LAEORATOFIESS, ING.

IPWIRELESS, INC. TEST REPORT
 FOR THE
 BROADBAND MODEM, MODEL AP
 FCC PART 21 SUBPART K \& FCC PART 15 SUBPART B SECTIONS 15.107 \& 15.109 CLASS B
 COMPLIANCE

DATE OF ISSUE: JANUARY 11, 2002

PREPARED FOR:

IPWireless, Inc.
1001 Bayhill Drive, Second Floor
San Bruno, CA 94066
P.O. No.: UK1175/2001
W.O. No.: 78019

PREPARED BY:

Joyce Walker
CKC Laboratories, Inc.
5473A Clouds Rest
Mariposa, CA 95338
Date of test: November 19 - December 9, 2001

Report No.: FC01-086

This report contains a total of 56 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information 3
Summary of Results 4
Modifications Required for Compliance 4
Approvals. 4
Equipment Under Test (EUT) Description 5
Equipment Under Test 5
Peripheral Devices 5
Temperature and Humidity During Testing 6
2.1033(c)(3) User's Manual 6
2.1033(c)(4) Type of Emissions 6
2.1033(c)(5) Frequency Range 6
2.1033(c)(6) Operating Power 6
2.1033(c)(7) Maximum Power Rating 7
2.1033(c)(8) DC Voltages 7
2.1033(c)(9) Tune-Up Procedure 7
2.1033(c)(10) Schematics and Circuitry Description 7
2.1033(c)(11) Label and Placement 7
2.1033(c)(12) Submittal Photos 8
2.1033(c)(13) Modulation Information 8
2.1033(c)(14)/2.1046/21.904(e) RF Power Output \&
2.1033(c)(14)/2.1049(i)/21.908(d) Occupied Bandwidth 9
FCC Channel Requirements 10
Canada Channel Requirements 11
Occupied Bandwidth - Low 12
Occupied Bandwidth - Middle 13
Occupied Bandwidth - High 14
Out Of Band Spurious - Low 15
Out Of Band Spurious - Middle 16
Out Of Band Spurious - High 17
2.1033(c)(14)/2.1047(b) - Modulation Characteristics - Audio Frequency Response 18
2.1033(c)(14)/2.1047(b) - Modulation Characteristics - Modulation Limiting Response 18
2.1033(c)(14)/2.1051/21.908(d) - Spurious Emissions at Antenna Terminal 19
2.1033(c)(14)/2.1053/21.908(d) - Field Strength of Spurious Radiation 27
2.1033(c)(14)/2.1055/21.101 - Frequency Stability 37
15.107 - AC Conducted Emissions - Receiver 40
15.109 - Radiated Emissions - Receiver 47

CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies: A2LA (USA); DATech (Germany); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).
CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies: FCC (USA); VCCI (Japan); and Industry Canada.
CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:
ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

ADMINISTRATIVE INFORMATION

DATE OF TEST:

DATE OF RECEIPT:

PURPOSE OF TEST:

TEST METHOD:

MANUFACTURER:

REPRESENTATIVE:

TEST LOCATION:

November 19 - December 9, 2001

November 19, 2001

To demonstrate the compliance of the Broadband Modem, Model AP with the requirements for FCC Part 21 Subpart K and FCC Part 15 Subpart B Sections 15.107 and 15.109 Class B devices.

ANSI C63.4 (1992) and FCC Part 21

IPWireless, Inc.
1001 Bayhill Drive, Second Floor
San Bruno, CA 94066

Peter Warburg

CKC Laboratories, Inc.
480 Los Viboras Road
Hollister, CA 95023
5473A Clouds Rest
Mariposa, CA 95338

SUMMARY OF RESULTS

As received, the IPWireless, Inc. Broadband Modem, Model AP was found to be fully compliant with the following standards and specifications:

United States (2500 - 2686 MHz)

$>$ FCC Part 15 Subpart B Section 15.107 and 15.109 Class B
$>$ FCC Part 21 Subpart K
FCC Part 74 Subpart I, using
> FCC Part 21 Subpart K
$>$ ANSI C63.4 (1992) and FCC Part 21 methods

Canada (2500 - 2596 MHz)
RSS-193 using:
$>$ FCC Part 15 Subpart B Section 15.107 and 15.109 Class B
> FCC Part 21 Subpart K
$>$ ANSI C63.4 (1992) and FCC Part 21 methods

The results in this report apply only to the items tested, as identified herein.

MODIFICATIONS REQUIRED FOR COMPLIANCE

Added with one turn TDK Ferrite P/N ZCAT15180730 on 15.109 testing. The ferrite is on the AC adapter cable next to the connector that plugs into the chassis of the EUT (see photo at the right).

APPROVALS

QUALITY ASSURANCE:

Dennis Ward, Quality Manager

Chuck Kendall, EMC/Lab Manager

C $D N D$

Christine Nicklas, EMC/Lab Manager

TEST PERSONNEL:

Randy Clark, EMC Engineer

Conan T. Boyle, EMC Engineer

Matthew Pettersen, Test Engineer

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The Broadband Modem tested by CKC Laboratories was a production unit. The following was the name of the product and model during testing: Wireless Modem, Model UEP1b.

The above name was the engineering tracking name used by IP Wireless, Inc. The device will be marketed as: Broadband Modem, Model AP.

EQUIPMENT UNDER TEST

Broadband Modem

$\begin{array}{ll}\text { Manuf: } & \text { IP Wireless, Inc. } \\ \text { Model: } & \text { AP } \\ \text { Serial: } & \text { AE4K1A-0000066 } \\ \text { FCC ID: } & \text { PKTP1BAP1 (pending) }\end{array}$

AC Adapter

| Manuf: | Friwo |
| :--- | :--- | :--- |
| Model: | SPA15U-05 |
| Serial: | None |
| FCC ID: | DoC |

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

AC Adapter (2)
Manuf: Dell
Model: AA20031
Serial: CN-09364U-16291-14O-070J
and CN-09364U-12671-0BH-4902
FCC ID: DoC

Keyboard

Manuf: Compaq
Model: RT101
Serial: 1114X877X
FCC ID: AQ6-MTN4X215

Printer

Manuf: HP
Model: C2184A
Serial: MY63J1T1KZ
FCC ID: 894C2184X

Notebook PC (2)

Manuf: Dell
Model: PPX (Inspiron 3800)
Serial: 329-634-58 and 329-634-27
FCC ID: DoC

Monitor
Manuf: Micron
Model: RMD5L11CM
Serial: 8205C1127500
FCC ID: DoC

Mouse
Manuf: Microsoft
Model: X04-72167
Serial: None
FCC ID: DoC
AC Adapter
Manuf: HP
Model: C2175A
Serial: 220995 (Date)
FCC ID: DoC

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$.
The relative humidity was between 20% and 75%.

2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

2.1033(c)(4) TYPE OF EMISSIONS

The emission is QPSK using a 12 MHz radio channel. Consequently the emission designator is 12M0G7D.

2.1033(c)(5) FREQUENCY RANGE

The device operates in the frequency range of 2.500 GHz to 2.686 GHz .

2.1033(c)(6) OPERATING POWER

The unit is capable of operating with either a single orthogonal spreading code at +24 dBm of PA output power or with 2 simultaneous codes at +21 dBm of PA output powers each, for a composite output power of +24 dBm . The single code case is the more severe case for testing the emission mask and thus is used for the emissions measurements.

The transmit power may be decreased from the above values in 2 dB steps under software control from the controlling base station. The range of output power decrease available by software control is 80 dB .

LAEOFATOFIESS:INE.

2.1033(c)(7) MAXIMUM POWER RATING

This unit is being qualified under the low power response station rules contained in both 47CFR21.908 (d) and 47CFR74.936 (f), which define the maximum power limit of -6 dBW EIRP in a 6 MHz channel.

This device operates in a 12 MHz channel and as such, the maximum EIRP allowed is $-6 \mathrm{dBW}+$ $3 \mathrm{~dB}=-3 \mathrm{dBW}$ EIRP. The design EIRP using the integral antenna is as follows:

$$
\begin{aligned}
\mathrm{EIRP} & =+24 \mathrm{dBm}+3 \mathrm{dBi} \text { (ant. gain) } \\
& =+27 \mathrm{dBm} \\
& =-3 \mathrm{dBW}
\end{aligned}
$$

Therefore the EIRP is below the -3 dBW limit allowed for a 12 MHz bandwidth emission.
This device operates below the EIRP limit for a low power response station and is thus qualified using the emission mask defined for the lower power response station in both 47CFR74.936 (f) and 47CFR21.908 (d).

2.1033(c)(8) DC VOLTAGES

The necessary information is contained in a separate confidential document.

2.1033(c)(9) TUNE-UP PROCEDURE

This device does not have any tune up procedure, as it is a subscriber modem device that is configured at the factory to operate within the stated frequency and power limits.

2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate and confidential document.

2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

2.1033(c)(13) MODULATION INFORMATION

The necessary information is contained in a separate and confidential document.

2.1033(c)(14)/2.1046/21.904(e) - RF POWER OUTPUT \& 2.1033(c)(14)/2.1049(i)//21.908(d) OCCUPIED BANDWIDTH

Test Conditions:

The HP-8564E Spectrum Analyzer was connected directly to the transmitter antenna terminal with an Andrews Heliax shielded cable. The HP-8564E was placed into Channel Power Measurement mode, the measurement bandwidth function was set to 7.68 MHz , which is the chip rate of the device. The power measurement was also performed using the occupied bandwidth of 8.33 MHz and there was less than 0.2 dB difference between using the chip rate versus the occupied bandwidth; therefore the chip rate was used. An automated measurement was taken and the channel power value for each channel tested was recorded.

RF Output and Occupied Bandwidth Test Setup

FCC CHANNEL REQUIREMENTS - FCC 21.908(d) \& Occupied Bandwidth 2500 - 2686 MHZ

Model: \quad UEP1b
Test Equipment:

Asset No.	Description			
1401	Spectrum Analyzer	Model	Cal Date	Cal Due

Channel	2506 MHz	TX IF DAC = 148	
Power measured in 12MHz			Power normalized to 6MHz band
Ch Pwr	23.60 dBm	-6.4 dBW	-9.4 dBw
Pwr (100k)	-12.00 dBm		Occupied BW $\quad 8.58 \mathrm{MHz}$

	$(-3 \mathrm{MHz})$	$(-250 \mathrm{kHz})$	Band edge	Center Ch	Band Edge	$(+250 \mathrm{kHz})$	$(+3 \mathrm{MHz})$
	2497.00	2499.75	2500.00	2506.00	2512.00	2512.25	2515.00
Measured Value in $100 \mathrm{kHz}(\mathrm{dBm})$	-55.83	-49.33	-51.17		-51.50	-48.33	-54.50
Calculated dBc limit from Channel Power	-33.60	-23.60	$(-25 \mathrm{~dB})$		$(-25 \mathrm{~dB})$	-23.60	-33.60
LIMIT $[P w r-C a l c u l a t e d ~$ dBc] (dBm)	-45.6	-35.6	-37	-37	-35.6	-45.6	
MARGIN	-10.23	-13.73	-14.17	-14.50	-12.73	-8.90	
Pass/Fail	Pass	Pass	Pass	Pass	Pass	Pass	

Channel $\quad 2596 \mathrm{MHz} \quad$ TX IF DAC $=140$

Channel
2680 MHz
CX IF DAC $=147$
Power measured in 12 MHz
Ch Pwr
Pwr (100k)

$-\mathbf{1 2 . 1 7} \mathrm{dBm}$		Occupied BW					8.60 MHz	
	$(-3 \mathrm{MHz})$	$(-250 \mathrm{kHz})$	Band edge	Center Ch	Band Edge	$(+250 \mathrm{kHz})$	$(+3 \mathrm{MHz})$	
	2671	2673.75	2674	2680	2686	2686.25	2689	
Measured Value in 100kHz (dBm)	-57.83	-52.67	-55.33		-55.33	-52.83	-57.83	
Calculated dBc point from Channel Power	-33.80	-23.80	$(-25 \mathrm{~dB})$		$(-25 \mathrm{~dB})$	-23.80	-33.80	
LIMIT [Pwr - Calculated dBc] (dBm)	-45.97	-35.97	-37.17		-37.17	-35.97	-45.97	
MARGIN	-11.86	-16.70	-18.16	-18.16	-16.86	-11.86		
Pass/Fail	Pass	Pass	Pass		Pass	Pass	Pass	

The emissions mask for low power response stations was used to show compliance to 21.908(d) and 74.936(f). The output power of this device is less than the -6dBW requirement and therefore can be used. All measurements were made with a $\mathrm{RBW}=100 \mathrm{kHz}$ and using the relative method as specified in section 21.908(e).

Page 10 of 56

CANADA CHANNEL REQUIREMENTS USING FCC 21.908(D) \& OCCUPIED BANDWIDTH 2500-2596 MHZ

The emissions mask for low power response stations was used to show compliance to 21.908(d) and 74.936(f). The output power of this device is less than the -6dBW requirement and therefore can be used. All measurements were made with a RBW $=100 \mathrm{kHz}$ and using the relative method as specified in section 21.908(e).

OCCUPIED BANDWIDTH - LOW

Page 12 of 56

OCCUPIED BANDWIDTH - MIDDLE

FCC

Canada

Page 13 of 56

OCCUPIED BANDWIDTH - HIGH

Page 14 of 56

OUT OF BAND SPURIOUS - LOW

Page 15 of 56

OUT OF BAND SPURIOUS - MIDDLE

RSS-193 (Canada) Specific Frequency Compliance

OUT OF BAND SPURIOUS - HIGH

Page 17 of 56
2.1033(c)(14)/2.1047(a) - MODULATION CHARACTERISTICS - AUDIO FREQUENCY RESPONSE

Not applicable to this unit.
2.1033(c)(14)/2.1047(b) MODULATION CHARACTERISTICS - MODULATION LIMITING RESPONSE

Not applicable to this unit.

2.1033(c)(14)/2.1051/21.908(d) - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

FCC 21.908(d) Sample Calculations for Specification Limits Using the Relative Method in 21.908(e).
Definitions:
$\mathrm{P}=$ channel power in dBW normalized to 6 MHz (for value, refer to Emissions Mask Data Sheet, Page NN, "Power normalized to 6 MHz band" for each channel).
$\mathrm{Pa}=$ average power @ 100 kHz (for value, refer to Emissions Mask Data Sheet, Page NN, "Pwr (100k)" for each channel). This average power value is used with the average value readings at the band/channel edges for calculating the specification limits.

Puce $=$ upper channel edge power limit
Plce $=$ lower channel edge power limit
Formulas:
Puce $=\mathrm{Pa}-25 \mathrm{~dB}$
Plce $=\mathrm{Pa}-25 \mathrm{~dB}$

Puce $+250 \mathrm{kHz}=\mathrm{Pa}-33+10 \log (\mathrm{P}) \mathrm{dB}$
Plce $-250 \mathrm{kHz}=\mathrm{Pa}-33+10 \log (\mathrm{P}) \mathrm{dB}$
Puce $+3 \mathrm{MHz}=\mathrm{Pa}-43+10 \log (\mathrm{P}) \mathrm{dB}$
Plce $-3 \mathrm{MHz}=\mathrm{Pa}-43+10 \log (\mathrm{P}) \mathrm{dB}$
Since the all measurements were performed using RBW $=100 \mathrm{kHz}$, no bandwidth correction was necessary.

Sample calculations:

(shown for the upper channel side only— the lower side limits will be identical)
Channel $=2506 \mathbf{~ M H z}$
$\mathrm{P}=-9.40 \mathrm{dBW}$
$\mathrm{Pa}=-12.00 \mathrm{dBm}$
Puce $=-12.00-25 \mathrm{dBc}=-37.00 \mathrm{dBm}$
Puce $+250 \mathrm{kHz}=-12.00-23.60 \mathrm{dBc}=-35.60 \mathrm{dBm}$
Puce $+3 \mathrm{MHz}=-12.00-33.60 \mathrm{dBc}=-45.60 \mathrm{dBm}$
Channel $=2596 \mathbf{~ M H z}$
$\mathrm{P}=-9.40 \mathrm{dBW}$
$\mathrm{Pa}=-11.17 \mathrm{dBm}$
Puce $=-11.17-25 \mathrm{dBc}=-36.17 \mathrm{dBm}$
Puce $+250 \mathrm{kHz}=-11.17-23.60 \mathrm{dBc}=-34.77 \mathrm{dBm}$
Puce $+3 \mathrm{MHz}=-11.17-33.60 \mathrm{dBc}=-44.77 \mathrm{dBm}$
Channel $=\mathbf{2 6 8 0} \mathbf{~ M H z}$
$\mathrm{P}=-9.20 \mathrm{dBW}$
$\mathrm{Pa}=-12.17 \mathrm{dBm}$
Puce $=-12.17-25 \mathrm{dBc}=-37.17 \mathrm{dBm}$
Puce $+250 \mathrm{kHz}=-12.17-23.80 \mathrm{dBc}=-35.97 \mathrm{dBm}$
Puce $+3 \mathrm{MHz}=-12.17-33.80 \mathrm{dBc}=-45.97 \mathrm{dBm}$

Test Location: CKC Laboratories, Inc. - 480 Los Viboras Rd., Site B • Hollister, Ca 95023 • (831) 637-8176

Customer:	IPWireless, Inc.		
Specification:	FCC 2.1051 Model UEP1b Ant SE		
Work Order \#:	78019	Date: 12/08/2001	
Test Type:	Spurious Emissions Ant Term	Time:	13:16:32
Equipment:	Wireless Modem	Sequence\#:	1
Manufacturer:	IP Wireless, Inc.	Tested By: Conan T. Boyle	
Model:	UEP1b		
S/N:	AE4K1A-0000066		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
HP 8564E Spec. An.	01984	$12 / 12 / 2000$	$12 / 12 / 2001$	1406
S.A.	2049A01408	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A. Display	$2112 A 02174$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
QP Adapter	$2430 A 00541$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
High Pass Filter,	$3643 A 00026$	$02 / 19 / 2001$	$02 / 19 / 2002$	1417
3.5GHz				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Wireless Modem*	IP Wireless, Inc.	UEP1b	AE4K1A-0000066
AC Adapter	Friwo	SPA15U-05	None
Support Devices: Function Manufacturer Model \# S/N Notebook PC Dell PPX (Inspiron 3800) 329-634-58 AC Adapter Dell AA20031 CN-09364U-16291-14O- 070J			

Test Conditions / Notes:

The EUT is a Wireless Modem referred to as a subscriber terminal. The EUT is connected to a notebook PC via a serial cable and a customer-supplied debug PCB and is powered by an AC adapter. The EUT RF output is directly connected to the spectrum analyzer RF input port. The EUT is fully operating in transmit-receive mode at 2506 MHz (low channel) with five transmit and ten receive channels active. Specification limit derived according to the Relative Method in 21.908(e). See "Calculations Worksheet" (file name "calculations-ueplb.xls"). Test is spurious emissions at antenna terminals from $10 \mathrm{kHz}-25060 \mathrm{MHz}$ (FCC 2.1051).

Measurement Data:	Reading listed by margin.					Test Distance: None				
		3.5 G								
\# $\begin{array}{r}\text { Freq } \\ \mathrm{MHz}\end{array}$	Rdng $\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
$\begin{gathered} 112845.940 \\ \mathrm{M} \end{gathered}$	53.8	+0.0				+0.0	53.8	61.0	-7.2	None
2 2464.073M	50.0	+0.0				+0.0	50.0	61.0	-11.0	None
$\begin{aligned} & 32517.176 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	49.3	+0.0				+0.0	49.3	61.0	-11.7	None
^ 2517.176 M	70.5	+0.0				+0.0	70.5	61.0	+9.5	None
52617.513 M	46.7	+0.0				+0.0	46.7	61.0	-14.3	None

6	6.268 M	46.3	+0.0	+0.0	46.3	61.0	-14.7	None
712541.070 M	45.8	+0.0	+0.0	45.8	61.0	-15.2	None	
8	198.667 M	45.0	+0.0	+0.0	45.0	61.0	-16.0	None
9	6378.025 M	33.0	+0.0	+0.0	33.0	61.0	-28.0	None

Test Location: CKC Laboratories, Inc. - 480 Los Viboras Rd., Site B • Hollister, Ca 95023 • (831) 637-8176

Customer:	IPWireless, Inc.		
Specification:	FCC 2.1051 Model UEP1b Ant SE		
Work Order \#:	78019	Date:	12/08/2001
Test Type:	Spurious Emissions Ant Term	Time:	13:14:45
Equipment:	Wireless Modem	Sequence\#:	2
Manufacturer:	IP Wireless, Inc.	Tested By:	Conan T. Boyle
Model:	UEP1b		
S/N:	AE4K1A-0000066		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
HP 8564E Spec. An.	01984	$12 / 12 / 2000$	$12 / 12 / 2001$	1406
S.A.	2049A01408	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A. Display	$2112 A 02174$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
QP Adapter	$2430 A 00541$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
High Pass Filter,	$3643 A 00026$	$02 / 19 / 2001$	$02 / 19 / 2002$	1417
3.5GHz				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Wireless Modem*	IP Wireless, Inc.	UEP1b	AE4K1A-0000066
AC Adapter	Friwo	SPA15U-05	None
Support Devices: Function Manufacturer Model \# S/N Notebook PC Dell PPX (Inspiron 3800) 329-634-58 AC Adapter Dell AA20031 CN-09364U-16291-14O- 070J			

Test Conditions / Notes:

The EUT is a Wireless Modem referred to as a subscriber terminal. The EUT is connected to a notebook PC via a serial cable and a customer-supplied debug PCB and is powered by an AC adapter. The EUT RF output is directly connected to the spectrum analyzer RF input port. The EUT is fully operating in transmit-receive mode at 2596 MHz (mid channel) with five transmit and ten receive channels active. Specification limit derived according to the Relative Method in 21.908(e). See "Calculations Worksheet" (file name "calculations-ueplb.xls"). Test is spurious emissions at antenna terminals from $10 \mathrm{kHz}-25960 \mathrm{MHz}$ (FCC 2.1051).

Measurement Data:	Reading listed by margin.					Test Distance: None				
		3.5 G								
\# $\begin{array}{r}\text { Freq } \\ \mathrm{MHz}\end{array}$	Rdng $\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
12553.919 M	55.8	+0.0				+0.0	55.8	61.0	-5.2	None
2852.000 M	54.8	+0.0				+0.0	54.8	61.0	-6.2	None
$\begin{gathered} 312844.960 \\ \mathrm{M} \end{gathered}$	53.8	+0.0				+0.0	53.8	61.0	-7.2	None
$4 \quad 642.572 \mathrm{M}$	52.5	+0.0				+0.0	52.5	61.0	-8.5	None
52523.187 M	51.0	+0.0				+0.0	51.0	61.0	-10.0	None

6	311.167 M	49.7	+0.0	+0.0	49.7	61.0	-11.3	None
72676.787 M	48.5	+0.0	+0.0	48.5	61.0	-12.5	None	
8	6.241 M	46.3	+0.0	+0.0	46.3	61.0	-14.7	None
9 Ave		+0.0	39.0	61.0	-22.0	None		
$\wedge 2607.124 \mathrm{M}$	70.8	+0.0	+0.0	70.8	61.0	+9.8	None	
118863.998 M	37.7	+0.0	+0.0	37.7	61.0	-23.3	None	
1211080.020	33.0	+0.0	+0.0	33.0	61.0	-28.0	None	
M								

Test Location: CKC Laboratories, Inc. • 480 Los Viboras Rd., Site B • Hollister, Ca 95023 • (831) 637-8176

Customer:	IPWireless, Inc.		
Specification:	FCC 2.1051 Model UEP1b Ant SE		Date: 12/08/2001
Work Order \#:	78019	Time:	11:40:07
Test Type:	Spurious Emissions Ant Term	Sequence\#:	3
Equipment:	Wireless Modem	Tested By:	Matthew Pettersen
Manufacturer:	IP Wireless, Inc.		
Model:	UEP1b		
S/N:	AE4K1A-0000066		

Test Ewuipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
HP 8564E Spec. An.	01984	$12 / 12 / 2000$	$12 / 12 / 2001$	1406
S.A.	2049A01408	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A. Display	$2112 A 02174$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
QP Adapter	$2430 A 00541$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
High Pass Filter,	$3643 A 00026$	$02 / 19 / 2001$	$02 / 19 / 2002$	1417
3.5 GHz				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Wireless Modem*	IP Wireless, Inc.	UEP1b	AE4K1A-0000066
AC Adapter	Friwo	SPA15U-05	None
Support Devices: Function Manufacturer Model \# S/N Notebook PC Dell PPX (Inspiron 3800) 329-634-58 AC Adapter Dell AA20031 CN-09364U-16291-14O- 070 J			

Test Conditions / Notes:

The EUT is a Wireless Modem referred to as a subscriber terminal. The EUT is connected to a notebook PC via a serial cable and a customer-supplied debug PCB and is powered by an AC adapter. The EUT RF output is directly connected to the spectrum analyzer RF input port. The EUT is fully operating in transmit-receive mode at 2680 MHz (high channel) with five transmit and ten receive channels active. Specification limit derived according to the Relative Method in 21.908(e). See "Calculations Worksheet" (file name "calculations-ueplb.xls"). Test is spurious emissions at antenna terminals from $10 \mathrm{kHz}-26800 \mathrm{MHz}$ (FCC 2.1051).

Measurement Data:	Reading listed by margin.					Test Distance: None				
		3.5 G								
\# $\begin{array}{r}\text { Freq } \\ \mathrm{MHz}\end{array}$	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	dB	dB	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Spec} \\ \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Margin dB	Polar Ant
$1 \quad 7.765 \mathrm{M}$	53.3	+0.0				+0.0	53.3	61.0	-7.7	None
2 2637.920M	53.0	+0.0				+0.0	53.0	61.0	-8.0	None
$3 \quad 6.244 \mathrm{M}$	52.1	+0.0				+0.0	52.1	61.0	-8.9	None
42481.127 M	51.0	+0.0				+0.0	51.0	61.0	-10.0	None
$\begin{gathered} 512847.180 \\ M \end{gathered}$	50.8	+0.0				+0.0	50.8	61.0	-10.2	None

Page 24 of 56

6 2607.202M	49.7	+0.0	+0.0	49.7	61.0	-11.3	None
7 2653.261M	46.3	+0.0	+0.0	46.3	61.0	-14.7	None
8 2299.998M	44.3	+0.0	+0.0	44.3	61.0	-16.7	None
$\begin{aligned} & 9 \text { 2691.159M } \\ & \text { Ave } \end{aligned}$	43.5	+0.0	+0.0	43.5	61.0	-17.5	None
$\wedge 2691.159 \mathrm{M}$	62.5	+0.0	+0.0	62.5	61.0	+1.5	None
$\begin{aligned} & 112668.624 \mathrm{M} \\ & \text { Ave } \end{aligned}$	40.4	+0.0	+0.0	40.4	61.0	-20.7	None
$\wedge 2668.624 \mathrm{M}$	59.2	+0.0	+0.0	59.2	61.0	-1.8	None
$13 \quad 38.400 \mathrm{M}$	35.8	+0.0	+0.0	35.8	61.0	-25.2	None
$14 \quad 1.444 \mathrm{M}$	35.0	+0.0	+0.0	35.0	61.0	-26.0	None
$\begin{gathered} 1511500.020 \\ \mathrm{M} \end{gathered}$	30.8	+0.0	+0.0	30.8	61.0	-30.2	None

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS

BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
10 kHz	150 kHz	200 Hz
150 kHz	30 MHz	9 kHz
30 MHz	1000 MHz	120 kHz
1000 MHz	26800 MHz	1 MHz

Spurious Emissions Test Setup

$\underline{\text { 2.1033(c)(14)/2.1053/21.908(d) - FIELD STRENGTH OF SPURIOUS RADIATION }}$

Test Location:	CKC Laboratories, Inc. - 480 Los Viboras Rd., Site B - Hollister, Ca 95023 - (831) 637-0485		
Customer:	IPWireless, Inc.		
Specification:	FCC 2.1053 Mod		
Work Order \#:	78019	Date:	12/9/2001
Test Type:	Radiated Scan	Time:	19:44:33
Equipment:	Wireless Modem	Sequence\#:	15
Manufacturer:	IP Wireless, Inc.	Tested By:	Conan Boyle

Model: UEP1b
S/N: AE4K1A-0000066

Test Equipment:

Function	S/N	Calibration	Cal Due	Asset
		Date	Date	$\#$
HP 8564E Spec. An.	01984	$12 / 12 / 2000$	$12 / 12 / 2001$	1406
Preamp, HP83017A	$3123 A 0464$	$05 / 14 / 2001$	$05 / 14 / 2002$	1271
Horn Ant., Emco 3115	$9307-5655$	$07 / 09 / 2001$	$07 / 09 / 2002$	2157
Ant, Horn 18-26.5GHz	$942126-003$	$07 / 09 / 2001$	$07 / 09 / 2002$	1413
Filter, 3.5GHz High Pass	$3643 A 00026$	$02 / 19 / 2001$	$02 / 19 / 2002$	1417
Log Periodic, AH Systems SAS 200/510	288	$05 / 16 / 2001$	$05 / 16 / 2002$	566
Bilog Antenna CBL6111C	2630	$10 / 10 / 2001$	$10 / 10 / 2002$	0
Preamp, HP 8447F opt H64	$2944 A 03850$	$04 / 09 / 2001$	$04 / 09 / 2002$	501
QP Adapter	$2430 A 00541$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A. Display	$2112 A 02174$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A.	$2049 A 01408$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
H-B 3meter Rad. cable .01-1MHz	Hol-B 3-m rad cable-01-.01-1MHz	$10 / 03 / 2001$	$10 / 03 / 2002$	0
H-B 3meter Rad. cable 1-13.5GHz	Hol-B 3-m rad cable-01-1GHz-	$10 / 03 / 2001$	$10 / 03 / 2002$	0
	13.5 GHz			
Ant, Mag Loop	2078	$08 / 17 / 2001$	$08 / 17 / 2002$	432

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Wireless Modem*	IP Wireless, Inc.	UEP1b	AE4K1A-0000066
AC Adapter	Friwo	SPA15U-05	None
Support Devices:			
Function	Manufacturer	Model \#	S/N
Notebook PC	Dell	PPX (Inspiron 3800)	329-634-58
AC Adapter	Dell	AA20031	CN-09364U-16291-14O-070J
Printer	HP	C2184A	MY63J1T1KZ
AC Adapter	HP	C2175A	220995 (Date)
Monitor	Micron	RMD5L11CM	8205C1127500
Keyboard	Compaq	RT101	1114X877X
Mouse	Microsoft	X04-72167	None

Test Conditions / Notes:

The EUT is a Wireless Modem referred to as a subscriber terminal. The EUT is connected to a notebook PC via an RS-232 serial cable and is powered by an AC adapter. The PC has external keyboard, mouse and monitor. The EUT is operating in transmit-receive mode at 2506 MHz with five transmit channels and ten receive channels active. Specification limit derived according to the Relative Method in 21.908(e). See "Calculations Worksheet" (file name "calculations-ueplb.xls"). Test is field strength of spurious emissions at antenna terminals from $10 \mathrm{kHz}-$ 25060 MHz (FCC 2.1053).

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	Horn Chase dB	HP-83 Hol-B dB	$\begin{gathered} \hline \text { H-B 3 } \\ \text { LOG28 } \\ \text { dB } \end{gathered}$	$8447 \mathrm{~F}$ dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
1	2126.001 M	49.0	$\begin{array}{r} \hline+27.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -34.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +9.4 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.0	52.0	61.0	-9.0	Vert
2	2126.004 M	46.2	$\begin{array}{r} \hline+27.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -34.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	49.2	61.0	-11.8	Horiz
3	245.805M	55.7	$\begin{array}{r} +0.0 \\ +12.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-26.0	+0.0	44.2	61.0	-16.8	Horiz
4	368.684M	50.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +16.6 \end{array}$	-26.6	+0.0	43.1	61.0	-17.9	Horiz
5	307.276M	51.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.0 \\ \hline \end{array}$	-26.2	+0.0	42.6	61.0	-18.4	Vert
6	276.547 M	52.2	$\begin{array}{r} +0.0 \\ +13.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-26.0	+0.0	41.4	61.0	-19.6	Horiz
7	245.831 M	52.9	$\begin{array}{r} +0.0 \\ +12.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-26.0	+0.0	41.4	61.0	-19.6	Vert
8	230.469M	53.2	$\begin{array}{r} +0.0 \\ +11.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-26.1	$+0.0$	40.4	61.0	-20.6	Horiz
9	261.141 M	50.9	$\begin{array}{r} +0.0 \\ +12.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-26.0	+0.0	39.9	61.0	-21.1	Horiz
10	122.949M	53.6	$\begin{array}{r} +0.0 \\ +11.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-26.6	+0.0	39.8	61.0	-21.2	Horiz
11	291.905M	49.6	$\begin{array}{r} +0.0 \\ +13.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-26.1	+0.0	38.9	61.0	-22.1	Horiz
12	368.719 M	45.8	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +16.6 \\ \hline \end{array}$	-26.6	+0.0	38.3	61.0	-22.7	Vert
13	675.868M	40.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +21.6 \\ \hline \end{array}$	-27.7	+0.0	38.2	61.0	-22.8	Vert
14	675.872M	40.8	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +21.6 \end{array}$	-27.7	+0.0	38.2	61.0	-22.8	Horiz
15	353.308M	46.4	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +15.6 \\ \hline \end{array}$	-26.4	+0.0	38.0	61.0	-23.0	Horiz
16	384.075M	44.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +17.6 \\ \hline \end{array}$	-26.8	+0.0	37.8	61.0	-23.2	Horiz
17	307.269M	46.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.0 \\ \hline \end{array}$	-26.2	+0.0	37.3	61.0	-23.7	Horiz
18	384.070M	43.2	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +17.6 \\ \hline \end{array}$	-26.8	+0.0	36.6	61.0	-24.4	Vert
19	122.949M	50.4	$\begin{array}{r} +0.0 \\ +11.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +1.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-26.6	+0.0	36.6	61.0	-24.4	Vert
20	614.479M	40.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +20.8 \\ \hline \end{array}$	-27.9	+0.0	36.5	61.0	-24.5	Horiz
21	353.352 M	44.7	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +15.6 \\ \hline \end{array}$	-26.4	+0.0	36.3	61.0	-24.7	Vert
22	276.552M	46.9	$\begin{array}{r} +0.0 \\ +13.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-26.0	+0.0	36.1	61.0	-24.9	Vert
23	261.189M	46.6	$\begin{array}{r} +0.0 \\ +12.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	-26.0	+0.0	35.6	61.0	-25.4	Vert
24	614.470M	39.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +20.8 \\ \hline \end{array}$	-27.9	+0.0	35.2	61.0	-25.8	Vert

Page 28 of 56

25	230.464M	47.8	+0.0	+0.0	+0.0	-26.1	+0.0	35.0	61.0	-26.0	Vert
			+11.3	+2.0	+0.0						
26	337.997M	43.6	+0.0	+0.0	+0.0	-26.4	+0.0	34.9	61.0	-26.1	Horiz
			+0.0	+2.4	+15.3						
27	291.908M	45.4	+0.0	+0.0	+0.0	-26.1	+0.0	34.7	61.0	-26.3	Vert
			+13.2	+2.2	+0.0						
28	737.322M	36.5	+0.0	+0.0	+0.0	-27.7	+0.0	33.8	61.0	-27.2	Horiz
			+0.0	+3.5	+21.5						
29	337.994M	42.1	+0.0	+0.0	+0.0	-26.4	+0.0	33.4	61.0	-27.6	Vert
			+0.0	+2.4	+15.3						
30	217.630M	45.7	+0.0	+0.0	+0.0	-26.2	+0.0	31.8	61.0	-29.2	Vert
			+10.3	+2.0	+0.0						
31	138.309M	44.4	+0.0	+0.0	+0.0	-26.5	+0.0	30.8	61.0	-30.2	Horiz
			+11.3	+1.6	+0.0						
32	215.106M	44.6	+0.0	+0.0	+0.0	-26.2	+0.0	30.5	61.0	-30.5	Horiz
			+10.1	+2.0	+0.0						
33	491.599M	37.3	+0.0	+0.0	+0.0	-27.6	+0.0	30.3	61.0	-30.7	Vert
			+0.0	+2.8	+17.8						
34	215.108M	42.7	+0.0	+0.0	+0.0	-26.2	+0.0	28.6	61.0	-32.4	Vert
			+10.1	+2.0	+0.0						
35	217.617M	41.8	+0.0	+0.0	+0.0	-26.2	+0.0	27.9	61.0	-33.1	Horiz
			+10.3	+2.0	+0.0						

Test Location:	CKC Laboratories, Inc. - 480 Los Viboras Rd., Site B - Hollister, Ca 95023 • (831) 637-0485		
Customer:	IPWireless, Inc.		
Specification:	FCC 2.1053 Model UEP1b Field Strength SE		
Work Order \#:	78019	Date:	12/9/2001
Test Type:	Radiated Scan	Time:	19:34:12
Equipment:	Wireless Modem	Sequence\#:	16
Manufacturer:	IP Wireless, Inc.	Tested By:	Conan Boyle
Model:	UEP1b		
S/N:	AE4K1A-0000066		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
HP 8564E Spec. An.		$12 / 12 / 2000$	$12 / 12 / 2001$	1406
Preamp, HP83017A	01984	$05 / 14 / 2001$	$05 / 14 / 2002$	1271
Horn Ant., Emco 3115	$3123 A 0464$	$07 / 09 / 2001$	$07 / 09 / 2002$	2157
Ant, Horn 18-26.5GHz	$9307-5655$	$07 / 09 / 2001$	$07 / 09 / 2002$	1413
Filter, 3.5GHz High Pass	$942126-003$	$02 / 19 / 2001$	$02 / 19 / 2002$	1417
Log Periodic, AH Systems SAS 200/510	$3643 A 00026$	$05 / 16 / 2001$	$05 / 16 / 2002$	566
Bilog Antenna CBL6111C	263	$10 / 10 / 2001$	$10 / 10 / 2002$	0
Preamp, HP 8447F opt H64	2944 A 03850	$04 / 09 / 2001$	$04 / 09 / 2002$	501
QP Adapter	$2430 A 00541$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A. Display	$2112 A 02174$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A.	$2049 A 01408$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A.	$2049 A 01408$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A.	$2049 A 01408$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
H-B 3meter Rad. cable .01-1MHz	Hol-B 3-m rad cable-01-.01-1MHz	$10 / 03 / 2001$	$10 / 03 / 2002$	0
H-B 3meter Rad. cable 1-13.5GHz	Hol-B 3-m rad cable-01-1GHz-	$10 / 03 / 2001$	$10 / 03 / 2002$	0
	$13.5 G H z$			
Ant, Mag Loop	2078	$08 / 17 / 2001$	$08 / 17 / 2002$	432

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Wireless Modem*	IP Wireless, Inc.	UEP1b	AE4K1A-0000066
AC Adapter	Friwo	SPA15U-05	None
Support Devices:			
Function	Manufacturer	Model \#	S/N
Notebook PC	Dell	PPX (Inspiron 3800)	$329-634-58$
AC Adapter	Dell	AA20031	CN-09364U-16291-14O-070J
Printer	HP	C2184A	MY63J1T1KZ
AC Adapter	HP	C2175A	220995 (Date)
Monitor	Micron	RMD5L11CM	$8205 C 1127500$
Keyboard	Compaq	RT101	$1114 X 877 \mathrm{X}$
Mouse	Microsoft	X04-72167	None

Test Conditions / Notes:

The EUT is a Wireless Modem referred to as a subscriber terminal. The EUT is connected to a notebook PC via an RS-232 serial cable and is powered by an AC adapter. The PC has external keyboard, mouse and monitor. The EUT is operating in transmit-receive mode at 2596 MHz with five transmit channels and ten receive channels active. Specification limit derived according to the Relative Method in 21.908(e). See "Calculations Worksheet" (file name "calculations-ueplb.xls"). Test is field strength of spurious emissions at antenna terminals from $10 \mathrm{kHz}-$
25960 MHz (FCC 2.1053).

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\#	Freq MHz	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \\ & \hline \end{aligned}$	Horn 8447F dB	HP-83 Chase dB	$\begin{gathered} \hline \text { H-B 3 } \\ \text { LOG28 } \\ \text { dB } \\ \hline \end{gathered}$	Hol-B dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
1	2216.002M	48.5	$\begin{array}{r} \hline+27.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -34.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +9.0 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.0	51.1	61.0	-9.9	Vert
2	368.716M	57.5	$\begin{gathered} +0.0 \\ -26.6 \end{gathered}$	$\begin{array}{r} +0.0 \\ +15.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+2.5	+0.0	48.5	61.0	-12.5	Vert
3	2216.007M	44.3	$\begin{array}{r} +27.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -34.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +9.0 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.0	46.9	61.0	-14.1	Horiz
4	245.829M	56.8	$\begin{array}{r} +0.0 \\ -26.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +12.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+2.2	+0.0	45.3	61.0	-15.7	Horiz
5	368.721 M	49.5	$\begin{array}{r} +0.0 \\ -26.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +16.6 \\ \hline \end{array}$	+2.5	+0.0	42.0	61.0	-19.0	Horiz
6	307.278M	50.9	$\begin{gathered} +0.0 \\ -26.2 \end{gathered}$	$\begin{array}{r} +0.0 \\ +13.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+2.3	+0.0	40.5	61.0	-20.5	Vert
7	276.554 M	51.1	$\begin{array}{r} +0.0 \\ -26.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +13.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+2.2	+0.0	40.3	61.0	-20.7	Horiz
8	353.358 M	49.4	$\begin{array}{r} +0.0 \\ -26.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +14.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+2.4	+0.0	40.1	61.0	-20.9	Vert
9	122.957 M	53.8	$\begin{gathered} +0.0 \\ -26.6 \end{gathered}$	$\begin{array}{r} +0.0 \\ +11.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+1.4	+0.0	40.0	61.0	-21.0	Horiz
10	230.449 M	52.8	$\begin{gathered} +0.0 \\ -26.1 \end{gathered}$	$\begin{array}{r} +0.0 \\ +11.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+2.0	+0.0	39.9	61.0	-21.1	Horiz
11	245.832M	51.1	$\begin{array}{r} +0.0 \\ -26.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +12.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+2.2	+0.0	39.6	61.0	-21.4	Vert
12	675.926M	42.7	$\begin{array}{r} +0.0 \\ -27.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +20.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+3.5	+0.0	39.4	61.0	-21.6	Vert
13	261.185M	49.9	$\begin{array}{r} +0.0 \\ -26.0 \end{array}$	$\begin{array}{r} +0.0 \\ +12.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+2.2	+0.0	38.9	61.0	-22.1	Horiz
14	337.997M	48.5	$\begin{array}{r} +0.0 \\ -26.4 \end{array}$	$\begin{array}{r} +0.0 \\ +14.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+2.4	+0.0	38.8	61.0	-22.2	Vert
15	307.278M	49.0	$\begin{array}{r} +0.0 \\ -26.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +13.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+2.3	+0.0	38.6	61.0	-22.4	Horiz
16	291.904M	48.8	$\begin{array}{r} +0.0 \\ -26.1 \end{array}$	$\begin{array}{r} +0.0 \\ +13.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+2.2	+0.0	38.1	61.0	-22.9	Horiz
17	122.945M	51.0	$\begin{array}{r} +0.0 \\ -26.6 \end{array}$	$\begin{array}{r} +0.0 \\ +11.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+1.4	+0.0	37.2	61.0	-23.8	Vert
18	675.909M	40.3	$\begin{array}{r} +0.0 \\ -27.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +20.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+3.5	+0.0	37.0	61.0	-24.0	Horiz
19	384.070M	44.9	$\begin{array}{r} +0.0 \\ -26.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +15.6 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+2.6	+0.0	36.3	61.0	-24.7	Vert
20	353.352 M	45.5	$\begin{array}{r} +0.0 \\ -26.4 \end{array}$	$\begin{array}{r} +0.0 \\ +14.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+2.4	+0.0	36.2	61.0	-24.8	Horiz
21	614.453M	40.1	$\begin{array}{r} +0.0 \\ -27.9 \end{array}$	$\begin{array}{r} +0.0 \\ +20.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+3.3	+0.0	35.7	61.0	-25.3	Vert
22	384.083 M	44.1	$\begin{array}{r} +0.0 \\ -26.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +15.6 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+2.6	+0.0	35.5	61.0	-25.5	Horiz
23	276.547M	46.3	$\begin{array}{r} +0.0 \\ -26.0 \end{array}$	$\begin{array}{r} +0.0 \\ +13.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	+2.2	+0.0	35.5	61.0	-25.5	Vert
24	737.352 M	37.4	$\begin{array}{r} +0.0 \\ -27.7 \end{array}$	$\begin{array}{r} +0.0 \\ +22.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+3.5	+0.0	35.3	61.0	-25.7	Vert

Page 31 of 56 Report No.: FC01-086

25	614.423M	39.3	+0.0	+0.0	+0.0	+3.3	+0.0	34.9	61.0	-26.1	Horiz
			-27.9	+20.2	+0.0						
26	230.462M	47.7	+0.0	$+0.0$	+0.0	+2.0	+0.0	34.9	61.0	-26.1	Vert
			-26.1	+11.3	+0.0						
27	337.972M	44.2	+0.0	+0.0	+0.0	+2.4	+0.0	34.5	61.0	-26.5	Horiz
			-26.4	+14.3	+0.0						
28	737.343M	36.0	+0.0	+0.0	+0.0	+3.5	+0.0	33.9	61.0	-27.1	Horiz
			-27.7	+22.1	+0.0						
29	291.915M	44.4	+0.0	+0.0	+0.0	+2.2	+0.0	33.7	61.0	-27.3	Vert
			-26.1	+13.2	+0.0						
30	261.189M	44.5	+0.0	$+0.0$	+0.0	+2.2	+0.0	33.5	61.0	-27.5	Vert
			-26.0	+12.8	+0.0						
31	215.111M	45.7	+0.0	$+0.0$	+0.0	+2.0	+0.0	31.6	61.0	-29.4	Vert
			-26.2	+10.1	+0.0						
32	217.630M	45.0	+0.0	+0.0	+0.0	+2.0	+0.0	31.1	61.0	-29.9	Vert
			-26.2	+10.3	+0.0						
33	491.611M	36.6	+0.0	+0.0	+0.0	+2.8	+0.0	29.8	61.0	-31.2	Vert
			-27.6	+18.0	+0.0						
34	399.450M	37.2	+0.0	+0.0	+0.0	+2.7	+0.0	28.9	61.0	-32.1	Horiz
			-27.0	+16.0	+0.0						
35	138.305M	42.4	+0.0	+0.0	+0.0	+1.6	+0.0	28.8	61.0	-32.2	Horiz
			-26.5	+11.3	+0.0						
36	215.111M	42.7	+0.0	$+0.0$	+0.0	+2.0	+0.0	28.6	61.0	-32.4	Horiz
			-26.2	+10.1	+0.0						
37	217.635M	42.0	+0.0	+0.0	+0.0	+2.0	+0.0	28.1	61.0	-32.9	Horiz
			-26.2	+10.3	+0.0						
38	399.419M	35.5	+0.0	+0.0	+0.0	+2.7	+0.0	27.2	61.0	-33.8	Vert
			-27.0	+16.0	+0.0						

Page 32 of 56

Test Location:	CKC Laboratories, Inc. - 480 Los Viboras Rd., Site B - Hollister, Ca 95023 - (831) 637-0485		
Customer:	IPWireless, Inc.		
Specification:	FCC 2.1053 Model UEP1b Field Strength SE		
Work Order \#:	78019	Date:	12/9/2001
Test Type:	Radiated Scan	Time:	19:57:18
Equipment:	Wireless Modem	Sequence\#:	17
Manufacturer:	IP Wireless, Inc.	Tested By:	Conan Boyle

S/N: AE4K1A-0000066

Test Equipment:

Function	S/N	Calibration	Cal Due Date Asset	
HP 8564E Spec. An.	Date		\#	
Preamp, HP83017A	01984	$12 / 12 / 2000$	$12 / 12 / 2001$	1406
Horn Ant., Emco 3115	$3123 A 0464$	$05 / 14 / 2001$	$05 / 14 / 2002$	1271
Ant, Horn 18-26.5GHz	$9307-5655$	$07 / 09 / 2001$	$07 / 09 / 2002$	2157
Ant, Horn 26.5-40GHz	$942126-003$	$07 / 09 / 2001$	$07 / 09 / 2002$	1413
Filter, 3.5GHz High Pass	$951559-008$	$05 / 22 / 2001$	$05 / 22 / 2002$	1414
Log Periodic, AH Systems SAS 200/510	$3643 A 00026$	$02 / 19 / 2001$	$02 / 19 / 2002$	1417
Bilog Antenna CBL6111C	288	$05 / 16 / 2001$	$05 / 16 / 2002$	566
Preamp, HP 8447F opt H64	2630	$10 / 10 / 2001$	$10 / 10 / 2002$	0
QP Adapter	$2944 A 03850$	$04 / 09 / 2001$	$04 / 09 / 2002$	501
S.A. Display	$2430 A 00541$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A.	$2112 A 02174$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
Cable, 2 ft Andrews FSJ1P-50A-4A	$2049 A 01408$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
H-B 3meter Rad. cable .01-1MHz	hol-hf-002-01	$09 / 29 / 2000$	$09 / 29 / 2001$	0
	Hol-B 3-m rad cable-01-.01-	$10 / 03 / 2001$	$10 / 03 / 2002$	0
H-B 3meter Rad. cable 1-13.5GHz	HMHz			
	Hol-B 3-m rad cable-01-1GHz-	$10 / 03 / 2001$	$10 / 03 / 2002$	0
Cable, 100 ft Andrews FSJ1P-50A-4A	$13.5 G H z$			
Ant, Mag Loop	hol-hf-100-09	$09 / 29 / 2001$	$09 / 29 / 2002$	0

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Wireless Modem*	IP Wireless, Inc.	UEP1b	AE4K1A-0000066
AC Adapter	Friwo	SPA15U-05	None

Support Devices:

Function	Manufacturer	Model \#	S/N
Notebook PC	Dell	PPX (Inspiron 3800)	329-634-58
AC Adapter	Dell	AA20031	CN-09364U-16291-14O-070J
Printer	HP	C2184A	MY63J1T1KZ
AC Adapter	HP	C2175A	220995 (Date)
Monitor	Micron	RMD5L11CM	8205C1127500
Keyboard	Compaq	RT101	1114X877X
Mouse	Microsoft	X04-72167	None

Test Conditions / Notes:

The EUT is a Wireless Modem referred to as a subscriber terminal. The EUT is connected to a notebook PC via an RS-232 serial cable and is powered by an AC adapter. The PC has external keyboard, mouse and monitor. The EUT is operating in transmit-receive mode at 2680 MHz with five transmit channels and ten receive channels active. Specification limit derived according to the Relative Method in 21.908(e). See "Calculations Worksheet" (file name "calculations-ueplb.xls"). Test is field strength of spurious emissions at antenna terminals from $10 \mathrm{kHz}-$ 26800 MHz (FCC 2.1053).

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	Horn Hol-B dB	HP-83 Chase dB	$\begin{gathered} \text { H-B 3 } \\ \text { LOG28 } \\ \text { dB } \end{gathered}$	$8447 \mathrm{~F}$ dB	Dist	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
1	2300.004 M	50.2	$\begin{array}{r} \hline+27.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -34.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+8.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	52.4	61.0	-8.6	Vert
2	2300.004 M	48.5	$\begin{array}{r} \hline+27.8 \\ +0.0 \end{array}$	$\begin{array}{r} -34.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +8.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	50.7	61.0	-10.3	Horiz
3	368.719M	52.1	$\begin{aligned} & +0.0 \\ & +2.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +16.6 \end{array}$	-26.6	+0.0	44.6	61.0	-16.4	Vert
4	245.834 M	56.0	$\begin{aligned} & +0.0 \\ & +2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +12.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-26.0	+0.0	44.5	61.0	-16.5	Horiz
5	368.719M	51.7	$\begin{array}{r} +0.0 \\ +2.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +16.6 \\ \hline \end{array}$	-26.6	+0.0	44.2	61.0	-16.8	Horiz
6	307.280M	51.3	$\begin{aligned} & +0.0 \\ & +2.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.0 \end{array}$	-26.2	+0.0	42.4	61.0	-18.6	Vert
7	353.358M	48.5	$\begin{array}{r} +0.0 \\ +2.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.6 \\ \hline \end{array}$	-26.4	+0.0	40.1	61.0	-20.9	Horiz
8	245.838M	51.5	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +12.3 \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	-26.0	+0.0	40.0	61.0	-21.0	Vert
9	122.958 M	53.7	$\begin{aligned} & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +11.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-26.6	$+0.0$	39.9	61.0	-21.1	Horiz
10	276.551M	50.5	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +13.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-26.0	+0.0	39.7	61.0	-21.3	Horiz
11	353.356M	47.9	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.6 \\ \hline \end{array}$	-26.4	+0.0	39.5	61.0	-21.5	Vert
12	384.077M	45.9	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +17.6 \end{array}$	-26.8	$+0.0$	39.3	61.0	-21.7	Vert
13	675.906M	41.7	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +21.6 \end{array}$	-27.7	+0.0	39.1	61.0	-21.9	Vert
14	261.193M	49.9	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +12.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-26.0	+0.0	38.9	61.0	-22.1	Horiz
15	291.914M	49.4	$\begin{aligned} & \hline+0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +13.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-26.1	+0.0	38.7	61.0	-22.3	Horiz
16	337.988M	47.1	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.3 \end{array}$	-26.4	+0.0	38.4	61.0	-22.6	Vert
17	384.078 M	44.9	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +17.6 \end{array}$	-26.8	+0.0	38.3	61.0	-22.7	Horiz
18	614.462M	41.2	$\begin{array}{r} +0.0 \\ +3.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +20.8 \\ \hline \end{array}$	-27.9	+0.0	37.4	61.0	-23.6	Horiz
19	122.950M	50.7	$\begin{aligned} & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +11.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-26.6	$+0.0$	36.9	61.0	-24.1	Vert
20	614.478M	39.8	$\begin{array}{r} +0.0 \\ +3.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +20.8 \end{array}$	-27.9	+0.0	36.0	61.0	-25.0	Vert
21	307.271M	44.6	$\begin{aligned} & +0.0 \\ & +2.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.0 \\ \hline \end{array}$	-26.2	$+0.0$	35.7	61.0	-25.3	Horiz
22	675.823M	38.2	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +21.6 \end{array}$	-27.7	+0.0	35.6	61.0	-25.4	Horiz
23	737.322M	37.7	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +21.5 \end{array}$	-27.7	+0.0	35.0	61.0	-26.0	Horiz
24	337.996M	43.3	$\begin{array}{r} +0.0 \\ +2.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +15.3 \\ \hline \end{array}$	-26.4	+0.0	34.6	61.0	-26.4	Horiz

Page 34 of 56 Report No.: FC01-086

25	291.916M	45.0	$+0.0$	+0.0	+0.0	-26.1	+0.0	34.3	61.0	-26.7	Vert
			+2.2	+13.2	+0.0						
26	276.559M	45.0	+0.0 +2.2	$\begin{array}{r} +0.0 \\ +13.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +00 \end{aligned}$	-26.0	+0.0	34.2	61.0	-26.8	Vert
27	491.578M	40.7	+0.0	+0.0	+0.0	-27.6	+0.0	33.7	61.0	-27.3	Vert
			+2.8	+0.0	+17.8						
28	261.189M	44.7	+0.0	+0.0	+0.0	-26.0	+0.0	33.7	61.0	-27.3	Vert
			+2.2	+12.8	+0.0						
29	230.474M	46.5	+0.0	+0.0	+0.0	-26.1	+0.0	33.7	61.0	-27.3	Vert
			+2.0	+11.3	+0.0						
30	215.116M	46.2	+0.0	+0.0	+0.0	-26.2	+0.0	32.1	61.0	-28.9	Vert
			+2.0	+10.1	$\begin{array}{r} +0.0 \\ \hline \end{array}$						
31	430.154M	37.0	+0.0	+0.0	+0.0	-27.1	+0.0	30.9	61.0	-30.1	Vert
			+2.7	+0.0	+18.3						
32	217.635M	44.8	+0.0	+0.0	+0.0	-26.2	+0.0	30.9	61.0	-30.1	Vert
			+2.0	+10.3	+0.0						
33	430.138M	36.4	+0.0	+0.0	+0.0	-27.1	+0.0	30.3	61.0	-30.7	Horiz
			+2.7	+0.0	+18.3						
34	215.064M	44.3	+0.0	+0.0	+0.0	-26.2	+0.0	30.2	61.0	-30.8	Horiz
			+2.0	+10.1	+0.0						
35	217.621M	43.5	+0.0	+0.0	+0.0	-26.2	+0.0	29.6	61.0	-31.4	Horiz
			+2.0	+10.3	$\begin{array}{r} +0.0 \\ \hline \end{array}$						
36	491.548M	36.1	+0.0	+0.0		-27.6	+0.0	29.1	61.0	-31.9	Horiz
			+2.8	+0.0	+17.8						
37	138.317M	42.2	+0.0	+0.0	+0.0	-26.5	+0.0	28.6	61.0	-32.4	Horiz
			+1.6	+11.3	+0.0						
38	138.307M	42.0	$\begin{array}{r} +0.0 \\ +1.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +11.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	-26.5	+0.0	28.4	61.0	-32.6	Vert

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS:

BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
10 kHz	150 kHz	200 Hz
150 kHz	30 MHz	9 kHz
30 MHz	1000 MHz	120 kHz
1000 MHz	26800 MHz	1 MHz

Field Strength Test Setup - Front View

Field Strength Test Setup - Back View

2.1033(c)(14)/2.1055/21.101 - FREQUENCY STABILITY

Test Equipment Used:

Equipment	Manufacturer	Model \#	Serial \#	Asset \#	Cal Date	Cal Due
Digital Multimeter	Radio Shack	$22-183$	NA	01241	$8 / 30 / 01$	$8 / 30 / 02$
QP Adapter	HP	85650 A	2811 A 01267	00478	$11 / 9 / 01$	$11 / 9 / 02$
S/A Display	HP	8566 B	2403 A 08241	00489	$11 / 9 / 01$	$11 / 9 / 02$
Spectrum Analyzer	HP	8566 B	2209 A 01404	00490	$11 / 9 / 01$	$11 / 9 / 02$
Temp Chamber	Thermotron	S-1.2 MiniMax	11899	01879	$3 / 29 / 01$	$3 / 29 / 02$
Power Supply, DC	Sorensen	DCR-60-30B	176	00765	$7 / 17 / 01$	$7 / 17 / 02$
Thermometer	Omega	HH-26K	T-202884	02242	$7 / 26 / 01$	$7 / 26 / 02$

Test Conditions:

The device was placed in continuos transmit mode and an Andrews Heliax shielded RF cable was connected directly to the transmit port connector of the device and the other end to the HP8566B spectrum analyzer RF input port. The device power supply was plugged into 120 V AC. The temperature was varied in 10 -degree steps from $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. The fundamental frequency was monitored on the spectrum analyzer.

Frequency Stability

Customer:
WO Wireless
Model:
78019
FCC PP UEP1b
$2.1055 / 21.101$
Test Engineer:

Ambient Temperature:	68	$\% \quad 20.0{ }^{\circ} \mathrm{C}$
Relative Humidity:	40	
Authorized Band:	2506-2680	MHz
CH 1 Operating Frequency in MHz:	2506.00	
CH 2 Operating Frequency in MHz:	2596.00	
CH3 Operating Frequency in MHz:	2680.00	
CH 1 Frequency Limit in Hz :	12530000	0.005\%
CH 2 Frequency Limit in Hz :	12980000	0.005\%
CH3 Frequency Limit in Hz:	13400000	0.005\%
Nominal Operating Voltage:	5.00	VAC/VDC
85\% of Nominal (V-)	4.25	VAC/VDC
115\% of Nominal (V+)	5.75	VAC/VDC
Maximum Positive Deviation:	4000.00	Hz
Maximum Negative Deviation:	-400.00	Hz

Temperature Stability

	Chann	nel 1	
		Frequency Error Hz	Pass/Fail
-30	2506.001400	1400	PASS
$-20^{\circ} \mathrm{C}$	2506.000800	800	PASS
$-10^{\circ} \mathrm{C}$	2505.999600	-400	PASS
$0{ }^{\circ} \mathrm{C}$	2506.001800	1800	PASS
$+10^{\circ} \mathrm{C}$	2506.001800	1800	PASS
$+20^{\circ} \mathrm{C}$	2506.001800	1800	PASS
$+30^{\circ} \mathrm{C}$	2505.999800	-200	PASS
$+40^{\circ} \mathrm{C}$	2506.002000	2000	PASS
$+50^{\circ} \mathrm{C}$	2506.002600	2600	PASS

	Chann	nel 2	
		Frequency Error Hz	Pass/Fail
-30	2596.000400	400	PASS
$-20^{\circ} \mathrm{C}$	2596.000800	800	PASS
$-10^{\circ} \mathrm{C}$	2596.000200	200	PASS
$\mathrm{O}^{\circ} \mathrm{C}$	2596.002600	2600	PASS
$+10^{\circ} \mathrm{C}$	2596.002000	2000	PASS
$+20^{\circ} \mathrm{C}$	2596.001600	1600	PASS
$+30^{\circ} \mathrm{C}$	2596.001300	1300	PASS
$+40^{\circ} \mathrm{C}$	2596.001200	1200	PASS
$+50^{\circ} \mathrm{C}$	2596.002200	2200	PASS

	Chann	nel 3	
	Frequency MHz	Frequency Error Hz	Pass/Fail
-30	2680.000000		0 PASS
$-20^{\circ} \mathrm{C}$	2680.002400	2400	0 PASS
$-10^{\circ} \mathrm{C}$	2680.001000	1000	0 PASS
$\mathrm{O}^{\circ} \mathrm{C}$	2680.001600	1600	0 PASS
$+10^{\circ} \mathrm{C}$	2680.001800	1800	0 PASS
$+20^{\circ} \mathrm{C}$	2680.001600	1600	0 PASS
$+30^{\circ} \mathrm{C}$	2679.999800	-200	0 PASS
$+40^{\circ} \mathrm{C}$	2680.001800	1800	0 PASS
$+50^{\circ} \mathrm{C}$	2680.004000	4000	0 PASS

LAEORATOFIESA, INO.

Voltage Variations

Ambient Temperature is $20.0{ }^{\circ} \mathrm{C}$

Channel 1			
Voltage	Frequency MHz	Frequency Error Hz Pass/Fail	
4.3	2506.000400	400 PASS	
5.0	2506.001200	1200 PASS	
5.8	2506.000800	800 PASS	

Channel 2		
Voltage	Frequency MHz	Frequency Error Hz Pass/Fail
4.3	2596.001000	1000 PASS
5.0	2596.001200	1200 PASS
5.8	2596.001600	1600 PASS

Channel 3 Voltage				Frequency MHz	Frequency Error Hz Pass/Fail
4.3	2680.000800	800 PASS			
5.0	2680.002800	2800 PASS			
5.8	2680.003200	3200 PASS			

Frequency Stability Test Setup

LAEOFATOFIEES:INC.

15.107 - AC CONDUCTED EMISSIONS - RECEIVER

Test Location: CKC Laboratories, Inc. • 480 Los Viboras Rd., Site B • Hollister, Ca 95023 • (831) 637-8176

Customer:
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N: AE4K1A-0000066

IPWireless, Inc.
FCC B COND
78019
Conducted Emissions
Wireless Modem
IP Wireless, Inc.
UEP1b

Date: 12/9/2001
Time: 9:20:15 PM
Sequence\#: 10
Tested By: Conan T. Boyle

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
S.A.	$2049 A 01408$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A. Display	$2112 A 02174$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
QP Adapter	$2430 A 00541$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
Cond cable, HB	cond_cab_01_hol_b	$09 / 13 / 2001$	$09 / 13 / 2002$	0
LISN, Solar 9252-50-R-24-BNC	927108	$03 / 07 / 2001$	$03 / 07 / 2002$	611

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Wireless Modem*	IP Wireless, Inc.	UEP1b	AE4K1A-0000066
AC Adapter	Friwo	SPA15U-05	None

Support Devices:

Function	Manufacturer	Model \#	S/N
Notebook PC	Dell	PPX (Inspiron 3800)	$329-634-27$
AC Adapter	Dell	AA20031	CN-09364U-12671-0BH-4902
Monitor	Micron	RMD5L11CM	8205C1127500
Keyboard	Compaq	RT101	1114 X877X
Mouse	Microsoft	X04-72167	None
Printer	HP	C2184A	MY63J1T1KZ
AC Adapter	HP	C2175A	220995 (Date)

Test Conditions / Notes:

The EUT is a Wireless Modem referred to as a subscriber terminal. The EUT is connected to a notebook PC via an RS-232 serial cable and is powered by an AC adapter. The EUT is set to receive mode on a frequency of 2596 MHz . The notebook PC is connected to a 15 -in video monitor, keyboard, mouse, and inkjet printer. Power is $120 \mathrm{v}, 60 \mathrm{~Hz}$. Frequency range tested is $.45-30 \mathrm{MHz}$.
Measurement Data: \quad Reading listed by margin. \quad Test Lead: Black

Condu											
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	dB	$\begin{gathered} \text { LISN } \\ \text { dB } \end{gathered}$	dB	$\begin{gathered} \text { LISN } \\ \text { dB } \end{gathered}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	455.015k	40.0	+0.2				+0.0	40.1	48.0	-7.9	Black
				+0.1		-0.2					
2	6.090 M	39.1	+0.3				+0.0	39.7	48.0	-8.3	Black
				+0.2		+0.1					
3	7.155M	38.6	+0.4				+0.0	39.2	48.0	-8.8	Black
				+0.1		+0.1					
4	510.178k	38.8	+0.2				+0.0	39.0	48.0	-9.0	Black
				+0.2		-0.2					
5	7.073 M	38.4	+0.4				+0.0	39.0	48.0	-9.0	Black
				+0.1		+0.1					

6	682.352 k	38.8	+0.1								
7	8.342 M	37.8	+0.5								

Page 41 of 56
Report No.: FC01-086

Test Location:	CKC Laboratories, Inc. • 480 Los Viboras Rd., Site B • Hollister, Ca 95023 • (831) 637-8176	
Customer:	IPWireless, Inc.	
Specification:	FCC B COND	
Work Order \#:	$\mathbf{7 7 0 9 7}$	Date: 12/9/2001
Test Type:	Conducted Emissions	Time: $9: 25: 31$ PM
Equipment:	Wireless Modem	Sequence\#: 11
Manufacturer:	IP Wireless, Inc.	Tested By: Conan T. Boyle
Model:	UEP1b	
S/N:	AE4K1A-0000066	

Test Equipment:

Function	S/N	Calibration Date Cal Due Date	Asset \#	
S.A.	2049A01408	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A. Display	2112A02174	$06 / 14 / 2001$	$06 / 14 / 2002$	313
QP Adapter	2430A00541	$06 / 14 / 2001$	$06 / 14 / 2002$	313
Cond cable, HB	cond_cab_01_hol_b	$09 / 13 / 2001$	$09 / 13 / 2002$	0
LISN, Solar 9252-50-R-24-BNC	927108	$03 / 07 / 2001$	$03 / 07 / 2002$	611

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Wireless Modem*	IP Wireless, Inc.	UEP1b	AE4K1A-0000066
AC Adapter	Friwo	SPA15U-05	None
Support Devices:			
Function	Manufacturer	Model \#	S/N
Notebook PC	Dell	PPX (Inspiron 3800)	$329-634-27$
AC Adapter	Dell	AA20031	CN-09364U-12671-0BH-4902
Monitor	Micron	RMD5L11CM	$8205 C 1127500$
Keyboard	Compaq	RT101	$1114 X 877 \mathrm{X}$
Mouse	Microsoft	X04-72167	None
Printer	HP	C2184A	MY63J1T1KZ
AC Adapter	HP	C2175A	220995 (Date)

Test Conditions / Notes:

The EUT is a Wireless Modem referred to as a subscriber terminal. The EUT is connected to a notebook PC via an RS-232 serial cable and is powered by an AC adapter. The EUT is set to receive mode on a frequency of 2596 MHz . The notebook PC is connected to a 15 -in video monitor, keyboard, mouse, and inkjet printer. Power is $120 \mathrm{v}, 60 \mathrm{~Hz}$. Frequency range tested is $.45-30 \mathrm{MHz}$.

Measu	nent Data	Reading listed by margin.				Test Lead: White					
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	Condu LISN dB	$\begin{gathered} \text { LISN } \\ \mathrm{dB} \end{gathered}$	$\begin{gathered} \text { LISN } \\ \text { LISN } \\ \mathrm{dB} \\ \hline \end{gathered}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\underset{\mathrm{dB}}{\operatorname{Margin}}$	Polar Ant
1	471.731k	40.5	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$		+0.0	40.5	48.0	-7.5	White
2	531.073 k	39.3	$\begin{array}{r} \hline+0.2 \\ -0.3 \\ \hline \end{array}$	+0.0	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$		+0.0	39.3	48.0	-8.7	White
3	6.035 M	38.5	$\begin{aligned} & +0.3 \\ & +0.3 \end{aligned}$	+0.0	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$		+0.0	39.2	48.0	-8.8	White
4	484.268k	39.2	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$		+0.0	39.2	48.0	-8.8	White
5	5.899 M	38.4	$\begin{aligned} & \hline+0.3 \\ & +0.2 \\ & \hline \end{aligned}$	+0.0	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$		+0.0	39.0	48.0	-9.0	White
6	1.735M	38.8	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$		+0.0	39.0	48.0	-9.0	White

$\left.\begin{array}{|ccccccccccc|}\hline 7 & 24.618 \mathrm{M} & 36.0 & \begin{array}{l}+0.8 \\ +1.3\end{array} & +0.0 & +0.8 \\ +0.0\end{array}\right)$

Page 44 of 56
Report No.: FC01-086

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS

BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
450 kHz	30 MHz	9 kHz

Mains Conducted Emissions Test Setup - Front View

Mains Conducted Emissions Test Setup - Side View

15.109 - RADIATED EMISSIONS - RECEIVER

Test Location: CKC Laboratories, Inc. • 480 Los Viboras Rd., Site B • Hollister, Ca 95023 • (831) 637-0485

Customer:	IPWireless, Inc.
Specification:	FCC B RADIATED
Work Order \#:	$\mathbf{7 8 0 1 9}$
Test Type:	Radiated Scan Equipment:
Wireless Modem	
Manufacturer:	IP Wireless, Inc.
Model:	UEP1b
S/N:	AE4K1A-0000066

Date: 12/9/2001
Time: 17:08:25
Sequence\#: 7
Tested By: Conan Boyle

S/N: AE4K1A-0000066

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
HP 8564E Spec. An.	01984	$12 / 12 / 2000$	$12 / 12 / 2001$	1406
Preamp, HP83017A	$3123 A 0464$	$05 / 14 / 2001$	$05 / 14 / 2002$	1271
Horn Ant., Emco 3115	$9307-5655$	$07 / 09 / 2001$	$07 / 09 / 2002$	2157
Ant, Horn 18-26.5GHz	$942126-003$	$07 / 09 / 2001$	$07 / 09 / 2002$	1413
Ant, Horn 26.5-40GHz	$951559-008$	$05 / 22 / 2001$	$05 / 22 / 2002$	1414
Filter, 3.5GHz High Pass	$3643 A 00026$	$02 / 19 / 2001$	$02 / 19 / 2002$	1417
Log Periodic, AH Systems SAS 200/510	288	$05 / 16 / 2001$	$05 / 16 / 2002$	566
Bilog Antenna CBL6111C	2630	$10 / 10 / 2001$	$10 / 10 / 2002$	0
Preamp, HP 8447F opt H64	$2944 A 03850$	$04 / 09 / 2001$	$04 / 09 / 2002$	501
QP Adapter	$2430 A 00541$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A. Display	$2112 A 02174$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A.	$2049 A 01408$	$06 / 14 / 2001$	$06 / 14 / 2002$	313
H-B 3meter Rad. cable .01-1MHz	Hol-B 3-m rad cable-01-.01-	$10 / 03 / 2001$	$10 / 03 / 2002$	0
	1 MHz			
H-B 3meter Rad. cable 1-13.5GHz	Hol-B 3-m rad cable-01-	$10 / 03 / 2001$	$10 / 03 / 2002$	0
	$1 G H z-13.5 G H z$			
Ant, Mag Loop	2078	$08 / 17 / 2001$	$08 / 17 / 2002$	432

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Wireless Modem*	IP Wireless, Inc.	UEP1b	AE4K1A-0000066
AC Adapter	Friwo	SPA15U-05	None
Support Devices:			
Function	Manufacturer	Model \#	S/N
Notebook PC	Dell	PPX (Inspiron 3800)	$329-634-58$
AC Adapter	Dell	AA20031	CN-09364U-16291-14O-070J
Printer	HP	C2184A	MY63J1T1KZ
AC Adapter	HP	C2175A	220995 (Date)
Monitor	Micron	RMD5L11CM	$8205 C 1127500$
Keyboard	Compaq	RT101	1114 X877X
Mouse	Microsoft	X04-72167	None

Test Conditions / Notes:

The EUT is a Wireless Modem referred to as a subscriber terminal. The EUT is connected to a notebook PC via an RS-232 serial cable and is powered by an AC adapter. The PC has external keyboard, mouse and monitor. The EUT is operating in receive mode at 2506 MHz . Frequency range is $30-12530 \mathrm{MHz}$.

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\#	Freq MHz	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \\ & \hline \end{aligned}$	Horn Chase dB	HP-83 Hol-B dB	$\begin{gathered} \text { H-B } 3 \\ \text { LOG28 } \end{gathered}$$\mathrm{dB}$	8447F dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
$\begin{array}{ll} 1 \quad 245.829 \mathrm{M} \\ \mathrm{QP} \\ \hline \end{array}$		55.6	+0.0	+0.0	+0.0	-26.0	+0.0	44.1	46.0	-1.9	Horiz
			+12.3	+2.2	+0.0		No ferrite				
$\wedge 245.829 \mathrm{M}$		55.7	+0.0	+0.0	+0.0	-26.0	+0.0	44.2	46.0	-1.8	Horiz
			+12.3	+2.2	+0.0		No ferrite				
	3 2126.001M	48.1	+27.8	-34.2	+9.4	+0.0	+0.0	51.1	54.0	-2.9	Vert
Ave			+0.0	+0.0	+0.0						
	$\wedge 2126.001 \mathrm{M}$	49.0	+27.8	-34.2	+9.4	+0.0	+0.0	52.0	54.0	-2.0	Vert
			+0.0	+0.0	+0.0						
5122.953 MQP		53.2	+0.0	+0.0	+0.0	-26.6	+0.0	39.4	43.5	-4.1	Horiz
			+11.4	+1.4	+0.0						
	$\wedge 122.949 \mathrm{M}$	53.6	+0.0	+0.0	+0.0	-26.6	+0.0	39.8	43.5	-3.7	Horiz
			+11.4	+1.4	+0.0						
$\mathrm{QP}^{7}{ }^{307.278 \mathrm{M}}$		50.7	+0.0	+0.0	+0.0	-26.2	+0.0	41.8	46.0	-4.2	Vert
			+0.0	+2.3	+15.0						
	$\wedge 307.278 \mathrm{M}$	50.9	+0.0	+0.0	+0.0	-26.2	+0.0	42.0	46.0	-4.0	Vert
			+0.0	+2.3	+15.0						
	$9 \quad 276.553 \mathrm{M}$	52.2	+0.0	+0.0	+0.0	-26.0	+0.0	41.4	46.0	-4.6	Horiz
QP			+13.0	+2.2	+0.0						
$\wedge 276.553 \mathrm{M}$		52.2	+0.0	+0.0	+0.0	-26.0	+0.0	41.4	46.0	-4.6	Horiz
			+13.0	+2.2	+0.0						
$\begin{array}{ll} 11 & 245.832 \mathrm{M} \\ \mathrm{QP} \\ \hline \end{array}$		52.5	+0.0	+0.0	+0.0	-26.0	+0.0	41.0	46.0	-5.0	Vert
			+12.3	+2.2	+0.0						
$\wedge 245.832 \mathrm{M}$		52.9	+0.0	+0.0	+0.0	-26.0	+0.0	41.4	46.0	-4.6	Vert
			+12.3	+2.2	+0.0						
$\begin{gathered} 132126.004 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$		45.0	+27.8	-34.2	+9.4	+0.0	+0.0	48.0	54.0	-6.0	Horiz
			+0.0	+0.0	+0.0						
$\wedge 2126.004 \mathrm{M}$		46.2	+27.8	-34.2	+9.4	+0.0	+0.0	49.2	54.0	-4.8	Horiz
			+0.0	+0.0	+0.0						
15	5 261.141M	50.9	+0.0	+0.0	+0.0	-26.0	+0.0	39.9	46.0	-6.1	Horiz
			+12.8	+2.2	+0.0						
$\begin{gathered} 16230.469 \mathrm{M} \\ \mathrm{QP} \\ \hline \end{gathered}$		52.7	+0.0	+0.0	+0.0	-26.1	+0.0	39.9	46.0	-6.1	Horiz
			+11.3	+2.0	+0.0						
$\wedge 230.469 \mathrm{M}$		53.2	+0.0	+0.0	+0.0	-26.1	+0.0	40.4	46.0	-5.6	Horiz
			+11.3	+2.0	+0.0						
18	122.949 M	50.4	+0.0	+0.0	+0.0	-26.6	+0.0	36.6	43.5	-6.9	Vert
			+11.4	+1.4	+0.0						
19	291.905M	49.6	+0.0	+0.0	+0.0	-26.1	+0.0	38.9	46.0	-7.1	Horiz
			+13.2	+2.2	+0.0						
20	368.714M	45.9	+0.0	+0.0	+0.0	-26.6	+0.0	38.4	46.0	-7.6	Horiz
			+0.0	+2.5	+16.6						
21	675.868M	40.8	+0.0	+0.0	+0.0	-27.7	+0.0	38.2	46.0	-7.8	Vert
			+0.0	+3.5	+21.6						
22	675.872M	40.8	+0.0	+0.0	+0.0	-27.7	+0.0	38.2	46.0	-7.8	Horiz
			+0.0	+3.5	+21.6						
23	353.308M	46.4	+0.0	+0.0	+0.0	-26.4	$+0.0$	38.0	46.0	-8.0	Horiz
			+0.0	+2.4	+15.6						
24	24 384.075M	44.4	+0.0	+0.0	+0.0	-26.8	+0.0	37.8	46.0	-8.2	Horiz
			+0.0	+2.6	+17.6						

Page 48 of 56

25	307.273M	45.6	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.0 \end{array}$	-26.2	+0.0	36.7	46.0	-9.3	Horiz
26	384.070M	43.2	+0.0	+0.0	+0.0	-26.8	+0.0	36.6	46.0	-9.4	Vert
			+0.0	+2.6	+17.6						
27	614.479M	40.3	+0.0	+0.0	+0.0	-27.9	+0.0	36.5	46.0	-9.5	Horiz
			+0.0	+3.3	+20.8						
28	353.352M	44.7	+0.0	+0.0	+0.0	-26.4	+0.0	36.3	46.0	-9.7	Vert
			+0.0	+2.4	+15.6						
29	368.707 M	43.7	+0.0	+0.0	+0.0	-26.6	+0.0	36.2	46.0	-9.8	Vert
			+0.0	+2.5	+16.6						
30	276.552M	46.9	+0.0	+0.0	+0.0	-26.0	+0.0	36.1	46.0	-9.9	Vert
			+13.0	+2.2	+0.0						
31	261.189M	46.6	+0.0	+0.0	+0.0	-26.0	+0.0	35.6	46.0	-10.4	Vert
			+12.8	+2.2	+0.0						
32	614.470M	39.0	+0.0	+0.0	+0.0	-27.9	+0.0	35.2	46.0	-10.8	Vert
			+0.0	+3.3	+20.8						
33	230.464 M	47.8	+0.0	+0.0	+0.0	-26.1	+0.0	35.0	46.0	-11.0	Vert
			+11.3	+2.0	+0.0						
34	337.997 M	43.6	+0.0	+0.0	+0.0	-26.4	+0.0	34.9	46.0	-11.1	Horiz
			+0.0	+2.4	+15.3						
35	291.908M	45.4	+0.0	+0.0	+0.0	-26.1	+0.0	34.7	46.0	-11.3	Vert
			+13.2	+2.2	+0.0						
36	737.322M	36.5	+0.0	+0.0	+0.0	-27.7	+0.0	33.8	46.0	-12.2	Horiz
			+0.0	+3.5	+21.5						
37	138.309M	44.4	+0.0	+0.0	+0.0	-26.5	+0.0	30.8	43.5	-12.7	Horiz
			+11.3	+1.6	+0.0						
38	215.106M	44.6	+0.0	+0.0	+0.0	-26.2	+0.0	30.5	43.5	-13.0	Horiz
			+10.1	+2.0	+0.0						
39	217.630 M	45.7	+0.0	+0.0	+0.0	-26.2	+0.0	31.8	46.0	-14.2	Vert
			+10.3	+2.0	+0.0						
40	215.108 M	42.7	+0.0	+0.0	+0.0	-26.2	+0.0	28.6	43.5	-14.9	Vert
			+10.1	+2.0	+0.0						
41	217.617 M	41.8	+0.0	+0.0	+0.0	-26.2	+0.0	27.9	46.0	-18.1	Horiz
			+10.3	+2.0	+0.0						

Page 49 of 56

Test Location: CKC Laboratories, Inc. • 480 Los Viboras Rd., Site B • Hollister, Ca 95023 • (831) 637-0485

Customer:	IPWireless, Inc.
Specification:	FCC B RADIATED
Work Order \#:	78019
Test Type:	Radiated Scan
Equipment:	Wireless Modem
Manufacturer:	IP Wireless, Inc.
Model:	UEP1b
S/N:	AE4K1A-0000066

```
Date: 12/9/2001
Time: 18:47:54
Sequence\#: 8
Tested By: Conan Boyle
```

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
HP 8564E Spec. An.	01984	$12 / 12 / 2000$	$12 / 12 / 2001$	1406
Preamp, HP83017A	$3123 A 0464$	$05 / 14 / 2001$	$05 / 14 / 2002$	1271
Horn Ant., Emco 3115	$9307-5655$	$07 / 09 / 2001$	$07 / 09 / 2002$	2157
Ant, Horn 18-26.5GHz	$942126-003$	$07 / 09 / 2001$	$07 / 09 / 2002$	1413
Ant, Horn 26.5-40GHz	$951559-008$	$05 / 22 / 2001$	$05 / 22 / 2002$	1414
Filter, 3.5GHz High Pass	$3643 A 00026$	$02 / 19 / 2001$	$02 / 19 / 2002$	1417
Log Periodic, AH Systems SAS 200/510 288	$05 / 16 / 2001$	$05 / 16 / 2002$	566	
Bilog Antenna CBL6111C	2630	$10 / 10 / 2001$	$10 / 10 / 2002$	0
Preamp, HP 8447F opt H64	2944 A 03850	$04 / 09 / 2001$	$04 / 09 / 2002$	501
QP Adapter	2430 A 00541	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A. Display	2112 A 02174	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A.	2049 A 01408	$06 / 14 / 2001$	$06 / 14 / 2002$	313
H-B 3meter Rad. cable .01-1MHz	Hol-B 3-m rad	$10 / 03 / 2001$	$10 / 03 / 2002$	0
	cable-01-.01-			
H-B 3meter Rad. cable 1-13.5GHz	1 MHz			0
	Hol-B 3-m rad	$10 / 03 / 2001$	$10 / 03 / 2002$	0
Ant, Mag Loop	cable-01-1GHz-			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Wireless Modem*	IP Wireless, Inc.	UEP1b	AE4K1A-0000066
AC Adapter	Friwo	SPA15U-05	None
Support Devices:			
Function	Manufacturer	Model \#	S/N
Notebook PC	Dell	PPX (Inspiron 3800)	329-634-58
AC Adapter	Dell	AA20031	CN-09364U-16291-14O-070J
Printer	HP	C2184A	MY63J1T1KZ
AC Adapter	HP	C2175A	220995 (Date)
Monitor	Micron	RMD5L11CM	$8205 C 1127500$
Keyboard	Compaq	RT101	1114 X877X
Mouse	Microsoft	X04-72167	None

Test Conditions / Notes:

The EUT is a Wireless Modem referred to as a subscriber terminal. The EUT is connected to a notebook PC via an RS-232 serial cable and is powered by an AC adapter. The PC has external keyboard, mouse and monitor. The EUT is operating in receive mode at 2596 MHz . Frequency range tested $30-12980 \mathrm{MHz}$.

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

Page 51 of 56 Report No.: FC01-086

25	353.352M	45.5	+0.0	+0.0	+0.0	+2.4	+0.0	36.2	46.0	-9.8	Horiz
			-26.4	+14.7	+0.0						
26	614.453M	40.1	+0.0	+0.0	+0.0	+3.3	+0.0	35.7	46.0	-10.3	Vert
			-27.9	+20.2	+0.0						
27	384.083M	44.1	+0.0	+0.0	+0.0	+2.6	+0.0	35.5	46.0	-10.5	Horiz
			-26.8	+15.6	+0.0						
28	276.547M	46.3	+0.0	+0.0	+0.0	+2.2	+0.0	35.5	46.0	-10.5	Vert
			-26.0	+13.0	+0.0						
29	737.352M	37.4	+0.0	+0.0	+0.0	+3.5	+0.0	35.3	46.0	-10.7	Vert
			-27.7	+22.1	+0.0						
30	614.423M	39.3	+0.0	+0.0	+0.0	+3.3	+0.0	34.9	46.0	-11.1	Horiz
			-27.9	+20.2	+0.0						
31	230.462M	47.7	+0.0	+0.0	+0.0	+2.0	+0.0	34.9	46.0	-11.1	Vert
			-26.1	+11.3	+0.0						
32	337.972M	44.2	+0.0	+0.0	+0.0	+2.4	+0.0	34.5	46.0	-11.5	Horiz
			-26.4	+14.3	+0.0						
33	215.111M	45.7	+0.0	+0.0	+0.0	+2.0	+0.0	31.6	43.5	-11.9	Vert
			-26.2	+10.1	+0.0						
34	737.343M	36.0	+0.0	+0.0	+0.0	+3.5	+0.0	33.9	46.0	-12.1	Horiz
			-27.7	+22.1	+0.0						
35	291.915M	44.4	+0.0	+0.0	+0.0	+2.2	+0.0	33.7	46.0	-12.3	Vert
			-26.1	+13.2	+0.0						
36	261.189M	44.5	+0.0	+0.0	+0.0	+2.2	+0.0	33.5	46.0	-12.5	Vert
			-26.0	+12.8	+0.0						
37	138.305M	42.4	+0.0	+0.0	+0.0	+1.6	+0.0	28.8	43.5	-14.7	Horiz
			-26.5	+11.3	+0.0						
38	217.630M	45.0	+0.0	+0.0	+0.0	+2.0	+0.0	31.1	46.0	-14.9	Vert
			-26.2	+10.3	+0.0						
39	215.111M	42.7	+0.0	+0.0	+0.0	+2.0	+0.0	28.6	43.5	-14.9	Horiz
			-26.2	+10.1	+0.0						
40	491.611M	36.6	+0.0	+0.0	+0.0	+2.8	+0.0	29.8	46.0	-16.2	Vert
			-27.6	+18.0	+0.0						
41	399.450M	37.2	+0.0	+0.0	+0.0	+2.7	+0.0	28.9	46.0	-17.1	Horiz
			-27.0	+16.0	+0.0						
42	217.635M	42.0	+0.0	+0.0	+0.0	+2.0	+0.0	28.1	46.0	-17.9	Horiz
			-26.2	+10.3	+0.0						
43	399.419M	35.5	+0.0	+0.0	+0.0	+2.7	+0.0	27.2	46.0	-18.8	Vert
			-27.0	+16.0	+0.0						

Page 52 of 56

Test Location: CKC Laboratories, Inc. - 480 Los Viboras Rd., Site B • Hollister, Ca 95023 • (831) 637-0485

Customer:	IPWireless, Inc.
Specification:	FCC B RADIATED
Work Order \#:	78019
Test Type:	Radiated Scan
Equipment:	Wireless Modem
Manufacturer:	IP Wireless, Inc.
Model:	UEP1b
S/N:	AE4K1A-0000066

Date: 12/11/2001
Time: 12:50:55
Sequence\#: 9
Tested By: Conan Boyle

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
HP 8564E Spec. An.	01984	$12 / 12 / 2000$	$12 / 12 / 2001$	1406
Preamp, HP83017A	$3123 A 0464$	$05 / 14 / 2001$	$05 / 14 / 2002$	1271
Horn Ant., Emco 3115	$9307-5655$	$07 / 09 / 2001$	$07 / 09 / 2002$	2157
Ant, Horn 18-26.5GHz	$942126-003$	$07 / 09 / 2001$	$07 / 09 / 2002$	1413
Ant, Horn 26.5-40GHz	$951559-008$	$05 / 22 / 2001$	$05 / 22 / 2002$	1414
Filter, 3.5GHz High Pass	$3643 A 00026$	$02 / 19 / 2001$	$02 / 19 / 2002$	1417
Log Periodic, AH Systems SAS 200/510	288	$05 / 16 / 2001$	$05 / 16 / 2002$	566
Bilog Antenna CBL6111C	2630	$10 / 10 / 2001$	$10 / 10 / 2002$	0
Preamp, HP 8447F opt H64	2944 A 03850	$04 / 09 / 2001$	$04 / 09 / 2002$	501
QP Adapter	2430 A 00541	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A. Display	2112 A 02174	$06 / 14 / 2001$	$06 / 14 / 2002$	313
S.A.	2049 A 01408	$06 / 14 / 2001$	$06 / 14 / 2002$	313
H-B 3meter Rad. cable .01-1MHz	Hol-B 3-m rad	$10 / 03 / 2001$	$10 / 03 / 2002$	0
	cable-01-.01-			
H-B 3meter Rad. cable 1-13.5GHz	1 MHz			
	Hol-B 3-m rad	$10 / 03 / 2001$	$10 / 03 / 2002$	0
Ant, Mag Loop	cable-01-1GHz-			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Wireless Modem*	IP Wireless, Inc.	UEP1b	AE4K1A-0000066
AC Adapter	Friwo	SPA15U-05	None
Support Devices:			
Function	Manufacturer	Model \#	S/N
Notebook PC	Dell	PPX (Inspiron 3800)	329-634-58
AC Adapter	Dell	AA20031	CN-09364U-16291-14O-070J
Printer	HP	C2184A	MY63J1T1KZ
AC Adapter	HP	C2175A	220995 (Date)
Monitor	Micron	RMD5L11CM	$8205 C 1127500$
Keyboard	Compaq	RT101	1114X877X
Mouse	Microsoft	X04-72167	None

Test Conditions / Notes:

The EUT is a Wireless Modem referred to as a subscriber terminal. The EUT is connected to a notebook PC via an RS-232 serial cable and is powered by an AC adapter. The PC has external keyboard, mouse and monitor. The EUT is operating in receive mode at 2680 MHz . Frequency range tested $30-13400 \mathrm{MHz}$.

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\# $\begin{aligned} & \text { Freq } \\ & \mathrm{MHz}\end{aligned}$	Rdng $\mathrm{dB} \mu \mathrm{V}$	Horn Hol-B dB	HP-83 Chase dB	$\begin{gathered} \hline \text { H-B } 3 \\ \text { LOG28 } \\ \text { dB } \\ \hline \end{gathered}$	$8447 \mathrm{~F}$ dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
$\begin{aligned} & 1 \quad 368.719 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	51.9	$\begin{array}{r} +0.0 \\ +2.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +16.6 \\ \hline \end{array}$	-26.6	+0.0	44.4	46.0	-1.6	Vert
$\wedge 368.719 \mathrm{M}$	52.1	$\begin{aligned} & +0.0 \\ & +2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +16.6 \\ \hline \end{array}$	-26.6	+0.0	44.6	46.0	-1.4	Vert
$\begin{aligned} & 3{ }^{245.834 \mathrm{M}} \\ & \mathrm{QP} \end{aligned}$	55.8	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +12.3 \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \end{array}$	-26.0	+0.0	44.3	46.0	-1.7	Horiz
$\wedge 245.834 \mathrm{M}$	56.0	$\begin{array}{r} +0.0 \\ +2.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +12.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	-26.0	+0.0	44.5	46.0	-1.5	Horiz
$\begin{aligned} & 52300.004 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	49.7	$\begin{array}{r} \hline+27.8 \\ +0.0 \end{array}$	$\begin{array}{r} -34.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +8.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	51.9	54.0	-2.1	Vert
$\wedge 2300.004 \mathrm{M}$	50.2	$\begin{array}{r} \hline+27.8 \\ +0.0 \end{array}$	$\begin{array}{r} -34.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +8.6 \\ & +0.0 \end{aligned}$	+0.0	+0.0	52.4	54.0	-1.6	Vert
$\begin{aligned} & 722.958 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	53.7	$\begin{array}{r} +0.0 \\ +1.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +11.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	-26.6	+0.0	39.9	43.5	-3.6	Horiz
$\wedge 122.958 \mathrm{M}$	53.7	$\begin{aligned} & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +11.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	-26.6	+0.0	39.9	43.5	-3.6	Horiz
$\begin{aligned} & 9307.280 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	51.0	$\begin{aligned} & +0.0 \\ & +2.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.0 \end{array}$	-26.2	+0.0	42.1	46.0	-3.9	Vert
$\wedge 307.280 \mathrm{M}$	51.3	$\begin{aligned} & +0.0 \\ & +2.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +15.0 \\ \hline \end{array}$	-26.2	+0.0	42.4	46.0	-3.6	Vert
$\begin{aligned} & 112300.004 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	47.9	$\begin{array}{r} +27.8 \\ +0.0 \end{array}$	$\begin{array}{r} -34.2 \\ +0.0 \end{array}$	$\begin{aligned} & +8.6 \\ & +0.0 \end{aligned}$	+0.0	+0.0	50.1	54.0	-3.9	Horiz
$\wedge 2300.004 \mathrm{M}$	48.5	$\begin{array}{r} +27.8 \\ +0.0 \end{array}$	$\begin{array}{r} -34.2 \\ +0.0 \end{array}$	$\begin{aligned} & +8.6 \\ & +0.0 \end{aligned}$	+0.0	+0.0	50.7	54.0	-3.3	Horiz
$\begin{gathered} 13368.719 \mathrm{M} \\ \mathrm{QP} \\ \hline \end{gathered}$	47.8	$\begin{aligned} & +0.0 \\ & +2.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +16.6 \end{array}$	-26.6	+0.0	40.3	46.0	-5.7	Horiz
$\wedge 368.719 \mathrm{M}$	48.5	$\begin{aligned} & +0.0 \\ & +2.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +16.6 \end{array}$	-26.6	+0.0	41.0	46.0	-5.0	Horiz
$\begin{gathered} 15353.358 \mathrm{M} \\ \mathrm{QP} \\ \hline \end{gathered}$	48.4	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.6 \end{array}$	-26.4	+0.0	40.0	46.0	-6.0	Horiz
$\wedge 353.358 \mathrm{M}$	48.5	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.6 \end{array}$	-26.4	+0.0	40.1	46.0	-5.9	Horiz
$17 \quad 276.551 \mathrm{M}$	50.5	$\begin{aligned} & +0.0 \\ & +2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +13.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-26.0	+0.0	39.7	46.0	-6.3	Horiz
$\begin{gathered} 18{ }^{245.838 \mathrm{M}} \\ \mathrm{QP} \\ \hline \end{gathered}$	51.1	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +12.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-26.0	+0.0	39.6	46.0	-6.4	Vert
$\wedge 245.838 \mathrm{M}$	51.5	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +12.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	-26.0	+0.0	40.0	46.0	-6.0	Vert
$20 \quad 353.356 \mathrm{M}$	47.9	$\begin{array}{r} +0.0 \\ +2.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.6 \\ \hline \end{array}$	-26.4	+0.0	39.5	46.0	-6.5	Vert
$21 \quad 122.950 \mathrm{M}$	50.7	$\begin{aligned} & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +11.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-26.6	+0.0	36.9	43.5	-6.6	Vert
$22 \quad 384.077 \mathrm{M}$	45.9	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +17.6 \end{array}$	-26.8	+0.0	39.3	46.0	-6.7	Vert
$23 \quad 675.906 \mathrm{M}$	41.7	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +21.6 \end{array}$	-27.7	+0.0	39.1	46.0	-6.9	Vert
24 261.193M	49.9	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +12.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-26.0	+0.0	38.9	46.0	-7.1	Horiz

Page 54 of 56 Report No.: FC01-086

25	291.914M	49.4	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +13.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-26.1	+0.0	38.7	46.0	-7.3	Horiz
26	337.988M	47.1	+0.0	+0.0	+0.0	-26.4	+0.0	38.4	46.0	-7.6	Vert
			+2.4	+0.0	+15.3						
27	384.078M	44.9	+0.0	+0.0	+0.0	-26.8	+0.0	38.3	46.0	-7.7	Horiz
			+2.6	+0.0	+17.6						
28	614.462M	41.2	+0.0	+0.0	+0.0	-27.9	+0.0	37.4	46.0	-8.6	Horiz
			+3.3	+0.0	+20.8						
29	614.478M	39.8	+0.0	+0.0	+0.0	-27.9	+0.0	36.0	46.0	-10.0	Vert
			+3.3	+0.0	+20.8						
30	675.823 M	38.2	+0.0	+0.0	+0.0	-27.7	+0.0	35.6	46.0	-10.4	Horiz
			+3.5	+0.0	+21.6						
31	737.322M	37.7	+0.0	+0.0	+0.0	-27.7	+0.0	35.0	46.0	-11.0	Horiz
			+3.5	+0.0	+21.5						
32	337.996M	43.3	+0.0	+0.0	+0.0	-26.4	+0.0	34.6	46.0	-11.4	Horiz
			+2.4	+0.0	+15.3						
33	215.116M	46.2	+0.0	+0.0	+0.0	-26.2	+0.0	32.1	43.5	-11.4	Vert
			+2.0	+10.1	+0.0						
34	291.916M	45.0	+0.0	+0.0	+0.0	-26.1	+0.0	34.3	46.0	-11.7	Vert
			+2.2	+13.2	+0.0						
35	276.559 M	45.0	+0.0	+0.0	+0.0	-26.0	+0.0	34.2	46.0	-11.8	Vert
			+2.2	+13.0	+0.0						
36	491.578M	40.7	+0.0	+0.0	+0.0	-27.6	+0.0	33.7	46.0	-12.3	Vert
			+2.8	+0.0	+17.8						
37	261.189M	44.7	+0.0	+0.0	+0.0	-26.0	+0.0	33.7	46.0	-12.3	Vert
			+2.2	+12.8	+0.0						
38	230.474 M	46.5	+0.0	+0.0	+0.0	-26.1	+0.0	33.7	46.0	-12.3	Vert
			+2.0	+11.3	+0.0						
39	215.064 M	44.3	+0.0	+0.0	+0.0	-26.2	+0.0	30.2	43.5	-13.3	Horiz
			+2.0	+10.1	+0.0						
40	138.317 M	42.2	+0.0	+0.0	+0.0	-26.5	+0.0	28.6	43.5	-14.9	Horiz
			+1.6	+11.3	+0.0						
41	430.154M	37.0	+0.0	+0.0	+0.0	-27.1	+0.0	30.9	46.0	-15.1	Vert
			+2.7	+0.0	+18.3						
42	217.635M	44.8	+0.0	+0.0	+0.0	-26.2	+0.0	30.9	46.0	-15.1	Vert
			+2.0	+10.3	+0.0						
43	138.307M	42.0	+0.0	+0.0	+0.0	-26.5	+0.0	28.4	43.5	-15.1	Vert
			+1.6	+11.3	+0.0						
44	430.138M	36.4	+0.0	+0.0	+0.0	-27.1	+0.0	30.3	46.0	-15.7	Horiz
			+2.7	+0.0	+18.3						
45	217.621 M	43.5	+0.0	+0.0	+0.0	-26.2	+0.0	29.6	46.0	-16.4	Horiz
			+2.0	+10.3	+0.0						
46	491.548M	36.1	+0.0	+0.0	+0.0	-27.6	+0.0	29.1	46.0	-16.9	Horiz
			+2.8	+0.0	+17.8						

Page 55 of 56
Report No.: FC01-086

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS

BEGINNING	ENDING	BANDWIDTH
FREQUENCY	FREQUENCY	SETTING
30 MHz	1000 MHz	120 kHz
1000 MHz	13400 MHz	1 MHz

Field Strength Test Setup - Front view

Field Strength Test Setup - Back View

