

Report No.: SZEM180400253604 Page: 1 of 89

Appendix B

E-UTRA Band 4

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sepx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400253604 Page: 2 of 89

CONTENT

1	EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
2	PEAK-TO-AVERAGE RATIO	11
	2.1 For LTE	11
	2.1.1 Test Band = LTE BAND 4	11
3	MODULATION CHARACTERISTICS	17
	3.1 FOR LTE	17
	3.1.1 Test Band = LTE BAND 4	17
4	BANDWIDTH	19
	4.1 For LTE	20
	4.1.1 Test Band = LTE BAND 4	20
5	BAND EDGES COMPLIANCE	44
	5.1 For LTE	44
	5.1.1 Test Band = LTE BAND 4	44
6	SPURIOUS EMISSION AT ANTENNA TERMINAL	76
	6.1 FOR LTE	76
	6.1.1 Test Band = LTE BAND 4	76
7	FIELD STRENGTH OF SPURIOUS RADIATION	85
	7.1 For LTE	85
	7.1.1 Test Band = LTE BAND 4	85
8	FREQUENCY STABILITY	87
	8.1 FREQUENCY ERROR VS. VOLTAGE	87
	8.2 FREQUENCY ERROR VS. TEMPERATURE	88

Report No.: SZEM180400253604 Page: 3 of 89

Effective (Isotropic) Radiated Power Output Data 1

Effective Isotropic Radiated Power of Transmitter (EIRP) for LTE BAND 4										
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict		
				RB1#0	22.85	24.23	33.00	PASS		
				RB1#13	22.91	24.29	33.00	PASS		
				RB1#24	23.06	24.44	33.00	PASS		
			LCH	RB12#0	22.96	24.34	33.00	PASS		
				RB12#6	22.98	24.36	33.00	PASS		
				RB12#13	23.09	24.47	33.00	PASS		
				RB25#0	22.03	23.41	33.00	PASS		
		5M		RB1#0	23.44	24.82	33.00	PASS		
				RB1#13	23.39	24.77	33.00	PASS		
			МСН	RB1#24	23.08	24.46	33.00	PASS		
BAND 4	LTE/TM1			RB12#0	23.52	24.9	33.00	PASS		
				RB12#6	23.46	24.84	33.00	PASS		
				RB12#13	23.38	24.76	33.00	PASS		
				RB25#0	22.56	23.94	33.00	PASS		
				RB1#0	23.46	24.84	33.00	PASS		
				RB1#13	23.54	24.92	33.00	PASS		
				RB1#24	23.5	24.88	33.00	PASS		
			HCH	RB12#0	23.37	24.75	33.00	PASS		
				RB12#6	23.34	24.72	33.00	PASS		
				RB12#13	23.36	24.74	33.00	PASS		
				RB25#0	22.47	23.85	33.00	PASS		

Report No.: SZEM180400253604 Page: 4 of 89

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	23.14	24.52	33.00	PASS
				RB1#13	23.31	24.69	33.00	PASS
				RB1#24	23.38	24.76	33.00	PASS
			LCH	RB12#0	21.39	22.77	33.00	PASS
				RB12#6	21.6	22.98	33.00	PASS
				RB12#13	21.66	23.04	33.00	PASS
				RB25#0	21.67	23.05	33.00	PASS
		5M		RB1#0	22.8	24.18	33.00	PASS
				RB1#13	22.87	24.25	33.00	PASS
			МСН	RB1#24	22.36	23.74	33.00	PASS
BAND 4	LTE/TM2			RB12#0	21.41	22.79	33.00	PASS
				RB12#6	21.16	22.54	33.00	PASS
				RB12#13	21.18	22.56	33.00	PASS
				RB25#0	21.2	22.58	33.00	PASS
				RB1#0	22.32	23.7	33.00	PASS
				RB1#13	22.95	24.33	33.00	PASS
				RB1#24	23.03	24.41	33.00	PASS
			НСН	RB12#0	21.27	22.65	33.00	PASS
				RB12#6	21.09	22.47	33.00	PASS
				RB12#13	21.24	22.62	33.00	PASS
				RB25#0	21.35	22.73	33.00	PASS

Report No.: SZEM180400253604 Page: 5 of 89

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	23.37	24.75	33.00	PASS
				RB1#25	23.68	25.06	33.00	PASS
				RB1#49	24.03	25.41	33.00	PASS
			LCH	RB25#0	22.74	24.12	33.00	PASS
				RB25#13	22.89	24.27	33.00	PASS
				RB25#25	23.01	24.39	33.00	PASS
				RB50#0	22.86	24.24	33.00	PASS
	LTE/TM1	10M		RB1#0	23.63	25.01	33.00	PASS
				RB1#25	23.36	24.74	33.00	PASS
			MCH	RB1#49	23.11	24.49	33.00	PASS
BAND 4				RB25#0	22.53	23.91	33.00	PASS
				RB25#13	22.4	23.78	33.00	PASS
				RB25#25	22.23	23.61	33.00	PASS
				RB50#0	22.42	23.8	33.00	PASS
				RB1#0	23.12	24.5	33.00	PASS
				RB1#25	23.44	24.82	33.00	PASS
				RB1#49	23.49	24.87	33.00	PASS
			НСН	RB25#0	22.46	23.84	33.00	PASS
				RB25#13	22.48	23.86	33.00	PASS
				RB25#25	22.58	23.96	33.00	PASS
				RB50#0	22.49	23.87	33.00	PASS

Report No.: SZEM180400253604 Page: 6 of 89

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	22.6	23.98	33.00	PASS
				RB1#25	23.52	24.9	33.00	PASS
				RB1#49	23.86	25.24	33.00	PASS
			LCH	RB25#0	21.71	23.09	33.00	PASS
				RB25#13	21.87	23.25	33.00	PASS
				RB25#25	22.05	23.43	33.00	PASS
				RB50#0	21.83	23.21	33.00	PASS
				RB1#0	23.16	24.54	33.00	PASS
	LTE/TM2	10M		RB1#25	22.32	23.7	33.00	PASS
			МСН	RB1#49	22.06	23.44	33.00	PASS
BAND 4				RB25#0	21.35	22.73	33.00	PASS
				RB25#13	21.18	22.56	33.00	PASS
				RB25#25	21.14	22.52	33.00	PASS
				RB50#0	21.33	22.71	33.00	PASS
				RB1#0	22.05	23.43	33.00	PASS
				RB1#25	22.7	24.08	33.00	PASS
				RB1#49	22.72	24.1	33.00	PASS
			НСН	RB25#0	21.2	22.58	33.00	PASS
				RB25#13	21.38	22.76	33.00	PASS
				RB25#25	21.29	22.67	33.00	PASS
				RB50#0	21.3	22.68	33.00	PASS

Report No.: SZEM180400253604 Page: 7 of 89

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	23.69	25.07	33.00	PASS
				RB1#38	23.71	25.09	33.00	PASS
				RB1#74	24.06	25.44	33.00	PASS
			LCH	RB36#0	22.78	24.16	33.00	PASS
				RB36#18	23.03	24.41	33.00	PASS
				RB36#39	23.07	24.45	33.00	PASS
				RB75#0	22.95	24.33	33.00	PASS
		15M		RB1#0	23.93	25.31	33.00	PASS
				RB1#38	23.53	24.91	33.00	PASS
	LTE/TM1		МСН	RB1#74	23.31	24.69	33.00	PASS
BAND 4				RB36#0	22.61	23.99	33.00	PASS
				RB36#18	22.42	23.8	33.00	PASS
				RB36#39	22.27	23.65	33.00	PASS
				RB75#0	22.46	23.84	33.00	PASS
				RB1#0	23.06	24.44	33.00	PASS
				RB1#38	23.19	24.57	33.00	PASS
				RB1#74	23.46	24.84	33.00	PASS
			HCH	RB36#0	22.27	23.65	33.00	PASS
				RB36#18	22.44	23.82	33.00	PASS
				RB36#39	22.52	23.9	33.00	PASS
				RB75#0	22.43	23.81	33.00	PASS

Report No.: SZEM180400253604 Page: 8 of 89

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	22.88	24.26	33.00	PASS
				RB1#38	23.68	25.06	33.00	PASS
				RB1#74	24.13	25.51	33.00	PASS
			LCH	RB36#0	21.81	23.19	33.00	PASS
				RB36#18	21.99	23.37	33.00	PASS
				RB36#39	22.05	23.43	33.00	PASS
				RB75#0	21.97	23.35	33.00	PASS
		15M		RB1#0	22.96	24.34	33.00	PASS
				RB1#38	22.34	23.72	33.00	PASS
			МСН	RB1#74	21.87	23.25	33.00	PASS
BAND 4	LTE/TM2			RB36#0	21.63	23.01	33.00	PASS
				RB36#18	21.27	22.65	33.00	PASS
				RB36#39	21.12	22.5	33.00	PASS
				RB75#0	21.43	22.81	33.00	PASS
				RB1#0	22.73	24.11	33.00	PASS
				RB1#38	22.69	24.07	33.00	PASS
				RB1#74	22.52	23.9	33.00	PASS
			HCH	RB36#0	21.23	22.61	33.00	PASS
				RB36#18	21.24	22.62	33.00	PASS
				RB36#39	21.29	22.67	33.00	PASS
				RB75#0	21.28	22.66	33.00	PASS

Report No.: SZEM180400253604 Page: 9 of 89

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	23.54	24.92	33.00	PASS
				RB1#50	23.96	25.34	33.00	PASS
				RB1#99	23.5	24.88	33.00	PASS
			LCH	RB50#0	22.87	24.25	33.00	PASS
				RB50#25	23.03	24.41	33.00	PASS
				RB50#50	22.9	24.28	33.00	PASS
				RB100#0	22.93	24.31	33.00	PASS
				RB1#0	24.04	25.42	33.00	PASS
				RB1#50	23.83	25.21	33.00	PASS
				RB1#99	23.27	24.65	33.00	PASS
BAND 4	LTE/TM1	20M	МСН	RB50#0	22.62	24	33.00	PASS
				RB50#25	22.38	23.76	33.00	PASS
				RB50#50	22.14	23.52	33.00	PASS
				RB100#0	22.38	23.76	33.00	PASS
				RB1#0	23.35	24.73	33.00	PASS
				RB1#50	23.45	24.83	33.00	PASS
				RB1#99	23.57	24.95	33.00	PASS
			НСН	RB50#0	22.19	23.57	33.00	PASS
				RB50#25	22.23	23.61	33.00	PASS
				RB50#50	22.4	23.78	33.00	PASS
				RB100#0	22.27	23.65	33.00	PASS

Report No.: SZEM180400253604 Page: 10 of 89

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	22.21	23.59	33.00	PASS
				RB1#50	22.8	24.18	33.00	PASS
				RB1#99	22.54	23.92	33.00	PASS
			LCH	RB50#0	21.87	23.25	33.00	PASS
				RB50#25	22.02	23.4	33.00	PASS
				RB50#50	21.87	23.25	33.00	PASS
				RB100#0	21.73	23.11	33.00	PASS
		20M		RB1#0	22.24	23.62	33.00	PASS
				RB1#50	22.18	23.56	33.00	PASS
	LTE/TM2		МСН	RB1#99	21.99	23.37	33.00	PASS
BAND 4				RB50#0	21.67	23.05	33.00	PASS
				RB50#25	21.37	22.75	33.00	PASS
				RB50#50	21.17	22.55	33.00	PASS
				RB100#0	21.5	22.88	33.00	PASS
				RB1#0	22.32	23.7	33.00	PASS
				RB1#50	21.95	23.33	33.00	PASS
				RB1#99	21.98	23.36	33.00	PASS
			НСН	RB50#0	21.07	22.45	33.00	PASS
				RB50#25	21.24	22.62	33.00	PASS
				RB50#50	21.27	22.65	33.00	PASS
				RB100#0	21.35	22.73	33.00	PASS

Note:

a: For getting the EIRP (Efficient Isotropic Radiated Power) in substitution method, the following formula should be taken to calculate it,

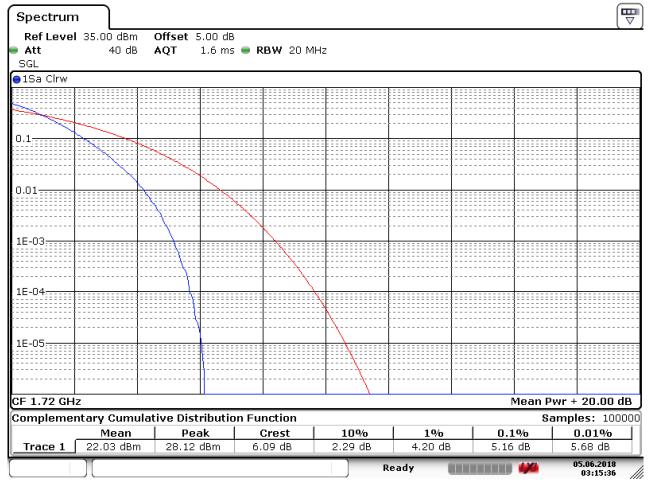
EIRP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBi] b: SGP=Signal Generator Level

Report No.: SZEM180400253604 Page: 11 of 89

2 Peak-to-Average Ratio

Part I - Test Results

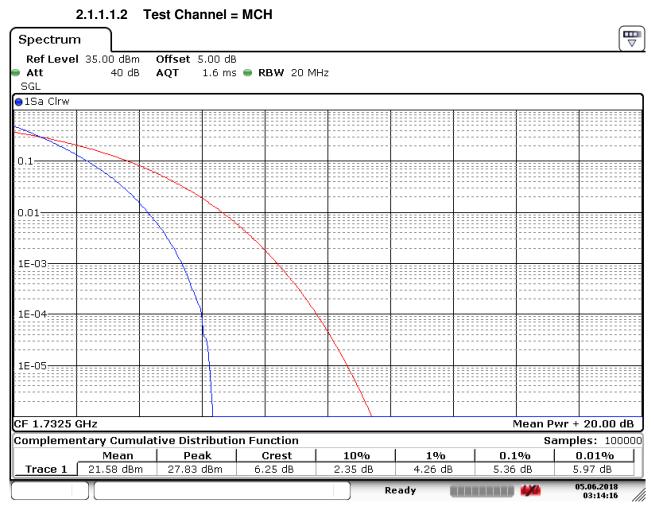
Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
		LCH	5.16	13	PASS
	TM1/20M	MCH	5.36	13	PASS
		HCH	5.36	13	PASS
BAND 4		LCH	6.06	13	PASS
	TM2/20M	MCH	6.14	13	PASS
		HCH	6.20	13	PASS


Part II - Test Plots

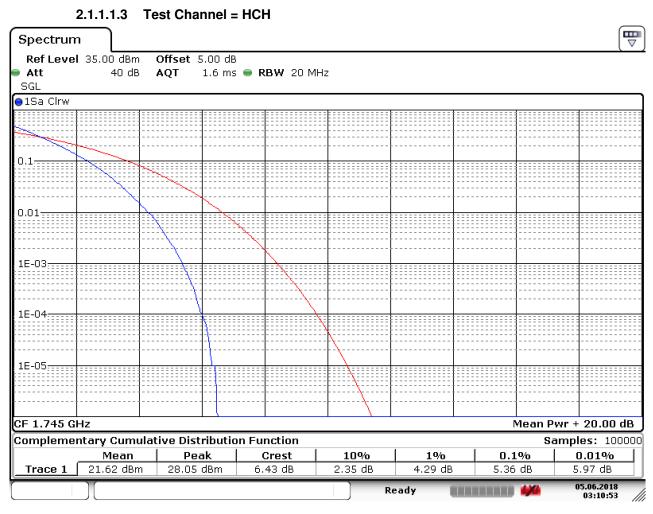
2.1 For LTE

2.1.1 Test Band = LTE BAND 4

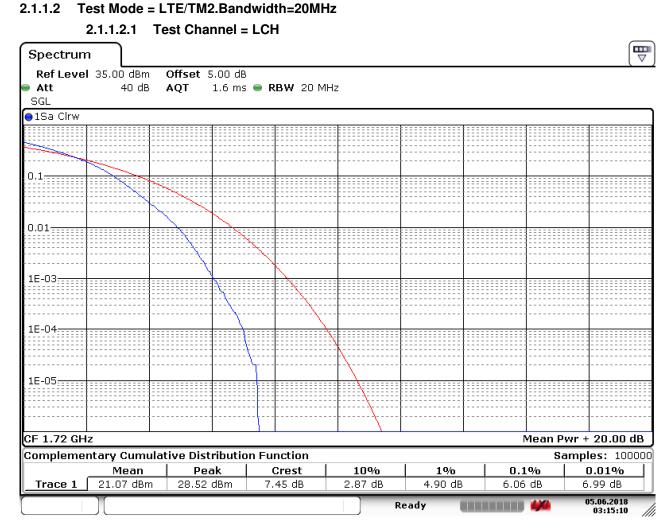
2.1.1.1 Test Mode = LTE/TM1.Bandwidth=20MHz


2.1.1.1.1 Test Channel = LCH

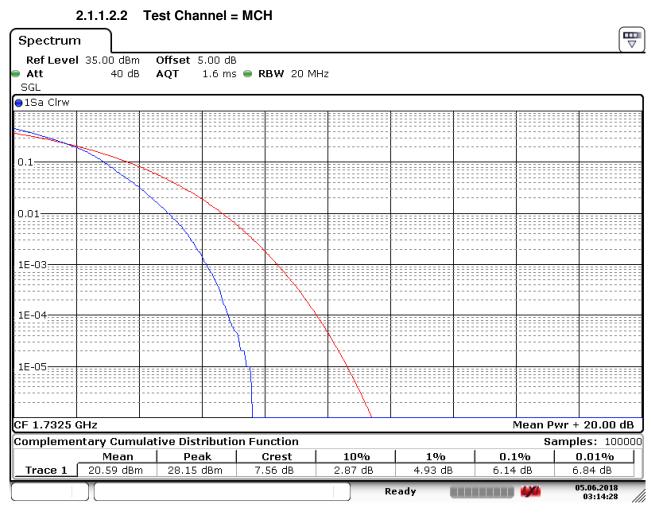
Date: 5.JUN.2018 03:15:36


Report No.: SZEM180400253604 Page: 12 of 89

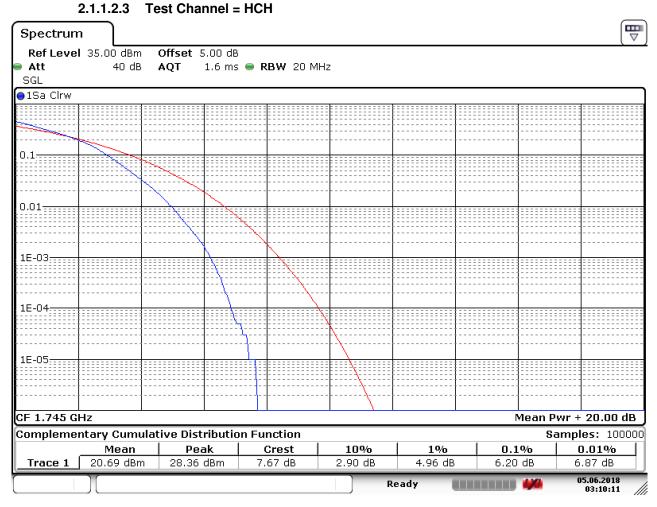
Date: 5.JUN.2018 03:14:16


Report No.: SZEM180400253604 Page: 13 of 89

Date: 5.JUN.2018 03:10:54


Report No.: SZEM180400253604 Page: 14 of 89

Date: 5.JUN.2018 03:15:10


Report No.: SZEM180400253604 Page: 15 of 89

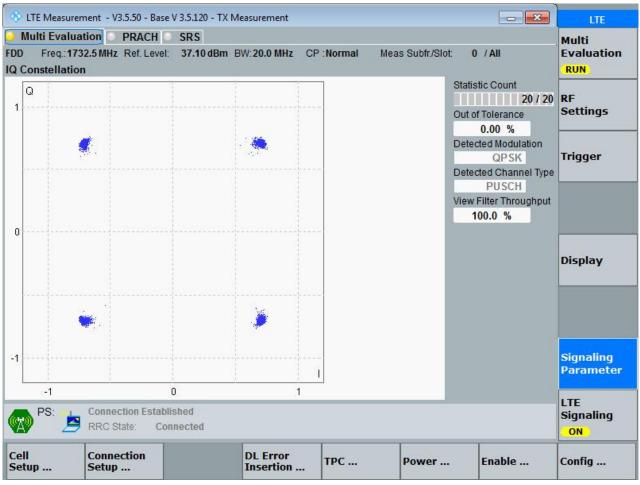
Date: 5.JUN.2018 03:14:29

Report No.: SZEM180400253604 Page: 16 of 89

Date: 5.JUN.2018 03:10:10

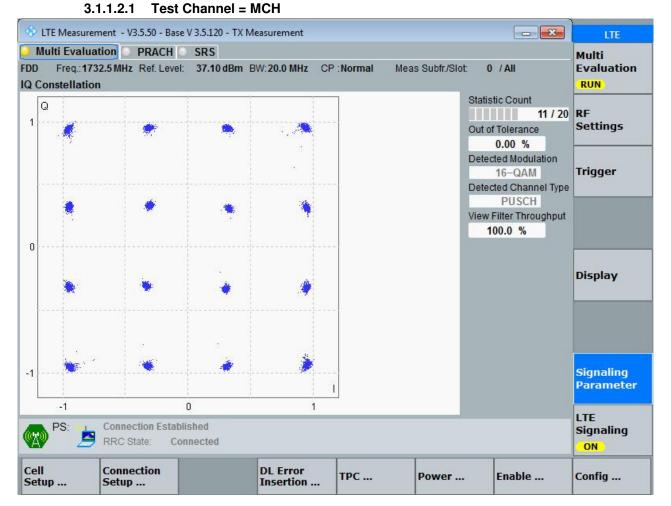
Report No.: SZEM180400253604 Page: 17 of 89

3 Modulation Characteristics


Part I - Test Plots

3.1 For LTE

3.1.1 Test Band = LTE BAND 4


3.1.1.1 Test Mode = LTE /TM1 20MHz

3.1.1.1.1 Test Channel = MCH

Report No.: SZEM180400253604 Page: 18 of 89

3.1.1.2 Test Mode = LTE /TM2 20MHz

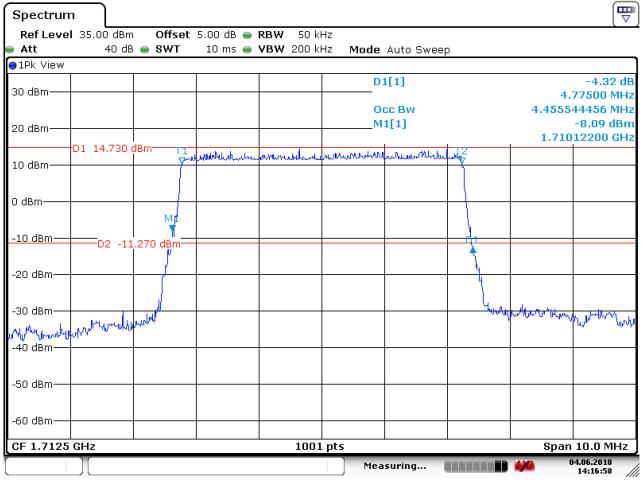
"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400253604 Page: 19 of 89

4 Bandwidth

Part I - Test Results

Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict
	TM1/ 5MHz	LCH	4.46	4.78	PASS
		MCH	4.49	4.84	PASS
		HCH	4.47	4.82	PASS
		LCH	4.47	4.80	PASS
	TM2/ 5MHz	MCH	4.47	4.85	PASS
		HCH	4.47	4.84	PASS
		LCH	8.95	9.61	PASS
	TM1/10MHz	MCH	8.91	9.53	PASS
		HCH	8.93	9.51	PASS
		LCH	8.91	9.67	PASS
	TM2/ 10MHz	MCH	8.95	9.59	PASS
LTE Band 4		HCH	8.91	9.51	PASS
LIE Danu 4	TM1/ 15MHz	LCH	13.46	14.75	PASS
		MCH	13.49	14.78	PASS
		HCH	13.47	14.78	PASS
		LCH	13.49	14.81	PASS
	TM2/ 15MHz	MCH	13.49	14.78	PASS
		HCH	13.49	14.72	PASS
		LCH	17.90	19.18	PASS
	TM1/ 20MHz	MCH	17.86	19.42	PASS
		HCH	17.90	19.46	PASS
		LCH	17.90	19.26	PASS
	TM2/ 20MHz	MCH	17.90	19.30	PASS
		HCH	17.94	19.34	PASS


Report No.: SZEM180400253604 Page: 20 of 89

4.1 For LTE

4.1.1 Test Band = LTE BAND 4

4.1.1.1 Test Mode = LTE/TM1 5MHz

4.1.1.1.1 Test Channel = LCH

Date: 4.JUN.2018 14:16:59

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sepx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400253604 Page: 21 of 89

Spectrum	ı)								
	35.00 dB		5.00 dB 👄						
Att	40 a	B 🔵 SWT	10 ms 👄	VBW 200 ki	Hz Mode /	Auto Sweep)		
⊖1Pk View		1	1	1					
30 dBm					D1	[1]		4	-2.30 dB 83500 MHz
					00	c Bw			63300 MHZ 14486 MHZ
00 ID					M1				11.45 dBm
20 dBm									09200 GHz
	D1 13.910	(dBm T1	alah subash ɗa	hollowentle	ا معام المعام	akan Kanan di da	T2		
10 dBm				with the work	PHO DAR BON HOW		~~~~y		
0 dBm									
-10 dBm—		MÁ							
10 0.0011	D2 -1	.2.090 dBm							
		+					Ţ		
-20 dBm—									
		1.1					<u> </u>		
-30 dBm	. A all of	naway					- WAY	Mure Anno	here and the second second
-30 dBm— My/Morrielly	when and	T.							New New
-40 dBm									
-50 dBm									
-30 dbm									
-60 dBm—									
CF 1.7325	GHz		1	1001	pts			 Span	10.0 MHz
	Υ					uring		-	4.06.2018
						anng			14:16:04

4.1.1.1.2 Test Channel = MCH

Date: 4.JUN.2018 14:16:04

Report No.: SZEM180400253604 Page: 22 of 89

Spectrun	ı)								
	l 35.00 dBn		5.00 dB 👄						
Att	40 di	B 🔵 SWT	10 ms 👄	VBW 200 k	Hz Mode	Auto Swe	ер		
⊖1Pk View			1	1					1.00.10
30 dBm					U D	1[1]		4.9	-4.38 dB 81500 MHz
					0	cc Bw			34466 MHz
20 dBm					M	1[1]			-9.45 dBm
20 00111							1 ===	1.750	10200 GHz
10 dBm	D1 14.610		how when the area	July with white	manurhant	m the total	www		
10 UBIII									
0 dBm——									
		M					1 1		
<u>-10 dBm</u> —	D2 -1:	1.390 dBm					- du		
							1 1		
-20 dBm—							+		
							- <u>}</u> .		
-30 dBm		1.10					Արտեր	Wellyter marine	
-30 dBm-	with would	Y ^N *							wor would
-40 dBm									
-50 dBm									
-60 dBm									
CF 1.7525	GHz			1001	l pts		_	-	10.0 MHz
					Mea	isuring		4/4	4.06.2018 14:13:50

4.1.1.1.3 Test Channel = HCH

Date: 4.JUN.2018 14:13:50

Report No.: SZEM180400253604 Page: 23 of 89

Ref Level 35.00 dBm Offset 5.00 dB RBW 50 Att 40 dB SWT 10 ms VBW 200 Prk View	kHz			
JIFK VIEW	kHz Mode Auto Swe	ер		
30 dBm	D1[1]			-2.11 d
	Occ Bw			79500 MH 34466 MH
20 dBm	M1[1]			10.98 dBi
D1 13.730 dBm			1.710	11200 GF
10 dBm 7 1 13.730 dBm T1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mandentertertert	whut2		
0 dBm				
ML ML				
-10 dBmD2 -12.270 dBm				
-20 dBm				L
-30 dBm			the stage of the s	nu min
-30 dBm			, i	w hat
-40 dBm				
-50 dBm				
-60 dBm				
])1 pts			10.0 MHz

Date: 4.JUN.2018 14:17:35

Report No.: SZEM180400253604 Page: 24 of 89

Spectrum									
Ref Level	35.00 dBm		5.00 dB 👄						
Att	40 dB	🖷 SWT	10 ms 👄	VBW 200 k	Hz Mode	Auto Swee	эр		
●1Pk View									
30 dBm					D	1[1]			-4.26 dB
30 UBIII									84500 MHz
						CC BW			34466 MHz 11.72 dBm
20 dBm					IYI	1[1]			09200 GHz
							1 70	1.700	0,200 0112
10 dBm	D1 12.580 (Mitter Historie	والالالك والمتحد والمعادية	ldAladesseries	alaburtha Bi	- The state		
							1.1		
0 dBm									
o abiii							11		
		м					1 1		
-10 dBm——	12	.420 dBm-					4.		
	D2 -13	.420 ubm							
-20 dBm——							 		
-30 dBm	the state	where the second second					- Lungerhad	W Hole and	atha .
-30 dBm	WPPAMP 20	4 ort .						Mar waahber	here way have
-40 dBm									Ť
-40 uBiii									
-50 dBm									
-60 dBm									
CF 1.7325	GHZ			1001			-	-	10.0 MHz
	」				Mea	isuring		444	4.06.2018 14:15:23

4.1.1.2.2 Test Channel = MCH

Date: 4.JUN.2018 14:15:23

Report No.: SZEM180400253604 Page: 25 of 89

Spectrum	, T								
	35.00 dBm		5.00 dB 👄						
Att	40 dB	🕤 🔵 SWT	10 ms 😑	VBW 200 kł	Hz Mode	Auto Swee	ер		
●1Pk View			1						
30 dBm					D	1[1]			-4.48 dB
30 abiii						CC BW			83500 MHz 34466 MHz
						1[1]			34400 MHZ 10.52 dBm
20 dBm						-[-]			09200 GHz
	D1 12.950 (l dBm T1					L.T2		
10 dBm		<u> </u>	Munthmany	water March 10 March 10	a. March March	3 the twee worth.	141.7		
0 dBm									
-10 dBm		M1							
TO GDIII		.050 dBm					<u> </u>		
00 JD							1 1		
-20 dBm—		ľ							
							۹. ۲		
-30 dBm		J. M.						Manonina	ybournation
-30 dBm Allon wal-w	lider areage	har -							alow a port
-40 dBm—									
-50 dBm							_		
-60 dBm									
-00 uBiii									
CF 1.7525	GHz		·	1001	pts	·		Span	10.0 MHz
][) Mea	suring		4/4 0	14.06.2018 14:14:38

4.1.1.2.3 Test Channel = HCH

Date: 4.JUN.2018 14:14:38

Report No.: SZEM180400253604 Page: 26 of 89

4.1.1.3 Test Mode = LTE/TM1 10MHz

4.1.1.3.1	Test	Channel = LC	н
-			

Spectrur	n								
	I 35.00 dBm			RBW 100 kH					
Att 1Pk View	40 dB	e swt	10 ms 👄	VBW 300 kH	IZ Mode	Auto Swe	ер		
30 dBm						1[1]			-2.10 dB 9.6100 MHz
20 dBm					M	cc Bw 1[1]			48951 MHz -9.96 dBm .02450 GHz
10 dBm	D1 14.920(dBm T1 Finh	uthenhanden	murlian	yl gyndhyrg	un mit have	172 10 100 V		
0 dBm									
-10 dBm—	D2 -11	.080 dBm							
-20 dBm—									
-30 dBm		hurd					- "Iu	aller all the former of the	Munghman w
. Աստարին է։ -40 dBm	(ILI) In Location								
-50 dBm—									
-60 dBm—									
CF 1.715	ĠHz		·	1001	pts	1		Span	20.0 MHz
					Mea	suring) 🦛 (04.06.2018 14:18:48

Date: 4.JUN.2018 14:18:48

Report No.: SZEM180400253604 Page: 27 of 89

Spectrun	n								
	I 35.00 dB			RBW 100 kH					`
Att	40 (db 😑 SWT	10 ms 🧉	VBW 300 kH	Iz Mode	Auto Swee	эр		
⊖1Pk View	1								
30 dBm					D:	1[1]			-1.56 dB 0.5300 MHz
					0	cc Bw			88911 MHz
20 dBm						1[1]			10.35 dBm
20 UDIII			-					1.72	77450 GHz
	D1 14.89	D dBm — T	Reporting	Amphonen	andenter	Maryton	4467		
10 dBm——				~0.40 0	<u> </u>	1			
0 dBm		+ +					+		
		м					$+$ \langle		
-10 dBm	D2 -:	11.110 dBm					<u>q1</u>		
		1					1		
-20 dBm—									
							- L		
-30 dBm—		under						Hundhorton	иници, 107 ⁴ 76
-30 aBm-	rully for the	1944 mill 0							arla doman . M
-40 dBm							-		
-50 dBm									
-60 dBm									
-00 ubiii									
CF 1.7325	GHz	· · · · · · · · · · · · · · · · · · ·		1001	pts			Span	20.0 MHz
					Mea	suring		4/4)4.06.2018 14:20:52 //

4.1.1.3.2 Test Channel = MCH

Date: 4.JUN.2018 14:20:52

Report No.: SZEM180400253604 Page: 28 of 89

Spectrun	n								
	l 35.00 dBm			RBW 100 k					`
Att	40 dE	s 🔵 SWT	10 ms 👄	VBW 300 k	Hz Mode	Auto Swee	р		
⊖1Pk View	1	1	I	-					
30 dBm				-	D	1[1]			-3.72 dB 5100 MHz-
					0	cc Bw			68931 MHz
20 dBm					M	1[1]			-9.10 dBm
20 00	D1 14 400	 				1	1	1.74	52650 GHz
10 dBm	D1 14.480		moundar	monor Man	my will me my up upout	montelogge	T2 Martaz		
0 dBm									
0 UBIII									
		M							
-10 dBm—	D2 -11	520 dBm							
		j –					Ţ		
-20 dBm—							<u> </u>		
-30 dBm—	ت ب ب ا ب	Jak					44.00	whenhaden	1
"hyper herewith	the forther have been as the second	u (vi v						La con reported	rthfull Max march
-40 dBm									
-50 dBm—									
-60 dBm—									
CF 1.75 G	 			100:	 ntc				20.0 MHz
				100.					20.0 19162
					Mea	suring			14:21:32

4.1.1.3.3 Test Channel = HCH

Date: 4.JUN.2018 14:21:33

Report No.: SZEM180400253604 Page: 29 of 89

4.1.1.4 Test Mode = LTE/TM2 10MHz

Spectrun	n	ך										
Ref Leve	i 35.				5.00 dB (_						
e Att		40 dE	3 😑	SWT	10 ms (● VBW	300 kH	lz Mode	Auto Swi	еер		
⊖1Pk View			-									
00 JB								D	1[1]			-5.54 dB
30 dBm												9.6700 MHz
									cc Bw			188911 MHz
20 dBm								M	1[1]			-10.20 dBm
	D1 -	12.060	 						1	L T2	1.71	L02250 GHz
10 dBm		13.860	ивш- Т		ward when	bully Marth	mound	the property of	ather the related to	hut they		
TO GDIII				1					l Ť.			
0 dBm				<u> </u>								
				мŁ								
-10 dBm												
		-D2 -12	2.140	dBm						- D(1		
-20 dBm—										1		
-20 uBiii				1						1.		
				μ						1		
-30 dBm—				r						- Way	Mutreroballingate	Wether Weller and
-su ubin-	MUMA	NUMBER	the prove									- U - W
-40 dBm												
-50 dBm												
-50 übili—												
-60 dBm												
CF 1.715 (GHz						1001	pts			 Span	20.0 MHz
	٦٢								asuring			04.06.2018
Ĺ								Mea	isariny		-	14:19:35

Date: 4.JUN.2018 14:19:36

Report No.: SZEM180400253604 Page: 30 of 89

Spectrum	, T								
	35.00 dBm			RBW 100 k					
Att	40 dB	🔵 SWT	10 ms 😑	VBW 300 k	Hz Mode	Auto Swee	р		
⊖1Pk View				1	1				
30 dBm					D	1[1]		c	-4.20 dB .5900 MHz
					0	cc Bw			48951 MHz
20 dBm					M	1[1]			10.03 dBm
						1	1	1.72	77450 GHz
10 dBm	D1 13.010 (dBm T1 	And the production of the	بالإسارية والمعروبة والم	الأيناب بارسيالك بعجب	بالالبانية ومراجع والمراجع	T2		
10 0.0111									
0 dBm									
o abiii									
-10 dBm		M							
-10 abin	D2 -12	.990 dBm					<u> </u>		
-20 dBm		ļ					L L		
-20 ubiii		ľ					1		
-30 dBm		J					hate.	the transferred	
-30 dBm	multiples	Verally					A 10.04	ant der wer wer werden der hander werden der hander der hander der hander der hander der hander der hander hander der hander der hander hander der hander	Muninplandal
-40 dBm									
-40 ubiii									
F0 40									
-50 dBm									
co in									
-60 dBm									
CF 1.7325	GHz		I	1001	l pts	I	I	Span	20.0 MHz
)[Mea	isuring		444 (4.06.2018 14:20:12

4.1.1.4.2 Test Channel = MCH

Date: 4.JUN.2018 14:20:12

Report No.: SZEM180400253604 Page: 31 of 89

Spectrun	n								
	l 35.00 dBm			RBW 100 ki					
Att	40 dE	8 🔵 SWT	10 ms 😑	VBW 300 ki	Hz Mode	Auto Swee	p		
⊖1Pk View	1	1		1	1				
30 dBm						1[1]			-4.46 dB 0.5100 MHz
20 dBm						cc Bw 1[1]	1	-	88911 MHz 11.58 dBm 52850 GHz
10 dBm	D1 14.260		and diversity	and and the state of the state	un abhailtean an a	wowwwww	T2		
0 dBm									
-10 dBm	D2 -11	M1							
-20 dBm——									
-30 dBm—		l i ul						م ا ا	
-so ann-	hyladora Hardento	appre .					MUL	rududdarthug	rdnahyherboldyna
-40 dBm—									
-50 dBm—									
-60 dBm									
CF 1.75 G	Hz			1001	. pts			-	20.0 MHz
					Mea	suring		4/4	14:06.2018 14:22:25

4.1.1.4.3 Test Channel = HCH

Date: 4.JUN.2018 14:22:26

Report No.: SZEM180400253604 Page: 32 of 89

4.1.1.5 Test Mode = LTE/TM1 15MHz

Spectrur	n								
	el 35.00 dBm			RBW 300 ki					
Att 1Pk View	40 dB	s 😑 SWT	10 ms 👄	VBW 1 MI	Hz Mode	Auto Swe	зер		
UPK VIEW					n	1[1]			-2.07 dB
30 dBm—						-[-]		14	1.7450 MHz
						cc Bw		13.4565	43457 MHz
20 dBm—	-D1 17.870(dBm				1[1]		1 71	-6.98 dBm .02470 GHz
	DI 17.070 (1 www.www.	Mulline Morrison	working	and the second	n we we e		02170 012
10 dBm									
0 dBm		м							
	n2 _8	130 dBm					<u>h</u> ı		
-10 dBm—							1		
		1							
-20 dBm—		1					MIL.		
20. dB		yport					* 44*	Maringun	1911 Work Murrelast
MAR dBPNton	Moduly and a								
-40 dBm—									
-+0 abiii									
-50 dBm—									
-60 dBm—									
05 1 7175				1001				0	00.0 MU
CF 1.7175	GHZ			1001					30.0 MHz
Ĺ					Mea	suring		-	14:28:49

Date: 4.JUN.2018 14:28:49

Report No.: SZEM180400253604 Page: 33 of 89

Spectrun	ι								
Ref Leve Att	1 35.00 dBm) Offset		RBW 300 ki		4	_		
■ All ●1Pk View	40 UB) 🖶 5พา	10 ms 👄	VBW 1 M	12 Mode	Auto Sweej	2		
30 dBm						1[1]			-3.24 dB F.7750 MHz
20 dBm	D1 17.090	dBm 	fulnikanikaku ku yu	e or he shat - 20	M	сс Вw 1[1]			13487 MHz -7.21 dBm 51870 GHz
10 dBm			nonthran,	pmarredor of a contraction of the second s	Alley Jun 1991, per ter and 15	yerrolyny, Jan Harverd, yr			
0 dBm		M							
-10 dBm	D2 -8,	910 dBm===					<u></u>		
-20 dBm—									
-30 dBm	www.	londe					5404	to monarred monarcedon	and a free more thank
-40 dBm——									
-50 dBm									
-60 dBm									
CF 1.7325	GHz			1001				-	30.0 MHz
					Mea	suring		44	14:25:44

4.1.1.5.2 Test Channel = MCH

Date: 4.JUN.2018 14:25:44

Report No.: SZEM180400253604 Page: 34 of 89

Spectrum									
	35.00 dBm			RBW 300 kł					· · · · ·
Att	40 dB	B 😑 SWT	10 ms 👄	VBW 1 MH	Hz Mode	Auto Swe	ер		
⊖1Pk View		1							
30 dBm					D	1[1]			-3.58 dB -7750 MHz
					0	cc Bw	13.456543457 MHz		
20 dBm						1[1]		10.1000	-6.10 dBm
	D1 17.240	ו dBm דעש	tanda dana a ba	di			д. то	1.74	01270 GHz
		l y	l en Drode Mannel	allever all the transmitted	ll ^a landolay jana ll'pat	and the second	ruuna 2		
10 dBm									
							1		
0 dBm		MI					1		
		1 🌱							
-10 dBm—	D2 -8.1	760 dBm <u></u>					- 1		
-20 dBm—							+		
	i da n	al							
1+3000081041	<u>http:///http://</u>	WWW -					Buyli	haldblandarall	Although the
head an and a con-	koll floor								a sum Moun ad
-40 dBm									
-50 dBm									
-30 ubiii									
co do-									
-60 dBm									
CF 1.7475	GHz		I	1001	pts	ı		Span	30.0 MHz
					Mea	suring		444	14.06.2018 14:24:29

4.1.1.5.3 Test Channel = HCH

Date: 4.JUN.2018 14:24:29

Report No.: SZEM180400253604 Page: 35 of 89

4.1.1.6 Test Mode = LTE/TM2 15MHz

4.1.1.6.1 Test Channel = LCH

Spectrum					
	: 5.00 dB 👄 RBW 300 k				
Att 40 dB 👄 SWT	10 ms 画 VBW 1 M	Hz Mode Auto Swee	р		
●1Pk View	1	Γ			
30 dBm		D1[1]			-1.90 dB
					.8050 MHz
		Occ Bw M1[1]			13487 MHz -7.57 dBm
20 dBm D1 17.480 dBm T1					01870 GHz
	wellen on ton your with the market	Nowyouffunner about our	pulMiz2		01070 012
10 dBm			− ₹		
0 dBm					
			<u></u>		
-10 dBm02 -8.520 dBm			1 t		
			1		
-20 dBm			┝──╢		
			lipera	Applane Malerimed.	with more france
-30 dBm				· • • !otwoł	an na sha wan da far ta
Arenal Walter Barray and Contraction of the					
-40 dBm					
-50 dBm					
-60 dBm					
CF 1.7175 GHz	1001	L pts		-	30.0 MHz
		Measuring		4/4 0	4.06.2018 14:28:00

Date: 4.JUN.2018 14:28:00

Report No.: SZEM180400253604 Page: 36 of 89

Spectrum	ι								
	35.00 dBm			RBW 300 kł					`
e Att	40 dB) 🛑 SWT	10 ms 👄	VBW 1 MH	Hz Mode	Auto Swe	зер		
●1Pk View						4543			0.00.10
30 dBm					U	1[1]		14	-3.92 dB 4.7750 MHz
								13487 MHz	
20 dBm						11[1]			-7.24 dBm
	D1 16.720)	l dBm 	المعالية الم	Mar 1 at			. dro	1.72	252170 GHz
		- And	r waannaannaan	Mornighter	wither waynes	annor habitation	The second se		
10 dBm									
0 dBm		<u> </u>					+		
		M							
-10 dBm	D2 -9.3	280 dBm===							
							1		
-20 dBm—									
							୍ ଏ କ୍ରାନ୍ କରୁ		
-30 dBM		WW.P					~~~~	Munulmelilulyu	Warman Madacher
with-albertan 140									
-40 dBm—									
-+0 ubiii									
-50 dBm—									
-60 dBm—									
CF 1.7325	GHz	I		1001	pts	<u> </u>	I	l Span	30.0 MHz
(Ϋ́					asuring		-	04.06.2018
(asaring			14:26:19

4.1.1.6.2 Test Channel = MCH

Date: 4.JUN.2018 14:26:19

Report No.: SZEM180400253604 Page: 37 of 89

Spectrum	ı)								
	I 35.00 dBm			RBW 300 ki					
Att	40 dB	s 🔵 SWT	10 ms 😑	VBW 1 M	Hz Mode	Auto Swe	ер		
⊖1Pk View	1	1	1	1					
30 dBm					D	1[1]		1.4	-2.87 dB 7150 MHz
					0	cc Bw			13487 MHz
						1[1]		10.4000	-7.24 dBm
20 dBm	D1 16.980 (l dBm 						1.74	01870 GHz
			how when the work	walk when the w	you by Whenthe and the	Wander and Martin	multulle ²		
10 dBm		<u> </u>							
							1		
0 dBm									
		Mİ					4		
-10 dBm—	D2 -9.0	020 dBm					<u>f1</u>		
							1 1		
-20 dBm							Ц		
-20 0011		1					1		
	الاستنباب ا	1 process					You	4hlh runario	erentitypt/hitestate
-30 dBarton	orhann-anger								per-hilder Hitchick
-40 dBm——									
-50 dBm									
-60 dBm—									
CF 1.7475	GHz			1001	pts			-	30.0 MHz
					Mea	suring		4/4	4.06.2018 14:23:27

4.1.1.6.3 Test Channel = HCH

Date: 4.JUN.2018 14:23:27

Report No.: SZEM180400253604 Page: 38 of 89

4.1.1.7 Test Mode = LTE/TM1 20MHz

Spectrun	ı)								
	l 35.00 dBm			RBW 300 kH					
Att	40 dE	B 👄 SWT	10 ms 👄	VBW 1 Mł	Iz Mode	Auto Swei	ер		
⊖1Pk View						1[1]			-2.68 dB
30 dBm					U	1[1]		19	-2.08 UB
					0	cc Bw			97902 MHz
20 dBm					M	1[1]			-7.26 dBm
	D1 17.400	dBm	111 March Marchanster	homewhere	woodhiventy	phormation	where a	1.71	05290 GHz
10 dBm		y y y	and the second to						
0 dBm									
		м							
-10 dBm	D2 -8.	600 dBm					<u>dı</u>		
10 0.011							1		
-20 dBm—									
20 0011		/						dilla solo	
-30, dBm 	باير س	he he					՝ ՝ Մի	MINNM	Austron Marthal mas
approxibility fully	hand a share a	MAR R							
-40 dBm									
-+0 ubm									
-50 dBm									
-30 UBIII									
-60 dBm									
CF 1.72 Gł	- Hz	•		1001	pts	•	•	Span	40.0 MHz
					Mea	suring		4/4	4.06.2018 14:31:47

Date: 4.JUN.2018 14:31:47

Report No.: SZEM180400253604 Page: 39 of 89

Spectrum	ı)								
	35.00 dBm			RBW 300 kH					
Att	40 dE	B 😑 SWT	10 ms 👄	VBW 1 MH	Iz Mode	Auto Swee	р		
⊖1Pk View		1	1	,					
30 dBm					D	1[1]			-1.31 dB
50 abiii					~	cc Bw).4210 MHz 37862 MHz
						1[1]		17.8021	-9.37 dBm
20 dBm—		1				1(1)		1.72	28700 GHz
	D1 16.000	dBm 工品州	anyth Anderiva	hoursemonth	www.www.	No handlow	11-12-		
10 dBm		<u>y</u>							
0 dBm									
		l nan					\ <u>\</u>		
-10 dBm	D210	Mt 0.000 dBm					Q 1		
-10 0011	D2 -10						•		
-20 dBm—									
							huller	marghalithered	
-30 dBm	h	with provided							www.www.
Werker Her Hereithan	hill work and the second	T							
-40 dBm—									
-50 dBm—									
-60 dBm									
CF 1.7325	GHz		•	1001	pts			Span	40.0 MHz
	Υ				Mea	suring		4/4)4.06.2018 14:32:30
									14:32:30

4.1.1.7.2 Test Channel = MCH

Date: 4.JUN.2018 14:32:30

Report No.: SZEM180400253604 Page: 40 of 89

Spectrun	n								
	l 35.00 dBm			RBW 300 kH					
Att	40 dB	SWT 🖷	10 ms 👄	VBW 1 Mł	Iz Mode	Auto Swe	ер		
⊖1Pk View	1	1	1	1 1					
30 dBm					D	1[1]		10	-3.90 dB 0.4610 MHz
					0	CC BW			97902 MHz
20 dBm						1[1]			-8.68 dBm
20 UDIII	D1 16.140	 dBm <u>T</u> -1						1.73	53300 GHz
	01 10/110	Ĭ Ywy	and and and all and a	Munshing	Lunnorth	Humandhu	white the second		
10 dBm——									
0 dBm									
		MĮ							
-10 dBm	D2 -9,	860 dBm					dı		
							1		
-20 dBm		├							
	A Buch	n A					ՄԱ/ԿԵ Թ	ጠር ለለ	
1,0,300 /0./11/14.	Mar Wards	тиш. «						httener Marine	MARKA WINNING
0M.∧ .									ն թիջ միս
-40 dBm									
10 abiii									
-50 dBm									
-60 dBm						1			
CF 1.745 (GHz	1	1	1001	pts	1		l Span	40.0 MHz
	Υ					asuring		-	5.06.2018
									03:07:41

4.1.1.7.3 Test Channel = HCH

Date: 5.JUN.2018 03:07:42

Report No.: SZEM180400253604 Page: 41 of 89

4.1.1.8 Test Mode = LTE/TM2 20MHz

4.1.1.8.1 Test Channel = LCH

Spectrun	n)								
	I 35.00 dBm			RBW 300 k					
Att	40 dE	B 🖷 SWT	10 ms 👄	VBW 1 M	Hz Mode	Auto Swee	ер		
⊖1Pk View	1	T	1						ah ro a
30 dBm					<u> </u>	1[1]		10	-5.07 dB 9.2610 MHz
					0	cc Bw			97902 MHz
20 dBm					M	1[1]			-7.26 dBm
	D1 16.040	I dBm 			and the shear	in sulfactor	Jitad 2	1.71	L04500 GHz
10 dBm		Tot	Muranpol	Hundred	ખતના બેત્ત્રા વ્યવસાયના ગયા	aMart-dille a	A MALE		
0 dBm									
0 UBIII		MŁ							
		1							
-10 dBm	D2 -9.	960 dBm							
							4		
-20 dBm—									
							Աստեն	wheel he have	Mondal March 1.
-30 dBm	hould have a surd have	tow they							COLAINAN
Mushar Arriver of	No indeno ku ⊾								
-40 dBm—									
-50 dBm—									
-60 dBm									
05 1 70 01				1001					40.0 111-
CF 1.72 G	HZ			1001					40.0 MHz
					Mea	suring			14:29:40

Date: 4.JUN.2018 14:29:40

Report No.: SZEM180400253604 Page: 42 of 89

Spectrum	ı)								
	35.00 dBm			RBW 300 ki					
Att	40 dB	🖷 SWT	10 ms 😑	VBW 1 M	Hz Mode	Auto Swe	ер		
⊖1Pk View		1		1					
30 dBm					D	1[1]			-4.06 dB
50 abiii					~	D			9.3010 MHz
						cc Bw 1[1]		17.9020	97902 MHz -8.30 dBm
20 dBm						1[1]		1 72	-8.30 uBm 29500 GHz
	D1 15.840 (dBm T በሌ	When Arus and	honormanility	a dawned Martille w	ala Montana	June J2		
10 dBm		₹		· · · · ·	. weld 1 o. 0 oo i o.		The second se		
0 dBm									
		M					1 3		
<u> 10 dBm</u>	D2 -10	.160 dBm					- d <u>1</u>		
							1 1		
-20 dBm—									
							1 1		
-30 dBm		und					Mud	habertoling	annul
-30 dBm-	phil and whether and	w0 · · ·							
-40 dBm—									
-50 dBm—									-
-60 dBm									
CF 1.7325	GHz			1001	pts			Span	40.0 MHz
					Mea	asuring		4/4	04.06.2018 14:33:04 //

4.1.1.8.2 Test Channel = MCH

Date: 4.JUN.2018 14:33:05

Report No.: SZEM180400253604 Page: 43 of 89

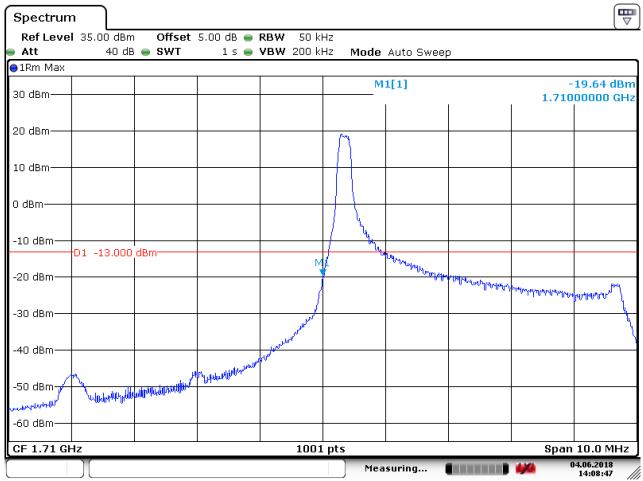
20 dBm 0cc Bw 17.942057942 MHz 20 dBm 01 15.750 dBm 1.7354100 GHz 10 dBm 1.7354100 GHz 1.7354100 GHz 0 dBm 0 dBm 0.1 1.7350 dBm 10 dBm 0.1 15.750 dBm 1.7354100 GHz 10 dBm 0.1 1.7354100 GHz 1.7354100 GHz 10 dBm 0.1 1.7354100 GHz 1.7354100 GHz 10 dBm 0.2 1.0250 dBm 0.1 1.7354100 GHz -20 dBm 0.1 0.1 0.1 1.745 GHz 0.1 -50 dBm 0.1 0.1 0.1 0.1 1.7354100 GHz -60 dBm 0.1 0.1 0.1 0.1 1.7354100 GHz -60 dBm 0.1 0.1 0.1 0.1 1.745 GHz 1001 pts Span 40.0 MHz	Spectrum	ı)								
1Pk View D1[1] -2.10 dB 30 dBm 0 cc Bw 19.3410 MHz 20 dBm 01 13.750 dBm M1[1] -8.85 dBm 10 dBm 01 15.750 dBm The way										
30 dBm D1[1] -2.10 dB 30 dBm 0cc Bw 19.3410 MHz 20 dBm 0cc Bw 17.942057942 MHz 20 dBm 01 15.750 dBm The day for day		40 dB	s 🔵 SWT	10 ms 👄	VBW 1 M	Hz Mode	Auto Swi	еер		
30 dBm 19.3410 MHz 20 dBm 0cc Bw 17.942057942 MHz 20 dBm -8.85 dBm 10 dBm 1.7354100 GHz 0 dBm 1.7354100 GHz 10 dBm 1.7354100 GHz -20 dBm -10.250 dBm -20 dBm -10.00 Htz -20 dBm -20 dBm -20 dBm	⊖IPK VIEW		1	1			4541			0.10.40
20 dBm 0cc Bw 17.942057942 MHz 20 dBm 01 15.750 dBm -8.85 dBm 10 dBm 0 dBm 1.7354100 GHz 0 dBm 0 dBm 0 0 10 dBm 02 -10.250 dBm 0 0 -20 dBm 0 0 0 0 -20 dBm 0 0 0 0 -20 dBm 0 0 0 0 0 -20 dBm 0 0 0 0 0 0 -20 dBm 0 0 0 0 0 0 0 -20 dBm 0 0 0 0 0 0 0 -20 dBm 0 0 0 0 0 0 0 -20 dBm 0 0 0 0 0 0 0 -50 dBm 0 0 0 0 0 0 0 -60 dBm 0 0 0 0 <td>30 dBm</td> <td></td> <td></td> <td></td> <td></td> <td>U</td> <td>1[1]</td> <td></td> <td>10</td> <td></td>	30 dBm					U	1[1]		10	
10 dBm 1.7354100 GHz 10 dBm 1.7354100 GHz 0 dBm 1.7354100 GHz 10 dBm 1.7354100 GHz 20 dBm 1.1 -20 dBm 1.1 -40 dBm 1.1 -50 dBm 1.1 -60 dBm 1.001 pts Span 40.0 MHz						0	cc Bw			
01 15.750 dBm 1.7354100 GHz 10 dBm 10 10 10 0 dBm 10 10 10 10 dBm 10 11 10 10 dBm 12 10 11 -20 dBm 11 11 11 -20 dBm 10 10 10 10 -40 dBm 10 10 10 10 10 -50 dBm 10 1001 pts Span 40.0 MHz 10 -60 dBm 1001 pts Span 40.0 MHz 10 10 10	20 dBm					M	1[1]			-8.85 dBm
10 dBm 0 dBm 10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 20 dBm -20	20 0011	D1 15 750 (l dBm a-						1.73	54100 GHz
0 dBm 10 dBm 20 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -50 dBm -60 dBm	10 40	DI 10,700 .	Talus ↓	war have	ana ana ana ang ang ang ang ang ang ang	mon hugh	happy	multin Z		
10 d8m D2 -10.250 dBm -20 d8m -20 d8m -40 d8m -40 d8m -50 d8m -60 d8m -60 d8m -60 d8m -60 d8m -60 d8m										
10 d8m D2 -10.250 dBm -20 d8m -20 d8m -40 d8m -40 d8m -50 d8m -60 d8m -60 d8m -60 d8m -60 d8m -60 d8m										
10 dBm D2 -10.250 dBm -20 dBm -20 dBm -20 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -1001 pts Span 40.0 MHz	0 dBm									
10 dBm D2 -10.250 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm 1001 pts Span 40.0 MHz			M					11.		
GBURDEN	10 dBm	D2 -10).250 dBm							
GBURDEN										
-40 dBm -50 dBm -60 dBm -60 dBm CF 1.745 GHz 1001 pts Span 40.0 MHz 05.06.2018	-20 dBm—									
-40 dBm -50 dBm -60 dBm -60 dBm -60 dBm CF 1.745 GHz 1001 pts Span 40.0 MHz 05.06.2018			dialk (- HALA	l ta h	
-40 dBm -50 dBm -60 dBm -60 dBm CF 1.745 GHz 1001 pts Span 40.0 MHz 05.06.2018		ryllbyhyh	Manh					° (16)	many monthe	Politica de contra
-50 dBm -60 dBm -60 dBm CF 1.745 GHz 1001 pts Span 40.0 MHz 05.06.2018	MIN AN INT									· · · · · · · · · · · · · · · · · · ·
-50 dBm -60 dBm -60 dBm CF 1.745 GHz 1001 pts Span 40.0 MHz 05.06.2018	-40 dBm									
-60 dBm60										
-60 dBm60	50 dBm									
CF 1.745 GHz 1001 pts Span 40.0 MHz Maccurring 05.06.2018	-JU UBIII									
CF 1.745 GHz 1001 pts Span 40.0 MHz Maccurring 05.06.2018										
Moscuring 05.06.2018	-60 dBm									
	CF 1.745 C	GHz	1	1	1001	. pts	1	I	Span	40.0 MHz
		Υ				Mea	asuring		· •)5.06.2018 03:08:25

4.1.1.8.3 Test Channel = HCH

Date: 5.JUN.2018 03:08:25

Report No.: SZEM180400253604 Page: 44 of 89

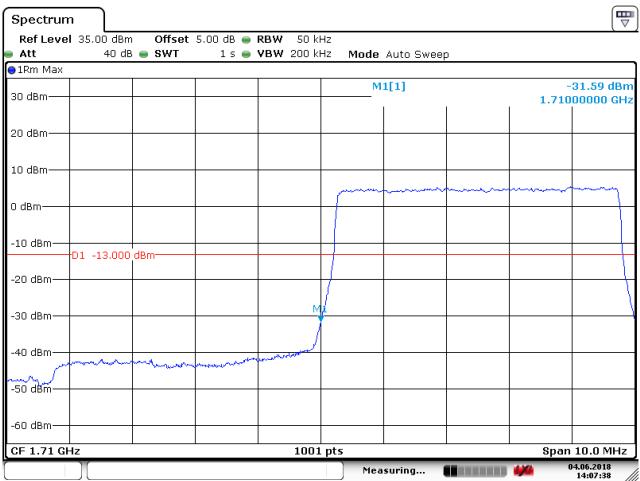
5 Band Edges Compliance


5.1 For LTE

5.1.1 Test Band = LTE BAND 4

5.1.1.1 Test Mode = LTE/TM1 5MHz

5.1.1.1.1 Test Channel = LCH


5.1.1.1.1.1 Test RB=1RB

Date: 4.JUN.2018 14:08:47

Report No.: SZEM180400253604 Page: 45 of 89

5.1.1.1.1.2 Test RB=25RB

Date: 4.JUN.2018 14:07:38

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Document.aspx. Attention is farawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is ensored except in full, without prior written approval of the Company. Any unauthorized alteration, forgrey or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400253604 Page: 46 of 89

5.1.1.1.2.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 50 kHz Att 40 dB 🔵 SWT 1 s 👄 **VBW** 200 kHz Mode Auto Sweep ●1Rm Max M1[1] -20.56 dBm 30 dBm-1.75500000 GHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm-Adoration والمنعا 🕫 dBm -40 dBm-A. apple and the second states of the second se harrolepo -50 dBmwith the line which manys -60 dBm-CF 1.755 GHz 1001 pts Span 10.0 MHz 04.06.2018 Measuring... lli 14:12:42

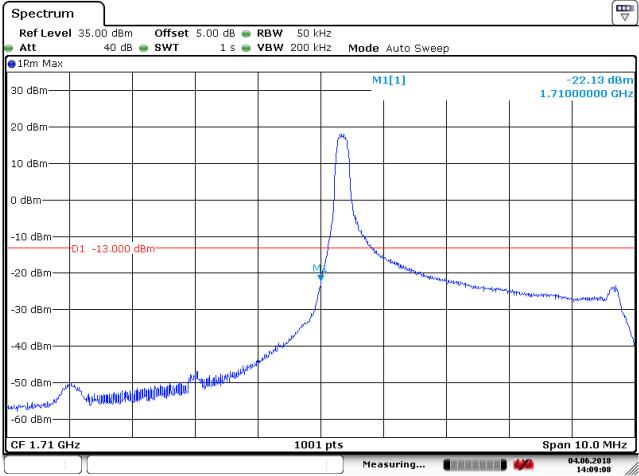
5.1.1.1.2 Test Channel = HCH

Date: 4.JUN.2018 14:12:42

Report No.: SZEM180400253604 Page: 47 of 89

5.1.	1.1.2.2 10	St nD=201	סר						_
Spectrum	ı]								[₩
	35.00 dBm		5.00 dB 👄						
Att	40 dB	SWT 😑 SWT	1 s 👄	VBW 200 k	Hz Mode	Auto Sweej	2		
●1Rm Max									
					M	11[1]			32.26 dBm
30 dBm						I	I	1.755	00000 GHz
20 dBm									
20 02									
10 dBm									
- manufacture and	have a stand and the stand of the	Maria and a marine		an-waangiyahy					
0 dBm			· · ·						
-10 dBm		 							
	D1 -13.000	abm							
-20 dBm									
/]					
(-30 dBm				IV IV	1				
					Κ				
-40 dBm—					Marcason Con	410 annaly provide	makely a salling t	dela su com	
								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ally here we want
-50 dBm									
co do -									
-60 dBm									
CF 1.755 G	Hz	•	•	1001	pts	•		Span	10.0 MHz
	][				) Mea	asuring		<b>4</b>	4.06.2018 14:12:58

5.1.1.1.2.2 Test RB=25RB


Date: 4.JUN.2018 14:12:58



Report No.: SZEM180400253604 Page: 48 of 89

### 5.1.1.2 Test Mode = LTE/TM2 5MHz 5.1.1.2.1 Test Channel = LCH

### 5.1.1.2.1.1 Test RB=1RB



Date: 4.JUN.2018 14:09:08



Report No.: SZEM180400253604 Page: 49 of 89

Spectrum									
Ref Level	35.00 dBm	) Offs	et 5.00 dB 👄	RBW 50 kH	lz				
🖷 Att	40 dB	s 👄 SWT	- 1s 👄	<b>VBW</b> 200 kH	lz Mode	Auto Swee	p		
⊖1Rm Max									
30 dBm					M	1[1]			32.98 dBm 00000 GHz
20 dBm									
10 dBm									
0 dBm						and an family and a second second second	and the second	en-taille	manthe marking
-10 dBm									
-20 dBm	D1 -13.000				]				
-30 dBm					[				
-40 dBm			have a france and a series	- manual and and					
-50 dBm	Lannan ang mang ang ang ang ang ang ang ang ang ang	have the second	handerframmander						
-60 dBm									
CF 1.71 GH	z	1	I	1001	pts			Span	10.0 MHz
	][]					isuring			)4.06.2018 14:09:39

5.1.1.2.1.2 Test RB=25RB

Date: 4.JUN.2018 14:09:39



Report No.: SZEM180400253604 Page: 50 of 89

#### 5.1.1.2.2.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 50 kHz Att 40 dB 🔵 SWT 1 s 👄 **VBW** 200 kHz Mode Auto Sweep ●1Rm Max M1[1] -22.10 dBm 30 dBm-1.75500000 GHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm--20 dBm--**3∕**0 dBm∙ -40 dBm-^uwhite -50 dBm-4 May Millington abuilt of a constraint of the second Manhan -60 dBm-CF 1.755 GHz 1001 pts Span 10.0 MHz 04.06.2018 ••••• Measuring... lli 14:12:24

5.1.1.2.2 Test Channel = HCH

Date: 4.JUN.2018 14:12:24

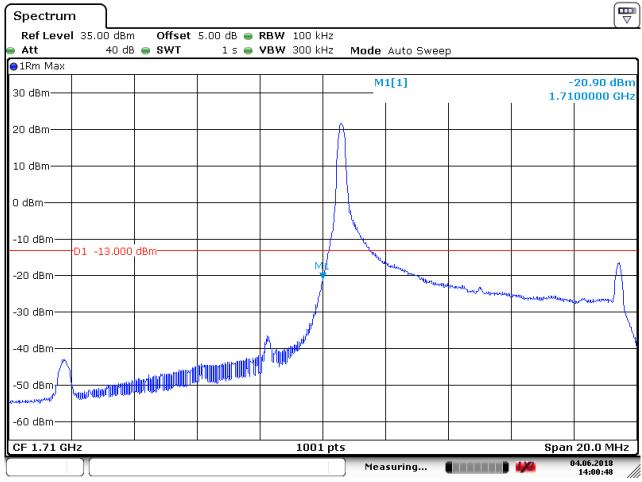
"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx">http://www.sgs.com/en/Terms-en-Document.aspx</a>. Attention is farawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is ensored except in full, without prior written approval of the Company. Any unauthorized alteration, forgrey or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM180400253604 Page: 51 of 89

Spectrum									Ē
Ref Level	35.00 dBn	n Offse	t 5.00 dB 👄	<b>RBW</b> 50 k	Hz				
Att	40 dE	B 👄 SWT	1 s 👄	<b>VBW</b> 200 k	Hz Mode	Auto Swee	р		
●1Rm Max		1		1					
30 dBm					M	1[1]	1		32.48 dBm 00000 GHz 
20 dBm									
10 dBm									
0 dBm			*******	hunn					
-10 dBm	D1 -13.000								
-20 dBm									
-30 dBm					1				
-40 dBm					homen				
-50 dBm							- Makannahan	harrow	munen
-60 dBm CF 1.755 G	Hz			1001	pts			Span	10.0 MHz
	Υ					suring			)4.06.2018 14:11:58

#### 5.1.1.2.2.2 Test RB=25RB


Date: 4.JUN.2018 14:11:59



Report No.: SZEM180400253604 Page: 52 of 89

## 5.1.1.3 Test Mode = LTE/TM1 10MHz

### 5.1.1.3.1 Test Channel = LCH 5.1.1.3.1.1 Test RB=1RB



Date: 4.JUN.2018 14:00:49



Report No.: SZEM180400253604 Page: 53 of 89

Spectrum	ı )								
	35.00 dBm			RBW 100 ki					
Att 1Rm Max	40 ae	B 🔵 SWT	15 📟	<b>VBW</b> 300 kł	HZ Mode	Auto Swee	эр		
o ikmi Max		1	1	1					
30 dBm						1[1]	I		34.79 dBm 00000 GHz 
20 dBm									
10 dBm									
0 dBm						and the second	Andrew State and State	and the second	
-10 dBm									
-20 dBm	D1 -13.000	dBm							
-30 dBm				M					
-40 dBm				2	ŧ				
June	and the second	- Julius marine	ape, and a second second second	owner the well with					
∿50°dƁm′—									
-60 dBm CF 1.71 GH	17			1001	nts			Snan	20.0 MHz
(	Υ					suring		-	)4.06.2018
									13:59:42

5.1.1.3.1.2 Test RB=50RB

Date: 4.JUN.2018 13:59:42



Report No.: SZEM180400253604 54 of 89 Page:

lli

#### 5.1.1.3.2.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 100 kHz Att 40 dB 🔵 SWT 1 s 👄 **VBW** 300 kHz Mode Auto Sweep . ●1Rm Max M1[1] -21.18 dBm 30 dBm-1.7550000 GHz 20 dBm-10 dBm⁻ 0 dBm--10 dBm-D1 -13.000 dBm-Ŵ -2<mark>0</mark> dBm-3<mark>0 dBm</mark> and a philipping a philipping and a phil -40 dBm--50 dBm-Hemony Henry -60 dBm-CF 1.755 GHz 1001 pts Span 20.0 MHz 04.06.2018 Measuring... 13:58:39

5.1.1.3.2 Test Channel = HCH

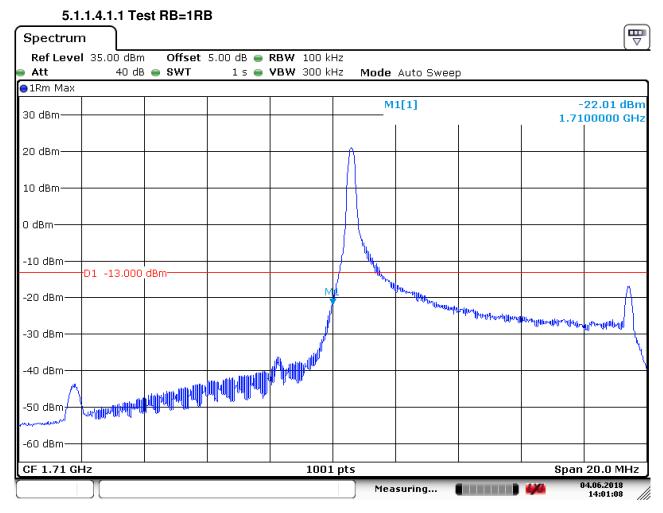
Date: 4.JUN.2018 13:58:39



Report No.: SZEM180400253604 Page: 55 of 89

5.1	.1.3.2.2 10	51 ND=30	ND						
Spectrun	n ]								
Ref Leve Att	1 35.00 dBm 40 dB	) Offset S <b>e</b> SWT		<b>RBW</b> 100 k <b>VBW</b> 300 k		Auto Swee	p		
⊖1Rm Max									
30 dBm					M	1[1]	1		34.39 dBm 50000 GHz
20 dBm									
10 dBm									
0 dBm	hhuman	m	t-thereway	- marine					
-10 dBm—	-D1 -13.000	dBm							
-20 dBm—	D1 13,000								
/ -30 dBm					1				
, -40 dBm					here				
-50 dBm					manderson	and a second and a second	muanna	an say water	my wand most
-60 dBm									
CF 1.755 (				1001	nte				20.0 MHz
				1001		suring			04.06.2018
L I	Л				) riea	suriny			13:58:54

5.1.1.3.2.2 Test RB=50RB


Date: 4.JUN.2018 13:58:54



Report No.: SZEM180400253604 Page: 56 of 89

## 5.1.1.4 Test Mode = LTE/TM2 10MHz

### 5.1.1.4.1 Test Channel = LCH



Date: 4.JUN.2018 14:01:09



Report No.: SZEM180400253604 Page: 57 of 89

Spectrum	- )									
Ref Level			ffset 5.00 di							
Att 1Rm Max	40	)dB 😑 S'	WI I	s 👄 VBW	3UU KHZ	Mode	Auto Swe	ер		
30 dBm						M	1[1]	1		34.36 dBm .00000 GHz
20 dBm										
10 dBm										
0 dBm							and the second	an particular and for the second	allen and a second a	-
-10 dBm	D1 -13.0	)00_dBm-								
-20 dBm										
-30 dBm										
-40 dBm			and a second second	mar and a start and a start and a start	1 maren 1					
***50 dBm	- Marine - Constanting - Const	and an and a second	w · · ·							
-60 dBm										
CF 1.71 GH	lz		1		1001 p	ts	1		-	20.0 MHz
						Mea	asuring		<b>44</b>	04.06.2018 14:01:28

5.1.1.4.1.2 Test RB=50RB

Date: 4.JUN.2018 14:01:29



Report No.: SZEM180400253604 Page: 58 of 89

#### 5.1.1.4.2.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 100 kHz Att 40 dB 🔵 SWT 1 s 👄 **VBW** 300 kHz Mode Auto Sweep . ●1Rm Max M1[1] -19.58 dBm 30 dBm-1.7550000 GHz 20 dBm-10 dBm⁻ 0 dBm--10 dBm-D1 -13.000 dBm-1 -2<mark>0</mark> dBm--3<mark>0 dBm</mark>∙ White Man and the state of the second state of -40 dBm--50 dBm--60 dBm-CF 1.755 GHz 1001 pts Span 20.0 MHz 04.06.2018 Measuring... lli 13:57:49

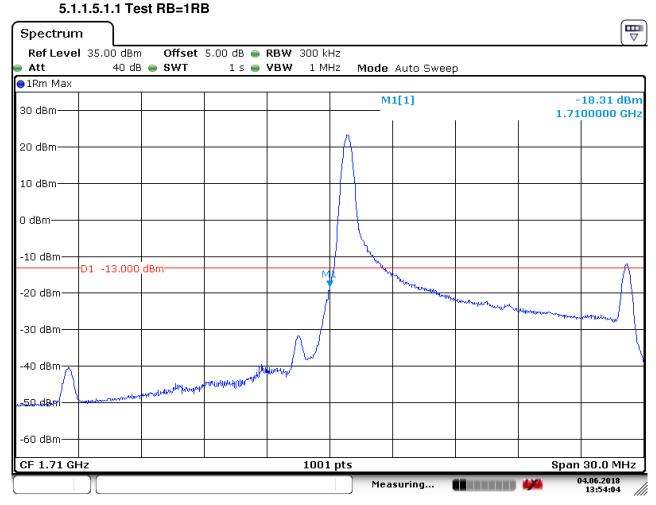
5.1.1.4.2 Test Channel = HCH

Date: 4.JUN.2018 13:57:50



Report No.: SZEM180400253604 Page: 59 of 89

Spectrum	ı )								
	35.00 dBm		5.00 dB 👄						
Att 1Rm Max	40 dB	s 👄 SWT	1 s 👄	<b>VBW</b> 300 k	Hz Mode	Auto Swee	p		
30 dBm					M	<b>1[1]</b>			35.22 dBm 50000 GHz
20 dBm									
10 dBm									
0 dBm	**~.v****	-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		wanny					
-10 dBm	D1 -13.000	dBm							
-20 dBm									
, 30 dBm				hy hy	1				
-40 dBm					Muler wards	un have	mon		
-50 dBm							-	a monte	and a march a little and
-60 dBm									
CF 1.755 G	Hz			1001	. pts				20.0 MHz
	][]				Mea	suring		<b>4/4</b>	)4.06.2018 13:57:25


5.1.1.4.2.2 Test RB=50RB

Date: 4.JUN.2018 13:57:25



Report No.: SZEM180400253604 Page: 60 of 89

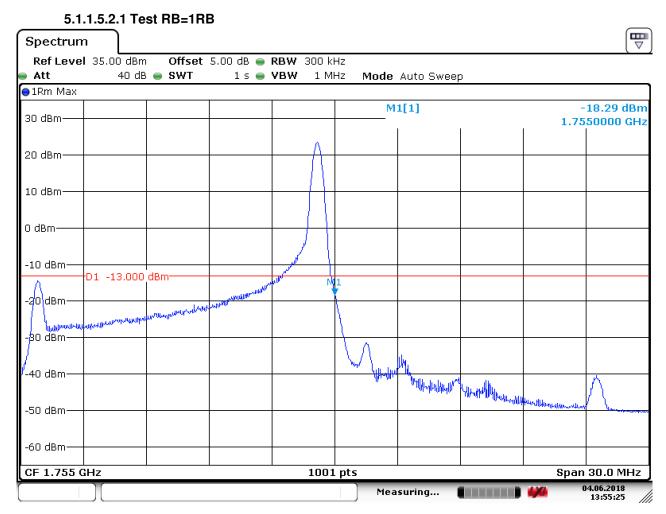
### 5.1.1.5 Test Mode = LTE/TM1 15MHz 5.1.1.5.1 Test Channel = LCH



Date: 4.JUN.2018 13:54:05



Report No.: SZEM180400253604 Page: 61 of 89


Spectrum									
Ref Level Att		) Offset ) = SWT	5.00 dB 👄 1 s 👄	<b>RBW</b> 300 kł <b>VBW</b> 1 Mł		A			
● 1Rm Max	40 46	) <b>-</b> 3WI	15 🖷	YDYY I MI	12 MOUE	Auto Swe	ер		
30 dBm					M	1[1] 	1		-31.36 dBm 100000 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm									$\left  \right $
-30 dBm				м	<u> </u>				<u> </u>
-40 dBm		and the second s							
-50 dBm									
-60 dBm									
CF 1.71 GH	z	I	I	1001	pts	I		Span	30.0 MHz
					Mea	suring		<b>444</b>	04.06.2018 13:54:23

5.1.1.5.1.2 Test RB=75RB

Date: 4.JUN.2018 13:54:23



Report No.: SZEM180400253604 Page: 62 of 89



5.1.1.5.2 Test Channel = HCH

Date: 4.JUN.2018 13:55:25



Report No.: SZEM180400253604 Page: 63 of 89

5.1.	1.5.2.2 10	SI ND=75	nD						
Spectrum	ר ( י								
Ref Level e Att	35.00 dBm 40 dB	n Offset 3 <b>e SWT</b>	5.00 dB 👄 1 s 👄	<b>RBW</b> 300 k <b>VBW</b> 1 M		e Auto Swe	зер		<b>`</b>
⊖1Rm Max									
30 dBm					<u>م</u>	41[1]	I		31.36 dBm 50000 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm									
/ 1-30 dBm				ł ł	1				
-40 dBm					Marine Marine	un and a start of the start of	and the second	the second s	
-50 dBm									and the second
-60 dBm									
CF 1.755 G	iHz			1001	l pts			 Span	30.0 MHz
	][					asuring			)4.06.2018 13:55:04

5.1.1.5.2.2 Test RB=75RB

Date: 4.JUN.2018 13:55:04



Report No.: SZEM180400253604 Page: 64 of 89

#### 5.1.1.6.1.1 Test RB=1RB ₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 300 kHz 40 dB 💿 SWT 1 s 👄 VBW Att 1 MHz Mode Auto Sweep ●1Rm Max M1[1] -16.79 dBm 30 dBm-1.7100000 GHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm 44-1-44<u>4-1-1-1-4</u> -20 dBmundehologichenstaat die algeratestudiet ومعالجاتك -30 dBm--40 dBm--50-d8m -60 dBm-1001 pts CF 1.71 GHz Span 30.0 MHz 04.06.2018 13:53:50 Measuring...

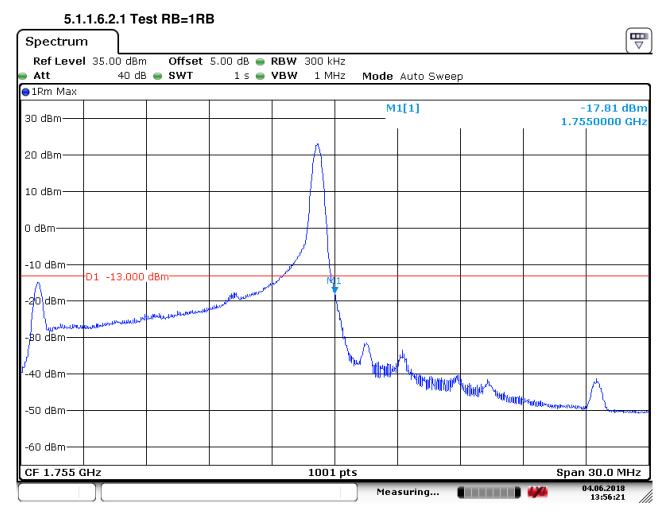
### 5.1.1.6 Test Mode = LTE/TM2 15MHz 5.1.1.6.1 Test Channel = LCH

Date: 4.JUN.2018 13:53:50



Report No.: SZEM180400253604 Page: 65 of 89

#### ₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 300 kHz 40 dB 🔵 1 s 👄 VBW SWT Att 1 MHz Mode Auto Sweep ●1Rm Max M1[1] -33.34 dBm 30 dBm-1.7100000 GHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm--30 dBm--40 dBm--50 dBm--60 dBm-CF 1.71 GHz 1001 pts Span 30.0 MHz 04.06.2018 13:52:25 Measuring...


5.1.1.6.1.2 Test RB=75RB

Date: 4.JUN.2018 13:52:25

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx">http://www.sgs.com/en/Terms-en-Document.aspx</a>. Attention is farawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is ensored except in full, without prior written approval of the Company. Any unauthorized alteration, forgrey or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM180400253604 Page: 66 of 89



### 5.1.1.6.2 Test Channel = HCH

Date: 4.JUN.2018 13:56:22

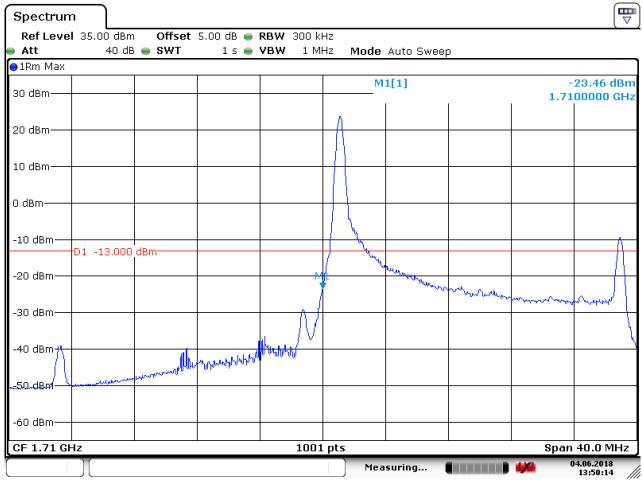


Report No.: SZEM180400253604 Page: 67 of 89

Spectrum									
Ref Level	35.00 dBm	n Offset	t 5.00 dB 👄	<b>RBW</b> 300 ki	Ηz				
🖷 Att	40 dB	B 👄 SWT	1 s 👄	<b>VBW</b> 1 M	Hz Mode	Auto Swee	ep		
⊖1Rm Max									
30 dBm					м	1[1]	I		32.44 dBm 50000 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm									
/-30 dBm				h h	1				
-40 dBm					Marrie Carrows	the second s	and the second design of the s	and the second se	
-50 dBm									
-60 dBm									
CF 1.755 GI	Hz			1001	. pts			l Span	30.0 MHz
	][]				Mea	suring		<b>4/4</b> (	4.06.2018 13:56:37

5.1.1.6.2.2 Test RB=75RB

Date: 4.JUN.2018 13:56:38




Report No.: SZEM180400253604 Page: 68 of 89

## 5.1.1.7 Test Mode = LTE/TM1 20MHz

### 5.1.1.7.1 Test Channel = LCH

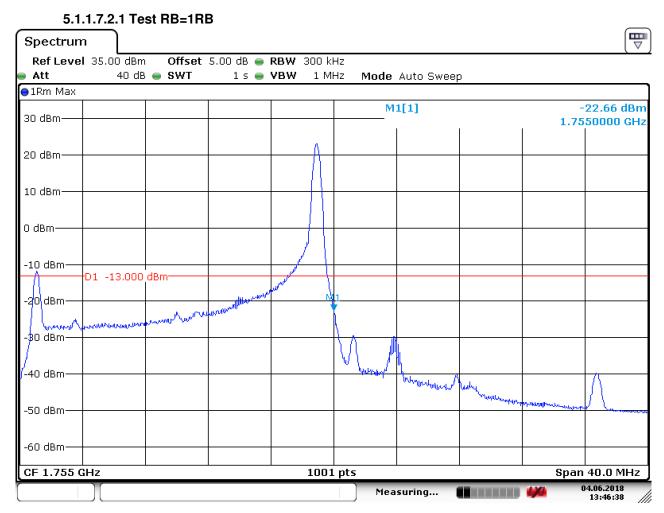
#### 5.1.1.7.1.1 Test RB=1RB



Date: 4.JUN.2018 13:50:14



Report No.: SZEM180400253604 Page: 69 of 89


Spectrum	, J								
Ref Level	35.00 dBm	n Offset	5.00 dB 😑	<b>RBW</b> 300 kł	łz				
🔵 Att	40 dB	S 🔵 SWT	1 s 👄	VBW 1 M	Iz Mode	Auto Swe	ер		
●1Rm Max									
30 dBm					M	1[1]	I		37.27 dBm .00000 GHz
20 dBm									
10 dBm							maria		
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm									
-30 dBm				M					
-40 dBm		mon		amour and a de					
~ <del>50 dBm~~^</del>									
-60 dBm	_								
CF 1.71 GH	lz			1001	pts				40.0 MHz
					Mea	asuring		4/4	04.06.2018 13:50:31

5.1.1.7.1.2 Test RB=100RB

Date: 4.JUN.2018 13:50:31



Report No.: SZEM180400253604 Page: 70 of 89



5.1.1.7.2 Test Channel = HCH

Date: 4.JUN.2018 13:46:39

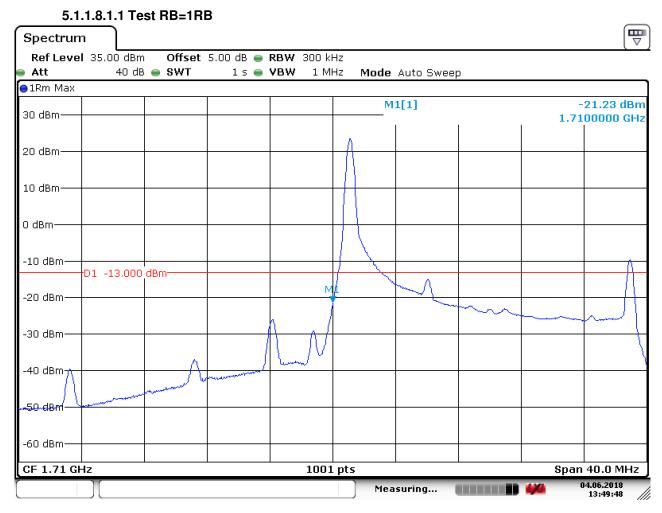
"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx">http://www.sgs.com/en/Terms-en-Document.aspx</a>. Attention is farawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is ensored except in full, without prior written approval of the Company. Any unauthorized alteration, forgrey or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM180400253604 Page: 71 of 89

Spectrum									
	35.00 dBm	o Offset	5.00 dB 👄 1 s 👄			Auto Swee	p		( *
⊖1Rm Max									
30 dBm					M	1[1]	1		34.09 dBm 50000 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm									
-30 dBm					L				
-40 dBm					and the second s	an mandeset more man	- Mary and a state of the state		
-50 dBm								and the second s	
-60 dBm									
CF 1.755 G	Hz			1001	nts			 Snan	40.0 MHz
[	][			1901		suring			14.06.2018 13:46:58

5.1.1.7.2.2 Test RB=100RB


Date: 4.JUN.2018 13:46:59



Report No.: SZEM180400253604 Page: 72 of 89

### 5.1.1.8 Test Mode = LTE/TM2 20MHz

### 5.1.1.8.1 Test Channel = LCH

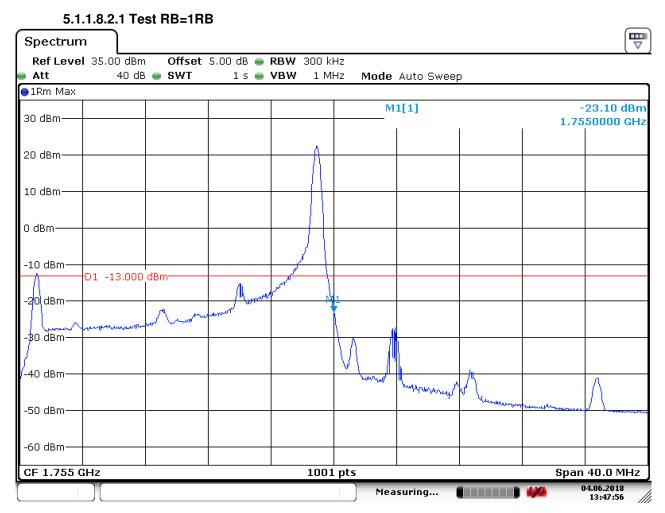


Date: 4.JUN.2018 13:49:48

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx">http://www.sgs.com/en/Terms-en-Document.aspx</a>. Attention is farawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is ensored except in full, without prior written approval of the Company. Any unauthorized alteration, forgrey or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM180400253604 Page: 73 of 89


Spectrum									
Ref Level	35.00 dBm	) Offset	5.00 dB 👄	RBW 300 kł	Ηz				
🖷 Att	40 dB	🛛 👄 SWT	1 s 👄	VBW 1 Mł	Hz Mode	Auto Swe	ep		
⊖1Rm Max									
30 dBm					M	1[1] 			36.81 dBm .00000 GHz
20 dBm									
10 dBm								and the second	mon
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm									
-30 dBm				M	}				<u> </u>
-40 dBm				and the second second	,				
<u>~50 dBm</u>	and the second								
-60 dBm									
CF 1.71 GH	z			1001	pts			Span	40.0 MHz
	)[]				Mea	asuring		<b>4/4</b>	04.06.2018 13:50:50

5.1.1.8.1.2 Test RB=100RB

Date: 4.JUN.2018 13:50:50



Report No.: SZEM180400253604 Page: 74 of 89



#### 5.1.1.8.2 Test Channel = HCH

Date: 4.JUN.2018 13:47:56

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx">http://www.sgs.com/en/Terms-en-Document.aspx</a>. Attention is farawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is ensored except in full, without prior written approval of the Company. Any unauthorized alteration, forgrey or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM180400253604 Page: 75 of 89

Spectrum									
Ref Level	35.00 dBm	n Offset	5.00 dB 👄	<b>RBW</b> 300 k	Hz				· · · ·
🔵 Att	40 dE	SWT 😑 SWT	1 s 👄	<b>VBW</b> 1 M	Hz Mode	Auto Swee	р		
⊖1Rm Max		•							
30 dBm					M	1[1]	1		34.95 dBm 50000 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -13.000	dBm							
/30 dBm					1				
-40 dBm					- marine		Andrew Marringer		
-50 dBm									and and the second second
-60 dBm									
CF 1.755 G	Hz		•	1001	l pts	•		Span	40.0 MHz
					Mea	suring		<b>444</b> 0	14.06.2018 13:47:31

5.1.1.8.2.2 Test RB=100RB

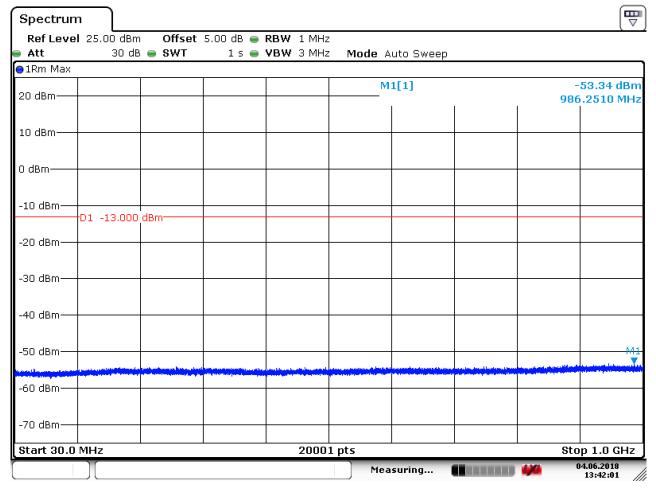
Date: 4.JUN.2018 13:47:31



Report No.: SZEM180400253604 Page: 76 of 89

### 6 Spurious Emission at Antenna Terminal

NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB.


Part I - Test Plots

### 6.1 For LTE

#### 6.1.1 Test Band = LTE BAND 4

#### 6.1.1.1 Test Mode = LTE / TM1 20MHz RB1#0

6.1.1.1.1 Test Channel = LCH



Date: 4.JUN.2018 13:42:02

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-e



Report No.: SZEM180400253604 Page: 77 of 89

Spectru	ım	)								
Ref Lev	el 25.0			t 5.00 dB 👄						
e Att		30 dB	e swt	1 s 👄	VBW 3 MHz	Mode /	∖uto Sweep			
⊖1Rm Ma	<				1					
20 dBm						M	1[1]			34.64 dBm
20 0011							1	I.	5.1	33270 GHz
10 dBm—										
0 dBm—										
-10 dBm-										
	-101 -1	.3.000 d	dBm							
-20 dBm-										
-30 dBm-					M1					
					Ţ					
-40 dBm-										
-50 dBm-										
-30 abiii					and the second s			A Construction	and the second s	and the second s
-60 dBm—										
-70 dBm—										
Start 1.0	GHz				2000	1 pts	1	1	Stop	10.0 GHz
							asuring			)4.06.2018
L										13:41:38

Date: 4.JUN.2018 13:41:39



Report No.: SZEM180400253604 Page: 78 of 89

Spectrum	ι								
	l 25.00 dBm			RBW 1 MHz					
e Att	30 dE	B 🔵 SWT	1 s 👄	VBW 3 MHz	<b>Mode</b> A	uto Sweep	)		
⊖1Rm Max		1	1						
20 dBm					M	1[1]			47.25 dBm
20 0011						I	1	19.9	40750 GHz
10 dBm——									
0 dBm									
-10 dBm—		l	+						
	D1 -13.000	dBm							
-20 dBm—									
-30 dBm									
-40 dBm—									
									M:
-50 dBm									
-30 0801		~~~							
co in									
-60 dBm									
-70 dBm—									
Start 10.0	GHz	1	1	20001	pts	1		Stop	20.0 GHz
	Υ					suring			)4.06.2018
<u> </u>						-			13:38:39

Date: 4.JUN.2018 13:38:39



Report No.: SZEM180400253604 Page: 79 of 89

	v		10	St Ona		- 1010								_
Spectrun	n													
Ref Leve e Att		D dBm 30 dB		Offset SWT				1 MHz 3 MHz		<b>Aode</b> A	uto Sweep	)		`,
⊖1Rm Max														
20 dBm										M	1[1]	1		-53.33 dBm 7.6080 MHz
10 dBm														
0 dBm														
-10 dBm—	-D1 -1	3.000	dBm	)										
-20 dBm—														
-30 dBm														
-40 dBm—														
-50 dBm														M1 V
-60 dBm							-							
-70 dBm														
Start 30.0	MHz		I		1		1	2000:	L pt:	5			Sto	op 1.0 GHz
											suring			04.06.2018 13:42:23

#### 6.1.1.1.2 Test Channel = MCH

Date: 4.JUN.2018 13:42:23



Report No.: SZEM180400253604 Page: 80 of 89

Spectru	um											
	vel 2	5.00 dBn		set 5.00				_				
Att 1Rm Ma	iv.	30 di	8 👄 SW		1 S 🛑 '	<b>VBW</b> 3	MHZ	Mode A	uto Sweep	)		
20 dBm—								M	1[1]	1		35.09 dBm 70620 GHz
10 dBm—												
0 dBm—												
-10 dBm-	D1	-13.000	) dBm									
-20 dBm-												
-30 dBm-						м	1					
-40 dBm-				_								
-50 dBm-												
-60 dBm-												
-70 dBm- Start 1.(		,				9	0001	nts			Stor	10.0 GHz
		[					5001	1	isuring			)4.06.2018 13:40:44

Date: 4.JUN.2018 13:40:45



Report No.: SZEM180400253604 Page: 81 of 89

Spectrum	ı )									
Ref Level				5.00 dB 👄						
Att	31	0 dB	SWT	1 s 👄	<b>УВЖ</b> З МН	z Mode A	∖uto Sweep	2		
⊖1Rm Max				1	1					
20 dBm						M	1[1]			47.28 dBm
							1			
10 dBm										
0 dBm										
o abiii										
-10 dBm										
	D1 -13.	.000 d	Bm							
-20 dBm										
20 00111										
-30 dBm										
SO abiii										
-40 dBm										
-to abili										M:
-50 dBm										
-50 000				A second						
-60 dBm										
-00 4611										
-70 dBm										
-70 ubiii										
Start 10.0	GHz				2000	11 pts			-	20.0 GHz
						Mea	asuring		444	04.06.2018 13:39:02

Date: 4.JUN.2018 13:39:02



Report No.: SZEM180400253604 Page: 82 of 89

Spectrum	1	)											
Ref Level	25.0	0 dBm		Offset	5.00 d	IB 😑	RBW	1 MHz					
🖷 Att		30 dB		SWT	1	s 😑	VBW	3 MHz	Mode	Auto Swee	p		
⊖1Rm Max													
20 dBm									۳۲	M1[1]	I		-53.51 dBm .1.5160 MHz
10 dBm													
0 dBm													
-10 dBm	D1 -1	3.000	dBm										
-20 dBm													
-30 dBm													
-40 dBm													
-50 dBm													11
-60 dBm													en en din e bil dide bedph e
-70 dBm													
Start 30.0	MHz				1		1	20001	l pts		I	St	op 1.0 GHz
(	][									asuring		<b>4/4</b>	04.06.2018 13:43:38

#### 6.1.1.1.3 Test Channel = HCH

Date: 4.JUN.2018 13:43:38



Report No.: SZEM180400253604 Page: 83 of 89

Spectru	ım	ר										
Ref Lev	<b>/el</b> 25.			set 5.00				_				
Att 1Rm Ma		30 dB	e sw	Γ	1 s 😑	vBW	3 MHZ	Mode /	Auto Sweep	)		
20 dBm—								M	11[1]			35.65 dBm 08410 GHz
10 dBm—												
0 dBm—												
-10 dBm-		-13,000	dBm									
-20 dBm-												
-30 dBm-							M1					
-40 dBm-							+					
-50 dBm+												
-60 dBm-												
-70 dBm-												
Start 1.0	) GHz			I			20001	pts	·		Stop	10.0 GHz
								Mea	asuring		444	04.06.2018 13:40:13

Date: 4.JUN.2018 13:40:13



Report No.: SZEM180400253604 Page: 84 of 89

Spectrum	ı	)								
Ref Level				et 5.00 dB 👄						
e Att		30 dB	SWT	1 s 👄	VBW 3 MHz	Mode A	uto Swee	p		
⊖1Rm Max					1					
20 dBm						M	1[1]			46.94 dBm
20 0011							I	I	19.9	62250 GHz
10 dBm										
0 dBm										
-10 dBm—		2 000								
	D1 -1:	3.000	ubiii							
-20 dBm—										
-30 dBm—										
-40 dBm—										
										м
-50 dBm				**		No.				
-60 dBm										
oo abiii										
-70 dBm										
-70 ubiii-										
Start 10.0	GHz				2000	1 pts	•	•	Stop	20.0 GHz
						Mea	suring		444	)4.06.2018 13:39:25

Date: 4.JUN.2018 13:39:25



Report No.: SZEM180400253604 Page: 85 of 89

### 7 Field Strength of Spurious Radiation

### 7.1 For LTE

### 7.1.1 Test Band = LTE BAND 4

#### 7.1.1.1 Test Mode =LTE/TM1 20MHz RB1#0

7.1.1.1.1	Test Channel = LC	H		
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
297.700000	-70.07	-13.00	57.07	Vertical
1362.500000	-54.00	-13.00	41.00	Vertical
3422.175000	-64.43	-13.00	51.43	Vertical
5133.300000	-49.28	-13.00	36.28	Vertical
6844.425000	-54.73	-13.00	41.73	Vertical
10266.675000	-60.90	-13.00	47.90	Vertical
63.000000	-76.74	-13.00	63.74	Horizontal
289.800000	-78.11	-13.00	65.11	Horizontal
1362.500000	-63.62	-13.00	50.62	Horizontal
3421.850000	-65.80	-13.00	52.80	Horizontal
5132.975000	-55.43	-13.00	42.43	Horizontal
6844.100000	-63.23	-13.00	50.23	Horizontal

7.1.1.1.2 Test Channel = MCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
66.100000	-76.06	-13.00	63.06	Vertical
304.350000	-71.64	-13.00	58.64	Vertical
1375.000000	-50.80	-13.00	37.80	Vertical
3446.875000	-64.23	-13.00	51.23	Vertical
5170.675000	-49.92	-13.00	36.92	Vertical
6894.150000	-57.26	-13.00	44.26	Vertical
66.100000	-76.06	-13.00	63.06	Horizontal
304.350000	-71.64	-13.00	58.64	Horizontal
1375.000000	-50.80	-13.00	37.80	Horizontal
3446.875000	-64.23	-13.00	51.23	Horizontal
5170.675000	-49.92	-13.00	36.92	Horizontal
6894.150000	-57.26	-13.00	44.26	Horizontal



Report No.: SZEM180400253604 Page: 86 of 89

7.1.1.1.3 Test Channel = HCH							
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization			
65.450000	-76.55	-13.00	63.55	Vertical			
315.600000	-72.29	-13.00	59.29	Vertical			
1387.500000	-54.04	-13.00	41.04	Vertical			
3471.575000	-65.98	-13.00	52.98	Vertical			
5208.050000	-51.44	-13.00	38.44	Vertical			
6944.200000	-60.93	-13.00	47.93	Vertical			
62.900000	-76.87	-13.00	63.87	Horizontal			
378.000000	-73.59	-13.00	60.59	Horizontal			
1387.500000	-64.25	-13.00	51.25	Horizontal			
3471.900000	-65.59	-13.00	52.59	Horizontal			
5208.050000	-59.25	-13.00	46.25	Horizontal			
6944.525000	-64.64	-13.00	51.64	Horizontal			

NOTE:

- 1) The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 2) We have tested all modulation and all bandwidth, but only the worst case data presented in this report.



Report No.: SZEM180400253604 Page: 87 of 89

### 8 Frequency Stability

### 8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
	LTE/TM1 20MHz	LCH	TN	VL	-5.75	-0.00334	PASS
				VN	2.81	0.00163	PASS
				VH	-7.00	-0.00407	PASS
		МСН	TN	VL	6.62	0.00382	PASS
				VN	-9.80	-0.00566	PASS
				VH	-7.14	-0.00412	PASS
		нсн	TN	VL	7.88	0.00452	PASS
LTEBAND4				VN	1.62	0.00093	PASS
				VH	-6.32	-0.00362	PASS
LIEDAND4	LTE/TM2 20MHz	LCH	TN	VL	9.20	0.00535	PASS
				VN	-1.81	-0.00105	PASS
				VH	-9.92	-0.00577	PASS
		МСН	TN	VL	1.50	0.00087	PASS
				VN	8.25	0.00476	PASS
				VH	-7.03	-0.00406	PASS
		НСН	TN	VL	9.93	0.00569	PASS
				VN	0.61	0.00035	PASS
				VH	7.47	0.00428	PASS



Report No.: SZEM180400253604 Page: 88 of 89

### 8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
	LTE/TM1 20MHz	LCH	VN	-30	3.88	0.00226	PASS
				-20	1.38	0.00080	PASS
				-10	3.78	0.00220	PASS
				0	-7.66	-0.00446	PASS
				10	-9.13	-0.00531	PASS
				20	-2.79	-0.00162	PASS
				30	5.31	0.00308	PASS
				40	-4.43	-0.00258	PASS
				50	8.33	0.00484	PASS
		МСН	VN	-30	-3.69	-0.00213	PASS
				-20	7.25	0.00418	PASS
				-10	-1.09	-0.00063	PASS
				0	2.61	0.00151	PASS
LTEBAND 4				10	-2.23	-0.00129	PASS
				20	0.10	0.00006	PASS
				30	-1.73	-0.00100	PASS
				40	6.17	0.00356	PASS
				50	4.86	0.00280	PASS
		НСН	VN	-30	8.31	0.00476	PASS
				-20	-0.50	-0.00029	PASS
				-10	-6.01	-0.00344	PASS
				0	-1.75	-0.00100	PASS
				10	-0.24	-0.00014	PASS
				20	5.60	0.00321	PASS
				30	-2.82	-0.00161	PASS
				40	-8.96	-0.00514	PASS
				50	8.16	0.00468	PASS



Report No.: SZEM180400253604 Page: 89 of 89

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
	LTE/TM2 20MHz	LCH	VN	-30	7.76	0.00451	PASS
				-20	3.30	0.00192	PASS
				-10	-9.68	-0.00563	PASS
				0	3.52	0.00205	PASS
				10	-4.55	-0.00265	PASS
				20	5.38	0.00313	PASS
				30	0.18	0.00011	PASS
				40	-6.42	-0.00373	PASS
				50	-7.83	-0.00455	PASS
			VN	-30	8.86	0.00511	PASS
		МСН		-20	2.09	0.00121	PASS
				-10	9.10	0.00525	PASS
				0	-5.82	-0.00336	PASS
LTEBAND 4				10	-4.75	-0.00274	PASS
т				20	1.03	0.00059	PASS
				30	-0.77	-0.00044	PASS
				40	-6.25	-0.00361	PASS
				50	8.87	0.00512	PASS
		НСН	VN	-30	6.27	0.00359	PASS
				-20	4.75	0.00272	PASS
				-10	4.79	0.00275	PASS
				0	-7.89	-0.00452	PASS
				10	-4.39	-0.00252	PASS
				20	6.74	0.00386	PASS
				30	-1.25	-0.00072	PASS
				40	7.85	0.00450	PASS
				50	9.59	0.00550	PASS

The End