

IPWIRELESS, INC. ADDENDUM TO FC01-043A

FOR THE

NODE B BASE STATION, MODEL AJ

FCC PART 21 SUBPART K & FCC PART 15 SUBPART B SECTIONS 15.107 & 15.109 CLASS A

COMPLIANCE

DATE OF ISSUE: JULY 11, 2001

PREPARED FOR:

PREPARED BY:

IPWireless, Inc. 1250 Bayhill Drive Suite 113 San Bruno, CA 94066 Joyce Walker CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

P.O. No.: US2001/0257

W.O. No.: 76266

Date of test: March 13 - May 10, 2001

Report No.: FC01-043B

This report contains a total of 41 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

Page 1 of 41 Report No.: FC01-043B

TABLE OF CONTENTS

Administrative Information	3
Summary of Results	4
Modifications Required for Compliance	4
Approvals	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	5
Temperature and Humidity During Testing	5
2.1033(c)(3) User's Manual	6
2.1033(c)(4) Type of Emissions	6
2.1033(c)(5) Frequency Range	6
2.1033(c)(6) Operating Power	
2.1033(c)(7) Maximum Power Rating	
2.1033(c)(8) DC Voltages	
2.1033(c)(9) Tune-Up Procedure	7
2.1033(c)(10) Schematics and Circuitry Description	7
2.1033(c)(11) Label and Placement	7
2.1033(c)(12) Submittal Photos	7
2.1033(c)(13) Modulation Information	7
2.1033(c)(14)/2.1046/21.904(e) RF Power Output &	
2.1033(c)(14)/2.1049(i)/21.908(d) - Occupied Bandwidth	8
2.1033(c)(14)/2.1047(b) - Modulation Characteristics - Audio Frequency Response	14
2.1033(c)(14)/2.1047(b) - Modulation Characteristics - Modulation Limiting Response	14
2.1033(c)(14)/2.1051/21.908(d) - Spurious Emissions at Antenna Terminal	15
2.1033(c)(14)/2.1053/21.908(d) - Field Strength of Spurious Radiation	22
2.1033(c)(14)/2.1055/21.101 - Frequency Stability	
15.107 – AC Conducted Emissions	
15.109 – Radiated Emissions	39

Page 2 of 41 Report No.: FC01-043B

CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies:

A2LA (USA); DATech (Germany); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).

CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies:

FCC (USA); VCCI (Japan); and Industry Canada.

CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:

ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

ADMINISTRATIVE INFORMATION

DATE OF TEST: March 13 - May 10, 2001

DATE OF RECEIPT: March 13, 2001

PURPOSE OF TEST: To demonstrate the compliance of the Node B Base

Station, Model AJ with the requirements for FCC Part 21 Subpart K and FCC Part 15 Subpart B

Sections 15.107 and 15.109 Class A devices.

Addendum A is to update the Canadian plot. Addendum B is to clarify the frequency range tested for Part 15.109 and to correct Class B references to

Class A.

TEST METHOD: ANSI C63.4 1992

MANUFACTURER: IPWireless, Inc.

1250 Bayhill Drive Suite 113

San Bruno, CA 94066

REPRESENTATIVE: Roger Quayle

TEST LOCATION: CKC Laboratories, Inc.

1653 Los Viboras Road Hollister, CA 95023 1100 Fulton Place Fremont, CA 94539

> Page 3 of 41 Report No.: FC01-043B

SUMMARY OF RESULTS

As received, the IPWireless, Inc. Node B Base Station, Model AJ was found to be fully compliant with the following standards and specifications:

United States

- FCC Part 15 Subpart B Section 15.107 and 15.109 Class A
- > FCC Part 21 Subpart K
- > FCC Part 74 Subpart I, using FCC Part 21 Subpart K
- > ANSI C63.4 (1992) method

Canada

RSS-193 using:

- > FCC Part 15 Subpart B Section 15.107 and 15.109 Class A
- > FCC Part 21 Subpart K
- > FCC Part 74 Subpart I, using FCC Part 21 Subpart K
- > ANSI C63.4 (1992) method

The results in this report apply only to the items tested, as identified herein.

MODIFICATIONS REQUIRED FOR COMPLIANCE

None.

APPROVALS

QUALITY ASSURANCE:	TEST PERSONNEL:
Dannis Ward	Art Rice
Dennis Ward, Quality Manager	Art Rice, Test Engineer
ct 2 mo	Conan 7. Boyle
Christine Nicklas, EMC/Lab Manager	Conan T. Boyle, EMC Engineer
	A whil I helofal
	Sarbjit Shelopal, EMC Engineer

Page 4 of 41 Report No.: FC01-043B

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT tested by CKC Laboratories was a production unit. Node B broadband wireless base statation.

EQUIPMENT UNDER TEST

Base Station Power Supply, 48VDC

Manuf: IP Wireless Manuf: Lamda Electronics, Inc.

 Model:
 AJ
 Model:
 LFS-45A 48

 Serial:
 015
 Serial:
 92R027767

FCC ID: PKTNODEBAJ (Pending) FCC ID: DoC

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Notebook PC

Manuf: Toshiba Model: PA1273U Serial: 98060506A

FCC ID: DoC

AC Adapter Ethernet Hub

Manuf: Toshiba Manuf: Netgear Model: PA2450U Model: DS104

Serial: 0295362 Serial: DS14H11504830

FCC ID: DoC FCC ID: DoC

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C.

The relative humidity was between 20% and 75%.

Page 5 of 41 Report No.: FC01-043B

2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

2.1033(c)(4) TYPE OF EMISSIONS

The emission is QPSK using a 12 MHz radio channel, consequently the emission designator is 12M0G7D.

2.1033(c)(5) FREQUENCY RANGE

The device operates in the frequency range of 2.500 GHz to 2.686 GHz.

2.1033(c)(6) OPERATING POWER

This unit has a maximum PA output rating at the antenna connector of +34 dBm. This power may be divided into up to 16 orthogonal codes. This output power may be adjusted downwards by up to 6 dB per code per timeslot depending on the radio link to the subscriber terminal. In any event the +34 dBm composite power limit is enforced.

2.1033(c)(7) MAXIMUM POWER RATING

The maximum EIRP power limit for a "main station" or "high power booster station" is defined in 47CFR21.904 (a) and 47CFR74.935 (a) as;

33 dBW + 10 LOG (BW/6) dBW EIRP, where BW is the bandwidth of the signal in MHz.

As the Model AJ transmits a 12 MHz bandwidth signal, the limit becomes;

33 dBW + 10 LOG (12/6) dBW, which reduces to 33 dBW + 3 = 36 dBW EIRP

The actual EIRP of an IPWireless Model AJ will depend on the antenna used and the cable losses between the antenna and the transmitter. Assuming a typical 90 degree sector antenna with a gain of 17 dBi, and no cable or other line losses, the EIRP of the Model AJ would be;

+34 dBm + 17 dBi = 51 dBm EIRP, or +21 dBW EIRP

Clearly the Model AJ is well below the +36 dBW limit.

Page 6 of 41 Report No.: FC01-043B

2.1033(c)(8) DC VOLTAGES

The necessary information is contained in a separate confidential document.

2.1033(c)(9) TUNE-UP PROCEDURE

This device does not have any tune up procedure, as it is configured at the factory to operate within the stated frequency and power limits used in the equipment certification process.

2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate confidential document.

2.1033(c)(11) LABEL AND PLACEMENT

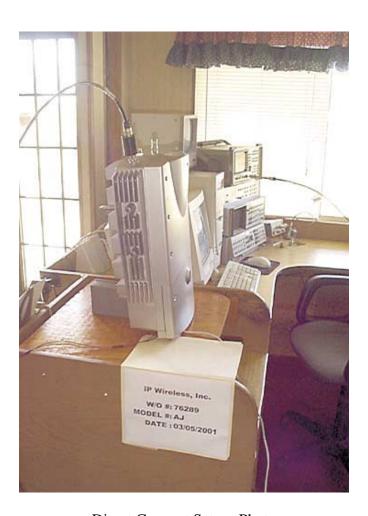
The necessary information is contained in a separate document.

2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

2.1033(c)(13) MODULATION INFORMATION

The necessary information is contained in a separate confidential document.


Page 7 of 41 Report No.: FC01-043B

<u>2.1033(c)(14)/2.1046/21.904(e)</u> - RF POWER OUTPUT & 2.1033(c)(14)/2.1049(i)//21.908(d) - OCCUPIED BANDWIDTH

Test Conditions:

The HP-8564E Spectrum Analyzer was connected directly to the transmitter antenna terminal with an Andrews Heliax shielded cable. The HP-8564E was placed into Channel Power Measurement mode, the measurement bandwidth function was set to 7.68MHz, which is the chip rate of the device. The power measurement was also performed using the occupied bandwidth of 8.33MHz and there was less than 0.2dB difference between using the chip rate versus the occupied bandwidth; therefore the chip rate was used. An automated measurement was taken and the channel power value for each channel tested was recorded.

Direct Connect Set-up Photo

Page 8 of 41 Report No.: FC01-043B

Emissions Mask FCC 21.908(d) & Occupied Bandwidth

Model: AJ S/N: 15 4-May-01

Test Equipment:

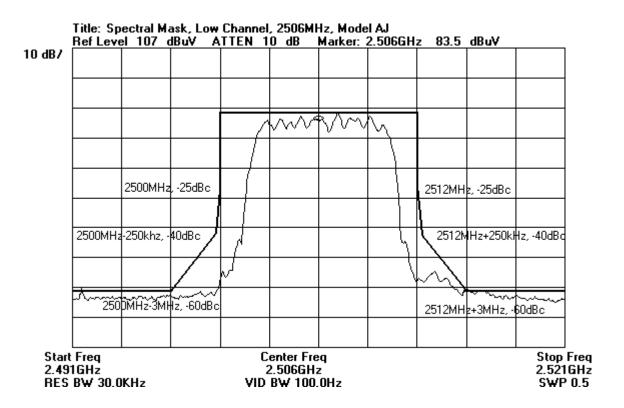
Asset No.	Description	Model	Cal Date	Cal Due
0	Cable, HF	ghz#5	5/9/00	5/9/01
1401	Spectrum Analyzer	HP-8564E	12/12/01	12/12/01

Channel 2506 MHz

Power measured in 12MH	łz			Power normalized to 6MHz band				
Ch Pwr 33.53	dBm	3.53 dBW		0.53 dBw				
Pwr (30k) 6.16	dBm			Occupied BW	8.333MHz			
TX Atten = 10dB	(-3MHz)	(-250kHz)	Band edge	Center Ch	Band Edge	(+250kHz)	(+3MHz)	
	2497	2499.75	2500	2506	2512	2512.25	2515	
Measured Value in 30kHz (dBm)	-58.17	-53.17	-48.97		-52.97	-53.47	-57.47	
Calculated dBc limit from Channel Power	-60	-40	-25		-25	-40	-60	
LIMIT [Pwr - Calculated dBc] (dBm)	-53.84	-33.84	-18.84		-18.84	-33.84	-53.84	
MARGIN	-4.33	-19.33	-30.13		-34.13	-19.63	-3.63	
Pass/Fail	Pass	Pass	Pass		Pass	Pass	Pass	

Channel 2596 MHz

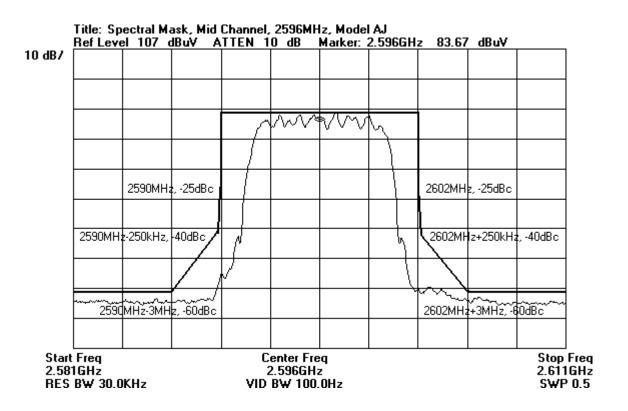
Chamilei	2390	IVII						
Power measured in	12MF	z			Power norma	lized to 6MHz	band	
Ch Pwr	34.73	dBm	4.73	dBW	1.73	dBw		
Pwr (30k)	7	dBm			Occupied BW	8.233MHz		
TX Atten = 8dB	ſ	(-3MHz)	(-250kHz)	Band edge	Center Ch	Band Edge	(+250kHz)	(+3MHz)
		2587	2589.75	2590	2596	2602	2602.25	2605
Measured Value in 3 (dBm)	0kHz	-58.50	-52.67	-48.67		-56.00	-56.17	-58.17
Calculated dBc limit the Channel Power	from	-60	-40	-25		-25	-40	-60
LIMIT [Pwr - Calculated Calcu	ted	-53.00	-33.00	-18.00		-18.00	-33.00	-53.00
MARGI	N	-5.50	-19.67	-30.67	·	-38.00	-23.17	-5.17
Pass/Fa	ail	Pass	Pass	Pass		Pass	Pass	Pass


Channel 2680 MHz

Power measured in 12MHz					Power normalized to 6MHz band			
Ch Pwr	34.13	dBm	4.13 dBW		1.13 dBw			
Pwr (30k)	6.5	dBm			Occupied BW	8.267MHz		
TX Atten =	6	(-3MHz)	(-250kHz)	Band edge	Center Ch	Band Edge	(+250kHz)	(+3MHz)
		2671	2673.75	2674	2680	2686	2686.25	2689
Measured								
Value in		-58.50	-53.00	-48.67		-55.34	-57.00	-58.00
Calculated								
dBc limit		-60	-40	-25		-25	-40	-60
Calculated								
dBc] (dBm)		-53.5	-33.5	-18.5		-18.5	-33.5	-53.5
	MARGIN	-5.00	-19.50	-30.17	-	-36.84	-23.50	-4.50
	Pass/Fail	Pass	Pass	Pass		Pass	Pass	Pass

Page 9 of 41 Report No.: FC01-043B

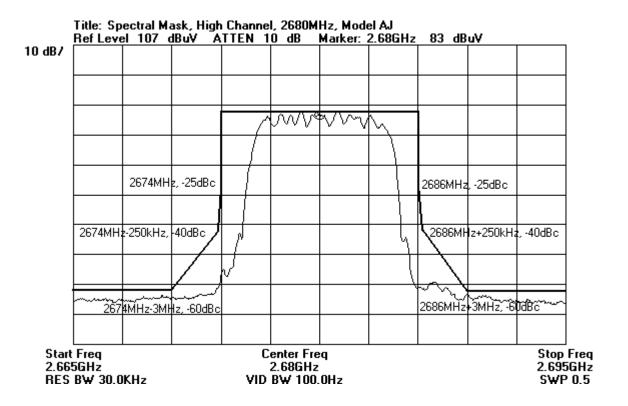
SPECTRAL PLOTS


Low Channel

Note: The small point showing slightly above the mask line on the lower left side of the plot is an ambient spike.

Page 10 of 41 Report No.: FC01-043B

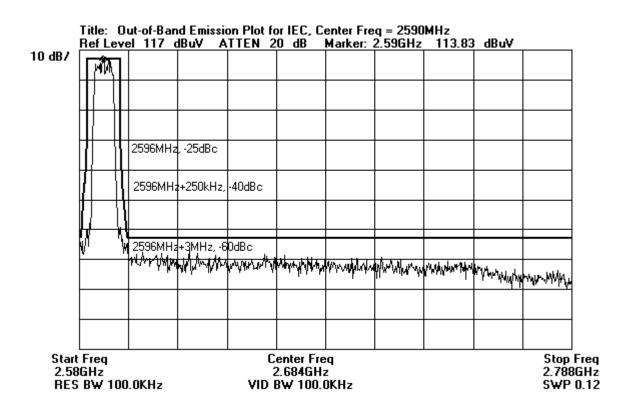
SPECTRAL PLOT



Middle Channel

Page 11 of 41 Report No.: FC01-043B

SPECTRAL PLOT



High Channel

Page 12 of 41 Report No.: FC01-043B

SPECTRAL PLOT

RSS-193 (Canada) Specific Frequency Compliance

Page 13 of 41 Report No.: FC01-043B

$\underline{2.1033(c)(14)/2.1047(a)} - \underline{MODULATION} \ \underline{CHARACTERISTICS} - \underline{AUDIO} \ \underline{FREQUENCY} \\ \underline{RESPONSE}$

Not applicable to this unit.

$\frac{2.1033(c)(14)/2.1047(b)\ MODULATION\ CHARACTERISTICS-Modulation\ Limiting}{Response}$

Not applicable to this unit.

Page 14 of 41 Report No.: FC01-043B

2.1033(c)(14)/2.1051/21.908(d) - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer: **IPWireless, Inc.**

Specification: FCC Part 21.908(d) Low Chan

Work Order #: 76289 Date: 5/8/2001
Test Type: Spurious Emissions Time: 13:13:44
Equipment: Base Station Sequence#: 19

Manufacturer: IP Wireless Tested By: Conan T. Boyle

Model: AJ S/N: 015

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8564E Spec. An.	01984	12/12/2000	12/12/2001	1406
Cable, HF	ghz#5	05/09/2000	05/09/2001	0

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Base Station*	IP Wireless	AJ	015	
Power Supply, 48vdc	Lamda Electronics, Inc.	LFS-45A 48	92R027767	

Support Devices:

Function	Manufacturer	Model #	S/N
Notebook PC	Toshiba	PA1273U	98060506A
AC Adapter	Toshiba	PA2450U	0295362
Ethernet Hub	Netgear	DS104	DS14H11504830

Test Conditions / Notes:

The EUT is a Base Station placed on a wooden table. The EUT is connected to a notebook PC via a Cat 5e Ethernet cable and hub and is powered by an AC adapter. The EUT is operating at 2.506GHz (low channel) and the continuously transmitting RF output is directly connected to the spectrum analyzer RF input port. Test is Spurious Emissions at Antenna Terminals (Transmit Mode). Frequency range tested: 1 MHz- 27 GHz.

Meas	urement Data:	Re	eading list	ted by 1	nargin.		Te	st Distance	e: None		
			GHz C								
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBμV/m	dB	Ant
1	2491.400M	60.7	+1.4				+0.0	62.1	64.7	-2.6	Vert
	Ave										
^	2491.400M	65.9	+1.4				+0.0	67.3	64.7	+2.6	Vert
3	2624.191M	41.3	+1.5				+0.0	42.8	64.7	-21.9	Vert
4	17452.000M	32.2	+9.0				+0.0	41.2	64.7	-23.5	Vert
5	15036.000M	34.2	+6.8				+0.0	41.0	64.7	-23.7	Vert
6	10024.000M	32.3	+7.1				+0.0	39.4	64.7	-25.3	Vert

Page 15 of 41 Report No.: FC01-043B

7 2557.806M	36.8	+1.4	+0.	38.2	64.7	-26.6	Vert
Ave							
^ 2557.806M	42.0	+1.4	+0.	3 43.4	64.7	-21.3	Vert
9 7518.000M	33.2	+4.7	+0.	37.9	64.7	-26.8	Vert
10 12530.000M	32.3	+5.3	+0.	37.6	64.7	-27.1	Vert
11 5011.984M	31.3	+4.8	+0.	36.1	64.7	-28.6	Vert

Page 16 of 41 Report No.: FC01-043B

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer: IPWireless, Inc.

Specification: FCC Part 21.908(d) Mid Chan

Work Order #: 76289 Date: 5/8/2001
Test Type: Spurious Emissions Time: 13:01:20
Equipment: Base Station Sequence#: 20

Manufacturer: IP Wireless Tested By: Conan T. Boyle

Model: AJ S/N: 015

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8564E Spec. An.	01984	12/12/2000	12/12/2001	1406
Cable, HF	ghz#5	05/09/2000	05/09/2001	0

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Base Station*	IP Wireless	AJ	015	
Power Supply, 48vdc	Lamda Electronics, Inc.	LFS-45A 48	92R027767	

Support Devices:

Function	Manufacturer	Model #	S/N
Notebook PC	Toshiba	PA1273U	98060506A
AC Adapter	Toshiba	PA2450U	0295362
Ethernet Hub	Netgear	DS104	DS14H11504830

Test Conditions / Notes:

The EUT is a Base Station placed on a wooden table. The EUT is connected to a notebook PC via a Cat 5e Ethernet cable and hub and is powered by an AC adapter. The EUT is operating at 2.596GHz (mid channel) and the continuously transmitting RF output is directly connected to the spectrum analyzer RF input port. Test is Spurious Emissions at Antenna Terminals (Transmit Mode). Frequency range tested: 1 MHz- 27 GHz.

Measu	Measurement Data: Reading listed by margin					Test Distance: None					
			GHz C								
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2562.213M	55.8	+1.4				+0.0	57.2	64.7	-7.5	Vert
	Ave										
٨	2562.213M	65.2	+1.4				+0.0	66.6	64.7	+1.9	Vert
3	2666.203M	40.8	+1.5				+0.0	42.3	64.7	-22.4	Vert
4	18172.000	33.3	+8.6				+0.0	41.9	64.7	-22.8	Vert
	M										
5	10384.000	33.3	+8.3				+0.0	41.6	64.7	-23.1	Vert
	M										

Page 17 of 41 Report No.: FC01-043B

6 15576.000 M	33.5	+7.0	+0.0	40.5	64.7	-24.2	Vert
7 12980.000 M	31.0	+6.7	+0.0	37.7	64.7	-27.0	Vert
8 7788.000M	32.3	+4.4	+0.0	36.7	64.7	-28.0	Vert
9 5192.000M	31.5	+4.6	+0.0	36.1	64.7	-28.6	Vert

Page 18 of 41 Report No.: FC01-043B

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer: IPWireless, Inc.

Specification: FCC Part 21.908(d) Hi Chan

Work Order #: 76289 Date: 5/8/2001
Test Type: Spurious Emissions Time: 12:56:48
Equipment: Base Station Sequence#: 21

Manufacturer: IP Wireless Tested By: Conan T. Boyle

Model: AJ S/N: 015

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8564E Spec. An.	01984	12/12/2000	12/12/2001	1406
Cable, HF	ghz#5	05/09/2000	05/09/2001	0

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Base Station*	IP Wireless	AJ	015
Power Supply, 48vdc	Lamda Electronics, Inc.	LFS-45A 48	92R027767

Support Devices:

Function	Manufacturer	Model #	S/N
Notebook PC	Toshiba	PA1273U	98060506A
AC Adapter	Toshiba	PA2450U	0295362
Ethernet Hub	Netgear	DS104	DS14H11504830

Test Conditions / Notes:

The EUT is a Base Station placed on a wooden table. The EUT is connected to a notebook PC via a Cat 5e Ethernet cable and hub and is powered by an AC adapter. The EUT is operating at 2.680GHz (high channel) and the continuously transmitting RF output is directly connected to the spectrum analyzer RF input port. Test is Spurious Emissions at Antenna Terminals (Transmit Mode). Frequency range tested: 1 MHz- 27 GHz.

Meas	urement Data:	Re	Reading listed by margin. Test Distance: None								
			GHz C								
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	2500.017M	53.2	+1.4				+0.0	54.6	64.7	-10.1	Vert
	Ave										
^	2500.017M	62.6	+1.4				+0.0	64.0	64.7	-0.7	Vert
3	16080.000M	32.8	+7.7				+0.0	40.5	64.7	-24.2	Vert
4	10720.000M	31.5	+7.8				+0.0	39.3	64.7	-25.4	Vert
5	13400.000M	33.2	+5.8				+0.0	39.0	64.7	-25.7	Vert
6	8040.000M	33.0	+4.3				+0.0	37.3	64.7	-27.4	Vert
7	5360.000M	32.8	+4.4				+0.0	37.2	64.7	-27.5	Vert
8	18760.000M	32.2	+0.0				+0.0	32.2	64.7	-32.5	Vert

Page 19 of 41 Report No.: FC01-043B

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer: IPWireless, Inc.

Specification: FCC Part 21.908(d) Mid Chan in Receiver Mode

 Work Order #:
 76289
 Date:
 5/8/2001

 Test Type:
 Spurious Emissions
 Time:
 13:27:45

Equipment: Base Station Sequence#: 5

Manufacturer: IP Wireless Tested By: Conan T. Boyle

Model: AJ S/N: 015

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8564E Spec. An.	01984	12/12/2000	12/12/2001	1406
Cable, HF	ghz#5	05/09/2000	05/09/2001	0

Equipment Under Test (* = EUT):

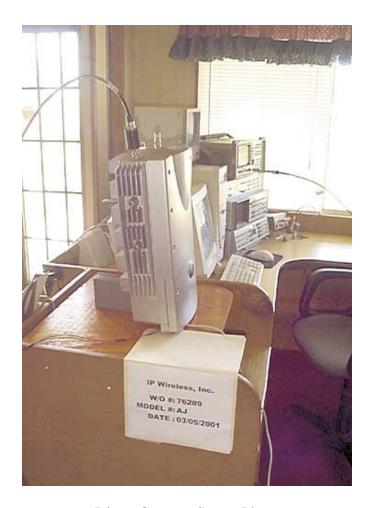
Function	Manufacturer	Model #	S/N
Base Station*	IP Wireless	AJ	015
Power Supply, 48vdc	Lamda Electronics, Inc.	LFS-45A 48	92R027767

Support Devices:

Function	Manufacturer	Model #	S/N
Notebook PC	Toshiba	PA1273U	98060506A
AC Adapter	Toshiba	PA2450U	0295362
Ethernet Hub	Netgear	DS104	DS14H11504830

Test Conditions / Notes:

The EUT is a Base Station placed on a wooden table. The EUT is connected to a notebook PC via a Cat 5e Ethernet cable and is powered by an AC adapter. The EUT is operating at 2.596GHz (mid channel) and the EUT is in receive mode with the spectrum analyzer cable connected to the EUT RF receive port. Test is Spurious Emissions at Antenna Terminals (Receive Mode). Frequency range tested: 1 MHz- 27 GHz.


Meas	Measurement Data: Reading listed by margi				nargin.		Τe	est Distance	e: None		
			GHz C								
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	10384.000M	32.3	+8.3				+0.0	40.6	64.7	-24.1	Vert
2	12980.000M	33.3	+6.7				+0.0	40.0	64.7	-24.7	Vert
3	15576.000M	33.0	+7.0				+0.0	40.0	64.7	-24.7	Vert
4	7788.000M	31.3	+4.4				+0.0	35.7	64.7	-29.0	Vert
5	2596.000M	33.7	+1.5				+0.0	35.2	64.7	-29.5	Vert
6	5192.000M	30.5	+4.6				+0.0	35.1	64.7	-29.6	Vert

Page 20 of 41 Report No.: FC01-043B

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS:

Frequency Range	Signal Analyzer
	VBW & RBW Setting
1 MHz – 30 MHz	9 kHz
30 MHz – 1000 MHz	120 kHz
1 GHz – 27 GHz	1MHz

Direct Connect Set-up Photo

Page 21 of 41 Report No.: FC01-043B

2.1033(c)(14)/2.1053/21.908(d) - FIELD STRENGTH OF SPURIOUS RADIATION

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer: **IPWireless, Inc.**

Specification: FCC Part 21.908(d) Low Chan

Work Order #: 76289 Date: 5/8/2001
Test Type: Spurious Emissions Time: 19:23:21
Equipment: Base Station Sequence#: 28

Manufacturer: IP Wireless Tested By: Conan T. Boyle

Model: AJ S/N: 015

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8564E Spec. An.	01984	12/12/2000	12/12/2001	1406
Cable, 2 ft Andrews	hol-hf-002-01	09/29/2000	09/29/2001	0
FSJ1P-50A-4A				
Preamp, HP83017A	3123A00283	05/09/2000	05/09/2001	785
Cable,100 ft Andrews	hol-hf-100-09	09/29/2000	09/29/2001	0
FSJ1P-50A-4A				
Cable, HF	ghz#5	05/09/2000	05/09/2001	0
Horn Ant, 18-26.5GHz	942126-003	02/02/2000	02/02/2001	1413
Horn Ant, 26.5-40GHz	951559-008	02/02/2000	02/02/2001	1414
Horn Ant, 1-18GHz	9901-5655	10/20/2000	10/20/2001	2157
Cable, HF	ghz#5	05/09/2000	05/09/2001	0

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Base Station*	IP Wireless	AJ	015
Power Supply, 48vdc	Lamda Electronics, Inc.	LFS-45A 48	92R027767

Support Devices:

Function	Manufacturer	Model #	S/N
Notebook PC	Toshiba	PA1273U	98060506A
AC Adapter	Toshiba	PA2450U	0295362
Ethernet Hub	Netgear	DS104	DS14H11504830

Test Conditions / Notes:

The EUT is a Base Station placed on a wooden table. The EUT is connected to a notebook PC via a Cat 5e Ethernet cable and hub and is powered by a 48vdc external power supply. The EUT is operating at 2.506GHz (low channel) and is continuously transmitting. Test is for Field Strength of Spurious Emissions (Transmit Mode). Frequency range tested: 1 MHz- 27 GHz.

Meas	urement Data:	Reading listed by margin.				Test Distance: 3 Meters					
			GHz C	Hol-h	hol-h	Horn					
#	Freq	Rdng	Amp_2				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	1061.070M	64.7	+1.2	+0.2	+6.2	+23.2	+0.0	54.2	64.7	-10.5	Vert
			-41.3								
2	7518.000M	34.3	+4.7	+1.0	+17.1	+35.7	+0.0	52.6	64.7	-12.1	Vert
			-40.2								
3	10024.000M	26.8	+7.1	+0.7	+17.6	+38.1	+0.0	51.8	64.7	-12.9	Vert
			-38.5								

Page 22 of 41 Report No.: FC01-043B

4	1962.928M	49.3	+1.8	+0.2	+9.6	+26.3	+0.0	49.2	64.7	-15.5	Horiz
			-38.0								
5	2537.239M	48.0	+1.4	+0.2	+10.5	+26.1	+0.0	48.6	64.7	-16.1	Vert
			-37.6								
6	1963.000M	47.3	+1.8	+0.2	+9.6	+26.3	+0.0	47.2	64.7	-17.5	Vert
			-38.0								
7	2501.253M	45.7	+1.4	+0.2	+10.5	+25.8	+0.0	46.0	64.7	-18.7	Vert
			-37.6								
8	2513.246M	43.7	+1.4	+0.2	+10.5	+25.9	+0.0	44.1	64.7	-20.6	Vert
			-37.6								
9	5012.000M	35.2	+4.8	+0.3	+14.6	+27.6	+0.0	41.8	64.7	-22.9	Vert
			-40.7								

Page 23 of 41 Report No.: FC01-043B

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer: IPWireless, Inc.

Specification: FCC Part 21.908(d) Mid Chan

Work Order #: 76289 Date: 5/8/2001
Test Type: Spurious Emissions Time: 19:13:11
Equipment: Base Station Sequence#: 29

Manufacturer: IP Wireless Tested By: Conan T. Boyle

Model: AJ S/N: 015

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8564E Spec. An.	01984	12/12/2000	12/12/2001	1406
Preamp, HP83017A	3123A00283	05/09/2000	05/09/2001	785
Cable, 2 ft Andrews FSJ1P-	hol-hf-002-01	09/29/2000	09/29/2001	0
50A-4A				
Cable,100 ft Andrews FSJ1P-	hol-hf-100-09	09/29/2000	09/29/2001	0
50A-4A				
Cable, HF	ghz#5	05/09/2000	05/09/2001	0
Horn Ant, 1-18GHz	9901-5655	10/20/2000	10/20/2001	2157
Horn Ant, 18-26.5GHz	942126-003	02/02/2000	02/02/2001	1413
Horn Ant, 26.5-40GHz	951559-008	02/02/2000	02/02/2001	1414

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Base Station*	IP Wireless	AJ	015	
Power Supply, 48vdc	Lamda Electronics, Inc.	LFS-45A 48	92R027767	

Support Devices:

Function	Manufacturer	Model #	S/N
Notebook PC	Toshiba	PA1273U	98060506A
AC Adapter	Toshiba	PA2450U	0295362
Ethernet Hub	Netgear	DS104	DS14H11504830

Test Conditions / Notes:

The EUT is a Base Station placed on a wooden table. The EUT is connected to a notebook PC via a Cat 5e Ethernet cable and hub and is powered by a 48vdc external power supply. The EUT is operating at 2.596GHz (mid channel) and is continuously transmitting. Test is for Field Strength of Spurious Emissions (Transmit Mode). Frequency range tested: 1 MHz- 27 GHz.

Meas	urement Data:	F	Reading listed by margin.				Test Distance: 3 Meters				
			GHz C	hol-h	hol-h	Horn					
#	Freq	Rdng	Amp_2				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 10384.000	23.0	+8.3	+0.5	+19.8	+38.6	+0.0	52.0	64.7	-12.7	Vert
	M										
			-38.2								
2	2 7788.000M	31.5	+4.4	+0.7	+15.7	+35.9	+0.0	48.5	64.7	-16.2	Vert
			-39.7								
3	3 1962.414M	48.5	+1.8	+0.2	+9.6	+26.3	+0.0	48.4	64.7	-16.3	Vert
			-38.0								
4	4 2537.667M	47.7	+1.4	+0.2	+10.5	+26.1	+0.0	48.3	64.7	-16.4	Vert
			-37.6								

Page 24 of 41 Report No.: FC01-043B

5 251	13.259M	46.7	+1.4	+0.2	+10.5	+25.9	+0.0	47.1	64.7	-17.6	Vert
			-37.6								
6 252	25.243M	46.3	+1.4	+0.2	+10.5	+26.0	+0.0	46.8	64.7	-17.9	Vert
			-37.6								
7 250)1.333M	46.3	+1.4	+0.2	+10.5	+25.8	+0.0	46.6	64.7	-18.1	Vert
			-37.6								
8 217	71.106M	45.2	+1.7	+0.2	+9.9	+26.1	+0.0	43.9	64.7	-20.8	Vert
			-39.2								
9 519	92.000M	31.7	+4.6	+0.5	+14.4	+28.4	+0.0	41.0	64.7	-23.7	Vert
			-38.6								
10 106	51.100M	51.5	+1.2	+0.2	+6.2	+23.2	+0.0	41.0	64.7	-23.7	Vert
			-41.3								

Page 25 of 41 Report No.: FC01-043B

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer: IPWireless, Inc.

Specification: FCC Part 21.908(d) Hi Chan

Work Order #: 76289 Date: 5/8/2001
Test Type: Spurious Emissions Time: 19:48:10
Equipment: Base Station Sequence#: 30

Manufacturer: IP Wireless Tested By: Conan T. Boyle

Model: AJ S/N: 015

Test equipment:

1 cst equipment.					
Function	S/N	Calibration Date	Cal Due Date	Asset #	
HP 8564E Spec. An.	01984	12/12/2000	12/12/2001	1406	
Preamp, HP83017A	3123A00283	05/09/2000	05/09/2001	785	
Cable, 2 ft Andrews	hol-hf-002-01	09/29/2000	09/29/2001	0	
FSJ1P-50A-4A					
Cable,100 ft Andrews	hol-hf-100-09	09/29/2000	09/29/2001	0	
FSJ1P-50A-4A					
Cable, HF	ghz#5	05/09/2000	05/09/2001	0	
Horn Ant, 1-18GHz	9901-5655	10/20/2000	10/20/2001	2157	
Horn Ant, 18-26.5GHz	942126-003	02/02/2000	02/02/2001	1413	
Horn Ant, 26.5-40GHz	951559-008	02/02/2000	02/02/2001	1414	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Base Station*	IP Wireless	AJ	015	
Power Supply, 48vdc	Lamda Electronics, Inc.	LFS-45A 48	92R027767	

Support Devices:

Function	Manufacturer	Model #	S/N
Notebook PC	Toshiba	PA1273U	98060506A
AC Adapter	Toshiba	PA2450U	0295362
Ethernet Hub	Netgear	DS104	DS14H11504830

Test Conditions / Notes:

The EUT is a Base Station placed on a wooden table. The EUT is connected to a notebook PC via a Cat 5e Ethernet cable and hub and is powered by a 48vdc external power supply. The EUT is operating at 2.680GHz (high channel) and is continuously transmitting. Test is for Field Strength of Spurious Emissions (Transmit Mode). Frequency range tested: 1 MHz- 27 GHz.

Meas	urement Data:	R	eading li	sted by m	argin.		Te	est Distance	e: 3 Meters	3	
			GHz C	Amp_2	hol-h	Horn					
#	Freq	Rdng	hol-h				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	10720.000M	26.8	+7.8	-39.3	+0.9	+38.4	+0.0	51.8	64.7	-12.9	Vert
			+17.2								
2	1963.065M	50.0	+1.8	-38.0	+0.2	+26.3	+0.0	49.9	64.7	-14.8	Vert
			+9.6								
3	8040.000M	31.3	+4.3	-38.7	+0.5	+36.1	+0.0	48.3	64.7	-16.4	Vert
			+14.8								
4	2304.436M	46.5	+1.5	+0.0	+0.0	+0.0	+0.0	48.0	64.7	-16.7	Horiz
			+0.0								
5	1112.500M	40.8	+1.3	+0.0	+0.0	+0.0	+0.0	42.1	64.7	-22.6	Horiz
			+0.0								

Page 26 of 41 Report No.: FC01-043B

6	5360.000M	31.5	+4.4	-38.8	+0.7	+29.1	+0.0	41.2	64.7	-23.5	Vert
			+14.3								
7	1250.833M	38.7	+1.4	+0.0	+0.0	+0.0	+0.0	40.1	64.7	-24.6	Vert
			+0.0								
8	1240.000M	38.5	+1.4	+0.0	+0.0	+0.0	+0.0	39.9	64.7	-24.8	Vert
			+0.0								
9	1090.833M	37.7	+1.3	+0.0	+0.0	+0.0	+0.0	39.0	64.7	-25.7	Vert
			+0.0								
10	1230.000M	37.5	+1.4	+0.0	+0.0	+0.0	+0.0	38.9	64.7	-25.8	Vert
			+0.0								
11	1061.022M	49.3	+1.2	-41.3	+0.2	+23.2	+0.0	38.8	64.7	-25.9	Vert
			+6.2								
12	1240.000M	37.3	+1.4	+0.0	+0.0	+0.0	+0.0	38.7	64.7	-26.0	Horiz
			+0.0								

Page 27 of 41 Report No.: FC01-043B

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS:

Frequency Range	Signal Analyzer VBW & RBW Setting
1MHz – 30 MHz	9 kHz
30 MHz – 1000 MHz	120 kHz
1 GHz – 27 GHz	1MHz

Radiated Emissions - Front View

Radiated Emissions - Back View

Page 28 of 41 Report No.: FC01-043B

2.1033(c)(14)/2.1055/21.101 - FREQUENCY STABILITY

Voltage Fluctuation vs. Frequency

Model AJ Test Date: 5/8/01

Serial No. 015 Location: Hollister, Site D

Test Equipment:

Description	Model	Cal Date	Cal Due	Asset No.
Cable, HF	ghz#5	5/9/00	5/9/01	0
Spectrum Analyzer	HP-8564E	12/12/01	12/12/01	1401
AC Transformer	Powerstat 126	NCR	NCR	435
True RMS DVM	Fluke 87	11/9/00	11/9/01	1477

Test Conditions:

The device was placed in continous transmit mode and an Andrews Heliax shielded RF cable was connected directly to the Transmit port connector of the device and the other end to the HP-8564E spectrum analyzer RF input port. The device power supply was plugged into a variable AC transformer and a Digital Voltmeter monitored the AC input voltage to the device power supply. The voltage was varied from 85% to 115% of the nominal value of 120vac. The fundamental frequency was monitored on the spectrum analyzer.

Temp: 20-deg Centigrade

Results:

Channel - Freq. (MHz)	102vac	120vac	138vac
Low - 2506	2506.001150	2506.001150	2506.001150
Mid - 2596	2596.001200	2596.001200	2596.001200
High - 2680	2680.001250	2680.001250	2680.001250

Page 29 of 41 Report No.: FC01-043B

FCC Part 2.1055

Temperature Variation vs. Frequency

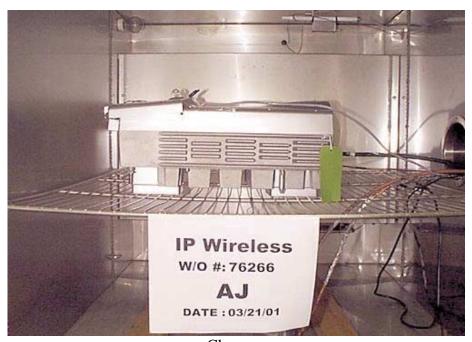
Model AJ Test Date: 3/22/01 Serial No. 015 Location: Fremont, Ca

Test Equipment:

Description	Model	Cal Date	Cal Due	Asset No.
Cable, HF	GHhz#5	5/9/00	5/9/01	0
Spectrum Analyzer	HP-8596E	5/19/00	5/19/01	783

Test Conditions:

The device was placed in continous transmit mode and an Andrews Heliax shielded RF cable was connected directly to the Transmit port connector of the device and the other end to the HP-8596E spectrum analyzer RF input port. The device power supply was plugged into 120V AC. The temperature was varied in 10 degree steps from -20 degrees celcius to +50 degrees celcius. The fundamental frequency was monitored on the spectrum analyzer.


Results:

Channel - Freq.	Temperature in Celsius							
(MHz)	-20	-10	0	10	20	30	40	50
Low - 2506	2506.001	2506.002	2506.001	2506.001	2506.001	2506.002	2506.001	2506.002
Mid - 2596	2596.000	2596.001	2596.001	2596.001	2596.001	2596.001	2596.000	2596.001
High - 2680	2680.001	2680.000	2680.001	2680.001	2680.001	2680.002	2680.001	2680.001

Page 30 of 41 Report No.: FC01-043B

Test Setup Photo

Close-up

Over-view

15.107 - AC CONDUCTED EMISSIONS

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer: **IPWireless, Inc.**

Specification: FCC Part 15.107 Class A

Work Order #: 76289 Date: 03/15/2001
Test Type: Conducted Emissions Time: 17:01:58
Equipment: Base Station Sequence#: 31

Manufacturer: IP Wireless Tested By: Conan T. Boyle

Model: AJ S/N: 015

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 85650A QP Adaptor	2430A00541	04/09/2000	04/09/2001	0
HP 85662A Display	2112A02174	04/09/2000	04/09/2001	0
HP 85680A S. A.	2049A01408	04/09/2000	04/09/2001	0
LISN, Solar 8028-50-TS-24-BNC	910490	09/13/2000	09/13/2001	737
LISN, Solar 8028-50-TS-24-BNC	910489	09/13/2000	09/13/2001	736
Conducted Cable	condcabl-ha00	03/01/2001	03/01/2002	0

Equipment Under Test (* = EUT):

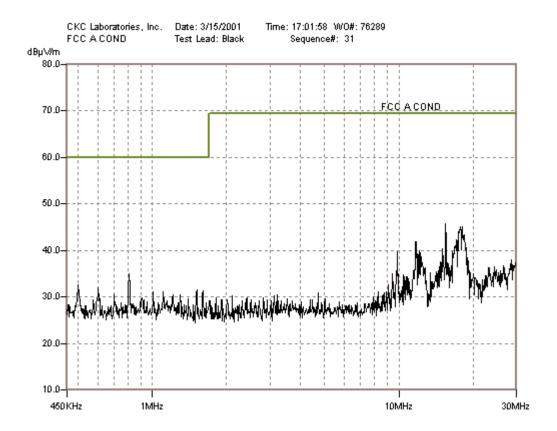
Function	Manufacturer	Model #	S/N	
Base Station*	IP Wireless	AJ	015	
Power Supply, 48vdc	Lamda Electronics, Inc.	LFS-45A 48	92R027767	

Support Devices:

Function	Manufacturer	Model #	S/N
Notebook PC	Toshiba	PA1273U	98060506A
AC Adapter	Toshiba	PA2450U	0295362
Ethernet Hub	Netgear	DS104	DS14H11504830

Test Conditions / Notes:

The EUT is a Base Station placed on a wooden table. The EUT is connected to a notebook PC via a Cat 5e Ethernet cable and hub and receives 48vdc power from an external power supply. The EUT is operating in Receive Mode. A 50-ohm dummy load is attached to the transmit RF output port. Test is 15.107, Conducted Emissions, Black Lead at 120v, 60Hz. Frequency range tested: 450 kHz – 30 MHz.


Measur	ement Data:	Re	eading li	sted by ma	argin. Test Lead: Black						
				LISNI		LISNZ					
#	Freq	Rdng	Site				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	15.521M	44.3		+0.3		+0.4	+0.0	45.7	69.5	-23.8	Black
			+0.7								
2	17.715M	43.6		+0.4		+0.6	+0.0	45.2	69.5	-24.3	Black
			+0.6								
3	18.105M	43.3		+0.4		+0.7	+0.0	45.0	69.5	-24.5	Black
			+0.6								
4	17.618M	42.8		+0.4		+0.6	+0.0	44.4	69.5	-25.1	Black
			+0.6								
5	18.446M	41.7		+0.4		+0.7	+0.0	43.4	69.5	-26.1	Black
			+0.6								
6	17.228M	40.8		+0.3		+0.6	+0.0	42.3	69.5	-27.2	Black
			+0.6								

Page 32 of 41 Report No.: FC01-043B

7	11.719M	40.7	+0.5	+0.3	+(0.3	+0.0	41.8	69.5	-27.7	Black
8	18.641M	39.6	+0.7	+0.4	+(0.7	+0.0	41.4	69.5	-28.1	Black
9	17.033M	39.5		+0.3	+(0.6	+0.0	41.0	69.5	-28.5	Black
10	15.083M	39.0	+0.6	+0.3	+(0.4	+0.0	40.4	69.5	-29.1	Black
11	12.158M	38.9	+0.7	+0.3	+(0.3	+0.0	40.0	69.5	-29.5	Black
12	16.594M	38.3	+0.5	+0.3	+(0.5	+0.0	39.7	69.5	-29.8	Black
13	9.902M	38.7	+0.6	+0.3	+(0.2	+0.0	39.7	69.5	-29.8	Black
14	12.255M	38.4	+0.5	+0.3	+(0.3	+0.0	39.5	69.5	-30.0	Black
			+0.5								
15	11.865M	38.1	+0.5	+0.3	+(0.3	+0.0	39.2	69.5	-30.3	Black
16	12.060M	37.9	+0.5	+0.3	+(0.3	+0.0	39.0	69.5	-30.5	Black
17	19.031M	36.6	+0.7	+0.4	+(0.7	+0.0	38.4	69.5	-31.1	Black
18	28.781M	35.4		+0.5	+	1.3	+0.0	38.0	69.5	-31.5	Black
19	11.963M	36.9	+0.8	+0.3	+(0.3	+0.0	38.0	69.5	-31.5	Black
20	14.790M	36.2	+0.5	+0.3	+(0.4	+0.0	37.6	69.5	-31.9	Black
21	29.805M	34.6	+0.7	+0.5		1.4	+0.0	37.3	69.5	-32.2	Black
21	27.003W	34.0	+0.8	10.5	1.	1.7	10.0	37.3	07.5	-32.2	Diack
22	15.716M	35.8	+0.7	+0.3	+(0.5	+0.0	37.3	69.5	-32.2	Black
23	12.450M	36.2	+0.5	+0.3	+(0.3	+0.0	37.3	69.5	-32.2	Black
24	16.009M	35.7	+0.7	+0.3	+(0.5	+0.0	37.2	69.5	-32.3	Black
25	28.391M	34.5		+0.5	+	1.3	+0.0	37.1	69.5	-32.4	Black
26	28.976M	34.4	+0.8	+0.5	+	1.3	+0.0	37.0	69.5	-32.5	Black
27	16.301M	35.3	+0.8	+0.3	+(0.5	+0.0	36.8	69.5	-32.7	Black
20	24.5003.5	212	+0.7	0.7		1.0	0.0	267		22.0	DI 1
28	26.588M	34.3	+0.7	+0.5		1.2	+0.0	36.7	69.5	-32.8	Black
29	14.693M	35.2	+0.6	+0.3	+(0.4	+0.0	36.5	69.5	-33.0	Black
30	24.443M	34.1	+0.7	+0.5	+	1.1	+0.0	36.4	69.5	-33.1	Black
L			10.7								

Page 33 of 41 Report No.: FC01-043B

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer: IPWireless, Inc.

Specification: FCC Part 15.107 Class A

Work Order #: 76289 Date: 03/15/2001
Test Type: Conducted Emissions Time: 17:05:21
Equipment: Base Station Sequence#: 32

Manufacturer: IP Wireless Tested By: Conan T. Boyle

Model: AJ S/N: 015

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 85650A QP Adaptor	2430A00541	04/09/2000	04/09/2001	0
HP 85662A Display	2112A02174	04/09/2000	04/09/2001	0
HP 85680A S. A.	2049A01408	04/09/2000	04/09/2001	0
LISN, Solar 8028-50-TS-24-BNC	910490	09/13/2000	09/13/2001	737
LISN, Solar 8028-50-TS-24-BNC	910489	09/13/2000	09/13/2001	736
Conducted Cable	condcabl-ha00	03/01/2001	03/01/2002	0

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Base Station*	IP Wireless	AJ	015	
Power Supply, 48vdc	Lamda Electronics, Inc.	LFS-45A 48	92R027767	

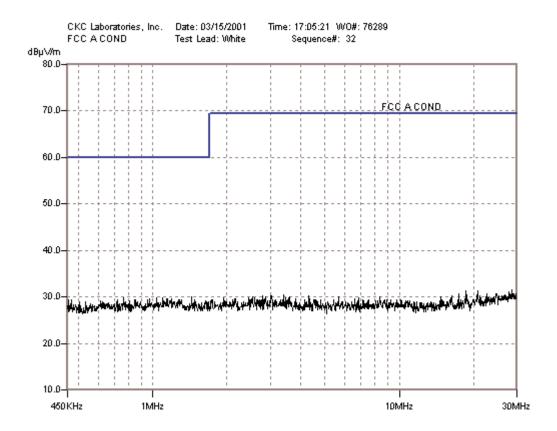
Support Devices:

~ ··FF ··· · · · · · · · · · · · · · · ·			
Function	Manufacturer	Model #	S/N
Notebook PC	Toshiba	PA1273U	98060506A
AC Adapter	Toshiba	PA2450U	0295362
Ethernet Hub	Netgear	DS104	DS14H11504830

Test Conditions / Notes:

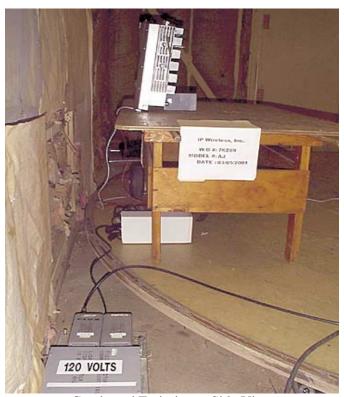
The EUT is a Base Station placed on a wooden table. The EUT is connected to a notebook PC via a Cat 5e Ethernet cable and hub and receives power from an external 48vdc power supply. The EUT is operating in Receive Mode. A 50-ohm dummy load is attached to the transmit RF output port. Test is 15.107, Conducted Emissions, Black Lead at 120v, 60Hz. Frequency range tested: 450 kHz – 30 MHz.

Measur	ement Data:	R	eading lis	ted by 1	margin.	Test Lead: White					
			LISNI		LISNZ						
#	Freq	Rdng	Site				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	1.441M	29.8	+0.4		-0.4		+0.0	30.1	60.0	-29.9	White
			+0.3								
2	28.635M	28.8	+0.4		+1.6		+0.0	31.6	69.5	-37.9	White
			+0.8								
3	20.835M	29.6	+0.3		+0.8		+0.0	31.4	69.5	-38.1	White
			+0.7								
4	18.690M	29.7	+0.3		+0.7		+0.0	31.4	69.5	-38.1	White
			+0.7								
5	27.855M	28.5	+0.4		+1.5		+0.0	31.2	69.5	-38.3	White
			+0.8								
6	29.805M	27.9	+0.4		+1.7		+0.0	30.8	69.5	-38.7	White
			+0.8								
7	24.589M	28.4	+0.4	•	+1.2	•	+0.0	30.7	69.5	-38.8	White
			+0.7								


Page 35 of 41 Report No.: FC01-043B

8	29.318M	27.8	+0.4	+1.6	+0.0	30.6	69.5	-38.9	White
			+0.8						
9	28.830M	27.8	+0.4	+1.6	+0.0	30.6	69.5	-38.9	White
			+0.8						
10	28.196M	27.9	$+0.4 \\ +0.8$	+1.5	+0.0	30.6	69.5	-38.9	White
1.1	22.7051.6	20.5		1.0	0.0	20.6		20.0	****
11	22.785M	28.5	$+0.4 \\ +0.7$	+1.0	+0.0	30.6	69.5	-38.9	White
10	17 40214	20.1		.0.6	. 0. 0	20.6	60.5	20.0	XX71. 14 .
12	17.423M	29.1	+0.3 +0.6	+0.6	+0.0	30.6	69.5	-38.9	White
1.2	10 00 5M	20.0		.0.7	. 0. 0	20.5	<i>(</i> 0 <i>5</i>	20.0	XX71-:4-
13	18.885M	28.8	+0.3	+0.7	+0.0	30.5	69.5	-39.0	White
			+0.7						
14	26.783M	27.9	+0.4	+1.4	+0.0	30.4	69.5	-39.1	White
			+0.7						
15	3.405M	30.0	+0.3	-0.2	+0.0	30.4	69.5	-39.1	White
			+0.3						
16	26.100M	27.9	+0.4	+1.3	+0.0	30.3	69.5	-39.2	White
10	20.1001.1	27.5	+0.7	11.5	10.0	30.3	07.5	37.2	***************************************
17	25.418M	28.0	+0.4	+1.2	+0.0	30.3	69.5	-39.2	White
1 /	23.416WI	28.0		+1.2	+0.0	30.3	09.3	-39.2	Wille
			+0.7						
18	21.323M	28.5	+0.3	+0.8	+0.0	30.3	69.5	-39.2	White
			+0.7						
19	3.035M	29.9	+0.3	-0.2	+0.0	30.3	69.5	-39.2	White
			+0.3						
20	3.005M	29.9	+0.3	-0.2	+0.0	30.3	69.5	-39.2	White
			+0.3	*· -			0,712		
21	2.790M	29.9	+0.3	-0.2	+0.0	30.3	69.5	-39.2	White
21	2.790IVI	23.3		-0.2	+0.0	30.3	09.5	-39.2	W IIIC
22	27.124).6	27.7	+0.3		0.0	20.2	60 F	20.2	XX 71
22	27.124M	27.7	+0.4	+1.4	+0.0	30.2	69.5	-39.3	White
			+0.7						
23	26.539M	27.7	+0.4	+1.4	+0.0	30.2	69.5	-39.3	White
			+0.7						
24	16.301M	28.7	+0.2	+0.6	+0.0	30.2	69.5	-39.3	White
			+0.7						
25	4.305M	29.8	+0.2	-0.1	+0.0	30.2	69.5	-39.3	White
	1.505111	27.0	+0.3	0.1	10.0	30.2	07.5	37.3	***************************************
26	26 202M	27.7		+1.3	+0.0	20.1	69.5	-39.4	White
26	26.393M	21.1	+0.4	+1.3	+0.0	30.1	69.3	-39.4	wille
			+0.7						
27	2.540M	29.8	+0.3	-0.3	+0.0	30.1	69.5	-39.4	White
			+0.3						
28	5.670M	29.5	+0.2	-0.1	+0.0	30.0	69.5	-39.5	White
			+0.4						
29	3.578M	29.6	+0.3	-0.2	+0.0	30.0	69.5	-39.5	White
			+0.3				~		
30	2.862M	29.6	+0.3	-0.2	+0.0	30.0	69.5	-39.5	White
30	2.002IVI	۷۶.∪		-0.2	±0.0	50.0	02.3	-37.3	VV IIILE
			+0.3						

Page 36 of 41 Report No.: FC01-043B



Page 37 of 41 Report No.: FC01-043B

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS:

Frequency Range	Signal Analyzer VBW & RBW Setting
450 kHz – 30 MHz	9 kHz

Conducted Emissions - Side View

Conducted Emissions - Front View

15.109 - RADIATED EMISSIONS

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer: **IPWireless, Inc.**

Specification: FCC Part 15.109 Class A

Work Order #: 76289 Date: 5/10/2001
Test Type: Radiated Scan
Equipment: Base Station Sequence#: 34

Manufacturer: IP Wireless Tested By: Conan T. Boyle

Model: AJ S/N: 015

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Cable, 3m	cabl 3m Hol A 01	01/04/2001	01/04/2002	0
Loop Ant, Emco 6502	2078	08/17/2000	08/17/2001	432
HP-8567A	2541A00127	03/23/2001	03/23/2002	2053
HP-85662A	2542A10733	03/23/2001	03/23/2002	2052
HP 85650A QP Adaptor	2043A00286	04/10/2001	04/10/2002	445
Bicon Ant	9205-1522	10/30/2000	10/30/2001	503
Log Periodic, A.H. SAS200/510	318	05/22/2000	05/22/2001	0

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Base Station*	IP Wireless	AJ	015
Power Supply, 48vdc	Lamda		

Support Devices:

Function	Manufacturer	Model #	S/N	
Notebook PC	Toshiba	PA1273U	98060506A	
AC Adapter	Toshiba	PA2450U	0295362	
Hub	Netgear			

Test Conditions / Notes:

The EUT is a Base Station. The EUT is connected to a notebook PC via a Cat 5e Ethernet cable and hub. The EUT is operating in Receive Mode. A 50-ohm dummy load is attached to the transmit RF output port. The EUT is set to receive mode, full operation, frequency set to 2596MHz (mid channel). Frequency range tested: 1 MHz –15 GHz.

Measur	Measurement Data: Reading listed by margin.						Test Distance: 3 Meters					
			Bicon	Log31	cabl	8447F						
#	Freq	Rdng	Mag L				Dist	Corr	Spec	Margin	Polar	
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant	
1	959.432M	46.2	+0.0	+24.6	+5.1	-27.2	-10.0	38.7	46.4	-7.7	Horiz	
			+0.0									
2	959.432M	45.0	+0.0	+24.6	+5.1	-27.2	-10.0	37.5	46.4	-8.9	Vert	
			+0.0									
3	69.102M	56.7	+7.3	+0.0	+1.1	-26.8	-10.0	28.3	39.1	-10.8	Horiz	
			+0.0									
4	368.643M	50.9	+0.0	+18.2	+2.9	-26.6	-10.0	35.4	46.4	-11.0	Vert	
			+0.0									
5	250.007M	49.5	+18.4	+0.0	+2.2	-26.0	-10.0	34.1	46.4	-12.3	Horiz	
			+0.0									

Page 39 of 41 Report No.: FC01-043B


6	34.634M	46.4	+16.5	+0.0	+0.7	-26.8	-10.0	26.8	39.1	-12.3	Vert
			+0.0								
7	69.276M	54.6	+7.3	+0.0	+1.1	-26.8	-10.0	26.2	39.1	-12.9	Horiz
			+0.0								
8	84.943M	53.8	+7.7	+0.0	+1.3	-26.8	-10.0	26.0	39.1	-13.1	Horiz
			+0.0								
9	30.615M	44.0	+18.0	+0.0	+0.7	-26.8	-10.0	25.9	39.1	-13.2	Vert
			+0.0								
10	333.361M	45.7	+0.0	+20.9	+2.7	-26.3	-10.0	33.0	46.4	-13.4	Vert
			+0.0								
11	491.544M	49.2	+0.0	+17.5	+3.4	-27.6	-10.0	32.5	46.4	-13.9	Vert
			+0.0								
12	66.298M	53.0	+7.8	+0.0	+1.1	-26.7	-10.0	25.2	39.1	-13.9	Horiz
			+0.0								

Page 40 of 41 Report No.: FC01-043B

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS:

Frequency Range	Signal Analyzer				
	VBW & RBW Setting				
1 MHz – 30 MHz	9 kHz				
30 MHz – 1000 MHz	120 kHz				

Radiated Emissions - Front View

Radiated Emissions - Back View