

TEST REPORT

Test Report No.: UL-RPT-RP11660068JD03A V2.0

Manufacturer : General Dynamics Broadband UK Ltd

Model No. : BHM

FCC ID : PKTNODEBBHM

Technology : LTE – Band 12

Test Standard(s) : FCC Part 27 Subpart C

1. This test report shall not be reproduced in full or partial, without the written approval of UL VS LTD.

- 2. The results in this report apply only to the sample tested.
- 3. The sample tested is in compliance with the above standard(s).
- 4. The test results in this report are traceable to the national or international standards.

5. Version 2.0 supersedes all previous versions.

Date of Issue: 19 July 2017

Checked by:

Ian Watch

Senior Engineer, Radio Laboratory

Company Signatory:

See willen

Sarah Williams Senior Engineer, Radio Laboratory UL VS LTD

This laboratory is accredited by UKAS. The tests reported herein have been performed in accordance with its terms of accreditation.

Facsimile: +44 (0)1256 312001

This page has been left intentionally blank.

Page 2 of 66 UL VS LTD

Table of Contents

1. Customer Information	4
2. Summary of Testing	5 5 5 5 5
3. Equipment Under Test (EUT) 3.1. Identification of Equipment Under Test (EUT) 3.2. Description of EUT 3.3. Modifications Incorporated in the EUT 3.4. Additional Information Related to Testing 3.5. Support Equipment	6 6 6 6 7 8
4. Operation and Monitoring of the EUT during Testing	9 9 9
5. Measurements, Examinations and Derived Results 5.1. General Comments 5.2. Test Results 5.2.1. Transmitter Output Power (ERP) 5.2.2. Transmitter Occupied Bandwidth 5.2.3. Transmitter Conducted Emissions 5.2.4. Transmitter Conducted Emissions at Band Edges 5.2.5. Transmitter Radiated Spurious Emissions 5.2.6. Transmitter Frequency Stability (Temperature Variation) 5.2.7. Transmitter Frequency Stability (Voltage Variation)	10 10 11 11 31 38 45 55 59 63
6. Measurement Uncertainty	65
7. Report Revision History	66

UL VS LTD Page 3 of 66

1. Customer Information

Company Name:	General Dynamics Broadband UK Ltd	
Address:	Unit 7 Greenways Business Park Bellinger Close Chippenham Wiltshire SN15 1BN United Kingdom	

Page 4 of 66 UL VS LTD

2. Summary of Testing

2.1. General Information

Specification Reference:	47CFR27
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 27 Subpart C (Miscellaneous Wireless Communication Services)
Site Registration:	209735
Location of Testing:	UL VS LTD, Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom
Test Dates:	03 May 2017 to 26 May 2017

2.2. Summary of Test Results

FCC Reference (47CFR) Measurement		Result
27.50(c)(3) / 2.1046	Transmitter Output Power (ERP)	②
2.1049	Transmitter Occupied Bandwidth	②
27.53(g) / 2.1051	Transmitter Conducted Emissions	②
27.53(g) / 2.1051	Transmitter Conducted Emissions at Band Edges	②
27.53(g) / 2.1053	Transmitter Radiated Spurious Emissions	②
27.54 / 2.1055	Transmitter Frequency Stability	②
Key to Results		•
	I not comply	

2.3. Methods and Procedures

Reference:	FCC KDB 971168 D01 v02r02, October 17 2014	
Title:	Measurement Guidance for Certification of Licensed Digital Transmitters	
Reference: FCC KDB 662911 D01 v02r01, October 31 2013		
Title:	Emissions Testing of Transmitters with Multiple Outputs in the Same Band	

2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

UL VS LTD Page 5 of 66

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	General Dynamics
Model Name or Number:	внм
Test Sample Serial Number:	BHMBH01000213
Hardware Version Number:	Pass 1
Software Version Number:	10.1.0
FCC ID:	PKTNODEBBHM

3.2. Description of EUT

The Equipment Under Test was a RN2404-02 eNode B supporting LTE Band 12.

3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

Page 6 of 66 UL VS LTD

ISSUE DATE: 19 JULY 2017

3.4. Additional Information Related to Testing

Tested Technology:	LTE Band 12	LTE Band 12			
Type of Equipment	Base Station	Base Station			
Channel Bandwidth:	5 & 10 MHz				
Modulation Types:	QPSK, 16QA	M & 64QA	M		
Duty Cycle:	100%				
Antenna Gain:	20.0 dBi				
Power Supply Requirement:	Nominal 28.0 VDC				
	Minimum 20.0 VDC				
	Maximum 33.0 VDC				
Transmit Frequency Range:	728 MHz to 746 MHz				
Channels Tested:	Channel Bandwidth N _{ul} Frequency of Uplink (MHz)				
Bottom Channel	5		5025	730.5	
	10		5050	733.0	
Middle Channel	All		5090	737.0	
Top Channel	5		5155	743.5	
	10		5130	741.0	

UL VS LTD Page 7 of 66

3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

3 11 1 1		
Description:	Laptop PC	
Brand Name:	Toshiba	
Model Name or Number:	Portege Z30-C-151	
Serial Number:	5G021563H	
	•	
Description:	DC power cables with female D38999 connector. Length 10 metres	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
Description:	Ethernet cable RJ45 to female D38999 connector. Length 10 metres	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
Description:	Serial cable USB to female D38999 connector. Length 2 metres	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
Description:	GPS antenna	
Brand Name:	Trimble Bullet antenna	
Model Name or Number:	57860-20	
Serial Number:	014110185	

Page 8 of 66 UL VS LTD

4. Operation and Monitoring of the EUT during Testing

4.1. Operating Modes

The EUT was tested in the following operating mode(s):

 The EUT was set to transmit on bottom, middle and top channels with maximum output power using the maximum channel allocation for 5 and 10 MHz bandwidths. QPSK, 16QAM and 64QAM modulations were tested.

4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

- The EUT was connected to a laptop PC. A terminal application (Tera Term) on the laptop PC was used to configure the EUT for testing.
- Test mode instructions supplied by the customer in document RN2404-02 eNode B Radio Test Instructions V01.02 dated March 2017 were followed.
- The EUT was configured using the following E-UTRA Test Models as defined in 3GPP 36.141 Rel 8:
 - E-TM1.1 for QPSK modulation
 - E-TM3.2 for 16QAM modulation
 - E-TM3.1 for 64QAM modulation
- Radiated spurious emissions tests were performed with the EUT set to transmit with a 5 MHz channel bandwidth with 16QAM modulation applied. As this mode emits the highest transmit output power level, it was deemed to be the worst case.
- Radiated spurious emissions tests were performed with the S1 interface port and service port terminated via suitable cables into a test laptop supplied by the customer. The GPS receiver port was connected to a GPS antenna supplied by the customer.
- The EUT had two Receive only ports which were terminated using suitable 50 Ω loads during all testing.
- The EUT has two RxTx ports. When performing conducted measurements on one port, the other port was terminated via suitable 50 Ω load. For all conducted measurements, the testing was performed on both RxTx ports separately.
- During all tests the EUT was powered, via DC input port and customer supplied cable, with a suitable DC power supply. The voltage was monitored at all times with a calibrated DVM.

UL VS LTD Page 9 of 66

5. Measurements, Examinations and Derived Results

5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to *Section 6* for Measurement Uncertainty details.

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Page 10 of 66 UL VS LTD

5.2. Test Results

5.2.1. Transmitter Output Power (ERP)

Test Summary:

Test Engineer:	Patrick Jones	Test Date:	25 May 2017
Test Sample Serial Number:	BHMBH01000213		

FCC Reference:	Parts 2.1046 and 27.50(c)(3)	
Test Method Used:	FCC KDB 971168 Section 5.4.1	

Environmental Conditions:

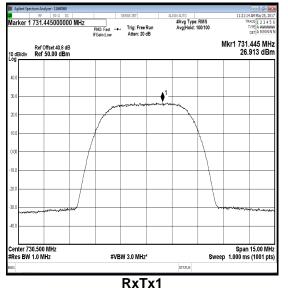
Temperature (℃):	23
Relative Humidity (%):	53

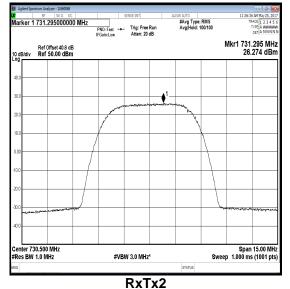
Note(s):

- 1. Power from both antenna ports was measured and combined using the measure-and-sum method stated in FCC KDB 662911 D01.
- 2. Measurements were performed with the EUT transmitting with QPSK, 16QAM and 64QAM modulation schemes.
- 3. The customer stated that the EUT is designed to operate with a maximum antenna gain of 20 dBi. As the limit is an ERP limit the gain in dBi has been converted to dBd. The dBd value was calculated as:

$$20 dBi - 2.15 dB = 17.85 dBd.$$

4. The ERP limit of 1000W/MHz has been converted to dBm/MHz, giving a limit of 60 dBm/MHz.


UL VS LTD Page 11 of 66

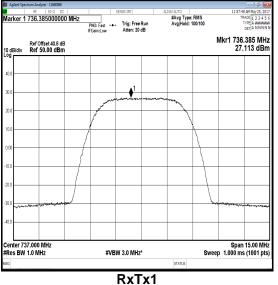

Transmitter Output Power (ERP) (continued)

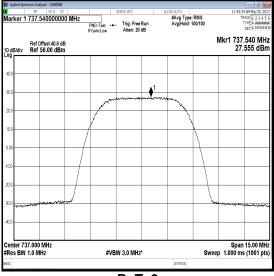
Results: 5 MHz Channel Bandwidth / Bottom Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
730.5	QPSK	26.91	26.27	29.62

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
730.5	QPSK	29.62	17.85	47.47	60.0	12.53	Complied

A1 1\A1A


Page 12 of 66 UL VS LTD

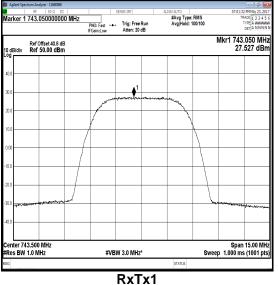

Transmitter Output Power (ERP) (continued)

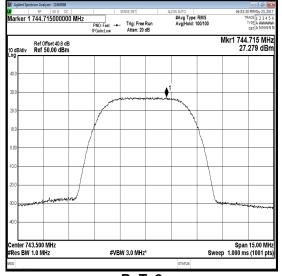
Results: 5 MHz Channel Bandwidth / Middle Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
737.0	QPSK	27.11	27.56	30.35

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBid)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
737.0	QPSK	30.35	17.85	48.20	60.0	11.80	Complied

x1 RxTx2


UL VS LTD Page 13 of 66

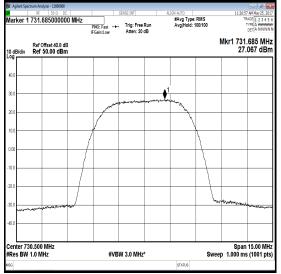

Transmitter Output Power (ERP) (continued)

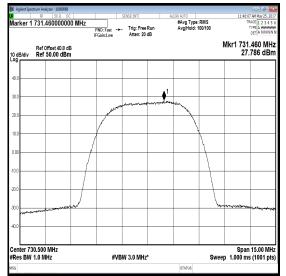
Results: 5 MHz Channel Bandwidth / Top Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
743.5	QPSK	27.53	27.28	30.42

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
743.5	QPSK	30.42	17.85	48.27	60.0	11.73	Complied

x1 RxTx2


Page 14 of 66 UL VS LTD

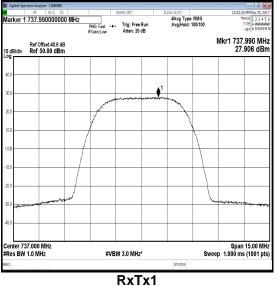

Transmitter Output Power (ERP) (continued)

Results: 5 MHz Channel Bandwidth / Bottom Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
730.5	16QAM	27.07	27.79	30.46

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
730.5	16QAM	30.46	17.85	48.31	60.0	11.69	Complied

RxTx1 RxTx2


UL VS LTD Page 15 of 66

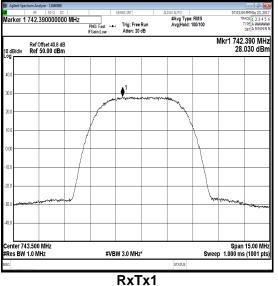

Transmitter Output Power (ERP) (continued)

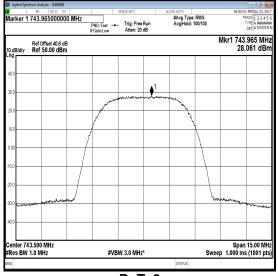
Results: 5 MHz Channel Bandwidth / Middle Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
737.0	16QAM	27.91	28.35	31.15

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
737.0	16QAM	31.15	17.85	49.00	60.0	11.00	Complied

RxTx2


Page 16 of 66 UL VS LTD

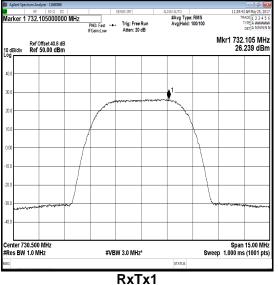

Transmitter Output Power (ERP) (continued)

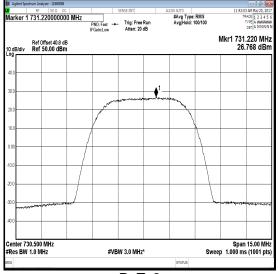
Results: 5 MHz Channel Bandwidth / Top Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
743.5	16QAM	28.03	28.06	31.06

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
743.5	16QAM	31.06	17.85	48.91	60.0	11.09	Complied

x1 RxTx2


UL VS LTD Page 17 of 66

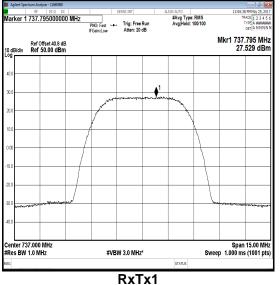

Transmitter Output Power (ERP) (continued)

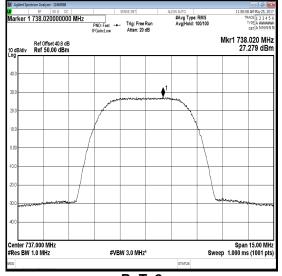
Results: 5 MHz Channel Bandwidth / Bottom Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
730.5	64QAM	26.24	26.77	29.52

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
730.5	64QAM	29.52	17.85	47.37	60.0	12.63	Complied

RxTx2


Page 18 of 66 UL VS LTD

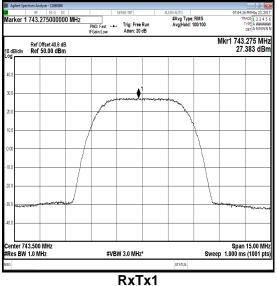

Transmitter Output Power (ERP) (continued)

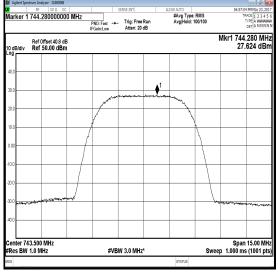
Results: 5 MHz Channel Bandwidth / Middle Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
737.0	64QAM	27.53	27.28	30.42

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
737.0	64QAM	30.42	17.85	48.27	60.0	11.73	Complied

x1 RxTx2


UL VS LTD Page 19 of 66

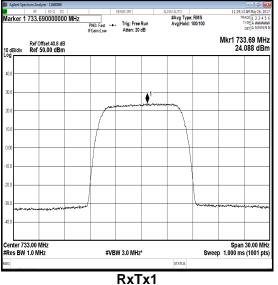

Transmitter Output Power (ERP) (continued)

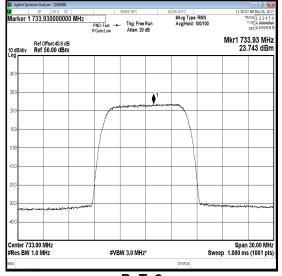
Results: 5 MHz Channel Bandwidth / Top Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
743.5	64QAM	27.38	27.62	30.51

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
743.5	64QAM	30.51	17.85	48.36	60.0	11.64	Complied

x1 RxTx2


Page 20 of 66 UL VS LTD

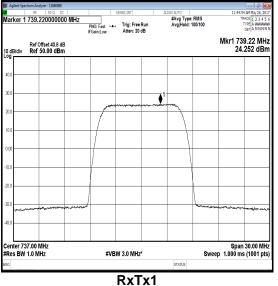

Transmitter Output Power (ERP) (continued)

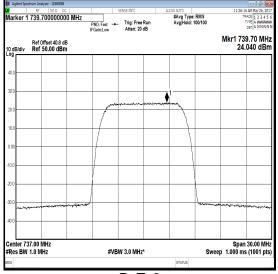
Results: 10 MHz Channel Bandwidth / Bottom Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
733.0	QPSK	24.09	23.74	26.93

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
733.0	QPSK	26.93	17.85	44.78	60.0	15.22	Complied

x1 RxTx2


UL VS LTD Page 21 of 66

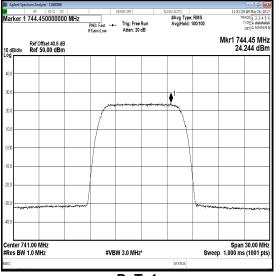

Transmitter Output Power (ERP) (continued)

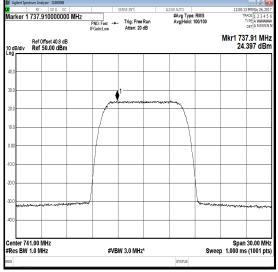
Results: 10 MHz Channel Bandwidth / Middle Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
737.0	QPSK	24.25	24.04	27.16

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
737.0	QPSK	27.16	17.85	45.01	60.0	14.99	Complied

x1 RxTx2


Page 22 of 66 UL VS LTD

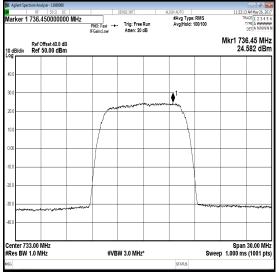

Transmitter Output Power (ERP) (continued)

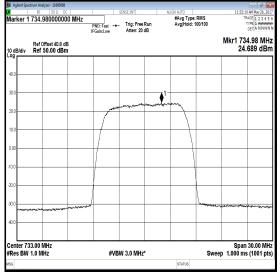
Results: 10 MHz Channel Bandwidth / Top Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
741.0	QPSK	24.24	24.40	27.33

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
741.0	QPSK	27.33	17.85	45.18	60.0	14.82	Complied

RxTx1 RxTx2


UL VS LTD Page 23 of 66

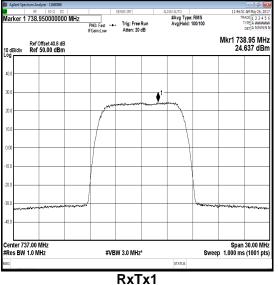

Transmitter Output Power (ERP) (continued)

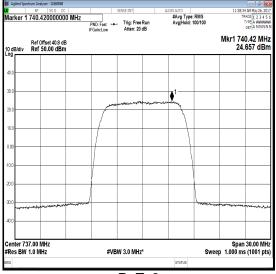
Results: 10 MHz Channel Bandwidth / Bottom Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
733.0	16QAM	24.58	24.69	27.65

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
733.0	16QAM	27.65	17.85	45.50	60.0	14.50	Complied

RxTx1 RxTx2


Page 24 of 66 UL VS LTD

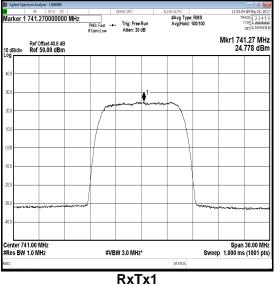

Transmitter Output Power (ERP) (continued)

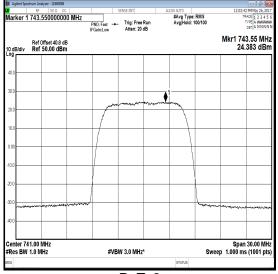
Results: 10 MHz Channel Bandwidth / Middle Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
737.0	16QAM	24.64	24.66	27.66

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
737.0	16QAM	27.66	17.85	45.51	60.0	14.49	Complied

Tx1 RxTx2


UL VS LTD Page 25 of 66

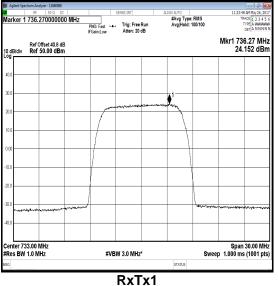

Transmitter Output Power (ERP) (continued)

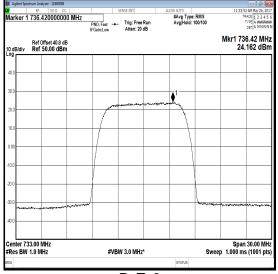
Results: 10 MHz Channel Bandwidth / Top Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
741.0	16QAM	24.78	24.38	27.59

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
741.0	16QAM	27.59	17.85	45.44	60.0	14.56	Complied

Tx1 RxTx2


Page 26 of 66 UL VS LTD

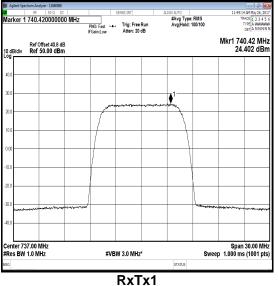

Transmitter Output Power (ERP) (continued)

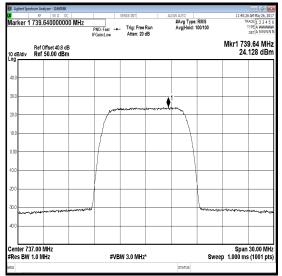
Results: 10 MHz Channel Bandwidth / Bottom Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
733.0	64QAM	24.15	24.16	27.17

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
733.0	64QAM	27.17	17.85	45.02	60.0	14.98	Complied

x1 RxTx2


UL VS LTD Page 27 of 66

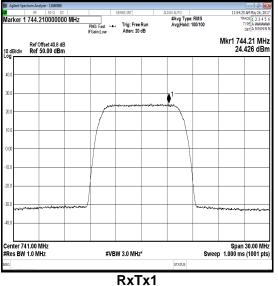

Transmitter Output Power (ERP) (continued)

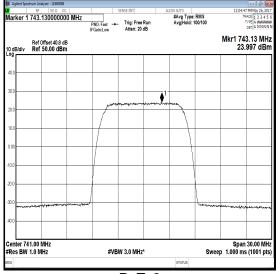
Results: 10 MHz Channel Bandwidth / Middle Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
737.0	64QAM	24.40	24.13	27.28

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
737.0	64QAM	27.28	17.85	45.13	60.0	14.87	Complied

Tx1 RxTx2


Page 28 of 66 UL VS LTD


Transmitter Output Power (ERP) (continued)

Results: 10 MHz Channel Bandwidth / Top Channel

Frequency (MHz)	Modulation	Conducted RF Power at RxTx1 (dBm/MHz)	Conducted RF Power at RxTx2 (dBm/MHz)	Combined Conducted RF Power (dBm/MHz)
741.0	64QAM	24.43	24.00	27.23

Frequency (MHz)	Modulation	Combined Conducted RF Power (dBm/MHz)	Antenna Gain (dBd)	ERP (dBm/MHz)	ERP Limit (dBm/MHz)	Margin (dB)	Result
741.0	64QAM	27.23	17.85	45.08	60.0	14.92	Complied

Tx1 RxTx2

UL VS LTD Page 29 of 66

Transmitter Output Power (ERP) (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	22 Feb 2018	12
M1832	Signal Analyser	Agilent	N9010A	MY53470303	29 Mar 2018	24
A2924	Attenuator	AtlanTecRF	AN18W5-20	832828#7	Calibrated before use	-
A2522	Attenuator	AtlanTecRF	AN18-20	832797#3	Calibrated before use	-
M1252	Signal Generator	Hewlett Packard	83640A	3119A00489	26 Oct 2017	24
M281	Power Meter	Hewlett Packard	E4418A	GB37170210-01	16 Feb 2018	12
M1227	Power Sensor	Agilent	8487D	3318A02122	22 Jun 2017	12

Page 30 of 66 UL VS LTD

5.2.2. Transmitter Occupied Bandwidth

Test Summary:

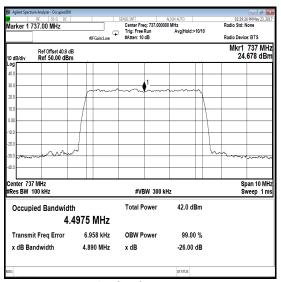
Test Engineer:	Patrick Jones	Test Date:	23 May 2017
Test Sample Serial Number:	BHMBH01000213		

FCC Reference:	Part 2.1049
Test Method Used:	KDB 971168 Section 4.2

Environmental Conditions:

Temperature (℃):	24
Relative Humidity (%):	44

Note(s):


- 1. Occupied bandwidth (99% bandwidth) was measured using a signal analyser occupied bandwidth function.
- 2. Measurements were performed with the EUT transmitting with QPSK, 16QAM and 64QAM modulation schemes.
- The signal analyser was connected to the RxTx port on the EUT using suitable attenuation and RF cable.
- 4. This measurement was performed on bottom, middle and top channels. Only the middle channel results are included in this document. Results for bottom and top channels are archived on the UL VS LTD IT server and are available for inspection if required.

UL VS LTD Page 31 of 66

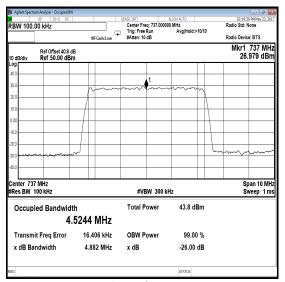
Transmitter Occupied Bandwidth (continued)

Results: 5 MHz Channel Bandwidth / Middle Channel / QPSK

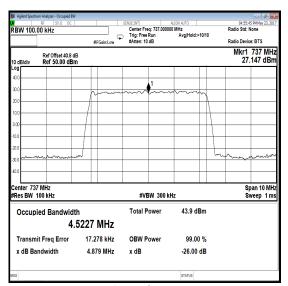
Frequency (MHz)	RxTx Port	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (MHz)
737.000	1	100	300	4.498
737.000	2	100	300	4.495

RBW 100.00 kHz Radio Device: BTS Mkr1 737 MHz 24.896 dBm Ref Offset 40.8 dB Ref 50.00 dBm Center 737 MHz #Res BW 100 kHz Span 10 MHz Sweep 1 ms #VBW 300 kHz Occupied Bandwidth Total Power 4.4951 MHz Transmit Freq Error 8.337 kHz **OBW Power** 99.00 % x dB Bandwidth 4.891 MHz x dB -26.00 dB

QPSK / RxTx1


QPSK / RxTx2

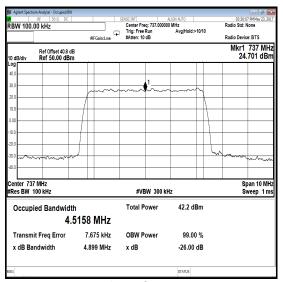
Page 32 of 66 UL VS LTD


Transmitter Occupied Bandwidth (continued)

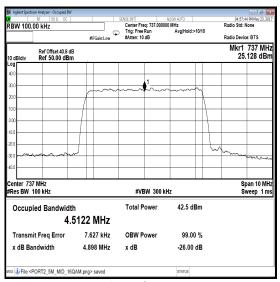
Results: 5 MHz Channel Bandwidth / Middle Channel / 16QAM

Frequency (MHz)	RxTx Port	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (MHz)
737.000	1	100	300	4.524
737.000	2	100	300	4.523

16QAM / RxTx1


16QAM / RxTx2

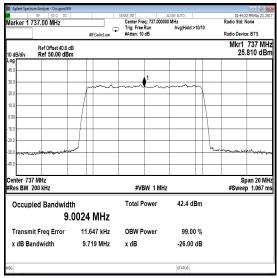
UL VS LTD Page 33 of 66


Transmitter Occupied Bandwidth (continued)

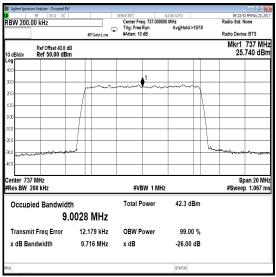
Results: 5 MHz Channel Bandwidth / Middle Channel / 64QAM

Frequency (MHz)	RxTx Port	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (MHz)
737.000	1	100	300	4.516
737.000	2	100	300	4.512

64QAM / RxTx1


64QAM / RxTx2

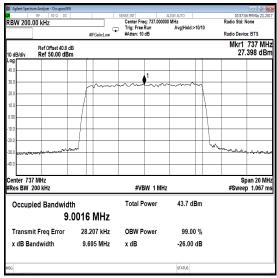
Page 34 of 66 UL VS LTD


Transmitter Occupied Bandwidth (continued)

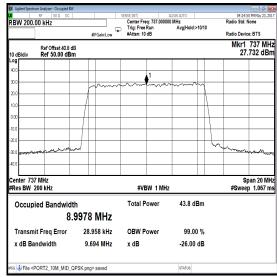
Results: 10 MHz Channel Bandwidth / Middle Channel / QPSK

Frequency (MHz)	RxTx Port	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (MHz)
737.000	1	200	1000	9.002
737.000	2	200	1000	9.003

QPSK / RxTx1


QPSK / RxTx2

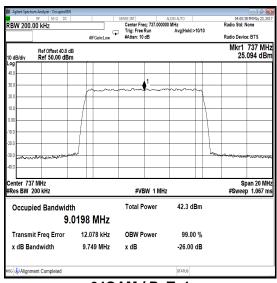
UL VS LTD Page 35 of 66

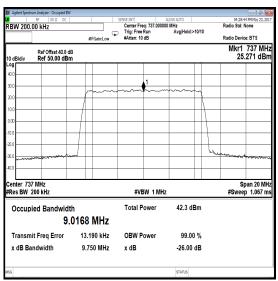

Transmitter Occupied Bandwidth (continued)

Results: 10 MHz Channel Bandwidth / Middle Channel / 16QAM

Frequency (MHz)	RxTx Port	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (MHz)
737.000	1	200	1000	9.002
737.000	2	200	1000	8.998

16QAM / RxTx1


16QAM / RxTx2


Page 36 of 66 UL VS LTD

Transmitter Occupied Bandwidth (continued)

Results: 10 MHz Channel Bandwidth / Middle Channel / 64QAM

Frequency (MHz)	RxTx Port	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (MHz)
737.000	1	200	1000	9.020
737.000	2	200	1000	9.017

64QAM / RxTx1

64QAM / RxTx2

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	22 Feb 2018	12
M1832	Signal Analyser	Agilent	N9010A	MY53470303	29 Mar 2018	24
A2924	Attenuator	AtlanTecRF	AN18W5-20	832828#7	Calibrated before use	-
A2522	Attenuator	AtlanTecRF	AN18-20	832797#3	Calibrated before use	-
M1252	Signal Generator	Hewlett Packard	83640A	3119A00489	26 Oct 2017	24
M281	Power Meter	Hewlett Packard	E4418A	GB37170210-01	16 Feb 2018	12
M1227	Power Sensor	Agilent	8487D	3318A02122	22 Jun 2017	12

UL VS LTD Page 37 of 66

5.2.3. Transmitter Conducted Emissions

Test Summary:

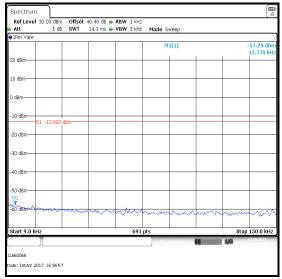
Test Engineer:	Patrick Jones	Test Date:	03 May 2017 to 09 May 2017
Test Sample Serial Number:	BHMBH01000213		

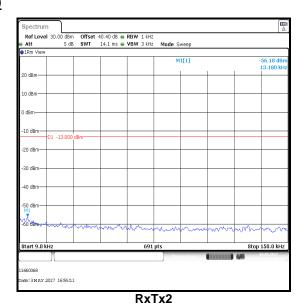
FCC Reference: Parts 2.1051 and 27.53(g)			
Test Method Used:	KDB 971168 Section 6 referencing FCC Part 27.53		
Frequency Range:	9 kHz to 32 GHz		

Environmental Conditions:

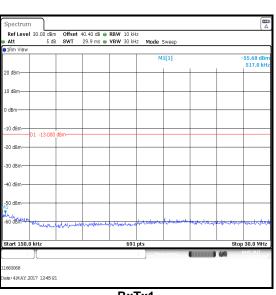
Temperature (℃):	22 to 23
Relative Humidity (%):	39 to 41

Note(s):

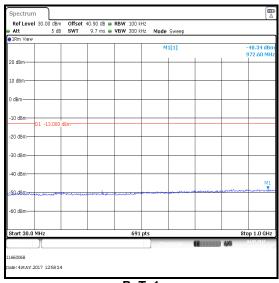

- 1. During pre-scans the EUT was configured to transmit a 5 MHz channel bandwidth with 16QAM modulation applied as this was found to be the worst case modulation scheme with regards to emissions after preliminary investigations and, as this mode emits the highest transmit output power level, it was deemed to be the worst case.
- 2. The emission seen on the 30 MHz to 1 GHz plot at approximately 743.5 MHz is the EUT carrier.
- 3. All emissions were found to be below the measurement system noise floor. Therefore the highest peak noise floor reading of the measuring receiver was recorded in the table below.
- 4. Spurious emissions measurements were performed to 32 GHz, as the customer declared the highest internally generated clock or oscillator frequency to be 3154.3 MHz.

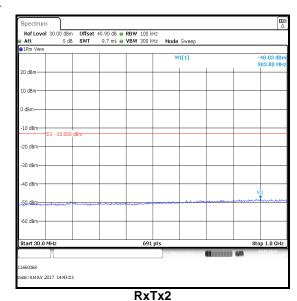

Results: 5 MHz Channel Bandwidth / 16QAM

Frequency (MHz)	Port	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
30090.0	1	-29.9	-13.0	16.9	Complied

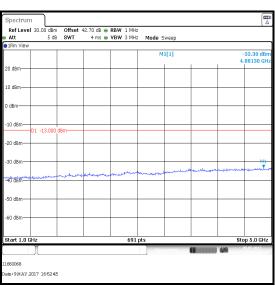

Page 38 of 66 UL VS LTD

Transmitter Conducted Emissions (continued)


RxTx1

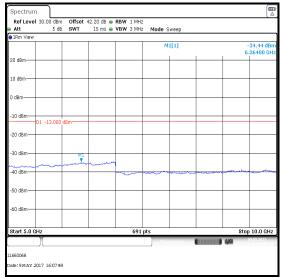


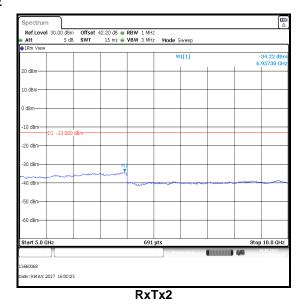
RxTx1 RxTx2


UL VS LTD Page 39 of 66

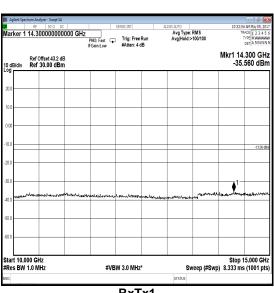
Transmitter Conducted Emissions (continued)

RxTx1

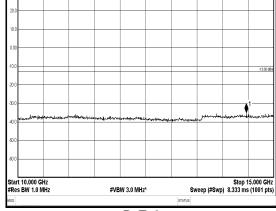



RxTx1 RxTx2

e:9MAY 2017 164637

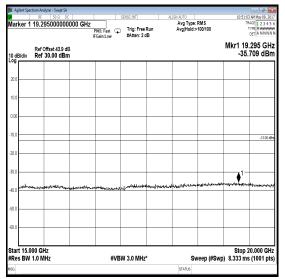

Page 40 of 66 UL VS LTD

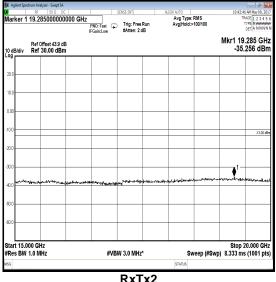
Transmitter Conducted Emissions (continued)



RxTx1

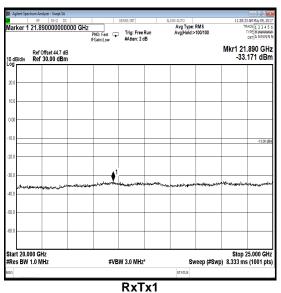
| Ref 00 to Boldin | Ref 00 00 Bm |

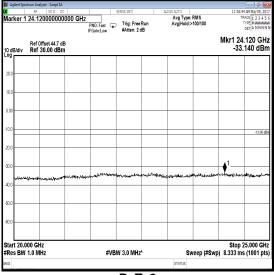



Mkr1 14.460 GHz -35.299 dBm

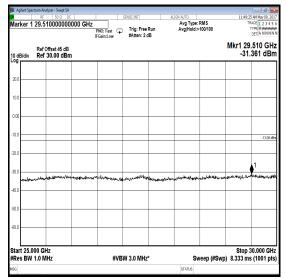
RxTx1 RxTx2

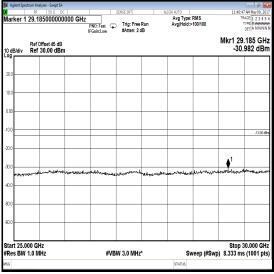
UL VS LTD Page 41 of 66


Transmitter Conducted Emissions (continued)



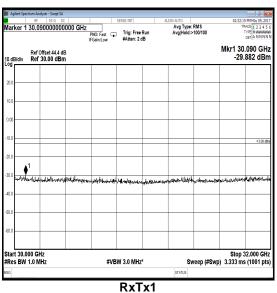
RxTx1

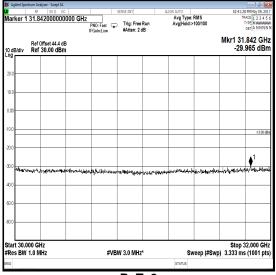




RxTx2

Page 42 of 66 UL VS LTD


Transmitter Conducted Emissions (continued)



RxTx1

RxTx2

r1 RxTx2

UL VS LTD Page 43 of 66

Transmitter Conducted Emissions (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	22 Feb 2018	12
M1832	Signal Analyser	Agilent	N9010A	MY53470303	29 Mar 2018	24
A2632	Attenuator	Weinschel Associates	WA75-10-12	A301	Calibrated before use	-
A2633	Attenuator	Weinschel Associates	WA75-10-12	A302	Calibrated before use	-
A1738	Attenuator	Atlantic Microwave	BBS40-10	R1379	Calibrated before use	-
A2056	Attenuator	Atlantic Microwave	WA54-10-12	A2056	Calibrated before use	-
M1835	Signal Analyser	Rohde & Schwarz	FSV30	103050	06 Mar 2018	12
A2924	Attenuator	AtlanTecRF	AN18W5-20	832828#7	Calibrated before use	-
A2522	Attenuator	AtlanTecRF	AN18-20	832797#3	Calibrated before use	-
M1252	Signal Generator	Hewlett Packard	83640A	3119A00489	26 Oct 2017	24
M281	Power Meter	Hewlett Packard	E4418A	GB37170210-01	16 Feb 2018	12
M1227	Power Sensor	Agilent	8487D	3318A02122	22 Jun 2017	12

Page 44 of 66 UL VS LTD

5.2.4. Transmitter Conducted Emissions at Band Edges

Test Summary:

Test Engineer:	Patrick Jones	Test Date:	26 May 2017
Test Sample Serial Number:	BHMBH01000213		

FCC Reference:	Parts 2.1051 & 27.53(g)
Test Method Used:	KDB 971168 Section 6, FCC KDB 662911 Section 3(a)(i) & Notes below

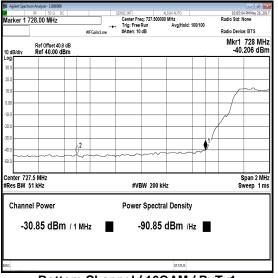
Environmental Conditions:

Temperature (℃):	22
Relative Humidity (%):	50

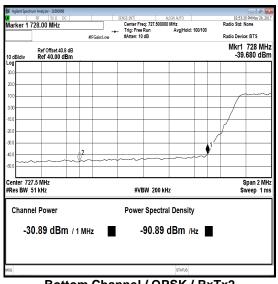
Note(s):

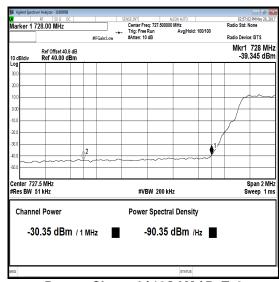

- 1. Measurements were performed with the EUT transmitting with QPSK, 16QAM, 64QAM modulation schemes, all available bandwidths and on bottom and top channels.
- 2. 5 MHz Channel bandwidth: In the first 1.0 MHz immediately outside and adjacent to the operating band, the test receiver resolution bandwidth was set to 51 kHz (≥1% of the widest 26 dB emission bandwidth for a 5 MHz channel) and video bandwidth 200 kHz (as close to > three times the resolution bandwidth as the test receiver allowed).
- 3. 10 MHz Channel bandwidth: In the first 1.0 MHz immediately outside and adjacent to the operating band, the test receiver resolution bandwidth was set to 100 kHz (≥1% of the widest 26 dB emission bandwidth for a 10 MHz channel) and video bandwidth 300 kHz (three times the resolution bandwidth).
- 4. Sweep time was set to auto and an RMS detector with trace averaging of at least 100 sweeps was used.
- 5. The channel power function of the analyser was used to measure the power in the 1 MHz band immediately outside the frequency block. The levels were recorded and summed. The summed values were compared to the limit to obtain the margins as shown in the results tables on the following pages.

UL VS LTD Page 45 of 66


Transmitter Conducted Emissions at Band Edges (continued)

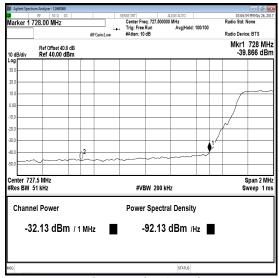
Results: 5 MHz Channel Bandwidth / Lower Band Edge


Band Edge Frequency (MHz)	Modulation Scheme	Port RF1 Emission Level (dBm)	Port RF2 Emission Level (dBm)	Combined Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
728.0	QPSK	-30.2	-30.9	-27.5	-13.0	14.5	Complied
728.0	16QAM	-30.8	-30.3	-27.5	-13.0	14.5	Complied

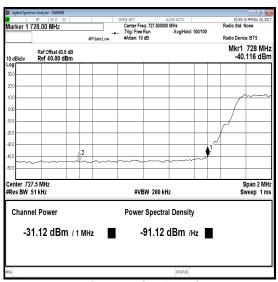

Bottom Channel / QPSK / RxTx1

Bottom Channel / 16QAM / RxTx1

Bottom Channel / QPSK / RxTx2


Bottom Channel / 16QAM / RxTx2

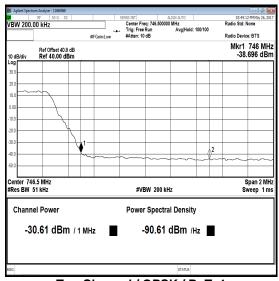
Page 46 of 66 UL VS LTD


Transmitter Conducted Emissions at Band Edges (continued)

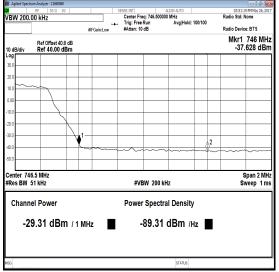
Results: 5 MHz Channel Bandwidth / Lower Band Edge

Band Edge Frequency (MHz)	Modulation Scheme	Port RF1 Emission Level (dBm)	Port RF2 Emission Level (dBm)	Combined Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
728.0	64QAM	-32.1	-31.1	-28.6	-13.0	15.6	Complied

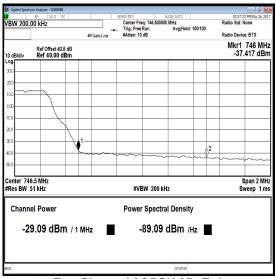
Bottom Channel / 64QAM / RxTx1

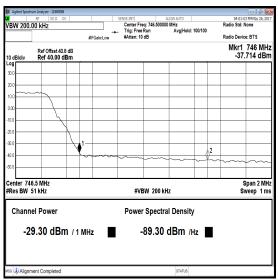

Bottom Channel / 64QAM / RxTx2

UL VS LTD Page 47 of 66


Transmitter Conducted Emissions at Band Edges (continued)

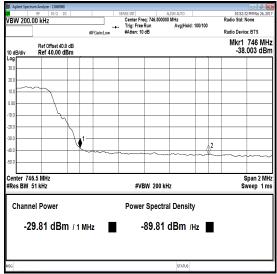
Results: 5 MHz Channel Bandwidth / Upper Band Edge


Band Edge Frequency (MHz)	Modulation Scheme	Port RF1 Emission Level (dBm)	Port RF2 Emission Level (dBm)	Combined Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
746.0	QPSK	-30.6	-29.1	-26.8	-13.0	13.8	Complied
746.0	16QAM	-29.3	-29.3	-26.3	-13.0	13.3	Complied

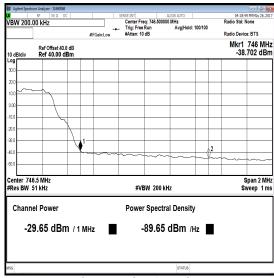

Top Channel / QPSK / RxTx1

Top Channel / 16QAM / RxTx1

Top Channel / QPSK / RxTx2


Top Channel / 16QAM / RxTx2

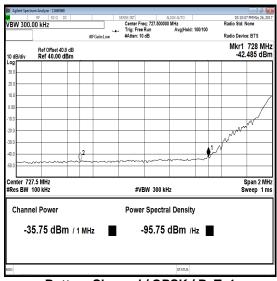
Page 48 of 66 UL VS LTD


Transmitter Conducted Emissions at Band Edges (continued)

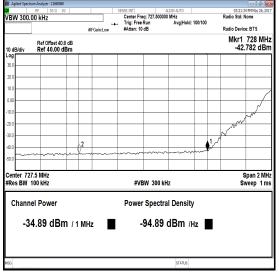
Results: 5 MHz Channel Bandwidth / Upper Band Edge

Band Edge Frequency (MHz)	Modulation Scheme	Port RF1 Emission Level (dBm)	Port RF2 Emission Level (dBm)	Combined Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
746.0	64QAM	-29.8	-29.6	-26.7	-13.0	13.7	Complied

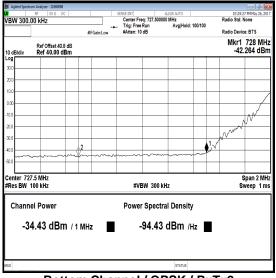
Top Channel / 64QAM / RxTx1

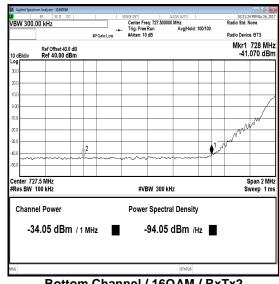

Top Channel / 64QAM / RxTx2

UL VS LTD Page 49 of 66


Transmitter Conducted Emissions at Band Edges (continued)

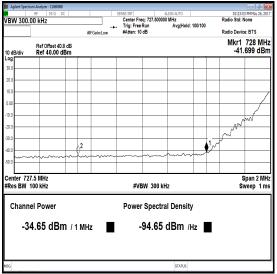
Results: 10 MHz Channel Bandwidth / Lower Band Edge


Band Edge Frequency (MHz)	Modulation Scheme	Port RF1 Emission Level (dBm)	Port RF2 Emission Level (dBm)	Combined Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
728.0	QPSK	-35.7	-34.4	-32.0	-13.0	19.0	Complied
728.0	16QAM	-34.9	-34.0	-31.4	-13.0	18.4	Complied

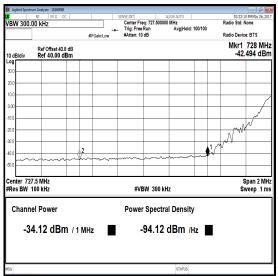

Bottom Channel / QPSK / RxTx1

Bottom Channel / 16QAM / RxTx1

Bottom Channel / QPSK / RxTx2


Bottom Channel / 16QAM / RxTx2

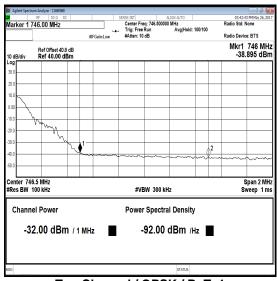
Page 50 of 66 UL VS LTD


Transmitter Conducted Emissions at Band Edges (continued)

Results: 10 MHz Channel Bandwidth / Lower Band Edge

Band Edge Frequency (MHz)	Modulation Scheme	Port RF1 Emission Level (dBm)	Port RF2 Emission Level (dBm)	Combined Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
728.0	64QAM	-34.6	-34.1	-31.3	-13.0	18.3	Complied

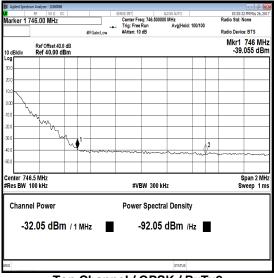
Bottom Channel / 64QAM / RxTx1

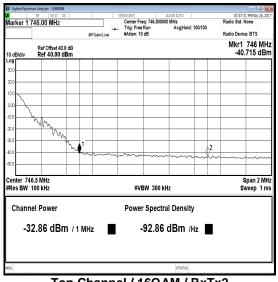

Bottom Channel / 64QAM / RxTx2

UL VS LTD Page 51 of 66


Transmitter Conducted Emissions at Band Edges (continued)

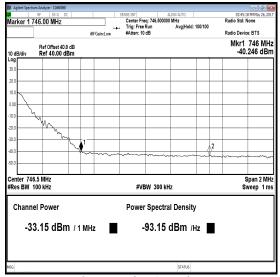
Results: 10 MHz Channel Bandwidth / Upper Band Edge


Band Edge Frequency (MHz)	Modulation Scheme	Port RF1 Emission Level (dBm)	Port RF2 Emission Level (dBm)	Combined Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
746.0	QPSK	-32.0	-32.0	-29.0	-13.0	16.0	Complied
746.0	16QAM	-31.7	-32.9	-29.2	-13.0	16.2	Complied

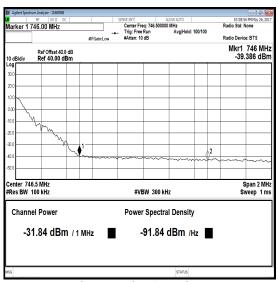

Top Channel / QPSK / RxTx1

Top Channel / 16QAM / RxTx1

Top Channel / QPSK / RxTx2


Top Channel / 16QAM / RxTx2

Page 52 of 66 UL VS LTD


Transmitter Conducted Emissions at Band Edges (continued)

Results: 10 MHz Channel Bandwidth / Upper Band Edge

Band Edge Frequency (MHz)	Modulation Scheme	Port RF1 Emission Level (dBm)	Port RF2 Emission Level (dBm)	Combined Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
746.0	64QAM	-33.1	-31.8	-29.4	-13.0	16.4	Complied

Top Channel / 64QAM / RxTx1

Top Channel / 64QAM / RxTx2

UL VS LTD Page 53 of 66

<u>Transmitter Conducted Emissions at Band Edges (continued)</u>

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	22 Feb 2018	12
M1832	Signal Analyser	Agilent	N9010A	MY53470303	29 Mar 2018	24
A2924	Attenuator	AtlanTecRF	AN18W5-20	832828#7	Calibrated before use	-
A2522	Attenuator	AtlanTecRF	AN18-20	832797#3	Calibrated before use	-
M1252	Signal Generator	Hewlett Packard	83640A	3119A00489	26 Oct 2017	24
M281	Power Meter	Hewlett Packard	E4418A	GB37170210-01	16 Feb 2018	12
M1227	Power Sensor	Agilent	8487D	3318A02122	22 Jun 2017	12

Page 54 of 66 UL VS LTD

5.2.5. Transmitter Radiated Spurious Emissions

Test Summary:

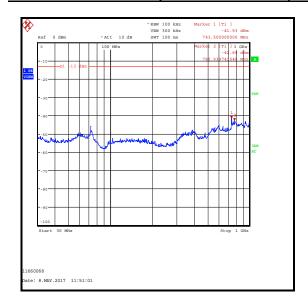
Test Engineer:	David Doyle	Test Dates:	05 May 2017 & 08 May 2017
Test Sample Serial Number:	BHMBH01000213		

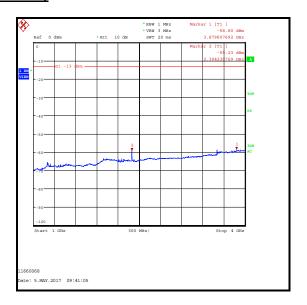
FCC Reference:	Parts 2.1053 and 27.53(g)
Test Method Used:	KDB 971168 Section 6.1 referencing FCC Part 2.1053
Frequency Range:	30 MHz to 32 GHz
Configuration:	5 MHz / 16QAM / Top Channel

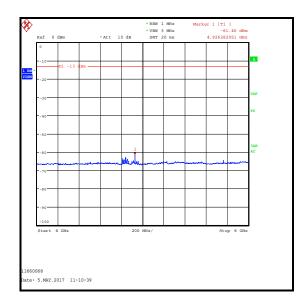
Environmental Conditions:

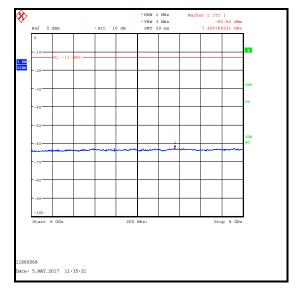
Temperature (℃):	23 to 24
Relative Humidity (%):	35 to 37

Note(s):

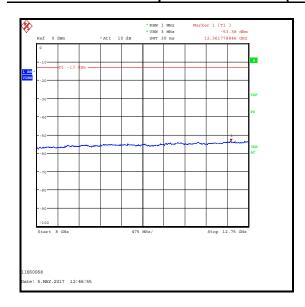

- 1. The EUT was set to transmit with a 5 MHz channel bandwidth with 16QAM modulation applied as this mode emits the highest transmit output power level, it was deemed to be the worst case.
- 2. The emission seen on the 30 MHz to 1 GHz plot at approximately 743.5 MHz is the EUT carrier.
- 3. All emissions shown on the pre-scan plots were investigated and found to be ambient, or >20 dB below the applicable limit or below the measurement system noise floor. Therefore the highest peak noise floor reading of the measuring receiver was recorded in the table below.
- 4. Measurements below 1 GHz were performed in a semi-anechoic chamber (Asset Number K0017) at a distance of 3 metres. The EUT was vertically oriented and placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 5. Pre-scans above 1 GHz were performed in a fully anechoic chamber (Asset Number K0002) at a distance of 3 metres. The EUT was vertically oriented and placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT.
- 6. Pre-scans were only required to 32 GHz but have been carried out to 40 GHz.

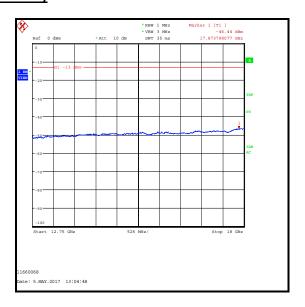

Results:


Frequency (MHz)	Antenna Polarisation	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
780.940	Vertical	-42.7	-13.0	29.7	Complied


UL VS LTD Page 55 of 66

Transmitter Radiated Spurious Emissions (continued)





Page 56 of 66 UL VS LTD

Transmitter Radiated Spurious Emissions (continued)

UL VS LTD Page 57 of 66

Transmitter Radiated Spurious Emissions (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2003	Thermohygrometer	Testo	608-H1	45046641	22 Feb 2018	12
K0017	3m RSE Chamber	Rainford EMC	N/A	N/A	14 Apr 2018	12
M1995	Amplifier	Rohde & Schwarz	ESU40	100428	13 Apr 2018	12
A2903	Antenna	Schwarzbeck	VULB 9163	9163-944	22 Aug 2017	12
K0002	3m RSE Chamber	Rainford EMC	N/A	N/A	16 Nov 2017	12
M1874	Test Receiver	Rohde & Schwarz	ESU26	100553	28 Oct 2017	12
A1534	Pre Amplifier	Hewlett Packard	8449B	3008A00405	09 Nov 2017	12
A1818	Antenna	EMCO	3115	00075692	08 Nov 2017	12
A253	Antenna	Flann Microwave	12240-20	128	08 Nov 2017	12
A254	Antenna	Flann Microwave	14240-20	139	08 Nov 2017	12
A255	Antenna	Flann Microwave	16240-20	519	08 Nov 2017	12
A256	Antenna	Flann Microwave	18240-20	400	08 Nov 2017	12
M1656	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	22 Feb 2018	12
A1396	Attenuator	Huber & Suhner	6810.17.B	757987	28 Feb 2018	12
A2895	Antenna	Schwarzbeck	BBHA 9170	9170-728	11 Apr 2018	12
A2896	Pre-Amplifier	Schwarzbeck	BBV 9721	9721-023	09 Nov 2017	12
M1832	Signal Analyser	Agilent	N9010A	MY53470303	28 Mar 2018	24

Page 58 of 66 UL VS LTD

5.2.6. Transmitter Frequency Stability (Temperature Variation)

Test Summary:

Test Engineer:	Patrick Jones	Test Dates:	17 May 2017 to 19 May 2017
Test Sample Serial Number:	BHMBH01000213		

FCC Reference:	Parts 2.1055 & 27.54	
Test Method Used:	KDB 971168 Section 9.0 / FCC Part 2.1055 and Notes below	

Environmental Conditions:

Temperature (℃):	25 to 28
Relative Humidity (%):	40 to 51

Note(s):

- 1. A bench power supply was connected to the EUT via a customer supplied power cable at the nominal voltage of 28.0 VDC.
- 2. Temperature was monitored throughout the test with a calibrated digital thermometer.
- 3. Frequency stability was measured using a signal analyser marker placed at the lower 99% occupied bandwidth point (bottom channel) or higher 99% occupied bandwidth point (top channel). The delta between the maker frequency and band edge frequency is the margin. The signal analyser's frequency count function was used to give the marker a 1 Hz resolution.
- 4. During occupied bandwidth testing, the 5 MHz channel bandwidth was shown to use a larger proportion of the channel bandwidth than a 10 MHz channel bandwidth. Therefore, this configuration will result in the emission being closer to the band edge. A 5 MHz channel bandwidth was used for all frequency stability measurements.
- 5. The fundamental emissions remain within the authorised band of operation during all tests.

Frequency error in PPM = $(((f_{m-1}f_{nom})*1000000)/f_{nom})$

E.g. $f_m = 728.277273$; $f_{nom} = 728.283586$ ((((728.277273 - 728.283586)*1000000)/728.283586) = 8.67 PPM

UL VS LTD Page 59 of 66

<u>Transmitter Frequency Stability (Temperature Variation) (continued)</u> <u>Results: Bottom Channel / RxTx1 (730.5 MHz)</u>

Temperature (°C)	Measured Frequency (MHz)	Lower Band Edge Limit (MHz)	Margin (MHz)	Frequency Error (PPM)	Result
-30	728.277273	728.0	0.277273	8.67	Complied
-20	728.283581	728.0	0.283581	0.01	Complied
-10	728.285477	728.0	0.285477	2.60	Complied
0	728.285308	728.0	0.285308	2.36	Complied
10	728.282875	728.0	0.282875	0.98	Complied
20	728.283586	728.0	0.283586	0.00	Complied
30	728.283635	728.0	0.283635	0.07	Complied
40	728.281902	728.0	0.281902	2.31	Complied
50	728.284010	728.0	0.284010	0.58	Complied

Results: Top Channel / RxTx1 (743.5 MHz)

Temperature (°C)	Measured Frequency (MHz)	Upper Band Edge Limit (MHz)	Margin (MHz)	Frequency Error (PPM)	Result
-30	745.722264	746.0	0.277736	10.76	Complied
-20	745.734472	746.0	0.265528	5.61	Complied
-10	745.730802	746.0	0.269198	0.69	Complied
0	745.731583	746.0	0.268417	1.74	Complied
10	745.730295	746.0	0.269705	0.01	Complied
20	745.730288	746.0	0.269712	0.00	Complied
30	745.728807	746.0	0.271193	1.99	Complied
40	745.730539	746.0	0.269461	0.34	Complied
50	745.735704	746.0	0.264296	7.26	Complied

Page 60 of 66 UL VS LTD

<u>Transmitter Frequency Stability (Temperature Variation) (continued)</u> <u>Results: Bottom Channel / RxTx2 (730.5 MHz)</u>

Temperature (°C)	Measured Frequency (MHz)	Lower Band Edge Limit (MHz)	Margin (MHz)	Frequency Error (PPM)	Result
-30	728.282884	728.0	0.282884	3.62	Complied
-20	728.283533	728.0	0.283533	2.72	Complied
-10	728.282951	728.0	0.282951	3.52	Complied
0	728.283373	728.0	0.283373	2.94	Complied
10	728.282915	728.0	0.282915	3.57	Complied
20	728.285517	728.0	0.285517	0.00	Complied
30	728.285990	728.0	0.285990	0.65	Complied
40	728.282986	728.0	0.282986	3.48	Complied
50	728.282427	728.0	0.282427	4.24	Complied

Results: Top Channel / RxTx2 (743.5 MHz)

Temperature (°C)	Measured Frequency (MHz)	Lower Band Edge Limit (MHz)	Margin (MHz)	Frequency Error (PPM)	Result
-30	745.736223	746.0	0.263777	6.95	Complied
-20	745.729798	746.0	0.270202	1.67	Complied
-10	745.727831	746.0	0.272169	4.31	Complied
0	745.735284	746.0	0.264716	5.69	Complied
10	745.728021	746.0	0.271979	4.05	Complied
20	745.731043	746.0	0.268957	0.00	Complied
30	745.730642	746.0	0.269358	0.54	Complied
40	745.734944	746.0	0.265056	5.23	Complied
50	745.731002	746.0	0.268998	0.05	Complied

UL VS LTD Page 61 of 66

<u>Transmitter Frequency Stability (Temperature Variation) (continued)</u> <u>Test Equipment Used:</u>

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	22 Feb 2018	12
E0518	Environmental Chamber	TAS	LTCL 1200	24000107	Calibrated before use	-
M1643	Thermometer	Fluke	5211	18890136	20 Apr 2018	12
M1835	Signal Analyser	Rohde & Schwarz	FSV30	103050	06 Mar 2018	12
S0577	DC power Supply	TTI	CPX400S	436670	Calibrated before use	-
M122	DVM	Fluke	77	64910017	26 Apr 2018	12
A2924	Attenuator	AtlanTecRF	AN18W5-20	832828#7	Calibrated before use	-
A2522	Attenuator	AtlanTecRF	AN18-20	832797#3	Calibrated before use	-
M1252	Signal Generator	Hewlett Packard	83640A	3119A00489	26 Oct 2017	24
M281	Power Meter	Hewlett Packard	E4418A	GB37170210-01	16 Feb 2018	12
M1227	Power Sensor	Agilent	8487D	3318A02122	22 Jun 2017	12

Page 62 of 66 UL VS LTD

5.2.7. Transmitter Frequency Stability (Voltage Variation)

Test Summary:

Test Engineer:	Patrick Jones	Test Dates:	18 May 2017 to 26 May 2017
Test Sample Serial Number:	BHMBH01000213		

FCC Reference:	Parts 2.1055 & 27.54	
Test Method Used:	KDB 971168 Section 9.0 / FCC Part 2.1055 and Notes below	

Environmental Conditions:

Temperature (℃):	23 to 24
Relative Humidity (%):	35 to 49

Note(s):

- A bench power supply was connected to the EUT via a customer supplied power cable. Voltage was
 monitored throughout the test with a calibrated digital voltmeter. Minimum, nominal and maximum
 voltages tested were stated by the customer.
- 2. Frequency stability was measured using a signal analyser marker placed at the lower 99% occupied bandwidth point (bottom channel) or higher 99% occupied bandwidth point (top channel). The delta between the maker frequency and band edge frequency is the margin. The signal analyser's frequency count function was used to give the marker a 1 Hz resolution.
- During occupied bandwidth testing, the 5 MHz channel bandwidth was shown to use a larger proportion
 of the channel bandwidth than a 10 MHz channel bandwidth. Therefore, this configuration will result in
 the emission being closer to the band edge. A 5 MHz channel bandwidth was used for all frequency
 stability measurements.
- 4. The fundamental emissions remain within the authorised band of operation during all tests.
- 5. Frequency error was calculated by finding the difference between the reference frequency measured at 28 Volts (f_{nom}) and the frequency measured at the required voltage (f_m) then converted to PPM. The following equation was used:

Frequency error in PPM = $(((f_{m-}f_{nom})*1000000) / f_{nom})$

E.g. $f_m = 728.276602$; $f_{nom} = 728.285517$ (((728.276602 - 728.285517)*1000000) / 728.285517) = 12.24 PPM

UL VS LTD Page 63 of 66

Transmitter Frequency Stability (Voltage Variation) (continued)

Results: Bottom Channel (730.5 MHz)

Supply Voltage (V)	Measured Frequency RxTx1 (MHz)	Measured Frequency RxTx2 (MHz)	Lower Band Edge Limit (MHz)	Margin RxTx1 (MHz)	Margin RxTx2 (MHz)	Max Error (PPM)	Result
20.0	728.276527	728.276602	728.0	0.276527	0.276602	12.24	Complied
28.0	728.283586	728.285517	728.0	0.283586	0.285517	0.00	Complied
33.0	728.283678	728.282893	728.0	0.283678	0.282893	3.60	Complied

Results: Top Channel (743.5 MHz)

Supply Voltage (V)	Measured Frequency RxTx1 (MHz)	Measured Frequency RxTx2 (MHz)	Lower Band Edge Limit (MHz)	Margin RxTx1 (MHz)	Margin RxTx2 (MHz)	Max Error (PPM)	Result
20.0	745.736155	745.730171	746.0	0.263845	0.269829	7.87	Complied
28.0	745.730288	745.731043	746.0	0.269712	0.268957	0.00	Complied
33.0	745.737364	745.730399	746.0	0.262636	0.269601	9.49	Complied

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	22 Feb 2018	12
E0518	Environmental Chamber	TAS	LTCL 1200	24000107	Calibrated before use	-
M1643	Thermometer	Fluke	5211	18890136	20 Apr 2018	12
M1835	Signal Analyser	Rohde & Schwarz	FSV30	103050	06 Mar 2018	12
S0577	DC power Supply	TTI	CPX400S	436670	Calibrated before use	-
M122	DVM	Fluke	77	64910017	26 Apr 2018	12
A2924	Attenuator	AtlanTecRF	AN18W5-20	832828#7	Calibrated before use	-
A2522	Attenuator	AtlanTecRF	AN18-20	832797#3	Calibrated before use	-
M1252	Signal Generator	Hewlett Packard	83640A	3119A00489	26 Oct 2017	24
M281	Power Meter	Hewlett Packard	E4418A	GB37170210-01	16 Feb 2018	12
M1227	Power Sensor	Agilent	8487D	3318A02122	22 Jun 2017	12

Page 64 of 66 UL VS LTD

6. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Conducted Output Power	728 to 746 MHz	95%	±0.76 dB
Frequency Stability	728 to 746 MHz	95%	±1.62 ppm
Occupied Bandwidth	728 to 746 MHz	95%	±3.92 %
Conducted Spurious Emissions	9 kHz to 32 GHz	95%	±2.62 dB
Radiated Spurious Emissions	30 MHz to 1 GHz	95%	±5.65 dB
Radiated Spurious Emissions	1 GHz to 32 GHz	95%	±2.94 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

UL VS LTD Page 65 of 66

7. Report Revision History

Version	Revision Details				
Number	Page No(s)	Clause	Details		
1.0	-	-	Initial Version		
2.0	59 - 64	-	Added results in PPM and additional notes		

--- END OF REPORT ---

Page 66 of 66 UL VS LTD