

# TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: TD-CDMA PCI-E Mini Module, Model: AAU

To: FCC Part 27: 2008 Subpart C

Test Report Serial No: RFI/RPT2/RP75541JD01A

Supersedes Test Report Serial No: RFI/RPT1/RP75541JD01A

| This Test Report Is Issued Under The Authority<br>Of Brian Watson, Operations Director: | Maurin.        |
|-----------------------------------------------------------------------------------------|----------------|
| Checked By:                                                                             | Nigel Davison  |
| Signature:                                                                              | Maurin.        |
| Date of Issue:                                                                          | 28 August 2009 |

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of RFI Global Services Ltd. The results in this report apply only to the sample(s) tested.

RFI Global Services Ltd Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire RG23 8BG Telephone: +44 (0)1256 312000 Facsimile: +44 (0)1256 312001 Email: info@rfi-global.com Website: www.rfi-global.com

Registered in England and Wales. Company number:2117901

ISSUE DATE: 28 AUGUST 2009

This page has been left intentionally blank.

# Table of Contents

| 1. Customer Information                               | 4  |
|-------------------------------------------------------|----|
| 2. Summary of Testing                                 | 5  |
| 3. Equipment Under Test (EUT)                         | 7  |
| 4. Operation and Monitoring of the EUT during Testing | 9  |
| 5. Measurements, Examinations and Derived Results     | 10 |
| 6. Measurement Uncertainty                            | 65 |
| Appendix 1. Test Equipment Used                       | 66 |

# **1. Customer Information**

| Company Name: | IPWireless (UK) Ltd                                                                  |  |
|---------------|--------------------------------------------------------------------------------------|--|
| Address:      | Unit 7 Greenways Business Park<br>Bellinger Close<br>Chippenham<br>Wilts<br>SN15 1BN |  |

# 2. Summary of Testing

# 2.1. General Information

| Specification Reference: | 47CFR27                                                                                                                               |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Specification Title:     | Code of Federal Regulations Volume 47 (Telecommunications) 2008:<br>Part 27 Subpart C (Miscellaneous Wireless Communication Services) |
| Site Registration:       | FCC: 209735                                                                                                                           |
| Location of Testing:     | RFI Global Services Ltd, Wade Road, Basingstoke, Hampshire, RG24 8AH.                                                                 |
| Test Dates:              | 03 August 2009 to 11 August 2009                                                                                                      |

# 2.2. Summary of Test Results

| FCC Reference<br>(47CFR)           | Measurement                                                         | Port Type            | Result |
|------------------------------------|---------------------------------------------------------------------|----------------------|--------|
| FCC Part 15.109                    | Receive/Idle Mode Spurious Emissions                                | Antenna<br>Terminals | Ø      |
| FCC Part 2.1051                    | Receive/Idle Mode Conducted Spurious Emissions<br>Main RF Port      | Antenna<br>Terminals | 0      |
| FCC Part 2.1051                    | Receive/Idle Mode Conducted Spurious Emissions<br>Diversity RF Port | Antenna<br>Terminals | 0      |
| FCC Part 2.1046,<br>FCC Part 27.50 | Transmitter Conducted Carrier Output Power                          | Antenna<br>Terminals | 0      |
| FCC Part 27.54                     | Frequency Stability (Temperature Variation)                         | Antenna<br>Terminals | 0      |
| FCC Part 27.54                     | Frequency Stability (Voltage Variation)                             | Antenna<br>Terminals | 0      |
| FCC Part 2.1049                    | Occupied Bandwidth                                                  | Antenna<br>Terminals | 0      |
| FCC Part 2.1051,<br>FCC Part 27.53 | Conducted Emissions                                                 | Antenna<br>Terminals | 0      |
| FCC Part 2.1051,<br>FCC Part 27.53 | Radiated Spurious Emissions                                         | Enclosure            | 0      |
| Key to Results                     |                                                                     |                      |        |
| 🧭 = Complied 🛛 🙆 = Die             | d not comply                                                        |                      |        |

### 2.3. Methods and Procedures

| Reference: | ANSI/TIA-603-C-2004                                                                                                                                                        |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:     | Land Mobile Communications Equipment, Measurements and performance Standards                                                                                               |
| Reference: | ANSI C63.4 (2003)                                                                                                                                                          |
| Title:     | American National Standard Methods of Measurement of Electromagnetic<br>Emissions from Low Voltage Electrical and Electronic Equipment in the Range<br>of 9 kHz to 40 GHz. |

### 2.4. Deviations from the Test Specification

Testing at voltage extremes was carried out at  $V_{nom}$  and  $V_{nom} \pm 9\%$  at the request of the customer and not Vnom and Vnom  $\pm 15\%$  as required by the Standard. This is because the EUT complies with the PCI Express Standard which specifies the  $\pm 9\%$  tolerance. A breakout point for the power supply was provided by the customer on adapter board (Serial No. EEMS 022630 0004) in order to vary the supply to the EUT as this is normally provided from the PCI Express interface on the standard adapter board (Serial No. AAFK85100G240).

# 3. Equipment Under Test (EUT)

# 3.1. Identification of Equipment Under Test (EUT)

| Description:             | TD-CDMA PCI-E Mini Module |  |
|--------------------------|---------------------------|--|
| Brand Name:              | IPWireless                |  |
| Model Name or Number:    | AAU                       |  |
| Serial Number:           | AAUA930000D37             |  |
| IMEI Number:             | 357163020001207           |  |
| Hardware Version Number: | Version 1                 |  |
| Software Version Number: | None Stated               |  |
| FCC ID Number:           | PKTPEMAAU1                |  |

# 3.2. Description of EUT

The equipment under test was a PCI-E mini-module.

# 3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

### 3.4. Additional Information Related to Testing

| Power Supply Requirement:    | 3.3 V DC ± 9%        |                |                            |  |  |  |
|------------------------------|----------------------|----------------|----------------------------|--|--|--|
| Equipment Category:          | Module               | Module         |                            |  |  |  |
| Type of Unit:                | PCI Express mini mod | lule           |                            |  |  |  |
| Chip Rate:                   | 7.68 Mcps            |                |                            |  |  |  |
| Declared Channel Bandwidth:  | 11 MHz               |                |                            |  |  |  |
| Duty Cycle:                  | 80%                  |                |                            |  |  |  |
| Highest generated frequency: | 3.6 GHz              |                |                            |  |  |  |
| Antenna Gain:                | +9 dBi (stated)      |                |                            |  |  |  |
| Transmit Frequency Range:    | 2496 MHz to 2690 MHz |                |                            |  |  |  |
| Transmit Channels Tested:    | Channel ID           | Channel Number | Channel Frequency<br>(MHz) |  |  |  |
|                              | Bottom               | 12507          | 2501.4                     |  |  |  |
|                              | Middle               | 12965          | 2593.0                     |  |  |  |
|                              | Top 13420 2684.6     |                |                            |  |  |  |
| Receive Frequency Range:     | 2496 MHz to 2690 MH  | łz             |                            |  |  |  |
| Receive Channels Tested:     | Channel ID           | Channel Number | Channel Frequency<br>(MHz) |  |  |  |
|                              | Bottom               | 12507          | 2501.4                     |  |  |  |
|                              | Middle 12965 2593.0  |                |                            |  |  |  |
|                              | Top 13420 2684.6     |                |                            |  |  |  |

# 3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

| Description:           | Adaptor board          |  |
|------------------------|------------------------|--|
| Brand Name:            | IPWireless             |  |
| Model Name or Number:  | AAF                    |  |
| Serial Number:         | AAFK85100G240          |  |
|                        |                        |  |
| Description:           | Adaptor board          |  |
| Brand Name:            | IPWireless             |  |
| Model Name or Number:  | AAF                    |  |
| Serial Number:         | EEMS 022630 0004       |  |
|                        |                        |  |
| Description:           | Laptop PC              |  |
| Brand Name:            | Toshiba                |  |
| Model Name or Number:  | PSAAPE-00H00KEN        |  |
| Serial Number:         | 670709710              |  |
| Cable Length and Type: | 1.5 metres / USB       |  |
| Connected to Port:     | USB                    |  |
|                        |                        |  |
| Description:           | USB cable              |  |
| Cable Length and Type: | 1.8 metre / multi core |  |
| Connected to Port:     | USB                    |  |
|                        |                        |  |
| Description:           | Bench power supply     |  |
| Brand Name:            | ІТТІ                   |  |
| Model Name or Number:  | CPX200                 |  |
| Serial Number:         | 163296                 |  |
| Cable Length and Type: | 3 metres / 2 core      |  |
| Connected to Port:     | Power                  |  |
|                        |                        |  |

# 4. Operation and Monitoring of the EUT during Testing

### 4.1. Operating Modes

The EUT was tested in the following operating mode(s):

- The EUT operates across the FCC Part 27 band from 2496 MHz to 2690 MHz.
- TD-CDMA idle mode on all 15 timeslots. Both RF ports terminated with antennas and RF cables supplied by the customer.
- TD-CDMA traffic mode on all 15 timeslots at full power (+24dBm). Both RF ports terminated with antennas supplied by the customer.
- For radiated emissions testing, the EUT was mounted in and powered by the adapter board, the adapter board was powered from a bench supply at a nominal voltage of 12VDC and the adaptor board voltage regulator reduces this to 3.3 volts which is the normal supply voltage to the EUT.
- No AC conducted tests were performed as the EUT is a DC powered module.
- The Customer configured the EUT so that residual carrier breakthrough was present at the centre of the carrier in order to make frequency measurements.

### 4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

- The EUT was mounted on an adaptor board and all the testing was performed in this configuration.
- The adaptor board was powered from a bench power supply supplied by the Customer
- Connected to a laptop PC via the USB or Ethernet port on the adaptor board. A bespoke application on the laptop PC was used to configure the EUT during the testing via the adaptor board.

# 5. Measurements, Examinations and Derived Results

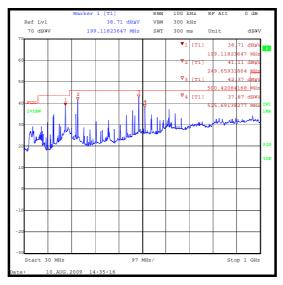
# 5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6: Measurement Uncertainty.

# 5.2. Test Results

### 5.2.1. Receive/Idle Mode Radiated Emissions

### Test Summary:


| FCC Part:         | FCC Part 15.109                                          |
|-------------------|----------------------------------------------------------|
| Test Method Used: | As detailed in ANSI C63.4 Section 8 and relevant annexes |
| Frequency Range:  | 30 MHz to 1 GHz                                          |

### **Environmental Conditions:**

| Temperature Range (°C):      | 27 |
|------------------------------|----|
| Relative Humidity Range (%): | 34 |

#### **Results: TD-CDMA**

| Frequency<br>(MHz) | Antenna<br>Polarity | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Result   |
|--------------------|---------------------|-------------------|-------------------|----------------|----------|
| 199.988115         | Horizontal          | 39.0              | 43.5              | 4.5            | Complied |
| 249.995310         | Horizontal          | 43.2              | 46.0              | 2.8            | Complied |
| 500.008193         | Vertical            | 42.0              | 46.0              | 4.0            | Complied |
| 525.025955         | Vertical            | 38.2              | 46.0              | 7.8            | Complied |
| 625.025607         | Vertical            | 38.7              | 46.0              | 7.3            | Complied |



Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying table.

### **Receive/Idle Mode Radiated Emissions**

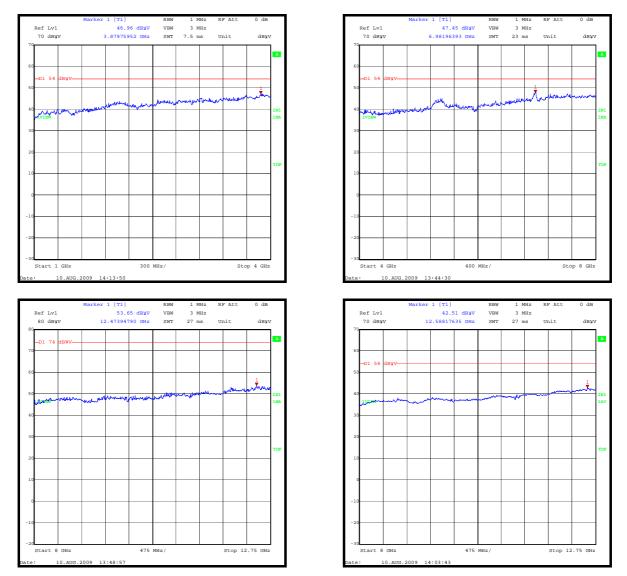
### Test Summary:

| FCC Part:         | FCC Part 15.109                                          |
|-------------------|----------------------------------------------------------|
| Test Method Used: | As detailed in ANSI C63.4 Section 8 and relevant annexes |
| Frequency Range:  | 1 GHz to 26.5 GHz                                        |

#### **Environmental Conditions:**

| Temperature (°C):      | 27 |
|------------------------|----|
| Relative Humidity (%): | 34 |

#### **Results: TD-CDMA Highest Peak Level**


| Frequency<br>(GHz) | Antenna<br>Polarity | Detector<br>level<br>(dBµV) | Antenna<br>factor<br>(dB) | Actual<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Result   |
|--------------------|---------------------|-----------------------------|---------------------------|-----------------------------|-------------------|----------------|----------|
| 17.705             | Vertical            | 40.0                        | 16.6                      | 56.6                        | 74.0              | 17.4           | Complied |

#### **Results: TD-CDMA Highest Average Level**

| Frequency<br>(GHz) | Antenna<br>Polarity | Detector<br>level<br>(dBµV) | Antenna<br>factor<br>(dB) | Actual<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Result   |
|--------------------|---------------------|-----------------------------|---------------------------|-----------------------------|-------------------|----------------|----------|
| 17.790             | Vertical            | 28.8                        | 17.1                      | 45.9                        | 54.0              | 8.1            | Complied |

#### Note(s):

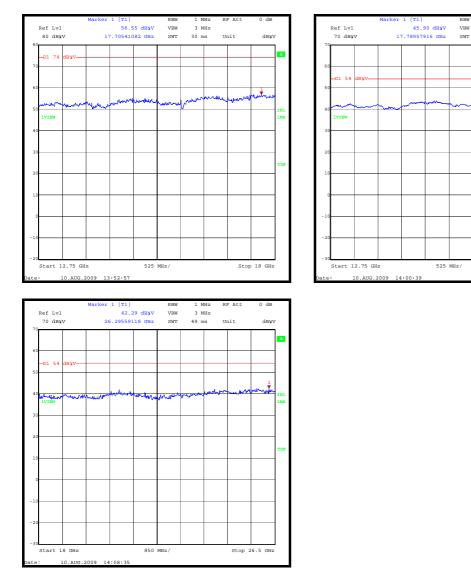
- 1. All pre-scans were performed with a peak detector against average limits apart from measurements made in the range of 8 to 18 GHz where pre-scans were performed with peak and average detectors and the applicable limit applied. This was due to the noise floor exceeding the average limit when using a peak detector.
- 2. No spurious emissions were detected above the noise floor of the measuring receiver; therefore, the highest peak and average noise floor reading of the measuring receiver was recorded as shown in the table above.



Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

MH:

Unit


3 MHz 30 ms

dbyv

1

Stop 18 GHz

# Receive/Idle Mode Radiated Emissions (continued)



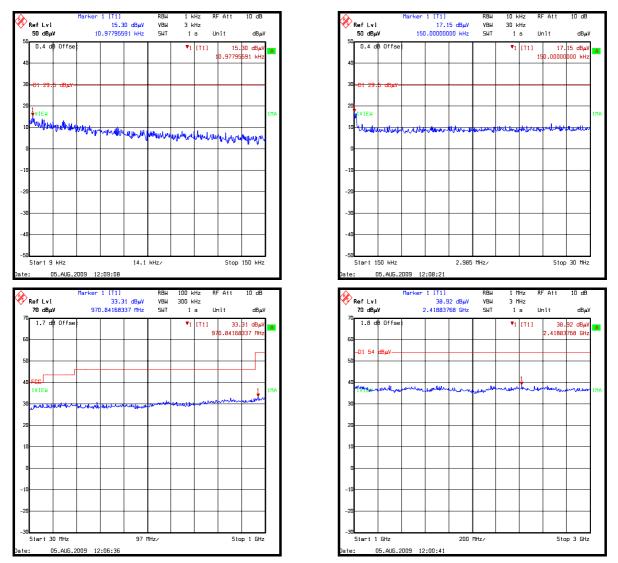
Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

### 5.2.2. Receive/Idle Mode Conducted Emissions

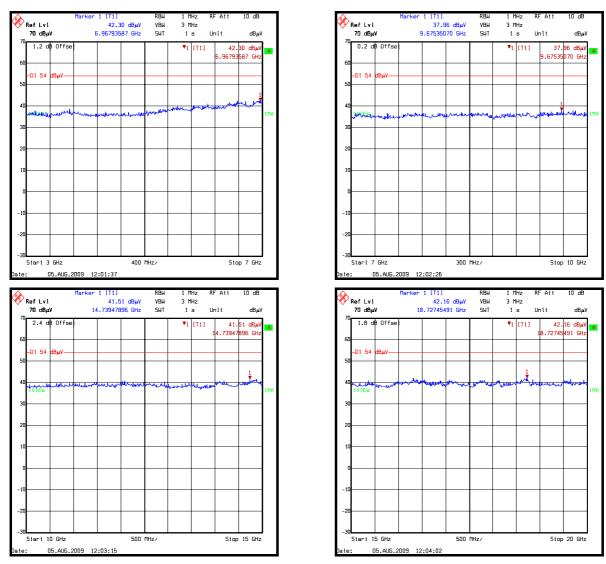
#### Test Summary:

| FCC Part:         | FCC Part 2.1051                    |
|-------------------|------------------------------------|
| Test Method Used: | As detailed in ANSI TIA-603-C-2004 |
| Frequency Range:  | 9 kHz to 26.5 GHz                  |

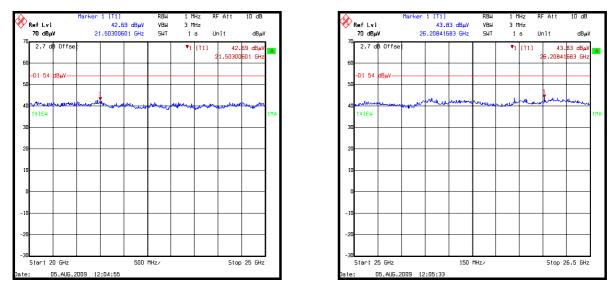
#### **Environmental Conditions:**


| Temperature (°C):      | 27 |
|------------------------|----|
| Relative Humidity (%): | 34 |

#### Results: Main RF Port


| Frequency | Actual Level | Limit    | Margin | Result   |
|-----------|--------------|----------|--------|----------|
| (GHz)     | (dBμV/m)     | (dBµV/m) | (dB)   |          |
| 26.208    | 43.8         | 54.0     | 10.2   | Complied |

### Note(s):


 No spurious emissions were detected above the noise floor of the measuring receiver; therefore, the highest peak noise floor reading of the measuring receiver was recorded as shown in the table above. The peak level was compared to the average limit as opposed to being compared to the peak limit because this is the more onerous limit.



Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.



Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.



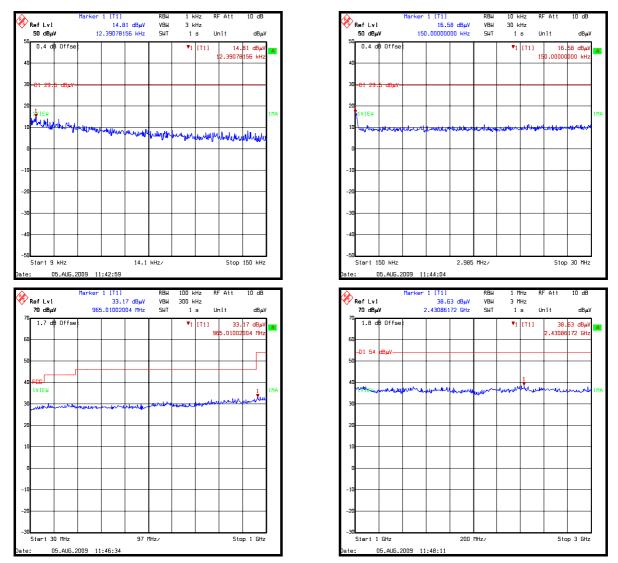
Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

#### 5.2.3. Receive/Idle Mode Conducted Emissions

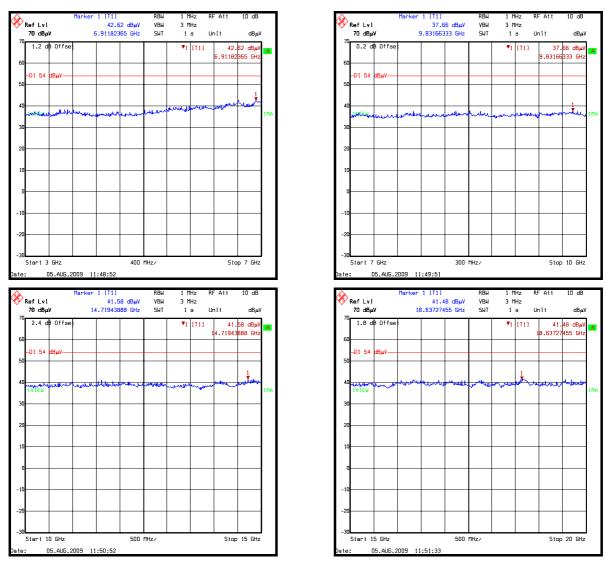
#### Test Summary:

| FCC Part:         | FCC Part 2.1051                    |
|-------------------|------------------------------------|
| Test Method Used: | As detailed in ANSI TIA-603-C-2004 |
| Frequency Range:  | 9 kHz to 26.5 GHz                  |

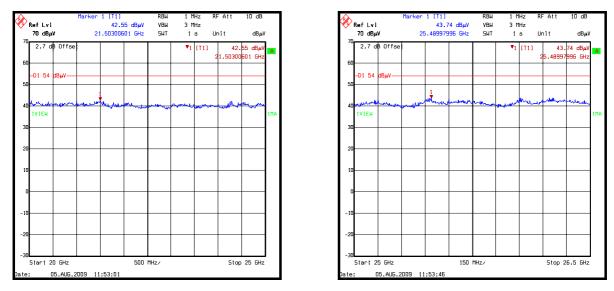
#### **Environmental Conditions:**


| Temperature (°C):      | 19 |
|------------------------|----|
| Relative Humidity (%): | 49 |

### **Results: Diversity RF Port**


| Frequency<br>(GHz) | Actual<br>Level<br>(dBμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Result   |
|--------------------|-----------------------------|-------------------|----------------|----------|
| 25.490             | 43.7                        | 54.0              | 10.3           | Complied |

#### Note(s):


 No spurious emissions were detected above the noise floor of the measuring receiver; therefore, the highest peak noise floor reading of the measuring receiver was recorded as shown in the table above. The peak level was compared to the average limit as opposed to being compared to the peak limit because this is the more onerous limit.



Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.



Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.



Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

# 5.2.4. Transmitter Conducted Carrier Output Power

#### Test Summary:

| FCC Part:         | FCC 21046 and FCC Part 27.50(h)(2) |
|-------------------|------------------------------------|
| Test Method Used: | As detailed in ANSI TIA-603-C-2004 |

# **Environmental Conditions:**

| Temperature (°C):      | 27 |
|------------------------|----|
| Relative Humidity (%): | 34 |

#### **Results: QPSK**

| Channel | Frequency<br>(MHz) | Conducted<br>RF O/P<br>Power (dBm) | Stated<br>Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm) | EIRP Limit<br>(dBm) | Margin<br>(dB) | Result   |
|---------|--------------------|------------------------------------|------------------------------------|---------------|---------------------|----------------|----------|
| 12507   | 2501.4             | 23.6                               | 9.0                                | 32.6          | 33.0                | 0.4            | Complied |
| 12965   | 2593.0             | 23.4                               | 9.0                                | 32.4          | 33.0                | 0.6            | Complied |
| 13420   | 2684.6             | 23.6                               | 9.0                                | 32.6          | 33.0                | 0.4            | Complied |

### Results: 16QAM

| Channel | Frequency<br>(MHz) | Conducted<br>RF O/P<br>Power (dBm) | Stated<br>Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm) | EIRP Limit<br>(dBm) | Margin<br>(dB) | Result   |
|---------|--------------------|------------------------------------|------------------------------------|---------------|---------------------|----------------|----------|
| 12507   | 2501.4             | 23.9                               | 9.0                                | 32.9          | 33.0                | 0.1            | Complied |
| 12965   | 2593.0             | 23.6                               | 9.0                                | 32.6          | 33.0                | 0.4            | Complied |
| 13420   | 2684.6             | 23.6                               | 9.0                                | 32.6          | 33.0                | 0.4            | Complied |

### Results: 64QAM

| Channel | Frequency<br>(MHz) | Conducted<br>RF O/P<br>Power (dBm) | Stated<br>Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm) | EIRP Limit<br>(dBm) | Margin<br>(dB) | Result   |
|---------|--------------------|------------------------------------|------------------------------------|---------------|---------------------|----------------|----------|
| 12507   | 2501.4             | 23.9                               | 9.0                                | 32.9          | 33.0                | 0.1            | Complied |
| 12965   | 2593.0             | 23.7                               | 9.0                                | 32.7          | 33.0                | 0.3            | Complied |
| 13420   | 2684.6             | 23.6                               | 9.0                                | 32.6          | 33.0                | 0.4            | Complied |

# 5.2.5. Transmitter Frequency Stability (Temperature Variation)

### Test Summary:

| FCC Part:         | FCC 27.54                          |
|-------------------|------------------------------------|
| Test Method Used: | As detailed in ANSI TIA-603-C-2004 |

**Environmental Conditions:** 

| Temperature (°C):      | 19 |
|------------------------|----|
| Relative Humidity (%): | 49 |

# Results: 2501.4 MHz

| Temp<br>(ºC) | Measured Frequency (MHz) | Frequency Error (Hz) |
|--------------|--------------------------|----------------------|
| -30          | 2501.398290              | -1710                |
| -20          | 2501.399224              | -776                 |
| -10          | 2501.400039              | 39                   |
| 0            | 2501.400397              | 397                  |
| 10           | 2501.400144              | 144                  |
| 20           | 2501.399757              | -243                 |
| 30           | 2501.399895              | -105                 |
| 40           | 2501.400551              | 551                  |
| 50           | 2501.400859              | 859                  |

# Results: 2593 MHz

| Temp<br>(ºC) | Measured Frequency (MHz) | Frequency Error (Hz) |
|--------------|--------------------------|----------------------|
| -30          | 2592.998939              | -1061                |
| -20          | 2592.999186              | -814                 |
| -10          | 2593.000047              | 47                   |
| 0            | 2593.000416              | 416                  |
| 10           | 2593.000136              | 136                  |
| 20           | 2592.999742              | -258                 |
| 30           | 2592.999932              | -68                  |
| 40           | 2593.000560              | 560                  |
| 50           | 2593.000905              | 905                  |

# Transmitter Frequency Stability (Temperature Variation) (continued)

### Results: 2684.6 MHz

| Temp<br>(⁰C) | Measured Frequency (MHz) | Frequency Error (Hz) |
|--------------|--------------------------|----------------------|
| -30          | 2684.598187              | -1813                |
| -20          | 2684.599172              | -828                 |
| -10          | 2684.600054              | 54                   |
| 0            | 2684.600439              | 439                  |
| 10           | 2684.600141              | 141                  |
| 20           | 2684.599741              | -259                 |
| 30           | 2684.599951              | -49                  |
| 40           | 2684.600591              | 591                  |
| 50           | 2684.600945              | 945                  |

# Note(s):

1. Tested at 12V DC from a bench PSU applied to the power connector on the adaptor board. The adaptor board voltage regulator reduces this to 3.3V which is the normal supply voltage to the EUT.

### 5.2.6. Transmitter Frequency Stability (Voltage Variation)

#### Test Summary:

| FCC Part:         | FCC 27.54                          |
|-------------------|------------------------------------|
| Test Method Used: | As detailed in ANSI TIA-603-C-2004 |

**Environmental Conditions:** 

| Temperature (°C):      | 23 |
|------------------------|----|
| Relative Humidity (%): | 41 |

### Results: 2501.4 MHz

| Supply Voltage<br>(VDC) | Measured Frequency (MHz) | Frequency Error (Hz) |
|-------------------------|--------------------------|----------------------|
| 3.0                     | 2501.400081              | 81                   |
| 3.3                     | 2501.399694              | -306                 |
| 3.6                     | 2501.400029              | 29                   |

### Results: 2593 MHz

| Supply Voltage<br>(VDC) | Measured Frequency (MHz) | Frequency Error (Hz) |
|-------------------------|--------------------------|----------------------|
| 3.0                     | 2593.000096              | 96                   |
| 3.3                     | 2592.999643              | -357                 |
| 3.6                     | 2592.999963              | -37                  |

#### Results: 2684.6 MHz

| Supply Voltage<br>(VDC) | Measured Frequency (MHz) | Frequency Error (Hz) |
|-------------------------|--------------------------|----------------------|
| 3.0                     | 2684.600122              | 122                  |
| 3.3                     | 2684.599760              | -240                 |
| 3.6                     | 2684.599884              | -116                 |

#### Note(s):

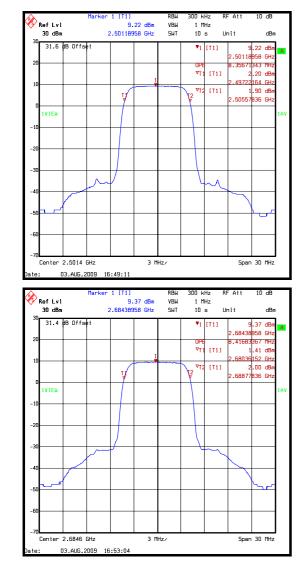
1. Tested over the range 3V to 3.6 VDC supplied from a bench PSU applied to two power cables connected directly to the EUT power supply input.

# 5.2.7. Transmitter Occupied Bandwidth

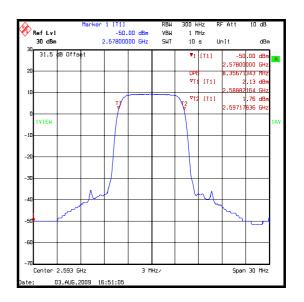
### Test Summary:

| FCC Part:         | FCC 2.1049                         |
|-------------------|------------------------------------|
| Test Method Used: | As detailed in ANSI TIA-603-C-2004 |

**Environmental Conditions:** 


| Temperature (°C):      | 26 |
|------------------------|----|
| Relative Humidity (%): | 32 |

### Results: QPSK


| Channel Number | Frequency (MHz) | Resolution<br>Bandwidth (kHz) | Video Bandwidth<br>(kHz) | Occupied<br>Bandwidth (MHz) |
|----------------|-----------------|-------------------------------|--------------------------|-----------------------------|
| 12507          | 2501.4          | 300                           | 1000                     | 8.357                       |
| 12965          | 2593.0          | 300                           | 1000                     | 8.357                       |
| 13423          | 2684.6          | 300                           | 1000                     | 8.417                       |

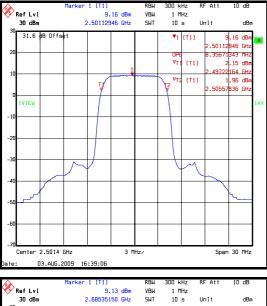
### Note(s):

1. The 99% occupied bandwidth was measured using the occupied bandwidth function of the spectrum analyser.

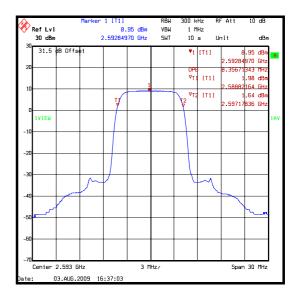


# Transmitter Occupied Bandwidth (continued)




#### Transmitter Occupied Bandwidth (continued)

### Results: 16QAM


| Channel Number | Frequency (MHz) | Resolution<br>Bandwidth (kHz) | Video Bandwidth<br>(kHz) | Occupied<br>Bandwidth (MHz) |
|----------------|-----------------|-------------------------------|--------------------------|-----------------------------|
| 12507          | 2501.4          | 300                           | 1000                     | 8.357                       |
| 12965          | 2593.0          | 300                           | 1000                     | 8.357                       |
| 13423          | 2684.6          | 300                           | 1000                     | 8.417                       |

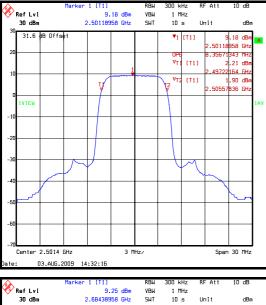
#### Note(s):

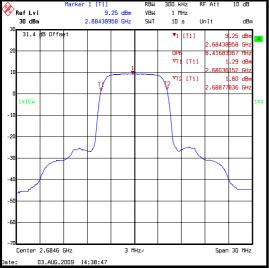
1. The 99% occupied bandwidth was measured using the occupied bandwidth function of the spectrum analyser.

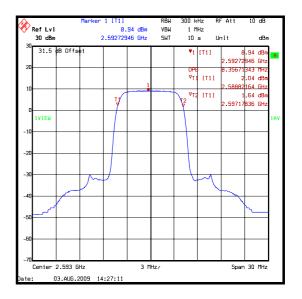







#### Transmitter Occupied Bandwidth (continued)


#### **Results: 64QAM**


| Channel Number | Frequency (MHz) | Resolution<br>Bandwidth (kHz) | Video Bandwidth<br>(kHz) | Occupied<br>Bandwidth (MHz) |
|----------------|-----------------|-------------------------------|--------------------------|-----------------------------|
| 12507          | 2501.4          | 300                           | 1000                     | 8.357                       |
| 12965          | 2593.0          | 300                           | 1000                     | 8.357                       |
| 13423          | 2684.6          | 300                           | 1000                     | 8.417                       |

#### Note(s):

1. The 99% occupied bandwidth was measured using the occupied bandwidth function of the spectrum analyser.





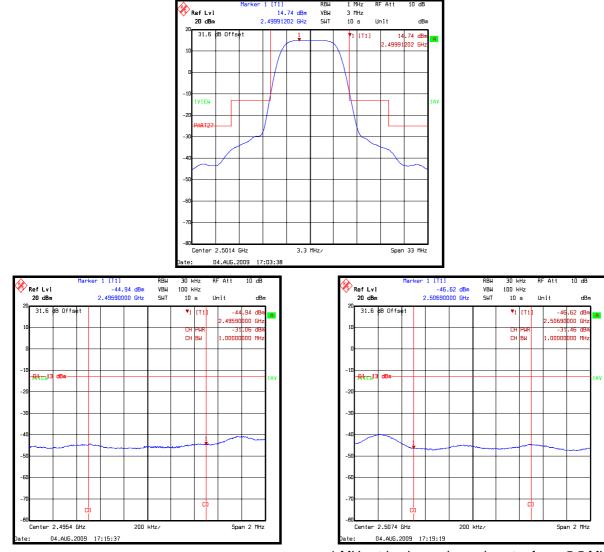


#### 5.2.8. Transmitter Conducted Emissions - Channel Edge

#### Test Summary:

| FCC Part:         | FCC Part 2.1051 and FCC Part 27.53                        |
|-------------------|-----------------------------------------------------------|
| Test Method Used: | As detailed in ANSI TIA-603-C-2004 referencing FCC Part 2 |

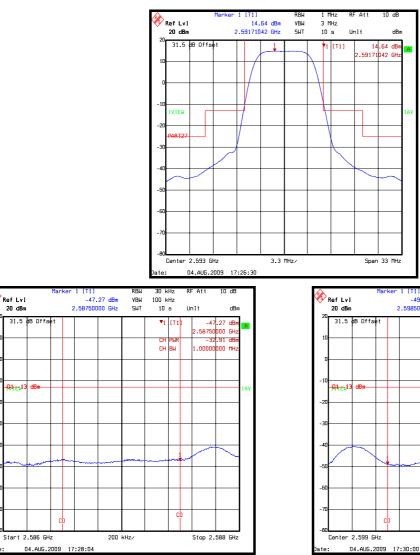
#### **Environmental Conditions:**


| Temperature (°C):      | 26 |
|------------------------|----|
| Relative Humidity (%): | 32 |

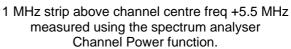
### Note(s):

1. It can be seen on the main mask plots that the emission goes through the limit line. This is on account of the analyser bandwidth being too great to make an accurate measurement. The analyser Integration function was thus used to demonstrate compliance and this can be seen on the two plots accompanying the mask plot.

#### **Results: Bottom Channel / QPSK**


| Frequency of 1<br>MHz strip<br>adjacent to<br>channel edge | Level in 1 MHz<br>strip adjacent to<br>block edge<br>(dBm) | Band Edge Limit<br>(dBm) | Margin (dB) | Result   |
|------------------------------------------------------------|------------------------------------------------------------|--------------------------|-------------|----------|
| 2495.9                                                     | -44.9                                                      | -13.0                    | 31.9        | Complied |
| 2506.9                                                     | -46.6                                                      | -13.0                    | 33.6        | Complied |




1 MHz strip below channel centre freq -5.5 MHz measured using the spectrum analyser Channel Power function. 1 MHz strip above channel centre freq +5.5 MHz measured using the spectrum analyser Channel Power function.

# **Results: Middle channel / QPSK**

| Frequency of 1<br>MHz strip<br>adjacent to<br>channel edge | Level in 1 MHz<br>strip adjacent to<br>block edge<br>(dBm) | Band Edge Limit<br>(dBm) | Margin (dB) | Result   |
|------------------------------------------------------------|------------------------------------------------------------|--------------------------|-------------|----------|
| 2587.5                                                     | -47.3                                                      | -13.0                    | 34.3        | Complied |
| 2598.5                                                     | -49.1                                                      | -13.0                    | 36.1        | Complied |



1 MHz strip below channel centre freq -5.5 MHz measured using the spectrum analyser Channel Power function.



200 kHz/

RBŀ 30 kH

VBW SWT 100 kHz 10 s

СН

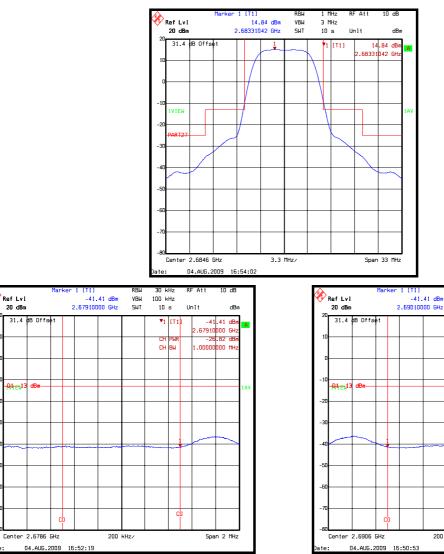
СН RW

сþ

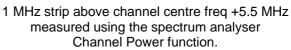
Unit

100 MH

dBm -49.12 dBr .59850000 GH:


3.24 dB

Span 2 MHz


~ 1 [T1] -49.12 dBm 2.59850000 GHz

# **Results: Top channel / QPSK**

| Frequency of 1<br>MHz strip<br>adjacent to<br>channel edge | Level in 1 MHz<br>strip adjacent to<br>block edge<br>(dBm) | Band Edge Limit<br>(dBm) | Margin (dB) | Result   |
|------------------------------------------------------------|------------------------------------------------------------|--------------------------|-------------|----------|
| 2679.1                                                     | -41.4                                                      | -13.0                    | 28.4        | Complied |
| 2690.1                                                     | -41.4                                                      | -13.0                    | 28.4        | Complied |



1 MHz strip below channel centre freq -5.5 MHz measured using the spectrum analyser Channel Power function.



200 kHz/

RBW 30 kH

VBW 100 kHz SWT 10 s

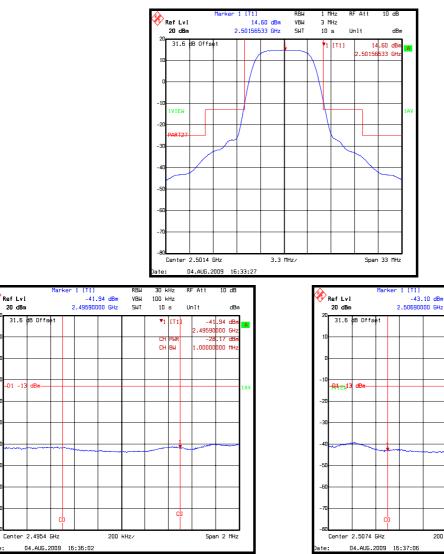
CH

СН ВМ

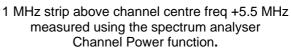
сþ

Unit

.00000000 MH


t dBm -41.41 dBm .69010000 GHz

.64 dB


Span 2 MHz

# **Results: Bottom channel / 16QAM**

| Frequency of 1<br>MHz strip<br>adjacent to<br>channel edge | Level in 1 MHz<br>strip adjacent to<br>block edge<br>(dBm) | Band Edge Limit<br>(dBm) | Margin (dB) | Result   |
|------------------------------------------------------------|------------------------------------------------------------|--------------------------|-------------|----------|
| 2495.9                                                     | -41.9                                                      | -13.0                    | 28.9        | Complied |
| 2506.9                                                     | -43.1                                                      | -13.0                    | 30.1        | Complied |



1 MHz strip below channel centre freq -5.5 MHz measured using the spectrum analyser Channel Power function.



200 kHz/

RBW 30 kH

VBW 100 kHz SWT 10 s

СН

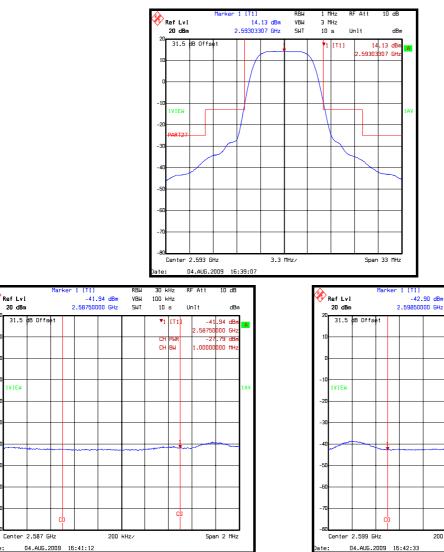
СН ВМ

сþ

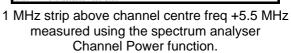
Unit

dBm

-43.10 dBr .50690000 GH:


.00000000 MH

79 dB


Span 2 MHz

# **Results: Middle channel / 16QAM**

| Frequency of 1<br>MHz strip<br>adjacent to<br>channel edge | Level in 1 MHz<br>strip adjacent to<br>block edge<br>(dBm) | Band Edge Limit<br>(dBm) | Margin (dB) | Result   |
|------------------------------------------------------------|------------------------------------------------------------|--------------------------|-------------|----------|
| 2587.5                                                     | -41.9                                                      | -13.0                    | 28.9        | Complied |
| 2598.5                                                     | -42.9                                                      | -13.0                    | 29.9        | Complied |



1 MHz strip below channel centre freq -5.5 MHz measured using the spectrum analyser Channel Power function.



200 kHz/

RBŀ 30 kH

VBW SWT 100 kHz 10 s

СН

СН RW

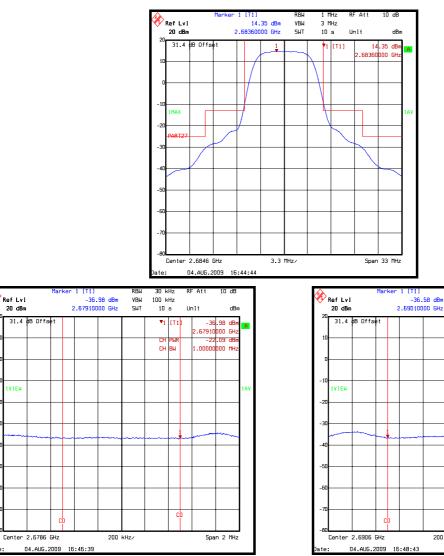
сþ

Unit

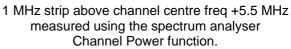
598500

)00 MH

dBm .90 dBr


.94 dB

Span 2 MHz


IVIEN

## **Results: Top channel / 16QAM**

| Frequency of 1<br>MHz strip<br>adjacent to<br>channel edge | Level in 1 MHz<br>strip adjacent to<br>block edge<br>(dBm) | Band edge limit<br>(dBm) | Margin (dB) | Result   |
|------------------------------------------------------------|------------------------------------------------------------|--------------------------|-------------|----------|
| 2679.1                                                     | -37.0                                                      | -13.0                    | 24.0        | Complied |
| 2690.1                                                     | -36.6                                                      | -13.0                    | 23.6        | Complied |



1 MHz strip below channel centre freq -5.5 MHz measured using the spectrum analyser Channel Power function.



200 kHz/

RBW 30 kH

VBW SWT 100 kHz 10 s

CH

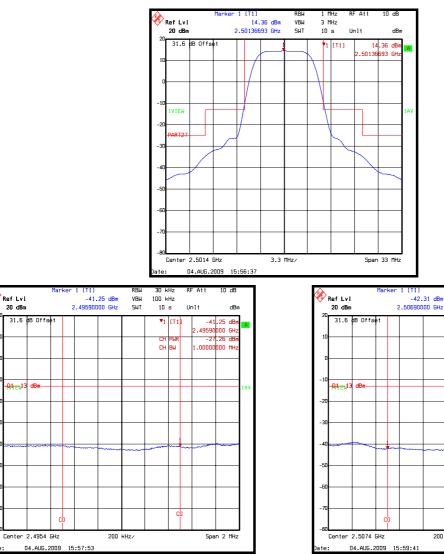
СН RW

сþ

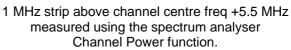
Unit

.00000 . 100 мн

dBm -36.58 dBr .69010000 GH:


45 dB

Span 2 MHz


IVIEN

## **Results: Bottom channel / 64QAM**

| Frequency of 1<br>MHz strip<br>adjacent to<br>channel edge | Level in 1 MHz<br>strip adjacent to<br>block edge<br>(dBm) | Band edge limit<br>(dBm) | Margin (dB) | Result   |
|------------------------------------------------------------|------------------------------------------------------------|--------------------------|-------------|----------|
| 2495.9                                                     | -41.3                                                      | -13.0                    | 28.3        | Complied |
| 2506.9                                                     | -42.3                                                      | -13.0                    | 29.3        | Complied |



1 MHz strip below channel centre freq -5.5 MHz measured using the spectrum analyser Channel Power function.



200 kHz/

RBW 30 kH

VBW 100 kHz SWT 10 s

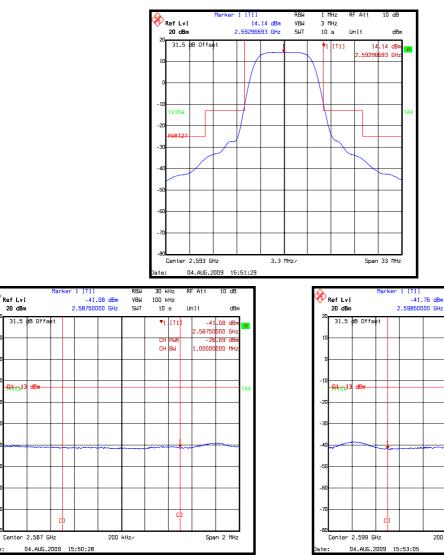
CH

СН ВМ

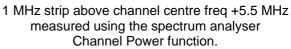
сþ

Unit

.00000000 MH


t dBm -42.31 dBm .50690000 GHz

.64 dB


Span 2 MHz

## **Results: Middle channel / 64QAM**

| Frequency of 1<br>MHz strip<br>adjacent to<br>channel edge | Level in 1 MHz<br>strip adjacent to<br>block edge<br>(dBm) | Band edge limit<br>(dBm) | Margin (dB) | Result   |
|------------------------------------------------------------|------------------------------------------------------------|--------------------------|-------------|----------|
| 2587.5                                                     | -41.1                                                      | -13.0                    | 28.1        | Complied |
| 2598.5                                                     | -41.8                                                      | -13.0                    | 28.8        | Complied |



1 MHz strip below channel centre freq -5.5 MHz measured using the spectrum analyser Channel Power function.



200 kHz/

RBW 30 kH

VBW 100 kHz SWT 10 s

CH

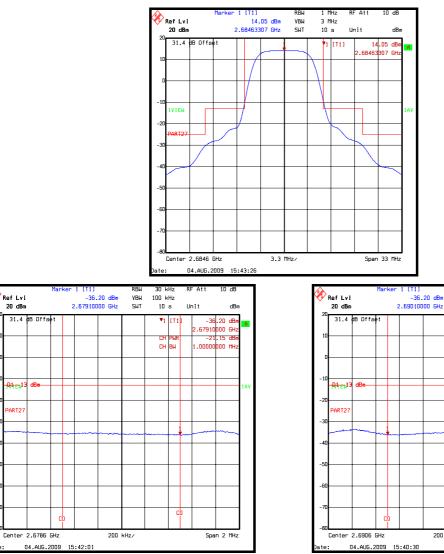
СН ВМ

сþ

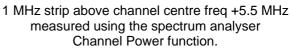
Unit

59850

.00000000 MH


dBm .76 dBm 100 GHz

62 dB


Span 2 MHz

## **Results: Top channel / 64QAM**

| Frequency of 1<br>MHz strip<br>adjacent to<br>channel edge | Level in 1 MHz<br>strip adjacent to<br>block edge<br>(dBm) | Band edge limit<br>(dBm) | Margin (dB) | Result   |
|------------------------------------------------------------|------------------------------------------------------------|--------------------------|-------------|----------|
| 2679.1                                                     | -36.2                                                      | -13.0                    | 23.2        | Complied |
| 2690.1                                                     | -36.2                                                      | -13.0                    | 23.2        | Complied |



#### 1 MHz strip below channel centre freq -5.5 MHz measured using the spectrum analyser Channel Power function.



200 kHz/

RBW 30 kH

VBW 100 kHz SWT 10 s

СН

СН ВМ

сþ

Unit

.00000000 MH

t dBm -36.20 dBm .69010000 GHz

76 dB

Span 2 MHz

## 5.2.9. Transmitter Conducted Emissions

### Test Summary:

| FCC Part:         | FCC 2.1051 and FCC Part 27.53                             |
|-------------------|-----------------------------------------------------------|
| Test Method Used: | As detailed in ANSI TIA-603-C-2004 referencing FCC Part 2 |

**Environmental Conditions:** 

| Temperature (°C):      | 27 |
|------------------------|----|
| Relative Humidity (%): | 34 |

### Results: QPSK Bottom Channel 2501.4 MHz

| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 4999.219420     | -33.5                   | -25.0          | 8.5            | Complied |
| 7510.383270     | -45.9                   | -25.0          | 20.9           | Complied |

### Results: QPSK Middle Channel 2593 MHz:

| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5189.850160     | -31.0                   | -25.0          | 6.0            | Complied |
| 7772.870740     | -44.9                   | -25.0          | 19.9           | Complied |

### Results: QPSK Top Channel 2684.6 MHz:

| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5365.712420     | -37.0                   | -25.0          | 12.0           | Complied |
| 8047.804610     | -42.8                   | -25.0          | 17.8           | Complied |

### Results: 16QAM Bottom Channel 2501.4 MHz:

| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 4999.124850     | -32.6                   | -25.0          | 7.6            | Complied |
| 7510.825850     | -45.9                   | -25.0          | 20.9           | Complied |

### Results: 16QAM Middle Channel 2593 MHz:

| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5189.675150     | -30.3                   | -25.0          | 5.3            | Complied |
| 7772.544350     | -44.7                   | -25.0          | 19.7           | Complied |

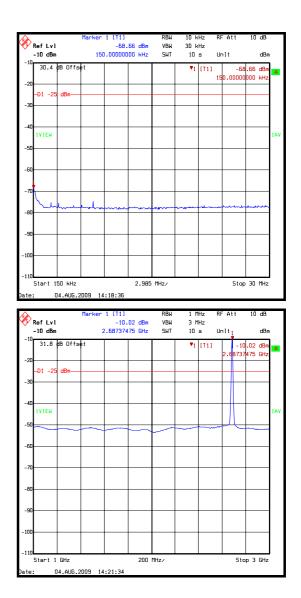
### Results: 16QAM Top Channel 2684.6 MHz:

| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5365.474550     | -36.5                   | -25.0          | 11.5           | Complied |
| 8047.654310     | -42.6                   | -25.0          | 17.6           | Complied |

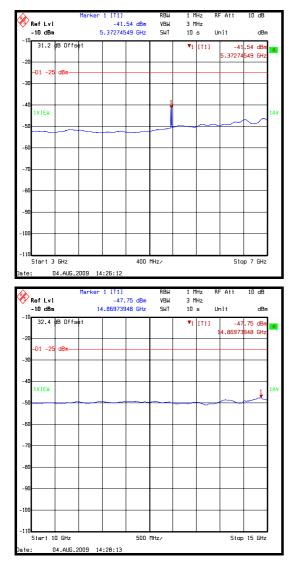
### Results: 64QAM Bottom Channel 2501.4 MHz:

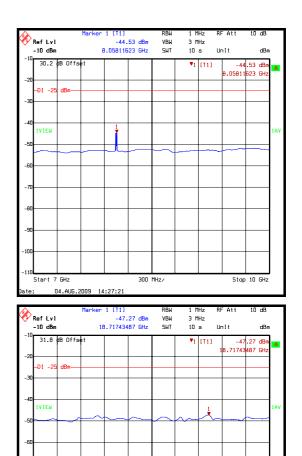
| Frequency (MHz) | Emission Level<br>(dBm) | Limit Margin<br>(dBm) (dB) |      | Result   |
|-----------------|-------------------------|----------------------------|------|----------|
| 4999.12485      | -32.7                   | -25.0                      | 7.7  | Complied |
| 7510.66970      | -46.2                   | -25.0                      | 21.2 | Complied |

### Results: 64QAM Middle Channel 2593 MHz:


| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5189.675150     | -30.4                   | -25.0          | 5.4            | Complied |
| 7772.443800     | -45.0                   | -25.0          | 20.0           | Complied |

### Results: 64QAM Top Channel 2684.6 MHz:


| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5365.524650     | -36.6                   | -25.0          | 11.6           | Complied |
| 8047.701400     | -42.8                   | -25.0          | 17.8           | Complied |


#### r 1 [T1] -69.72 dBm 9.00000000 kHz RBL Ref Lvl -10 dBm VBW SWT 3 kHz 10 s Unit dBm 30.3 dB Offse -69.72 dBm 3.00000000 kHz ₹1 [T1] -D1 -25 dBr IVIEN "WVW" mhin -11 Stop 150 kHz Start 9 kHz 14.1 kHz/ Date: 04.AUG.2009 14:15:57 [T1] RBL 100 kHz At 10 dB RefLvl -10 dBm -53.90 dBm 1.00000000 GHz 300 kHz 10 s VBW Swt Unit dBm 31.7 dB Offs -53.90 dBm 300000 GHz ₹1 [T1] .000 -D1 -25 1VIEN 11 Start 30 MHz 97 MHz∕ Stop 1 GHz 04.AUG.2009 14:19:46

## **Transmitter Conducted Emissions (continued)**

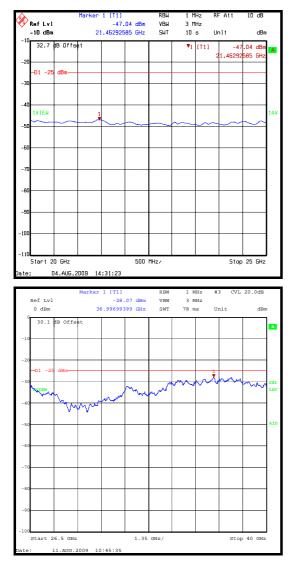


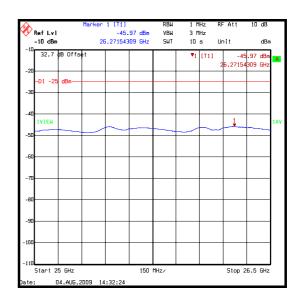
ate:

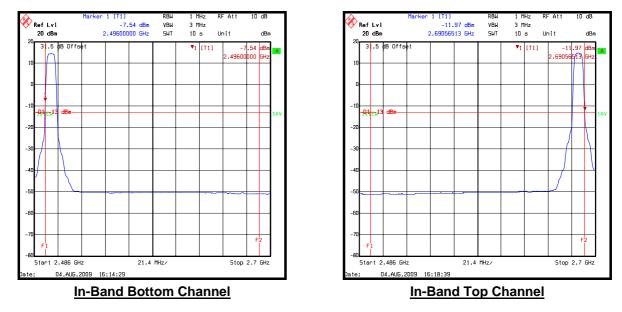




500 MHz/


Stop 20 GHz


110


Start 15 GHz

04.AUG.2009

14:29:44







### Note(s):

1. The emission shown at approximately 2687.375 MHz on the 1 GHz to 3 GHz plot is the carrier.

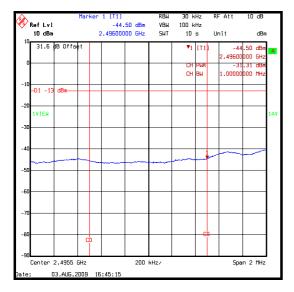
### 5.2.10. Transmitter Conducted Emissions at Band Edges

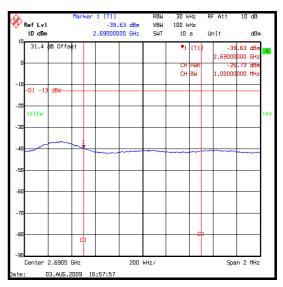
### Test Summary:

| FCC Part:         | FCC Part 2.1051, FCC Part 27.53                  |
|-------------------|--------------------------------------------------|
| Test Method Used: | ANSI TIA-603-C-2004 referencing FCC CFR Parts 2. |

**Environmental Conditions:** 

| Temperature (°C):      | 26 |
|------------------------|----|
| Relative Humidity (%): | 32 |


### Results: QPSK 1 MHz strip below the lower band edge


| Frequency    | Emission Level | Limit | Margin | Result   |  |  |
|--------------|----------------|-------|--------|----------|--|--|
| (MHz)        | (dBm)          | (dBm) | (dB)   |          |  |  |
| 2495 to 2496 | -31.3          | -13.0 | 18.3   | Complied |  |  |

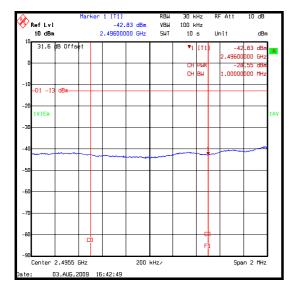
### Results: QPSK 1 MHz strip above the upper band edge

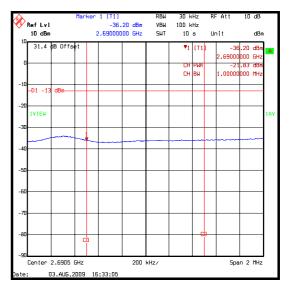
| Frequency    | Emission Level | Limit | Margin | Result   |
|--------------|----------------|-------|--------|----------|
| (MHz)        | (dBm)          | (dBm) | (dB)   |          |
| 2690 to 2691 | -26.7          | -13.0 | 13.7   | Complied |

### Note(s):






### Results: 16QAM 1 MHz strip below the lower band edge


| Frequency    | Emission Level | Limit | Margin | Result   |  |  |
|--------------|----------------|-------|--------|----------|--|--|
| (MHz)        | (dBm)          | (dBm) | (dB)   |          |  |  |
| 2495 to 2496 | -28.6          | -13.0 | 29.8   | Complied |  |  |

#### Results: 16QAM 1 MHz strip above the upper band edge

| Frequency    | Emission Level | Limit | Margin | Result   |
|--------------|----------------|-------|--------|----------|
| (MHz)        | (dBm)          | (dBm) | (dB)   |          |
| 2690 to 2691 | -21.8          | -13.0 | 8.8    | Complied |

### Note(s):





### Results: 64QAM 1 MHz strip below the lower band edge

| Frequency    | Emission Level | Limit | Margin | Result   |
|--------------|----------------|-------|--------|----------|
| (MHz)        | (dBm)          | (dBm) | (dB)   |          |
| 2495 to 2496 | -27.3          | -13.0 | 14.3   | Complied |

#### Results: 64QAM 1 MHz strip above the upper band edge

| Frequency    | Emission Level | Limit | Margin | Result   |
|--------------|----------------|-------|--------|----------|
| (MHz)        | (dBm)          | (dBm) | (dB)   |          |
| 2690 to 2691 | -21.3          | -13.0 | 8.3    | Complied |

### Note(s):

|      |              |          | Marl | ker | 1 [T1] |         | RBW     | 30 H  | Hz  | RE | FAtt           | 10  | dB   |     |
|------|--------------|----------|------|-----|--------|---------|---------|-------|-----|----|----------------|-----|------|-----|
| ×    | Ref Lvl      |          |      |     | -41    | .81 dBm | VBW     | 100 H | Hz  |    |                |     |      |     |
|      | 10 dBm       |          |      | 2   | .49600 | 000 GHz | SWT     | 10    | s   | Ur | nit            |     | dBm  |     |
| 10   | 31.6         | dB Offse | h+   |     |        | 1       | <b></b> |       | [T1 |    |                |     | dBm  | 1   |
|      | 51.0         |          | ľ,   |     |        |         |         | *1    | 111 |    | -41<br>2,49600 |     |      | Α   |
| 0    |              |          |      |     |        |         |         |       | PWR |    |                | .32 |      |     |
|      |              |          |      |     |        |         |         | CH    |     |    | 1.00000        |     |      |     |
|      |              |          |      |     |        |         |         | un    | DW  |    | 1.00000        | 000 | TIPZ |     |
| -10  | -D1 -13      | dBm      |      |     |        |         |         |       |     |    |                |     |      |     |
|      | -01 -1.      |          |      |     |        |         |         |       |     |    |                |     |      |     |
| -20  |              |          |      |     |        |         |         |       |     |    |                | _   |      |     |
|      | <b>IVIEN</b> |          |      |     |        |         |         |       |     |    |                |     |      | 1AV |
|      |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
| -30  |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
|      |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
| -40  |              |          |      |     |        | -       |         |       |     |    |                |     | ~    |     |
|      |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
| -50  |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
| -50  |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
|      |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
| -60  |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
|      |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
| -70  |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
| -70  |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
|      |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
| -80  |              |          | C    |     |        |         | I       |       | C   | þ  |                | -   |      |     |
|      |              |          | [[   | J   |        |         |         |       | F   | 1  |                |     |      |     |
| -90  |              |          |      |     |        |         |         |       |     |    |                |     |      |     |
|      | Center       | 2.4955   | GHz  |     |        | 200     | kHz∕    |       |     |    | Spa            | n 2 | MHz  |     |
| Date |              | )3.AUG.2 | nno  | 15  | :31:25 |         |         |       |     |    | ·              |     |      |     |
| Jaie |              | JJ.HUD.2 | 003  | 10  | .JI:20 |         |         |       |     |    |                |     |      |     |

| et  | -35. | 88 dBm<br>IOO GHz | VBW<br>SWT |             |             |     |                                        | .88 | dBr<br>dBr |
|-----|------|-------------------|------------|-------------|-------------|-----|----------------------------------------|-----|------------|
| et  |      |                   |            |             | [T1]        |     |                                        |     | dBr        |
|     |      |                   |            |             |             |     |                                        |     |            |
|     |      |                   |            |             |             |     | 2,69000                                | 000 | GHz        |
|     |      |                   |            | CH          | PWR         |     | -21                                    | .26 | dBr        |
|     |      |                   |            | CH          | BW          |     | 1.00000                                | 000 | MHz        |
|     |      |                   |            |             |             |     |                                        |     |            |
|     |      |                   |            |             |             |     |                                        |     |            |
|     |      |                   |            |             |             |     |                                        |     |            |
|     |      |                   |            |             |             |     |                                        |     |            |
| -   |      |                   |            |             |             | ~~~ |                                        |     |            |
|     |      |                   |            |             |             |     |                                        |     |            |
|     |      |                   |            |             |             |     |                                        |     |            |
|     |      |                   |            |             |             |     |                                        |     |            |
|     |      |                   |            |             |             |     |                                        |     |            |
|     |      |                   |            |             |             |     |                                        |     |            |
|     |      |                   |            |             |             |     |                                        |     |            |
|     |      |                   |            |             |             |     |                                        |     |            |
| CO  |      |                   |            |             | - ct        | -   |                                        |     |            |
| Ĩ   |      |                   |            |             |             |     |                                        |     |            |
| GHz |      | 200               | kHz∕       |             |             |     | Spa                                    | n 2 | MHz        |
|     | iHz  | Ĩ                 | iHz 200    | Hz 200 kHz/ | Hz 200 kHz/ | C0  | C0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | C0  | C0         |

### 5.2.11. Transmitter Radiated Emissions

### Test Summary:

| FCC Part:         | FCC 2.1051 and FCC Part 27.53                             |
|-------------------|-----------------------------------------------------------|
| Test Method Used: | As detailed in ANSI TIA-603-C-2004 referencing FCC Part 2 |

## **Environmental Conditions:**

| Temperature (°C):      | 27 |
|------------------------|----|
| Relative Humidity (%): | 34 |

### **Results: QPSK Bottom Channel:**

| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5006.41723      | -32.4                   | -25.0          | 7.4            | Complied |
| 7510.04669      | -45.7                   | -25.0          | 20.7           | Complied |

### **Results: QPSK Middle Channel:**

| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5189.55110      | -37.7                   | -25.0          | 12.7           | Complied |
| 7773.40882      | -47.4                   | -25.0          | 22.4           | Complied |

## **Results: QPSK Top Channel:**

| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5365.67009      | -30.7                   | -25.0          | 5.7            | Complied |
| 8048.43182      | -44.1                   | -25.0          | 19.1           | Complied |

## **Transmitter Radiated Emissions (continued)**

## **Results: 16QAM Bottom Channel:**

| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5006.51052      | -31.8                   | -25.0          | 6.8            | Complied |
| 7510.27214      | -45.8                   | -25.0          | 20.8           | Complied |

## **Results: 16QAM Middle Channel:**

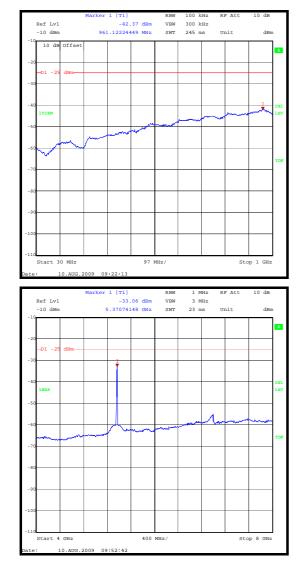
| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5189.75752      | -36.2                   | -25.0          | 11.2           | Complied |
| 7772.52705      | -46.7                   | -25.0          | 21.7           | Complied |

## **Results: 16QAM Top Channel:**

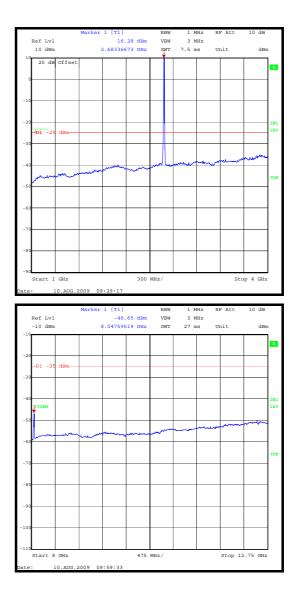
| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5365.48758      | -30.1                   | -25.0          | 5.1            | Complied |
| 8060.21420      | -44.0                   | -25.0          | 19.0           | Complied |

## **Transmitter Radiated Emissions (continued)**

## **Results: 64QAM Bottom Channel:**

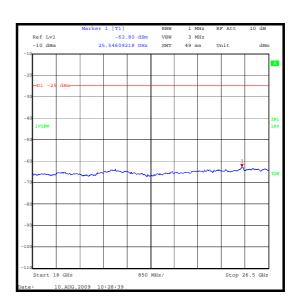

| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5006.49739      | -31.7                   | -25.0          | 6.7            | Complied |
| 7510.54108      | -46.0                   | -25.0          | 21.0           | Complied |

## **Results: 64QAM Middle Channel:**


| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5182.20817      | -36.3                   | -25.0          | 11.3           | Complied |
| 7772.52705      | -46.6                   | -25.0          | 21.6           | Complied |

## **Results: 64QAM Top Channel:**

| Frequency (MHz) | Emission Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-----------------|-------------------------|----------------|----------------|----------|
| 5365.40268      | -29.5                   | -25.0          | 4.5            | Complied |
| 8060.07034      | -42.6                   | -25.0          | 17.6           | Complied |




## Transmitter Radiated Emissions (continued)



### Ref Lvl -10 dBm -47.57 dBm 17.97895792 GHz VBW SWT 3 MHz 30 ms Unit dBm D1 -IEW Start 12.75 GHz 525 MHz/ Stop 18 GHz 10.AUG.2009 10:27:24 1 MHz 3 MHz 78 ms RBW #3 CVL 20.0dB -37.73 dBm 37.45691383 GHz VBW SWT Ref Lvl -10 dBm Unit dBm D1 -2 dBm IEW m $\sim$ Start 26.5 GHz 1.35 GHz/ Stop 40 GHz 11.AUG.2009 09:48:25

## Transmitter Radiated Emissions (continued)



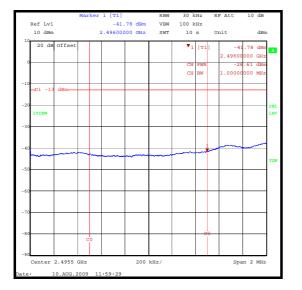
### 5.2.12. Transmitter Radiated Emissions at Band Edges

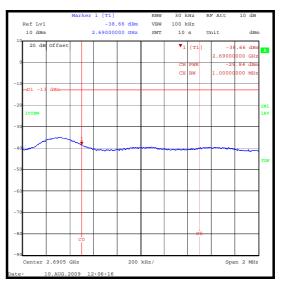
#### Test Summary:

| FCC Part:         | FCC Part 2.1051 and FCC Part 27.53                        |
|-------------------|-----------------------------------------------------------|
| Test Method Used: | As detailed in ANSI TIA-603-C-2004 referencing FCC Part 2 |

## **Environmental Conditions:**

| Temperature (°C):      | 19 |
|------------------------|----|
| Relative Humidity (%): | 48 |


#### Results: QPSK 1 MHz strip below the lower band edge


| Frequency    | Spurious Emission | Limit | Margin | Result   |  |
|--------------|-------------------|-------|--------|----------|--|
| (MHz)        | (dBm)             | (dBm) | (dB)   |          |  |
| 2495 to 2496 | -28.6             | -13.0 | 15.6   | Complied |  |

### Results: QPSK 1 MHz strip above the upper band edge

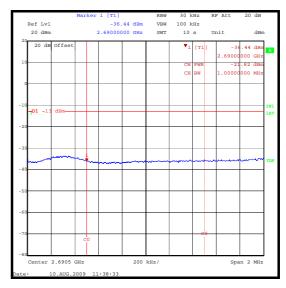
| Frequency    | Peak Emission | Limit | Margin | Result   |  |
|--------------|---------------|-------|--------|----------|--|
| (MHz)        | Level (dBm)   | (dBm) | (dB)   |          |  |
| 2690 to 2691 | -25.8         | -13.0 | 12.8   | Complied |  |

#### Note(s):





### Results: 16QAM 1 MHz strip below the lower band edge


| Frequency    | Spurious Emission | Limit | Margin | Result   |  |
|--------------|-------------------|-------|--------|----------|--|
| (MHz)        | (dBm)             | (dBm) | (dB)   |          |  |
| 2495 to 2496 | -26.2             | -13.0 | 13.2   | Complied |  |

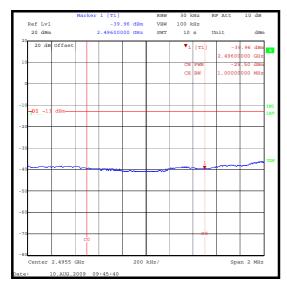
#### Results: 16QAM 1 MHz strip above the upper band edge

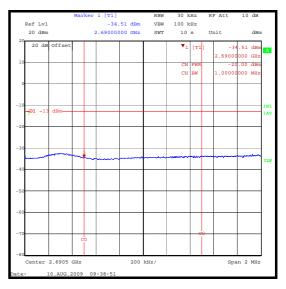
| Frequency    | Peak Emission | Limit | Margin | Result   |  |
|--------------|---------------|-------|--------|----------|--|
| (MHz)        | Level (dBm)   | (dBm) | (dB)   |          |  |
| 2690 to 2691 | -21.8         | -13.0 | 8.8    | Complied |  |

### Note(s):

|       |         |         | Mar  | ker | 1 [T1]  |        | RBW  | 30 k  | Hz   | RF  | Att     | 10  | dB  |     |
|-------|---------|---------|------|-----|---------|--------|------|-------|------|-----|---------|-----|-----|-----|
| 1     | Ref Lvl |         |      |     | -40.    | 41 dBm | VBW  | 100 k | Hz   |     |         |     |     |     |
|       | 10 dBm  |         |      | 2   | .496000 | 00 GHz | SWT  | 10    | s    | Uni | t       |     | dBm |     |
| 10    |         |         |      | _   |         |        |      |       |      |     |         |     |     |     |
|       | 20 dB   | Offset  |      |     |         |        |      | •1    | [T1] |     | -40     | .41 | dBm | Α   |
|       |         |         |      |     |         |        |      |       |      | 2   | .49600  | 000 | GHz | _   |
| 0     |         |         |      |     |         |        |      | CH    | PWR  |     | -26     | .19 | dBm |     |
|       |         |         |      |     |         |        |      | CH    | BW   | 1   | . 00000 | 000 | MHz |     |
| -10   |         |         |      |     |         |        |      |       |      |     |         |     |     |     |
| -10   | -D1 -13 | dBm     |      |     |         |        |      |       |      |     |         |     |     |     |
|       |         |         |      |     |         |        |      |       |      |     |         |     |     |     |
| -20   |         |         |      |     |         |        |      |       |      |     |         |     |     | INI |
|       | IVIEW   |         |      |     |         |        |      |       |      |     |         |     |     | LAV |
|       |         |         |      |     |         |        |      |       |      |     |         |     |     |     |
| -30   |         |         |      |     |         |        |      |       |      | -   |         |     |     |     |
|       |         |         |      |     |         |        |      |       |      |     |         |     |     |     |
|       |         |         |      |     |         |        |      |       | 1    |     |         |     | ~~~ |     |
| -40   | ~~~~~~  |         |      | ~~~ | ~~~~~~  | ·····  |      |       |      |     |         |     |     |     |
|       |         |         |      |     |         |        |      |       |      |     |         |     |     | TDF |
| -50   |         |         |      |     |         |        |      |       |      |     |         |     |     |     |
|       |         |         |      |     |         |        |      |       |      |     |         |     |     |     |
|       |         |         |      |     |         |        |      |       |      |     |         |     |     |     |
| -60   |         |         |      |     |         |        |      |       |      | _   |         |     |     |     |
|       |         |         |      |     |         |        |      |       |      |     |         |     |     |     |
|       |         |         |      |     |         |        |      |       |      |     |         |     |     |     |
| -70   |         |         |      |     |         |        |      |       |      | -   |         |     |     |     |
|       |         |         |      |     |         |        |      |       |      |     |         |     |     |     |
| -80   |         |         |      |     |         |        |      |       |      |     |         |     |     |     |
| -80   |         |         | c    | 0   |         |        |      |       |      |     |         |     |     |     |
|       |         |         |      | ī . |         |        |      |       |      |     |         |     |     |     |
| -90   |         |         |      |     |         |        |      |       |      |     |         |     |     |     |
|       | Center  | 2.4955  | GHz  |     |         | 200    | kHz/ |       |      |     | Spa     | n 2 | MHz |     |
|       |         |         |      |     |         |        |      |       |      |     | -       |     |     |     |
| Date: | 1       | 0.AUG.2 | 2009 | 11  | :47:31  |        |      |       |      |     |         |     |     |     |




### Results: 64QAM 1 MHz strip below the lower band edge


| Frequency    | Spurious Emission | Limit | Margin | Result   |  |
|--------------|-------------------|-------|--------|----------|--|
| (MHz)        | (dBm)             | (dBm) | (dB)   |          |  |
| 2495 to 2496 | 25.5              | -13.0 | 12.5   | Complied |  |

#### Results: 64QAM 1 MHz strip above the upper band edge

| Frequency    | Peak Emission | Limit | Margin | Result   |  |
|--------------|---------------|-------|--------|----------|--|
| (MHz)        | Level (dBm)   | (dBm) | (dB)   |          |  |
| 2690 to 2691 | -20.0         | -13.0 | 7.0    | Complied |  |

### Note(s):





## 6. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

| Measurement Type                          | Range              | Confidence<br>Level | Calculated<br>Uncertainty |
|-------------------------------------------|--------------------|---------------------|---------------------------|
| Occupied Bandwidth                        | Not applicable     | 95%                 | ± 0.12 %                  |
| Conducted Emissions                       | 9 kHz to 26 GHz    | 95%                 | ± 1.2 dB                  |
| Effective Isotropic Radiated Power (EIRP) | Not applicable     | 95%                 | ±2.94 dB                  |
| Occupied Bandwidth                        | 824 to 849 MHz     | 95%                 | ±11.4 ppm                 |
| Radiated Spurious Emissions               | 30 MHz to 1000 MHz | 95%                 | ± 5.26 dB                 |
| Radiated Spurious Emissions               | 1 GHz to 26 GHz    | 95%                 | ± 1.78 dB                 |

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

| RFI No. | Instrument                | Manufacturer               | Type No.        | Serial No. | Date Last<br>Calibrated  | Cal.<br>Interval<br>(Months) |
|---------|---------------------------|----------------------------|-----------------|------------|--------------------------|------------------------------|
| A1391   | Attenuator                | HUBER +<br>SUHNER AG       | 757987          | 6810.17.B  | Calibrated before use    | -                            |
| A1392   | Attenuator                | HUBER +<br>SUHNER AG       | 757456          | 6820.17.B  | Calibrated before use    | -                            |
| A1494   | Attenuator                | MCL                        | MCL BW -230W2   | 9935       | Calibrated before use    | -                            |
| A1534   | Pre Amplifier             | Hewlett<br>Packard         | 8449B OPT H02   | 3008A00405 | Calibrated before use    | -                            |
| A174    | Waveguide<br>Transition   | Flann<br>Microwave Ltd     | 22094-KF20      | 211        | Calibration not required | -                            |
| A1818   | Antenna                   | EMCO                       | 3115            | 00075692   | 25 Oct 2008              | 12                           |
| A288    | Antenna                   | Chase                      | CBL6111A        | 1589       | 13 March 2009            | 12                           |
| A366    | Isolator                  | MRI                        | FRR-400         | 169        | Calibration not required | -                            |
| C1190   | Cable                     | Rosenburg                  | FA210A1015M3030 | 27141-05   | Calibrated before use    | -                            |
| E012    | Screened<br>Room          | Ray Proof                  | None            | None       | Calibrated before use    | -                            |
| K0002   | Site<br>Reference<br>4421 | Rainford EMC               | N/A             | N/A        | Calibrated before use    | -                            |
| K0004   | Site<br>Reference<br>4428 | RFI Global<br>Services Ltd | N/A             | N/A        | Calibrated before use    | -                            |
| M1068   | Thermometer               | Iso-Tech                   | RS55            | 93102884   | 09 Jul 2008              | 12                           |
| M1124   | Spectrum<br>Analyser      | Rohde &<br>Schwarz         | ESIB26          | 100046K    | 09 Mar 2009              | 12                           |
| M1242   | Spectrum<br>Analyser      | Rohde &<br>Schwarz, Inc.   | FSEM30          | 845986/022 | 09 Dec 2008              | 12                           |
| M1252   | Signal<br>Generator       | HP                         | 83640A          | 3119A00489 | 02 Oct 2008              | 12                           |
| M1347   | Digital<br>Multimeter     | Fluke                      | 73111           | 90680080   | Calibration not required | -                            |
| M199    | Power Meter               | Rohde &<br>Schwarz         | NRVS            | 827023/075 | 14 May 2009              | 12                           |

**NB** In accordance with UKAS requirements all the measurement equipment is on a calibration schedule.