

PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

MEASUREMENT REPORT

FCC Part 27

Applicant Name:

IP Wireless Unit 7 Greenways Business Park Bellinger Close, Chippenham Wiltshire SN15 1BN

Date of Testing: Dec. 1-9, 2010 **Test Site/Location:** PCTEST Lab., Columbia, MD, USA **Test Report Serial No.:** 0Y1011101835.PKT

FCC ID:

PKTODUAFD1

APPLICANT:

IP WIRELESS

Application Type:	Cartification
Application Type.	Certification
FCC Classification:	Licensed Non-Broadcast Station Transmitter (TNB)
FCC Rule Part(s):	§2; §27
EUT Type:	Outdoor Directional User Equipment
Model(s):	AFD
Tx Frequency Range:	2496-2690 MHz
Max. RF Output Power:	7.798 W EIRP (2498.8 MHz at 3.84Mcps 16-QAM) (38.92 dBm) 7.551 W EIRP (2593 MHz at 3.84Mcps QPSK) (38.78 dBm) 5.623 W EIRP (2687.2 MHz at 3.84Mcps 16-QAM) (37.5 dBm) 6.714 W EIRP (2501.4 MHz at 7.68Mcps QPSK) (38.27 dBm) 9.354 W EIRP (2593 MHz at 7.68Mcps 16-QAM) (39.71 dBm) 8.035 W EIRP (2684.6 MHz at 7.68Mcps 16-QAM) (39.05 dBm)
Test Device Serial No.:	identical prototype [S/N: N/A]

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Grant Conditions: Power output listed is EIRP for Part 27.

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez President

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Principar	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 1 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		i ago i oi io
© 2010 PCTEST Engineering Laboratory, Inc.				REV 1.7AWSC

TABLE OF CONTENTS

FCC P	ART 2	7 MEASUREMENT REPORT	3
1.0	INTR	ODUCTION	4
	1.1	SCOPE	4
	1.2	TESTING FACILITY	4
2.0	PRO	DUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.3	LABELING REQUIREMENTS	5
3.0	DES	CRIPTION OF TESTS	6
	3.1	MEASUREMENT PROCEDURE	6
	3.2	2496-2690 MHZ BAND	6
	3.3	RADIATED POWER AND RADIATED SPURIOUS EMISSIONS	6
4.0	TES	T EQUIPMENT CALIB RATION DATA	7
5.0	SAM	PLE CALCULATIONS	8
6.0	TES	T RESULTS	9
	6.1	SUMMARY	9
	6.2	EQUIVALENT ISOTROPIC RADIATED POWER OUTPUT DATA	10
	6.3	TD-CDMA RADIATED MEASUREMENTS FOR CHANNEL EDGE	12
	6.4	TD-CDMA RADIATED SPURIOUS MEASUREMENTS	
7.0	CON	CLUSION	

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Pitreleas	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		1 ago 2 01 10
© 2010 PCTEST Engineering	Laboratory, Inc.			REV 1.7AWSC

MEASUREMENT REPORT FCC Part 27

APPLICANT:	IP Wireless					
APPLICANT ADDRESS:	Unit 7 Greenways Business Park					
	Bellinger Close, Chippenham, V	Wiltshire SN15	1BN			
TEST SITE:	PCTEST ENGINEERING LABO	DRATORY, INC) .			
TEST SITE ADDRESS:	6660-B Dobbin Road, Columbia	a, MD 21045 U	SA			
FCC RULE PART(S):	§2; §27					
BASE MODEL:	AFD					
FCC ID:	PKTODUAFD1					
FCC CLASSIFICATION:	Licensed Non-Broadcast Station Transmitter (TNB)					
MODULATIONS :	QPSK, 16-QAM, 64-QAM					
FREQUENCY TOLERANCE:	Frequency must remain in band	d				
Test Device Serial No.:	N/A	Production	Pre-Production	Engineering		
DATE(S) OF TEST:	Dec. 1-9, 2010					
TEST REPORT S/N:	0Y1011101835.PKT					

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab. located in Columbia, MD 21045, U.S.A.

D	
н	
t	and the second s
1	AD CREATED LABORSTON
1	Mutherstooled -
Ŧ	THE REAL PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS
	In the state of the second sec
F	Destalizing
	Without the second second
	Contraction of the local division of the loc
	ALC: MARKEN
	CODE COLOR
	the second se

- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451A-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.

- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451A-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: PKTODUAFD1	FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)		Principar	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 3 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		
© 2010 PCTEST Engineering Laboratory, Inc.				

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 **Testing Facility**

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity are, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on January 28, 2009.

Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: PKTODUAFD1	PCTEST	FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 4 of 48
0Y1011101835.PK1	Dec. 1-9, 2010	Outdoor Directional User Equipment		

© 2010 PCTEST Engineering Laboratory, Inc.

2.0 **PRODUCT INFORMATION**

2.1 Equipment Description

The Equipment Under Test (EUT) is the **IP Wireless Outdoor Directional User Equipment FCC ID: PKTODUAFD1**. The test data contained in this report pertains only to the emissions due to the EUT's 2.5GHz band function. The EUT consisted of the following component(s):

Trade Name / Base Model	FCC ID	Description
IP Wireless / Model: AFD	PKTODUAFD1	Outdoor Directional User Equipment

Table 2-1. EUT Equipment Description

The EUT was set to transmit continuously at all timeslots and operate at full power (24dBm). The EUT was also tested for chip rates of 3.84Mcps and 7.68Mcps for a channel bandwidth of 5MHz and 10MHz respectively. Each available modulation type (i.e. QPSK, 16-QAM, 64-QAM) was tested to determine the configuration producing the worst case emissions. The EUT was connected to a laptop and AC/DC power supply via an Ethernet cable. The configuration for each modulation was executed through test software installed in the laptop.

2.2 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

2.3 Labeling Requirements

Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

Per 15.19; Docket 95-19

In addition to this requirement, a device subject to certification shall be labeled as follows:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.

FCC ID: PKTODUAFD1	FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMEN REPORT (CERTIFICATION)		Printeer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 5 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		l ago o ol lo
© 2010 PCTEST Engineering	aboratory Inc	•		REV 1 7AWSC

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The radiated spurious measurements were made outdoors at a 3meter test range (See Figure 3-1). The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This power level was recorded using a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded with the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

Deviation from Measurement Procedure.....None

3.2 2496-2690 MHz Band

<u>§27.5(i)</u>

The 2496-2690MHz band is utilized for Broadband Radio Service and Educational Broadband service. It is a flexible use service that can be used to accommodate a variety of fixed, portable, and mobile services, including high-speed broadband services (including internet access), video programming, and cellularized communications services. It can also be licensed to educational institutions or non-profit educational organizations designed to accommodate a variety of fixed, portable, and mobile services relating to education and instruction. Licensees can also lease excess capacity to other entities so long as they meet educational programming requirements.

3.3 Radiated Power and Radiated Spurious Emissions §2.1053, 27.53(m)

Radiated power and radiated spurious emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This level is then measured with a broadband average power meter. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive average power meter reading. This spurious level is recorded with the power meter. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration. This device was tested in all configurations and the highest power is reported as shown in the following test results tables with their respective modulation.

FCC ID: PKTODUAFD1	<u> PCTEST</u>	FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Pitrology	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 6 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		
© 2010 PCTEST Engineering	Laboratory Inc	•		DEV/ 1 70/0/90

PCTEST Engineering Laboratory, Inc.

TEST EQUIPMENT CALIBRATION DATA 4.0

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	263-10dB	(DC-18GHz) 10 dB Attenuator	N/A		N/A	N/A
-	No.166	(1000-26500MHz) Microwave RF Cable	N/A		N/A	N/A
-	No.167	(100kHz - 100MHz) RG58 Coax Cable	N/A		N/A	N/A
Agilent	8449B	(1-26.5GHz) Pre-Amplifier	12/2/2010	Annual	12/2/2011	3008A00985
Agilent	85650A	Quasi-Peak Adapter	3/30/2010	Annual	3/30/2011	2043A00301
Agilent	8648D	(9kHz-4GHz) Signal Generator	10/11/2010	Annual	10/11/2011	3613A00315
Agilent	E4407B	ESA Spectrum Analyzer	3/30/2010	Annual	3/30/2011	US39210313
Agilent	E4448A	PSA (3Hz-50GHz) Spectrum Analyzer	10/11/2010	Annual	10/11/2011	US42510244
Agilent	E5515C	Wireless Communications Test Set	10/11/2010	Annual	10/11/2011	GB46110872
Agilent	E5515C	Wireless Communications Test Set	10/11/2010	Annual	10/11/2011	GB46310798
Agilent	E5515C	Wireless Communications Test Set	8/12/2010	Annual	8/12/2011	GB41450275
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/30/2010	Annual	3/30/2011	MY45470194
Agilent	E8267C	Vector Signal Generator	10/11/2010	Annual	10/11/2011	US42340152
Agilent	N9020A	MXA Signal Analyzer	9/8/2010	Annual	9/8/2011	US46470561
Compliance Design	Roberts	Dipole Set	4/7/2010	Biennial	4/7/2012	146
Compliance Design	Roberts	Dipole Set	4/7/2010	Biennial	4/7/2012	147
Emco	3115	Horn Antenna (1-18GHz)	10/14/2009	Biennial	10/14/2011	9704-5182
Emco	3115	Horn Antenna (1-18GHz)	4/8/2010	Biennial	4/8/2012	9205-3874
Espec	ESX-2CA	Environmental Chamber	4/1/2010	Annual	4/1/2011	17620
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/11/2010	Annual	10/11/2011	1833460
Gigatronics	8651A	Universal Power Meter	10/11/2010	Annual	10/11/2011	8650319
K&L	11SH10	Band Pass Filter	N/A	Annual	N/A	1300/4000
K&L	11SH10	Band Pass Filter	N/A	Annual	N/A	4000/12000
MiniCircuits	VHF-1300+	High Pass Filter	N/A		N/A	30716
MiniCircuits	VHF-3100+	High Pass Filter	N/A		N/A	30721
Pasternack	PE2208-6	Bidirectional Coupler	N/A		N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	6/21/2010	Annual	6/21/2011	833855/0010
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Rx	7/17/2009	Biennial	7/17/2011	9105-2404
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Tx	7/17/2009	Biennial	7/17/2011	9105-2403
Sunol	DRH-118	Horn Antenna (1 - 18GHz)	5/14/2009	Biennial	5/14/2011	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	7/17/2009	Biennial	7/17/2011	A051107
Rohde & Schwarz	CMU200	Base Station Simulator	6/17/2010	Annual	6/17/2011	836536/0005
Rohde & Schwarz	FSQ 26	Spectrum Analyzer	8/28/2010	Annual	8/28/2011	200452
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	8/30/2010	Annual	8/30/2011	100976
Anritsu	ML2495A	Power Meter	10/13/2010	Annual	10/13/2011	941001
Anritsu	MA2411B	Pulse Sensor	11/13/2010	Annual	11/13/2011	1027293

 Table 4-1. Test Equipment

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Pilrelear	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 7 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		l ago l ol lo
© 2010 PCTEST Engineering	Laboratory, Inc.			REV 1.7AWSC

SAMPLE CALCULATIONS 5.0

Emission Designator

Emission Designator = 8M12G7D

TD-CDMA BW = 8.12 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Amplitude/Angle Modulated

Spurious Radiated Emission – 2500MHz Band

Example: 2500 MHz Band 2nd Harmonic (5186.0 MHz)

The average receive power meter reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminal is adjusted to produce a reading of -81.0 dBm on the power meter. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1402.0 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80) = 50.3 dBc.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printeer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		1 ago o or 10
© 2010 PCTEST Engineering	Laboratory, Inc.			REV 1.7AWSC

6.0 **TEST RESULTS**

6.1 Summary

Company Name:	IP Wireless
FCC ID:	PKTODUAFD1
FCC Classification:	Licensed Non-Broadcast Station Transmitter (TNB)
Mode(s):	QPSK, 16-QAM, 64-QAM

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER MODE (T)	<u>0</u>				
27.50(h)(1)	Equivalent Isotropic Radiated Power	 < 33dBW +10log(X/Y) dBW, where X = channel width in MHz and Y = 6MHz for the MBS or Y = 5.5MHz for the LBS and UBS. For 3.84Mcps: where X = 5MHz MBS: < 32.5861 dBW (1813.9 W) LBS, UBS: < 32.2082 dBW (1662.7 W) For 7.68Mcps: where X = 10MHz MBS: < 35.5963 dBW (3627.7 W) LBS, UBS: < 35.2185 dBW (3325.4 W) 	RADIATED	PASS	Section 6.2
2.1053, 27.53(m)	Undesirable Emissions	< 43 + 10log ₁₀ (P[Watts]) for all out-of-band emissions		PASS	Section 6.3, 6.4

Table 6-1. Summary of Test Results

FCC ID: PKTODUAFD1	PCTEST	FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Pilrelear	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 9 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		l age e er ie
© 2010 PCTEST Engineering	Laboratory, Inc.			REV 1.7AWSC

Equivalent Isotropic Radiated Power Output Data 6.2 <u>§27.50(h)(1);</u>

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]
2498.80	QPSK	-9.790	26.36	8.90	V	35.26	3.357
2498.80	16QAM	-6.130	30.02	8.90	V	38.92	7.798
2498.80	64QAM	-6.590	29.56	8.90	V	38.46	7.015

Table 6-2. Equivalent Isotropic Radiated Power Output Data (2496-2690MHz Band @ 3.84 Mcps)

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]
2593.00	QPSK	-6.270	29.88	8.90	V	38.78	7.551
2593.00	16QAM	-6.370	29.78	8.90	V	38.68	7.379
2593.00	64QAM	-6.500	29.65	8.90	V	38.55	7.161

Table 6-3. Equivalent Isotropic Radiated Power Output Data (2496-2690MHz Band @ 3.84 Mcps)

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]
2687.20	QPSK	-8.000	28.15	9.20	V	37.35	5.433
2687.20	16QAM	-7.850	28.30	9.20	V	37.50	5.623
2687.20	64QAM	-8.230	27.92	9.20	V	37.12	5.152

Table 6-4. Equivalent Isotropic Radiated Power Output Data (2496-2690MHz Band @ 3.84 Mcps)

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]
2501.40	QPSK	-6.780	29.37	8.90	V	38.27	6.714
2501.40	16QAM	-6.790	29.36	8.90	V	38.26	6.699
2501.40	64QAM	-7.230	28.92	8.90	V	37.82	6.053

Table 6-5. Equivalent Isotropic Radiated Power Output Data (2496-2690MHz Band @ 7.68 Mcps)

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Principar	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 10 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		r ago ro or ro
© 2010 PCTEST Engineering	Laboratory, Inc.			REV 1.7AWSC

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]
2593.00	QPSK	-6.110	30.04	8.90	V	38.94	7.834
2593.00	16QAM	-5.340	30.81	8.90	V	39.71	9.354
2593.00	64QAM	-5.620	30.53	8.90	V	39.43	8.770

Table 6-6. Equivalent Isotropic Radiated Power Output Data (2496-2690MHz Band @ 7.68 Mcps)

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]
2684.60	QPSK	-7.200	28.95	9.20	V	38.15	6.531
2684.60	16QAM	-6.300	29.85	9.20	V	39.05	8.035
2684.60	64QAM	-7.260	28.89	9.20	V	38.09	6.442

Table 6-7. Equivalent Isotropic Radiated Power Output Data (2496-2690MHz Band @ 7.68 Mcps)

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This level is recorded using the power meter. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the ERP is recorded.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printeer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 11 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		rugo in or io
© 2010 PCTEST Engineering	aboratory Inc	•		REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	2498	3.80	MHz
MEASURED OUTPUT POWER:	35.260	_dBm =	3.357W
MODULATION SIGNAL:	QPSK		
DISTANCE:	3	meters	
LIMIT:	$43 + 10 \log_{10} (W) =$	48.26	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2496.23	-27.79	8.90	-18.89	V	54.2
2501.39	-25.67	8.90	-16.77	V	52.0

Table 6-8. Radiated Emissions Data (2498.8MHz @ 3.84 Mcps)

NOTES:

Radiated Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Pitralaar	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		1 ago 12 of 10
© 2010 PCTEST Engineering	Laboratory Inc	•		REV 1 7AW/SC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	25	93.00	MHz
MEASURED OUTPUT POWER:	38.780	dBm =	<u>7.551</u> W
MODULATION SIGNAL:	QPSK		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	51.78	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2590.34	-33.57	9.06	-24.51	V	63.3
2595.62	-33.82	9.06	-24.75	V	63.5

Table 6-9. Radiated Emissions Data (2593MHz @ 3.84 Mcps)

NOTES:

Radiated	Emission	Measurements	by	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:				-	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested in all configurations and the highest power is reported as shown in the following test results tables with their respective modulation. This unit was tested while powered over ethernet The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case test configuration was found in the vertical polarity setup. Modes QPSK, 16QAM, and 64QAM and chip rates of 3.84 and 7.68Mcps were evaluated. RBW = VBW = 100kHz for measuring Channel Edge. All other measurements employed a resolution bandwidth of 1MHz. The data reported in the table above was measured in this test setup.

TD-CDMA Radiated Measurements for Channel Edge (Cont'd) §2.1053, §27.53(m)

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printeer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 13 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		r ago to or to
	abaratan (Inc	•		

2010 PCTEST Engineering Laboratory, Inc.

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	268	7.20	MHz
MEASURED OUTPUT POWER:	37.350	dBm =	<u>5.433</u> W
MODULATION SIGNAL:	QPSK		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	50.35	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SUBSTITUTE ANTENNA GAIN (dBi) SPURIOUS EMISSION LEVEL (dBm)		(dBc)
2684.56	-30.93	9.21	-21.72	V	59.1
2689.81	-30.07	9.22	-20.85	V	58.2

Table 6-10. Radiated Emissions Data (2687.2MHz @ 3.84 Mcps)

NOTES:

Radiated	Emission	Measurements	by	Substitution	Method	according	to
ANSI/TIA/EIA	A-603-C-2004	, Aug. 17, 2004:	•			•	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Principar	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		l ago i i oi io
© 2010 PCTEST Engineering	Laboratory Inc			REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	249	_MHz	
MEASURED OUTPUT POWER:	38.920	dBm =	<u>7.798</u> W
MODULATION SIGNAL:	16QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	51.92	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2496.00	-30.27	8.90	-21.37	V	60.3
2501.41	-30.09	8.90	-21.19	V	60.1

Table 6-11. Radiated Emissions Data (2498.2MHz @ 3.84 Mcps)

NOTES:

Radiated	Emission	Measurements	by	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:	•			-	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested in all configurations and the highest power is reported as shown in the following test results tables with their respective modulation. This unit was tested while powered over ethernet The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case test configuration was found in the vertical polarity setup. Modes QPSK, 16QAM, and 64QAM and chip rates of 3.84 and 7.68Mcps were evaluated. RBW = VBW = 100kHz for measuring Channel Edge. All other measurements employed a resolution bandwidth of 1MHz. The data reported in the table above was measured in this test setup.

TD-CDMA Radiated Measurements for Channel Edge (Cont'd) §2.1053, §27.53(m)

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Principas	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 15 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		r ugo ro or ro
	abaratan (Inc	•		

2010 PCTEST Engineering Laboratory, Inc.

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	259	3.00	MHz	
MEASURED OUTPUT POWER:	38.680	dBm =	<u>7.379</u> W	
MODULATION SIGNAL:	16QAM			
DISTANCE:	3	meters		
LIMIT:	43 + 10 log ₁₀ (W)	51.68	dBc	
			-	
LEVEL @		SPURIOUS		

FREQUENCY (MHz)	ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2590.34	-32.65	9.06	-23.59	V	62.3
2595.61	-32.60	9.06	-23.53	V	62.2

Table 6-12. Radiated Emissions Data (2593MHz @ 3.84 Mcps)

NOTES:

Radiated	Emission	Measurements	by	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:	•			•	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested in all configurations and the highest power is reported as shown in the following test results tables with their respective modulation. This unit was tested while powered over ethernet The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case test configuration was found in the vertical polarity setup. Modes QPSK, 16QAM, and 64QAM and chip rates of 3.84 and 7.68Mcps were evaluated. RBW = VBW = 100kHz for measuring Channel Edge. All other measurements employed a resolution bandwidth of 1MHz. The data reported in the table above was measured in this test setup.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printeer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 16 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		l ago lo ol lo
© 2010 PCTEST Engineering	Laboratory Inc	•		REV/17AW/SC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	268	7.20	MHz
MEASURED OUTPUT POWER:	37.500	dBm =	<u>5.623</u> W
MODULATION SIGNAL:	16QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	50.50	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2684.53	-29.54	9.21	-20.33	V	57.8
2689.77	-30.32	9.22	-21.10	V	58.6

Table 6-13. Radiated Emissions Data (2687.2MHz @ 3.84 Mcps)

NOTES:

Radiated	Emission	Measurements	by	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:				•	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		rage ir er ie
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	2498.8	_MHz	
MEASURED OUTPUT POWER:	38.460	dBm =	<u>7.015</u> W
MODULATION SIGNAL:	64QAM		
DISTANCE:	3	meters	
LIMIT:	$43 + 10 \log_{10} (W) =$	51.46	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2495.35	-30.24	8.90	-21.35	V	59.8
2501.34	-28.62	8.90	-19.72	V	58.2

Table 6-14. Radiated Emissions Data (2498.8MHz @ 3.84 Mcps)

NOTES:

Radiated	Emission	Measurements	b	V	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:					•	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place **d** the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Principar	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		rage to or to
© 2010 PCTEST Engineering	Laboratory Inc			REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	2593	_MHz	
MEASURED OUTPUT POWER:	38.550	dBm =	<u>7.161</u> W
MODULATION SIGNAL:	64QAM		
DISTANCE:	3	meters	
LIMIT:	$43 + 10 \log_{10} (W) =$	51.55	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2589.77	-31.95	9.06	-22.89	V	61.4
2595.69	-31.49	9.06	-22.42	V	61.0

Table 6-15. Radiated Emissions Data (2593 MHz @ 3.84 Mcps)

NOTES:

Radiated	Emission	Measurements	by	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:	•			•	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printeer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 19 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	2687.	MHz	
MEASURED OUTPUT POWER:	37.120	dBm =	<u>5.152</u> W
MODULATION SIGNAL:	64QAM		
DISTANCE:	3	meters	
LIMIT:	$43 + 10 \log_{10} (W) =$	50.12	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2684.26	-26.97	9.21	-17.76	V	54.9
2689.75	-28.17	9.22	-18.95	V	56.1

Table 6-16. Radiated Emissions Data (2687.2 MHz @ 3.84 Mcps)

NOTES:

Radiated	Emission	Measurements	by	′ S	Substitution	Ν	/lethod	according	t	0
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:						-		

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 20 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		1 ago 20 01 10
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	2501	.40	_MHz
MEASURED OUTPUT POWER:	38.270	dBm =	<u>6.714</u> W
MODULATION SIGNAL:	QPSK		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	51.27	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2496.28	-36.51	8.90	-27.61	V	65.9
2506.62	-34.95	8.91	-26.04	V	64.3

Table 6-17. Radiated Emissions Data (2501.4 MHz @ 7.68 Mcps)

NOTES:

Radiated	Emission	Measurements	by	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:	•			-	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 21 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		rugo zr or io
© 2010 PCTEST Engineering	Laboratory, Inc.	•		REV 1.7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	25	93.00	MHz
MEASURED OUTPUT POWER:	38.940	dBm =	<u>7.834</u> W
MODULATION SIGNAL:	QPSK		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	51.94	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2587.73	-37.92	9.05	-28.87	V	67.8
2598.18	-38.22	9.07	-29.15	V	68.1

Table 6-18. Radiated Emissions Data (2593 MHz @ 7.68 Mcps)

NOTES:

Radiated	Emission	Measurements	b	V	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:					-	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		1 490 22 01 10
© 2010 PCTEST Engineering I	aboratory Inc	·		REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	268	4.60	MHz
MEASURED OUTPUT POWER:	38.150	dBm =	<u>6.531</u> W
MODULATION SIGNAL:	QPSK		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	51.15	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2679.36	-33.24	9.21	-24.03	V	62.2
2689.66	-33.09	9.22	-23.87	V	62.0

Table 6-19. Radiated Emissions Data (2684.6 MHz @ 7.68 Mcps)

NOTES:

Radiated Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printeer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 23 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		1 ago 20 01 10
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	250	1.40	_MHz
MEASURED OUTPUT POWER:	38.260	dBm =	<u>7.798</u> W
MODULATION SIGNAL:	16QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	51.92	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2496.19	-35.02	8.90	-26.12	V	64.4
2506.52	-35.64	8.90	-26.74	V	65.0

Table 6-20. Radiated Emissions Data (2501.4 MHz @ 7.68 Mcps)

NOTES:

Radiated	Emission	Measurements	by	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:	•			•	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		rage 2 ror to
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	259	3.00	_MHz
MEASURED OUTPUT POWER:	39.710	dBm =	<u>9.354</u> W
MODULATION SIGNAL:	16QAM		
DISTANCE:	3	meters	
LIMIT:	$43 + 10 \log_{10} (W)$	52.71	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SUBSTITUTE NTENNA GAIN (dBi) SPURIOUS EMISSION LEVEL (dBm)		(dBc)
2587.79	-34.88	9.06	-25.82	V	65.5
2598.33	-33.25	9.06	-24.18	V	63.9

Table 6-21. Radiated Emissions Data (2593 MHz @ 7.68 Mcps)

NOTES:

Radiated	Emission	Measurements	by	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:	•			•	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 25 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		1 ago 20 01 10
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	268	4.60	_MHz
MEASURED OUTPUT POWER:	39.050	dBm =	<u>8.035</u> W
MODULATION SIGNAL:	16QAM		
DISTANCE:	3	meters	
LIMIT:	$43 + 10 \log_{10} (W)$	52.05	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2679.54	-33.55	9.21	-24.34	V	63.4
2689.72	-32.03	9.22	-22.81	V	61.9

Table 6-22. Radiated Emissions Data (2684.6 MHz @ 7.68 Mcps)

NOTES:

Radiated	Emission	Measurements	by	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:				•	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 26 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		1 ago 20 01 10
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	2501.4	40	MHz
MEASURED OUTPUT POWER:	37.820	dBm =	<u>6.053</u> W
MODULATION SIGNAL:	64QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	50.82	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2496.19	-35.26	8.90	-26.37	V	64.2
2506.55	-35.99	8.90	-27.09	V	64.9

Table 6-23. Radiated Emissions Data (2501.4 MHz @ 7.68 Mcps)

NOTES:

Radiated Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 27 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		1 ago 21 of 10
© 2010 PCTEST Engineering I	aboratory Inc			REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	2593	_MHz	
MEASURED OUTPUT POWER:	39.430	dBm =	<u>8.770</u> W
MODULATION SIGNAL:	64QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	52.43	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2587.43	-33.46	9.06	-24.40	V	63.8
2598.45	-32.79	9.06	-23.72	V	63.2

Table 6-24. Radiated Emissions Data (2593 MHz @ 7.68 Mcps)

NOTES:

Radiated	Emission	Measurements	by	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:	•			•	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 28 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		1 ago 20 01 10
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of Emissions at CHANNEL EDGE

OPERATING FREQUENCY:	2684.	60	MHz
MEASURED OUTPUT POWER:	38.090	dBm =	<u>6.442</u> W
MODULATION SIGNAL:	64QAM		
DISTANCE:	3	meters	
LIMIT:	$43 + 10 \log_{10} (W) =$	51.09	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	TUTE SPURIOUS EMISSION A GAIN LEVEL i) (dBm)		(dBc)
2679.51	-32.31	9.21	-23.10	V	61.2
2690.23	-32.38	9.22	-23.16	V	61.2

Table 6-25. Radiated Emissions Data (2684.6 MHz @ 7.68 Mcps)

NOTES:

Radiated	Emission	Measurements	by	Substitution	Method	according	to
ANSI/TIA/EIA	-603-C-2004,	Aug. 17, 2004:	•			-	

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 29 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		1 ago 20 01 10
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

6.4 TD-CDMA Radiated Spurious Measurements §2.1053, §27.53(m)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	2498	MHz	
MEASURED OUTPUT POWER:	34.360	dBm =	<u>2.729</u> W
MODULATION SIGNAL:	QPSK		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	47.36	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3330.00	-47.65	9.70	-37.95	V	72.3
4997.60	-40.15	11.20	-28.95	V	63.3
7496.40	-44.17	11.10	-33.07	V	67.4

Table 6-26. Radiated Spurious Data (2496-2690MHz Band @ 3.84 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 30 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		l age ee er ie
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3457.00	-52.20	9.70	-42.50	V	80.38
5186.00	-45.44	10.93	-34.50	V	72.4
7779.00	-45.49	11.33	-34.17	V	72.0

Table 6-27. Radiated Spurious Data (2496-2690MHz Band @ 3.84 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Principar	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 31 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		l ago ol ol lo
© 2010 PCTEST Engineering	aboratory Inc	•		REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	268	7.20	MHz	
MEASURED OUTPUT POWER:	36.150	dBm =	4.121	W
MODULATION SIGNAL:	QPSK			
DISTANCE:	3	meters		
LIMIT:	43 + 10 log ₁₀ (W)	49.15	dBc	

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
5374.40	-34.86	10.67	-24.19	V	60.3
8061.60	-44.31	11.51	-32.80	V	69.0

Table 6-28. Radiated Spurious Data (2496-2690MHz Band @ 3.84 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

	FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
	Test Report S/N:	Test Dates:	EUT Type:		Page 32 of 48
	0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		1 dg0 02 01 10
ľ	© 2010 PCTEST Engineering I	aboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	249	8.80	_MHz
MEASURED OUTPUT POWER:	38.020	dBm =	<u>6.339</u> W
MODULATION SIGNAL:	16QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	51.02	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3331.30	-47.71	9.70	-38.01	V	76.0
4997.60	-40.39	11.20	-29.19	V	67.2
7496.40	-39.68	11.10	-28.58	V	66.6

Table 6-29. Radiated Spurious Data (2496-2690MHz Band @ 3.84 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printeer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 33 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		r age ee er te
© 2010 PCTEST Engineering	Laboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	259	3.00	MHz
MEASURED OUTPUT POWER:	37.780	dBm =	<u>5.998</u> W
MODULATION SIGNAL:	16QAM		
DISTANCE:	3	meters	
LIMIT:	$43 + 10 \log_{10} (W)$	50.78	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3457.00	-50.43	9.70	-40.73	V	78.5
5186.00	-40.31	10.93	-29.38	V	67.2
7779.00	-41.14	11.33	-29.81	V	67.6

Table 6-30. Radiated Spurious Data (2496-2690MHz Band @ 3.84 Mcps)

NOTES:

<u>Radiated Spurious Emission Measurements by Substitution Method according to</u> ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 34 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		r age er er te
© 2010 PCTEST Engineering	Laboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	268	7.20	MHz
MEASURED OUTPUT POWER:	36.300	dBm =	<u>4.266</u> W
MODULATION SIGNAL:	16QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	49.30	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
5374.40	-34.63	10.67	-23.96	V	60.3
8061.60	-32.70	11.51	-21.20	V	57.5

Table 6-31. Radiated Spurious Data (2496-2690MHz Band @ 3.84 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 35 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		l ago co ol lo
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	2498.80		MHz
MEASURED OUTPUT POWER:	37.560	dBm =	<u>5.702</u> W
MODULATION SIGNAL:	64QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	50.56	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3330.00	-47.75	9.70	-38.05	V	75.6
4997.60	-38.05	11.20	-26.85	V	64.4
7496.40	-37.65	11.10	-26.55	V	64.1

Table 6-32. Radiated Spurious Data (2496-2690MHz Band @ 3.84 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested in all configurations and the highest power is reported as shown in the following test results tables with their respective modulation. This unit was tested while powered over ethernet The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case test configuration was found in the vertical polarity setup. Modes QPSK, 16QAM, and 64QAM and chip rates of 3.84 and 7.68Mcps were evaluated. RBW = VBW = 100kHz for measuring Channel Edge. All other measurements employed a resolution bandwidth of 1MHz. The data reported in the table above was measured in this test setup.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Principar	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 36 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		l ago oo ol lo
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

REV 1.7AWSC 12/10/09

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	2593.	.00	MHz
MEASURED OUTPUT POWER:	37.650	dBm =	<u>5.821</u> W
MODULATION SIGNAL:	64QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	50.65	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3457.70	-51.87	9.70	-42.17	V	79.8
5186.00	-42.38	10.93	-31.44	V	69.1
7779.00	-41.75	11.33	-30.43	V	68.1

Table 6-33. Radiated Spurious Data (2496-2690MHz Band @ 3.84 Mcps)

NOTES:

<u>Radiated Spurious Emission Measurements by Substitution Method according to</u> ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Pitreleer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 37 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		rage or or io
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	2687.	20	MHz	
MEASURED OUTPUT POWER:	35.920	dBm =	3.908	w
MODULATION SIGNAL:	64QAM			
DISTANCE:	3	meters		
LIMIT:	$43 + 10 \log_{10} (W) =$	48.92	dBc	

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
5374.40	-31.51	10.67	-20.84	V	56.8
8061.60	-32.56	11.51	-21.06	V	57.0

Table 6-34. Radiated Spurious Data (2496-2690MHz Band @ 3.84 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Pitreleer	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 38 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		l ago co ci lo
© 2010 PCTEST Engineering	aboratory Inc	·		REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	2501	.40	MHz
MEASURED OUTPUT POWER:	37.370	dBm =	<u>5.458</u> W
MODULATION SIGNAL:	QPSK		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	50.37	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3300.00	-48.67	9.70	-38.97	V	76.3
5002.80	-42.09	11.20	-30.89	V	68.3
7504.20	-43.57	11.10	-32.47	V	69.8

Table 6-35. Radiated Spurious Data (2496-2690MHz Band @ 7.68 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 39 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		r age ee er ie
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	25	93.00	MHz
MEASURED OUTPUT POWER:	38.040	dBm =	<u>6.368</u> W
MODULATION SIGNAL:	QPSK		
DISTANCE:	3	meters	
LIMIT:	$43 + 10 \log_{10} (W)$	51.04	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3457.10	-50.18	9.70	-40.48	V	78.52
5186.00	-45.01	10.93	-34.07	V	72.1
7779.00	-45.81	11.33	-34.49	V	72.5

Table 6-36. Radiated Spurious Data (2496-2690MHz Band @ 7.68 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 40 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		rage to er to
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	268	4.60	MHz
MEASURED OUTPUT POWER:	36.950	dBm =	<u>4.955</u> W
MODULATION SIGNAL:	QPSK		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	49.95	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
5369.20	-38.96	10.67	-28.29	V	65.2
8060.80	-45.50	11.51	-33.99	V	70.9

Table 6-37. Radiated Spurious Data (2496-2690MHz Band @ 7.68 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 41 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		rage in er ie
© 2010 PCTEST Engineering	aboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	250	1.40	MHz
MEASURED OUTPUT POWER:	37.360	dBm =	<u>5.445</u> W
MODULATION SIGNAL:	16QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	50.36	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3300.00	-56.77	9.70	-47.07	V	84.4
5002.80	-41.74	11.20	-30.54	V	67.9
7504.20	-43.45	11.10	-32.35	V	69.7

Table 6-38. Radiated Spurious Data (2496-2690MHz Band @ 7.68 Mcps)

NOTES:

<u>Radiated Spurious Emission Measurements by Substitution Method according to</u> ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 42 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		. ago .2 01 10
© 2010 PCTEST Engineering	Laboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	259	3.00	MHz
MEASURED OUTPUT POWER:	38.810	dBm =	<u>7.603</u> W
MODULATION SIGNAL:	16QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	51.81	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3457.10	-48.93	9.70	-39.23	V	78.0
5186.00	-41.36	10.93	-30.43	V	69.2
7779.00	-41.17	11.33	-29.84	V	68.6

Table 6-39. Radiated Spurious Data (2496-2690MHz Band @ 7.68 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 43 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		rage to er to
© 2010 PCTEST Engineering	Laboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	2684.60		MHz
MEASURED OUTPUT POWER:	37.850	dBm =	<u>6.095</u> W
MODULATION SIGNAL:	16QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	50.85	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
5369.20	-36.23	10.68	-25.55	V	63.4
8053.80	-41.86	11.51	-30.36	V	68.2

Table 6-40. Radiated Spurious Data (2496-2690MHz Band @ 7.68 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 44 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		l ago i i oi io
© 2010 PCTEST Engineering	aboratory Inc	•		REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	2501.4	_MHz	
MEASURED OUTPUT POWER:	36.920	dBm =	<u>4.920</u> W
MODULATION SIGNAL:	64QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	49.92	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3320.00	-46.79	9.70	-37.09	V	74.0
5002.80	-37.79	11.20	-26.59	V	63.5
7504.20	-39.42	11.10	-28.32	V	65.2

Table 6-41. Radiated Spurious Data (2496-2690MHz Band @ 7.68 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 45 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		rage to er to
© 2010 PCTEST Engineering	Laboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	2593.00		MHz
MEASURED OUTPUT POWER:	38.530	dBm =	<u>7.129</u> W
MODULATION SIGNAL:	64QAM		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	51.53	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3457.70	-51.88	9.70	-42.18	V	80.7
5186.00	-42.51	10.93	-31.57	V	70.1
7779.00	-41.25	11.33	-29.93	V	68.5

Table 6-42. Radiated Spurious Data (2496-2690MHz Band @ 7.68 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 46 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		rage to er to
© 2010 PCTEST Engineering	Laboratory Inc			REV 1 7AWSC

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	2684.60		MHz	
MEASURED OUTPUT POWER:	36.890	dBm =	4.887	W
MODULATION SIGNAL:	64QAM			
DISTANCE:	3	meters		
LIMIT:	$43 + 10 \log_{10} (W) =$	49.89	dBc	

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
5369.20	-38.10	10.68	-27.42	V	64.3
8053.80	-42.24	11.51	-30.74	V	67.6

Table 6-43. Radiated Spurious Data (2496-2690MHz Band @ 7.68 Mcps)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKTODUAFD1		FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Printe	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 47 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		
© 2010 PCTEST Engineering	Laboratory Inc			REV 1 7AWSC

CONCLUSION 7.0

The data collected relate only to the item(s) tested and show that the IP Wireless Outdoor Directional User Equipment FCC ID: PKTODUAFD1 complies with all the requirements of Parts 2 and 27 of the FCC rules.

FCC ID: PKTODUAFD1	PCTEST	FCC Pt. 27 QPSK, 16-QAM, 64-QAM MEASUREMENT REPORT (CERTIFICATION)	Piliteleas	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 48 of 48
0Y1011101835.PKT	Dec. 1-9, 2010	Outdoor Directional User Equipment		lage le el le
© 2010 PCTEST Engineering	Laboratory, Inc.			REV 1.7AWSC

12/10/09