u>6.5. Test Results For Specific Absorption Rate – 2600 MHz SONY Host:-</u> 7.68Mcps / 12MHz Channel

Temperature Variation in Lab (°C):	24.0 to 24.0
Temperature Variation in Liquid (°C):	24.0 to 23.9

Conducted Power Measurement Before Test:	Refer to Section 6.8
--	----------------------

Position	Section	Frequency Channel No	Distance from antenna to phantom (mm)	SAR Level (W/kg) 1g	SAR Limit (W/kg) 1g	Margin (W/kg) 1g	Result
0 Degrees to Phantom	Flat	2596 MHz	15	0.229	1.6	1.371	Complied
90 Degrees to Phantom	Flat	2596 MHz	15	0.570	1.6	1.030	Complied
90 Degrees to Phantom	Flat	2506 MHz	15	0.440	1.6	1.160	Complied
90 Degrees to Phantom	Flat	2680 MHz	15	0.516	1.6	1.084	Complied

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 17 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

<u>6.6. Test Results For Specific Absorption Rate – 2600 MHz UMAX Host:-</u> <u>3.84Mcps / 6MHz Channel</u>

Temperature Variation in Lab (°C):	24.0 to 25.0
Temperature Variation in Liquid (°C):	24.5 to 24.5

Field Strength Measurement Before Test:	Refer to Section 6.8
---	----------------------

Position	Section	Frequency Channel No	Distance from antenna to phantom (mm)	SAR Level (W/kg) 1g	SAR Limit (W/kg) 1g	Margin (W/kg) 1g	Result
0 Degrees to Phantom	Flat	2596 MHz	15	0.318	1.6	1.282	Complied
90 Degrees to Phantom	Flat	2596 MHz	15	0.562	1.6	1.038	Complied
90 Degrees to Phantom	Flat	2503 MHz	15	0.423	1.6	1.177	Complied
90 Degrees to Phantom	Flat	2683 MHz	15	0.523	1.6	1.077	Complied

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 18 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

<u>6.7. Test Results For Specific Absorption Rate – 2600 MHz UMAX Host:</u> <u>7.68Mcps / 12MHz Channel</u>

Temperature Variation in Lab (°C):	24.0 to 24.0
Temperature Variation in Liquid (°C):	24.0 to 23.9

Conducted Power Measurement Before Test:	Refer to Section 6.8
--	----------------------

Position	Section	Frequency Channel No	Distance from antenna to phantom (mm)	SAR Level (W/kg) 1g	SAR Limit (W/kg) 1g	Margin (W/kg) 1g	Result
0 Degrees to Phantom	Flat	2596 MHz	15	0.308	1.6	1.292	Complied
90 Degrees to Phantom	Flat	2596 MHz	15	0.473	1.6	1.127	Complied
90 Degrees to Phantom	Flat	2506 MHz	15	0.390	1.6	1.210	Complied
90 Degrees to Phantom	Flat	2680 MHz	15	0.478	1.6	1.122	Complied

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 19 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

6.8. Conducted Power Measurement

ACer Host:- 3.84 Mcps / 6 MHz:- 17 March 2004

Channel	Frequency	dBm
Bottom	2503 MHz	23.9
Middle	2596 MHz	24.6
Тор	2683 MHz	24.1

ACer Host:- 7.68 Mcps / 12 MHz:- 17 March 2004

Channel	Freq uency	dBm
Bottom	2506 MHz	24.0
Middle	2596 MHz	25.0
Тор	2680 MHz	24.1

SONY Host:- 3.84 Mcps / 6 MHz:-18 March 2004

Channel	Frequency	dBm
Bottom	2503 MHz	23.7
Middle	2596 MHz	24.5
Тор	2683 MHz	23.9

SONY Host:-7.68 Mcps / 12 MHz:-18 March 2004

Channel	Frequency	dBm
Bottom	2506 MHz	23.7
Middle	2596 MHz	24.5
Тор	2680 MHz	23.9

UMAX Host:-3.84 Mcps / 6 MHz:-18 March 2004

Channel	Frequency	dBm
Bottom	2503 MHz	23.5
Middle	2596 MHz	24.5
Тор	2683 MHz	23.9

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 20 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

Conducted Power Measurement (Continued)

UMAX Host:-7.68 Mcps / 12 MHz:-18 March 2004

Channel	Frequency	dBm
Bottom	2506 MHz	23.6
Middle	2596 MHz	24.5
Тор	2680 MHz	23.9

UMAX Host:-3.84 Mcps / 6 MHz:-19 March 2004

Channel	Frequency	dBm
Bottom	2503 MHz	23.7
Middle	2596 MHz	24.7
Тор	2683 MHz	24.0

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 21 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

7. SAR Measurement System

7.1. Radio Frequency Investigation SAR measurement facility utilises the Dosimetric Assessment System (DASY[™]) manufactured by Schmid & Partner Engineering AG (SPEAG[™]) of Zurich, Switzerland. The DASY4 system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, and the SAM phantom containing brain or muscle equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilises a highly sensitive electrometergrade preamplifier with auto-zeroing, a channel and gain-switching mulitplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PCcard is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 22 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

8. SAR Safety Limits

Exposure Limits	SAR
(General populations/Uncontrolled Exposure Environment)	(W/Kg)
Spatial Peak (averaged over any 1 g of tissue)	1.6

Notes:

- 1. The OET Bulletin 65 Supplement C SAR safety limits specified in the table above apply to devices operated in the General Population / Uncontrolled Exposure Environment.
- 2. Uncontrolled environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 23 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

9. Details of SAR Evaluation

9.1. The equipment under test was found to be compliant for localised specific absorption rate (SAR) based on the following provisions and conditions:

- a) The PCMCIA Modem was exercised via a host laptop and positioned under the flat section of the phantom.
- b) Measurements were performed with the EUT, 0 degrees to the phantom and 90 degrees to the phantom consecutively.
- c) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- d) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- e) The location of the maximum spatial SAR distribution (Hot Spot) was determined relative to the handset and its antenna.
- f) The EUT was tested via a host laptop, powered by AC mains adapter. The host laptop supplied a 3.3V / 1A supply to the PCMCIA Modem.

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 24 of 55 Issue Date: 02 April 2004

Test Of: IP Wireless UK Ltd. 2600 MHz PCMCIA Modem To: OET Bulletin 65 Supplement C: (2001-01)

10. Evaluation Procedures

10.1. The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

 a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by FCC OET bulletin 65 Supplement C.

(ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the phantom was used. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.

- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 7x7x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was re-evaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 25 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

11. System Validation

11.1. Prior to the assessment, the system was verified in the flat region of the phantom. A 2450 MHz dipole was used. A forward power of 250 mW was applied to the dipole and system was verified to a tolerance of $\pm 5\%$ for the 2450MHz dipole. The applicable verification (normalised to 1 Watt) is as follows:

Dipole Validation Kit	Target SAR 1g (W/kg)	Measured SAR 1g (W/kg)
D2450V2 / 750 (17/04/04)	52.1	54.0
D2450V2 / 750 (18/04/04)	52.1	54.4
D2450V2 / 750 (19/04/04)	52.1	52.8

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 26 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

12. Simulated Tissues

12.1. The body mixture consists of water and glycol. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

	Frequency	
	2450 MHz Muscle	
Water	68.64%	
DGMBE	31.37%	

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 27 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

<u>13. Tissue Parameters</u>

13.1. The dielectric parameters of the fluids were verified prior to the SAR evaluation using a 58070C Dielectric Probe Kit and an 8753E Network Analyser. The dielectric parameters of the fluid are as follows:

Frequency (MHz)	Equivalent Tissue	Dielectric Constant E _r	Conductivity σ (mho/m)
2450 (17/03/04)	Muscle	54.67	1.97
2450 (18/03/04)	Muscle	54.67	1.97
2450 (19/03/04)	Muscle	54.67	1.97

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 28 of 55 Issue Date: 02 April 2004

Test Of: IP Wireless UK Ltd. 2600 MHz PCMCIA Modem To: OET Bulletin 65 Supplement C: (2001-01)

14. DASY4 Systems Specifications

Robot System

Positioner:	Stäubli Unimation Corp. Robot Model: RX90L
Repeatability:	0.025 mm
No. of axis:	6
Serial Number:	F00/SD89A1/A/01
Reach:	1185 mm
Payload:	3.5 kg
Control Unit:	CS7
Programming Language:	V+

Data Acquisition Electronic (DAE) System

Cell Controller PC: Operating System: Data Card: Serial Number:

Data Converter Features:

Software: Connecting Lines:

PC Interface Card

Function:

E-Field Probe

 Model:

 Serial No:

 Construction:

 Frequency:

 Linearity:

 Probe Length (mm):

 Probe Diameter (mm):

 Tip Length (mm):

 Tip Diameter (mm):

 Sensor X Offset (mm):

 Sensor Y Offset (mm):

 Sensor Z Offset (mm):

 Phantom:

 Shell Material:

Thickness:

Dell Precision 340 Windows NT DASY4 Measurement Server 1080

Signal Amplifier, multiplexer, A/D converter and control logic. DASY4 Software Optical downlink for data and status info. Optical uplink for commands and clock.

24 bit (64 MHz) DSP for real time processing Link to DAE3 16 nit A/D converter for surface detection system serial link to robot direct emergency stop output for robot.

ET3DV6 1529 Triangular core fibre optic detection system 10 MHz to 3 GHz ±0.2 dB (30 MHz to 3 GHz) 337 12 10 6.8 2.7 2.7 2.7 SAM Phantom Fibreglass

2.0 ±0.1 mm

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 29 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

15. Validation results – 2450 MHz MSL Body

15.1. System Validation – 17 March 2004

15.1.1. Validation of the system test configuration was carried out prior to testing.

Validation Dipole Type and Serial No.	Calibrated Value of SAR in 1g volume (W/kg) at 2450 MHz	Measured Value of SAR in 1g volume (W/kg) at 2450 MHz	Percentage Difference (≤5%)
D2450V2 / 725	52.1	54.0	Yes

15.1.2. Liquid Properties

15.1.3. Properties of the tissue simulating liquid were measured prior to testing.

Property	Target Value (2450 MHz)	Measured/Calculated Value (2450 MHz)	Percentage Difference (≤5%)
Relative Permittivity	52.70	54.67	Yes
Conductivity	1.95	1.97	Yes

15.2. Temperature Variation

15.2.1. The temperature of the laboratory and within the tissue simulating liquid for this test shall not exceed the range $+15^{\circ}$ C to $+30^{\circ}$ C.

15.2.2. The actual temperature measured at the beginning and end of each test was recorded and the maximum range is shown below:

Measurement	Maximum Temperature	Minimum Temperature
Laboratory	25.0	25.0
Tissue Simulating Liquid	24.0	24.0

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 30 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

16. Validation results – 2450 MHz MSL Body

16.1. System Validation – 18 March 2004

16.1.1. Validation of the system test configuration was carried out prior to testing.

Validation Dipole Type and Serial No.	Calibrated Value of SAR in 1g volume (W/kg) at 2450 MHz	Measured Value of SAR in 1g volume (W/kg) at 2450 MHz	Percentage Difference (≤5%)	
D2450V2 / 725	52.1	54.4	Yes	

16.1.2. Liquid Properties

16.1.3. Properties of the tissue simulating liquid were measured prior to testing.

Property	Target Value (2450 MHz)	Measured/Calculated Value (2450 MHz)	Percentage Difference (≤5%)
Relative Permittivity	52.70	54.67	Yes
Conductivity	1.95	1.97	Yes

16.2. Temperature Variation

16.2.1. The temperature of the laboratory and within the tissue simulating liquid for this test shall not exceed the range $+15^{\circ}$ C to $+30^{\circ}$ C.

16.2.2. The actual temperature measured at the beginning and end of each test was recorded and the maximum range is shown below:

Measurement	Maximum Temperature	Minimum Temperature
Laboratory	24.0	24.0
Tissue Simulating Liquid	24.0	23.9

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 31 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

17. Validation results – 2450 MHz MSL Body

17.1. System Validation – 19 March 2004

17.1.1. Validation of the system test configuration was carried out prior to testing.

Validation Dipole Type and Serial No.	Calibrated Value of SAR in 1g volume (W/kg) at 2450 MHz	Measured Value of SAR in 1g volume (W/kg) at 2450 MHz	Percentage Difference (≤5%)
D2450V2 / 725	52.1	52.8	Yes

17.1.2. Liquid Properties

17.1.3. Properties of the tissue simulating liquid were measured prior to testing.

Property	Target Value (2450 MHz)	Measured/Calculated Value (2450 MHz)	Percentage Difference (≤5%)
Relative Permittivity	52.70	54.67	Yes
Conductivity	1.95	1.97	Yes

17.2. Temperature Variation

17.2.1. The temperature of the laboratory and within the tissue simulating liquid for this test shall not exceed the range $+15^{\circ}$ C to $+30^{\circ}$ C.

17.2.2. The actual temperature measured at the beginning and end of each test was recorded and the maximum range is shown below:

Measurement	Maximum Temperature	Minimum Temperature
Laboratory	25.0	24.0
Tissue Simulating Liquid	24.5	24.5

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 32 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

18. Measurement Uncertainty

18.1. No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

18.2. The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

18.3. The uncertainty of the result may need to be taken into account when interpreting the measurement results.

18.4. The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Range		Confidence	Calculated	
Type		Level	Uncertainty	
Specific Absorption Rate	2600 MHz	95%	± 17.70%	

18.5. The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

18.6. Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environment. However, the estimated measurement uncertainties in SAR are less than 30%.

18.7. According to ANSI/IEEE C95.3, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ± 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ± 2 dB can be expected.

18.8. According to CENELEC, typical worst-case uncertainty of field measurements is ± 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ± 3 dB.

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 33 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

Measurement Uncertainty (Continued)

Specific Absorption Rate Uncertainty at 2600 MHz, TDCDMA Modulation Scheme calculated in accordance with IEEE 1528-200X

Туре	Source of	+ Value	- Value	Probability	Divisor	Divisor	Divisor	Divisor	Divisor	Divisor	Divisor c _i	Ci	c _i Standaro		υ _i or	Note
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	uncertainty			Distribution			+ u (%)	- u (%)	ບ _{eff}							
В	Probe calibration	10.000	10.000	normal (k=2)	2.0000	1.0000	5.000	5.000	8							
В	Axail Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	×							
В	Hemispherical Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	8							
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	×							
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞							
В	Linearity	2.330	2.330	Rectangular	1.7321	1.0000	1.345	1.345	8							
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	8							
В	Readout Electronics	0.650	0.650	Normal (k=2)	2.0000	1.0000	0.325	0.325	8							
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	8							
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	8							
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	8							
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	8							
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	8							
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	8							
А	Test Sample Positioning	0.584	0.584	Normal (k=1)	1.0000	1.0000	0.584	0.584	10							
А	Device Holder uncertainty	0.154	0.154	Normal (k=1)	1.0000	1.0000	0.154	0.154	10							
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×							
В	Drit of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞							
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	~							
В	Liquid Conductivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	~							
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	~							
В	Liquid Permittivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	×							
	Combined standard uncertainty			t-distribution			9.03	9.03	>500							
	Expanded uncertainty			k = 1.96			17.70	17.70	>500							

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 34 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

1 Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Model Number
A1094	Sony MVC FD-81	Sony	MVC - FD81
A1097	SMA Directional Coupler	MiDISCO	MDC6223-30
A1174	Dielectric Probe Kit	Agilent Technologies	85070C
A1184	Data Acquisition Electronics	Schmid & Partners	DAE3
A1184	Data Acquisition Electronics	Schmid & Partners	DAE3
A1184	Data Acquisition Electronics	Schmid & Partners	DAE3
A1184	Data Acquisition Electronics	Schmid & Partners	DAE3
A1184	Data Acquisition Electronics	Schmid & Partners	DAE3
A1186	Probe	Schmid & Partners	ET3 DV6
A1225	Low noise Amplifier	Mini Circuits	ZHL-42
A1238	SAM Phantom	Schmid & Partners	001
A1322	Schmid & Partner Engineering AG	Schmid & Partner Engineering AG	D2450V2
A215	20 dB Attenuator	Narda	766-20
C1052	Cable	Utiflex	FA210A0030M3030
C1053	Cable	Utiflex	FA210A0003M3030
C1054	Cable	Utiflex	FA210A0001M3050A
G046	Signal Generator	Gigatronics	7100/.01-20
G088	PSU	Thurlby Thandar	CPX200
M011	NRV-Z1 Power Sensor	Rohde & Schwarz	NRV-Z1
M094	URY Power Meter	Rohde & Schwarz	URY
M1001	Spectrum Analyser 8594A	Hewlett Packard	8594A
M1015	Network Analyser	Agilent Technologies	8753ES
M103	URY Power Meter	Rohde & Schwarz	URY
M1047	Robot Arm	Staubli	RX908 L
M1123	Boonton	Boonton	4531
M1130	Rohde & Schwarz	Rohde & Schwarz	URY-Z2
M136	Temperature/Humidity/Pressure Meter	RS Components	None
M509	Thermometer	Testo	110
S256	Site 56	RFI	N/A

NB In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule.

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 35 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

Appendix 2. SAR Distribution Scans

This appendix contains SAR Distribution Scans.

Scan Reference Number	Title
SCN/45219JD02/001	Flat Section 2600MHz 6MHz Channel 0 Degrees to Phantom ACer Host
SCN/45219JD02/002	Flat Section 2600MHz 6MHz Channel 90 Degrees to Phantom ACer Host
SCN/45219JD02/003	Flat Section 2600MHz 6MHz Channel 90 Degrees to Phantom ACer Host
SCN/45219JD02/004	Flat Section 2600MHz 6MHz Channel 90 Degrees to Phantom ACer Host
SCN/45219JD02/005	Flat Section 2600MHz 12MHz Channel 0 Degrees to Phantom ACer Host
SCN/45219JD02/006	Flat Section 2600MHz 12MHz Channel 90 Degrees to Phantom ACer Host
SCN/45219JD02/007	Flat Section 2600MHz 12MHz Channel 90 Degrees to Phantom ACer Host
SCN/45219JD02/008	Flat Section 2600MHz 12MHz Channel 90 Degrees to Phantom ACer Host
SCN/45219JD02/009	Flat Section 2600MHz 6MHz Channel 0 Degrees to Phantom SONY Host
SCN/45219JD02/010	Flat Section 2600MHz 6MHz Channel 90 Degrees to Phantom SONY Host
SCN/45219JD02/011	Flat Section 2600MHz 6MHz Channel 90 Degrees to Phantom SONY Host
SCN/45219JD02/012	Flat Section 2600MHz 6MHz Channel 90 Degrees to Phantom SONY Host
SCN/45219JD02/013	Flat Section 2600MHz 12MHz Channel 0 Degrees to Phantom SONY Host
SCN/45219JD02/014	Flat Section 2600MHz 12MHz Channel 90 Degrees to Phantom SONY Host
SCN/45219JD02/015	Flat Section 2600MHz 12MHz Channel 90 Degrees to Phantom SONY Host
SCN/45219JD02/016	Flat Section 2600MHz 12MHz Channel 90 Degrees to Phantom SONY Host
SCN/45219JD02/017	Flat Section 2600MHz 12MHz Channel 0 Degrees to Phantom UMAX Host
SCN/45219JD02/018	Flat Section 2600MHz 12MHz Channel 90 Degrees to Phantom UMAX Host

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 36 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

SAR Distribution Scans (Continued)

Scan Reference Number	Title
SCN/45219JD02/019	Flat Section 2600MHz 12MHz Channel 90 Degrees to Phantom UMAX Host
SCN/45219JD02/020	Flat Section 2600MHz 12MHz Channel 90 Degrees to Phantom UMAX Host
SCN/45219JD02/021	Flat Section 2600MHz 6MHz Channel 0 Degrees to Phantom UMAX Host
SCN/45219JD02/022	Flat Section 2600MHz 6MHz Channel 90 Degrees to Phantom UMAX Host
SCN/45219JD02/023	Flat Section 2600MHz 6MHz Channel 90 Degrees to Phantom UMAX Host
SCN/45219JD02/024	Flat Section 2600MHz 6MHz Channel 90 Degrees to Phantom UMAX Host
SCN/45219JD02/025	VALIDATION 001
SCN/45219JD02/026	VALIDATION 002
SCN/45219JD02/027	VALIDATION 003
RADIO FREQUENCY INVESTIGATION LTD.

TEST REPORT S.No. RFI/SARB1/RP45219JD02A Page 37 of 55 Issue Date: 02 April 2004

Test Of:IP Wireless UK Ltd.
2600 MHz PCMCIA ModemTo:OET Bulletin 65 Supplement C: (2001-01)

This page has been left intentionally blank.

45219/JD02/001

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_6MHz Channel_ 0 Degrees to Phantom_ACer Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 6MHz Channel; Frequency: 2596 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2596 MHz; $\sigma = 2.18$ mho/m; $\varepsilon_r =$

54.2; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

0 Degrees to Phantom/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 4.73 V/m; Power Drift = 0.1 dB Maximum value of SAR (interpolated) = 0.138 mW/g

0 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 4.73 V/m; Power Drift = 0.1 dB Maximum value of SAR (measured) = 0.143 mW/g Peak SAR (extrapolated) = 0.292 W/kg SAR(1 g) = 0.132 mW/g; SAR(10 g) = 0.075 mW/g

0 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.73 V/m; Power Drift = 0.1 dBMaximum value of SAR (measured) = 0.093 mW/gPeak SAR (extrapolated) = 0.193 W/kgSAR(1 g) = 0.089 mW/g; SAR(10 g) = 0.053 mW/g

0 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 2: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.73 V/m; Power Drift = 0.1 dB Maximum value of SAR (measured) = 0.098 mW/g Peak SAR (extrapolated) = 0.212 W/kg SAR(1 g) = 0.085 mW/g; SAR(10 g) = 0.051 mW/g

45219/JD02/002

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_6MHz Channel_ 90 Degrees to Phantom_ACer Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 6MHz Channel; Frequency: 2596 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2596 MHz; $\sigma = 2.18$ mho/m; $\varepsilon_r =$

54.2; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 15.7 V/m; Power Drift = 0.0 dBMaximum value of SAR (interpolated) = 0.641 mW/g

90 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = 0.0 dBMaximum value of SAR (measured) = 0.667 mW/gPeak SAR (extrapolated) = 1.39 W/kgSAR(1 g) = 0.611 mW/g; SAR(10 g) = 0.332 mW/g

45219/JD02/003

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_6MHz Channel_ 90 Degrees to Phantom_ACer Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 6MHz Channel; Frequency: 2503 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2503 MHz; $\sigma = 2.05$ mho/m; $\varepsilon_r =$

54.5; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(4.3, 4.3, 4.3); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom - Bottom/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 13.5 V/m; Power Drift = 0.0 dB

Maximum value of SAR (interpolated) = 0.415 mW/g

90 Degrees to Phantom - Bottom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 13.5 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 0.425 mW/gPeak SAR (extrapolated) = 0.870 W/kgSAR(1 g) = 0.408 mW/g; SAR(10 g) = 0.227 mW/g

45219/JD02/004

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_6MHz Channel_ 90 Degrees to Phantom_ACer Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 6MHz Channel; Frequency: 2683 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2683 MHz; $\sigma = 2.31$ mho/m; $\varepsilon_r =$

53.9; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom - Top/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 15.5 V/m; Power Drift = -0.4 dB Maximum value of SAR (interpolated) = 0.594 mW/g

90 Degrees to Phantom - Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 15.5 V/m; Power Drift = -0.4 dB Maximum value of SAR (measured) = 0.668 mW/g Peak SAR (extrapolated) = 1.59 W/kg SAR(1 g) = 0.616 mW/g; SAR(10 g) = 0.322 mW/g

45219/JD02/005

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 0 Degrees to Phantom_ACer Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 12MHz Channel; Frequency: 2596 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2596 MHz; $\sigma = 2.18$ mho/m; $\varepsilon_r =$ 54.2; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

0 Degrees to Phantom/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 5.9 V/m; Power Drift = 0.2 dBMaximum value of SAR (interpolated) = 0.216 mW/g

0 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.9 V/m; Power Drift = 0.2 dBMaximum value of SAR (measured) = 0.210 mW/gPeak SAR (extrapolated) = 0.445 W/kgSAR(1 g) = 0.204 mW/g; SAR(10 g) = 0.117 mW/g

0 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.9 V/m; Power Drift = 0.2 dBMaximum value of SAR (measured) = 0.144 mW/gPeak SAR (extrapolated) = 0.290 W/kgSAR(1 g) = 0.138 mW/g; SAR(10 g) = 0.083 mW/g

45219/JD02/006

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 90 Degrees to Phantom_ACer Host

DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 12MHz Channel; Frequency: 2596 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2596 MHz; $\sigma = 2.18$ mho/m; $\varepsilon_r =$

54.2; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 15.8 V/m; Power Drift = -0.0 dBMaximum value of SAR (interpolated) = 0.625 mW/g

90 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.8 V/m; Power Drift = -0.0 dBMaximum value of SAR (measured) = 0.644 mW/gPeak SAR (extrapolated) = 1.35 W/kgSAR(1 g) = 0.610 mW/g; SAR(10 g) = 0.335 mW/g

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 90 Degrees to Phantom_ACer Host

0.030

0.025

0.015

m

0.020

-1.3 [

0.000

0.005

0.010

Communication System: TDCDMA - 12MHz Channel; Frequency: 2506 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2506 MHz; $\sigma = 2.05$ mho/m; $\varepsilon_r =$

54.5; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom - Bottom/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 13.4 V/m; Power Drift = 0.0 dB

Maximum value of SAR (interpolated) = 0.421 mW/g

90 Degrees to Phantom - Bottom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 13.4 V/m; Power Drift = 0.0 dBMaximum value of SAR (measured) = 0.422 mW/gPeak SAR (extrapolated) = 0.863 W/kgSAR(1 g) = 0.403 mW/g; SAR(10 g) = 0.225 mW/g

45219/JD02/008

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 90 Degrees to Phantom_ACer Host

DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Page 2 of 3

...\45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 90 Degrees to Phantom_ACer Host-3.ht 19/03/2004

Communication System: TDCDMA - 12MHz Channel; Frequency: 2680 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used: f = 2680 MHz; $\sigma = 2.3$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom - Top/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 14.9 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 0.608 mW/g

90 Degrees to Phantom - Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 14.9 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 0.611 mW/gPeak SAR (extrapolated) = 1.3 W/kgSAR(1 g) = 0.582 mW/g; SAR(10 g) = 0.318 mW/g

Date:18/03/04

45219/JD02/009

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_6MHz Channel_ 0 Degrees to Phantom_Sony Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 6MHz Channel; Frequency: 2596 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2596 MHz; $\sigma = 2.18$ mho/m; $\varepsilon_r =$ 54.2; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

0 Degrees to Phantom/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 7.65 V/m; Power Drift = 0.2 dBMaximum value of SAR (interpolated) = 0.221 mW/g

0 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.65 V/m; Power Drift = 0.2 dB Maximum value of SAR (measured) = 0.226 mW/gPeak SAR (extrapolated) = 0.455 W/kgSAR(1 g) = 0.215 mW/g; SAR(10 g) = 0.127 mW/g

0 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.65 V/m; Power Drift = 0.2 dB Maximum value of SAR (measured) = 0.214 mW/gPeak SAR (extrapolated) = 0.430 W/kgSAR(1 g) = 0.194 mW/g; SAR(10 g) = 0.114 mW/g
45219/JD02/010

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_6MHz Channel_ 90 Degrees to Phantom_Sony Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 6MHz Channel; Frequency: 2596 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2596 MHz; $\sigma = 2.18$ mho/m; $\varepsilon_r =$

54.2; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 15.4 V/m; Power Drift = 0.0 dBMaximum value of SAR (interpolated) = 0.550 mW/g

90 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.4 V/m; Power Drift = 0.0 dBMaximum value of SAR (measured) = 0.545 mW/gPeak SAR (extrapolated) = 1.14 W/kgSAR(1 g) = 0.521 mW/g; SAR(10 g) = 0.291 mW/g

45219/JD02/011

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_6MHz Channel_ 90 Degrees to Phantom_Sony Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 6MHz Channel; Frequency: 2503 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2503 MHz; $\sigma = 2.05$ mho/m; $\varepsilon_r =$

54.5; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(4.3, 4.3, 4.3); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom - Bottom/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 14 V/m; Power Drift = -0.1 dB Maximum value of SAP (internalisted) = 0.448 mW/g

Maximum value of SAR (interpolated) = 0.448 mW/g

90 Degrees to Phantom - Bottom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 14 V/m; Power Drift = -0.1 dB Maximum value of SAR (measured) = 0.462 mW/g Peak SAR (extrapolated) = 0.931 W/kg SAR(1 g) = 0.433 mW/g; SAR(10 g) = 0.242 mW/g

45219/JD02/012

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_6MHz Channel_ 90 Degrees to Phantom_Sony Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 6MHz Channel; Frequency: 2683 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2683 MHz; $\sigma = 2.31$ mho/m; $\varepsilon_r =$

53.9; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom Top/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 13.5 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 0.486 mW/

90 Degrees to Phantom Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.5 V/m; Power Drift = 0.0 dBMaximum value of SAR (measured) = 0.484 mW/gPeak SAR (extrapolated) = 1.12 W/kgSAR(1 g) = 0.468 mW/g; SAR(10 g) = 0.256 mW/g

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 0 Degrees to Phantom_Sony Host

Communication System: TDCDMA - 12MHz Channel; Frequency: 2596 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2596 MHz; $\sigma = 2.18$ mho/m; $\varepsilon_r =$ 54.2; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

0 Degrees to Phantom/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 8.7 V/m; Power Drift = 0.0 dBMaximum value of SAR (interpolated) = 0.232 mW/g

0 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.7 V/m; Power Drift = 0.0 dBMaximum value of SAR (measured) = 0.241 mW/gPeak SAR (extrapolated) = 0.462 W/kgSAR(1 g) = 0.229 mW/g; SAR(10 g) = 0.135 mW/g

0 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.7 V/m; Power Drift = 0.0 dBMaximum value of SAR (measured) = 0.212 mW/gPeak SAR (extrapolated) = 0.433 W/kgSAR(1 g) = 0.198 mW/g; SAR(10 g) = 0.116 mW/g

45219/JD02/014

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 90 Degrees to Phantom_Sony Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

...\45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 90 Degrees to Phantom_Sony Host-1.ht 19/03/2004

Communication System: TDCDMA - 12MHz Channel; Frequency: 2596 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2596 MHz; $\sigma = 2.18$ mho/m; $\varepsilon_r =$

54.2; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 15.7 V/m; Power Drift = -0.1 dBMaximum value of SAR (interpolated) = 0.595 mW/g

90 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = -0.1 dBMaximum value of SAR (measured) = 0.602 mW/gPeak SAR (extrapolated) = 1.25 W/kgSAR(1 g) = 0.570 mW/g; SAR(10 g) = 0.312 mW/g

45219/JD02/015

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 90 Degrees to Phantom_Sony Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 12MHz Channel; Frequency: 2506 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2506 MHz; $\sigma = 2.05$ mho/m; $\varepsilon_r =$

54.5; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom - Bottom/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 13.5 V/m; Power Drift = 0.0 dB

Maximum value of SAR (interpolated) = 0.457 mW/g

90 Degrees to Phantom - Bottom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 13.5 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 0.463 mW/gPeak SAR (extrapolated) = 0.904 W/kgSAR(1 g) = 0.440 mW/g; SAR(10 g) = 0.247 mW/g

45219/JD02/016

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 90 Degrees to Phantom_Sony Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

...\45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 90 Degrees to Phantom_Sony Host-3.ht 19/03/2004

Communication System: TDCDMA - 12MHz Channel; Frequency: 2680 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used: f = 2680 MHz; $\sigma = 2.3$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom - Top/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 14.4 V/m; Power Drift = -0.1 dB

Maximum value of SAR (interpolated) = 0.540 mW/g

90 Degrees to Phantom - Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 14.4 V/m; Power Drift = -0.1 dB Maximum value of SAR (measured) = 0.538 mW/gPeak SAR (extrapolated) = 1.17 W/kgSAR(1 g) = 0.516 mW/g; SAR(10 g) = 0.279 mW/g

45219/JD02/017

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 0 Degrees to Phantom_UMAX Host

Communication System: TDCDMA - 12MHz Channel; Frequency: 2596 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2596 MHz; $\sigma = 2.18$ mho/m; $\varepsilon_r =$

54.2; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

0 Degrees to Phantom/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 10.9 V/m; Power Drift = -0.1 dBMaximum value of SAR (interpolated) = 0.311 mW/g

0 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 10.9 V/m; Power Drift = -0.1 dB Maximum value of SAR (measured) = 0.322 mW/gPeak SAR (extrapolated) = 0.708 W/kgSAR(1 g) = 0.308 mW/g; SAR(10 g) = 0.177 mW/g

45219/JD02/18

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 90 Degrees to Phantom_UMAX Host

Communication System: TDCDMA - 12MHz Channel; Frequency: 2596 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2596 MHz; $\sigma = 2.18$ mho/m; $\varepsilon_r =$

54.2; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 14 V/m; Power Drift = -0.0 dB Maximum value of SAR (interpolated) = 0.484 mW/g

90 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 14 V/m; Power Drift = -0.0 dBMaximum value of SAR (measured) = 0.493 mW/gPeak SAR (extrapolated) = 1.07 W/kgSAR(1 g) = 0.473 mW/g; SAR(10 g) = 0.262 mW/g

45219/JD02/019

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 90 Degrees to Phantom_UMAX Host

Communication System: TDCDMA - 12MHz Channel; Frequency: 2506 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2506 MHz; $\sigma = 2.05$ mho/m; $\varepsilon_r =$

54.5; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 112

90 Degrees to Phantom Bottom/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 12.7 V/m; Power Drift = -0.004 dBMaximum value of SAR (interpolated) = 0.408 mW/g

90 Degrees to Phantom Bottom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 12.7 V/m; Power Drift = -0.004 dB Maximum value of SAR (measured) = 0.411 mW/g Peak SAR (extrapolated) = 0.833 W/kg SAR(1 g) = 0.390 mW/g; SAR(10 g) = 0.220 mW/g

45219/JD02/020

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_12MHz Channel_ 90 Degrees to Phantom_UMAX Host

Communication System: TDCDMA - 12MHz Channel; Frequency: 2680 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used: f = 2680 MHz; $\sigma = 2.3$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom Top/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 13.2 V/m; Power Drift = 0.0 dBMaximum value of SAR (interpolated) = 0.498 mW/g

90 Degrees to Phantom Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.2 V/m; Power Drift = 0.0 dBMaximum value of SAR (measured) = 0.504 mW/gPeak SAR (extrapolated) = 1.11 W/kgSAR(1 g) = 0.478 mW/g; SAR(10 g) = 0.260 mW/g

45219/JD02/021

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_6MHz Channel_ 0 Degrees to Phantom_UMAX Host DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 6MHz Channel; Frequency: 2596 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2596 MHz; $\sigma = 2.18$ mho/m; $\varepsilon_r =$

54.2; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

0 Degrees to Phantom/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 11.4 V/m; Power Drift = -0.0 dB

Maximum value of SAR (interpolated) = 0.327 mW/g

0 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 11.4 V/m; Power Drift = -0.0 dB Maximum value of SAR (measured) = 0.331 mW/g Peak SAR (extrapolated) = 0.687 W/kg SAR(1 g) = 0.318 mW/g; SAR(10 g) = 0.180 mW/g

Date: 18/03/04

45219/JD02/022

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_6MHz Channel_ 90 Degrees to Phantom_UMAX Host

DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 6MHz Channel; Frequency: 2596 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2596 MHz; $\sigma = 2.18$ mho/m; $\varepsilon_r =$

54.2; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 16.3 V/m; Power Drift = -0.2 dB Maximum value of SAR (interpolated) = 0.593 mW/g

90 Degrees to Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.3 V/m; Power Drift = -0.2 dBMaximum value of SAR (measured) = 0.588 mW/gPeak SAR (extrapolated) = 1.21 W/kgSAR(1 g) = 0.562 mW/g; SAR(10 g) = 0.313 mW/g

Date: 19/03/04

45219/JD02/023

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_6MHz Channel_ 90 Degrees to Phantom_UMAX Host

DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 6MHz Channel; Frequency: 2503 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2503 MHz; $\sigma = 2.05$ mho/m; $\varepsilon_r =$

54.5; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(4.3, 4.3, 4.3); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom - Bottom/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 13.3 V/m; Power Drift = -0.0 dB

Maximum value of SAR (interpolated) = 0.447 mW/g

90 Degrees to Phantom - Bottom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 13.3 V/m; Power Drift = -0.0 dB Maximum value of SAR (measured) = 0.447 mW/gPeak SAR (extrapolated) = 0.908 W/kgSAR(1 g) = 0.423 mW/g; SAR(10 g) = 0.238 mW/g

Date: 18/03/04

45219/JD02/024

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

45219_JD02_Flat_Section_2600MHz_6MHz Channel_ 90 Degrees to Phantom_UMAX Host

DUT: IP Wireless UK Ltd.; Type: 6MHz Channel PCMCIA Modem; Serial: FD5D34100F213

Communication System: TDCDMA - 6MHz Channel; Frequency: 2683 MHz;Duty Cycle: 1:3 Medium: 2450MHz MSL Medium parameters used (interpolated): f = 2683 MHz; $\sigma = 2.31$ mho/m; $\varepsilon_r =$

53.9; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(3.97, 3.97, 3.97); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

90 Degrees to Phantom Top/Area Scan (61x51x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 14 V/m; Power Drift = -0.1 dB Maximum value of SAR (interpolated) = 0.541 mW/g

90 Degrees to Phantom Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14 V/m; Power Drift = -0.1 dB Maximum value of SAR (measured) = 0.538 mW/gPeak SAR (extrapolated) = 1.22 W/kgSAR(1 g) = 0.523 mW/g; SAR(10 g) = 0.285 mW/g

Page 1 of 2

Date: 17/03/04

VALIDATION_001

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

System Performance Check-D2450 17 03 04

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN725

 $0 \, dB = 14.9 \, mW/g$

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1

Medium: 2450MHz MSL Medium parameters used: f = 2450 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(4.3, 4.3, 4.3); Calibrated: 09/06/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)

Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

d=10mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm Reference Value = 89.1 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 15.4 mW/g

d=10mm, Pin=250mW/Zoom Scan 7x7x7 (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 89.1 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 14.9 mW/g Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.26 mW/g

Page 1 of 2

Date: 18/03/04

VALIDATION_002

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

System Performance Check-D2450 18 03 04

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN725

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450MHz MSL Medium parameters used: f = 2450 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$

kg/m³ Phantom section: Flat Section

DASY4 Configuration: - Probe: ET3DV6 - SN1529; ConvF(4.3, 4.3, 4.3); Calibrated: 09/06/2003 - Sensor-Surface: 4mm (Mechanical Surface Detection)

Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

d=10mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Reference Value = 88.6 V/m; Power Drift = 0.0 dBMaximum value of SAR (interpolated) = 14.8 mW/g

d=10mm, Pin=250mW/Zoom Scan 7x7x7 (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 88.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 15.2 mW/g Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.3 mW/g

Page 1 of 2

Date: 19/03/04

VALIDATION_003

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

System Performance Check-D2450 19 03 04

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN725

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450MHz MSL Medium parameters used: f = 2450 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$

kg/m³ Phantom section: Flat Section

DASY4 Configuration: - Probe: ET3DV6 - SN1529; ConvF(4.3, 4.3, 4.3); Calibrated: 09/06/2003 - Sensor-Surface: 4mm (Mechanical Surface Detection)

Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 22/08/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

d=10mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Reference Value = 88.7 V/m; Power Drift = -0.0 dBMaximum value of SAR (interpolated) = 14.8 mW/g

d=10mm, Pin=250mW/Zoom Scan 7x7x7 (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 88.7 V/m; Power Drift = -0.0 dB Maximum value of SAR (measured) = 14.6 mW/g Peak SAR (extrapolated) = 30.5 W/kg SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.13 mW/g