

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM180600552001 Page: 1 of 93

FCC REPORT

Application No:	SZEM1806005520RG		
Applicant:	Novatel Wireless, Inc.		
Manufacturer:	Novatel Wireless, Inc.		
Factory:	Fujian Star-net Communication Co.,Ltd		
Product Name:	Industrial Cellular Gateway with Ethernet, WiFi, Bluetooth, GPS/GLNSS and USB Connectivity		
Model No.(EUT):	SKYUS 140B		
Trade Mark:	Inseego		
FCC ID:	PKRNVWSK140B		
Standards:	47 CFR Part 15, Subpart C		
Test Method:	KDB 558074 D01 DTS Meas Guidance v04		
rest method.	ANSI C63.10 (2013)		
Date of Receipt:	2018-03-09		
Date of Test:	2018-03-09 to 2018-03-25		
Date of Issue:	2018-06-25		
Test Result:	PASS *		

.* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derele yang

Derek Yang Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en/Conditions/Terms-and-Conditions/Terms-en/Conditions/Terms-and-Conditions/Terms-en/Con

Report No.: SZEM180600552001 Page: 2 of 93

2 Version

Revision Record									
Version Chapter Date Modifier Remark									
01		2018-06-25		Original					

Authorized for issue by:		
Tested By	Mike Mu	2018-06-25
	(Mike Hu) /Project Engineer	Date
Checked By	John Hong	2018-06-25
	(Jim Huang) /Reviewer	Date

Report No.: SZEM180600552001 Page: 3 of 93

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	refer to Report No. SZEM180300180801 SKYUS 110B
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	refer to Report No. SZEM180300180801 SKYUS 110B
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	refer to Report No. SZEM180300180801 SKYUS 110B
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	Section ANSI C63.10 2013	
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	refer to Report No. SZEM180300180801 SKYUS 110B
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	refer to Report No. SZEM180300180801 SKYUS 110B
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	refer to Report No. SZEM180300180801 SKYUS 110B
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	refer to Report No. SZEM180300180801 SKYUS 110B
Restricted bands around fundamental frequency (Radiated Emission)47 CFR Part 15, Subpart C Section 15.205/15.209		ANSI C63.10 2013	refer to Report No. SZEM180300180801 SKYUS 110B

Note:

SKYUS 140B (FCC ID: PKRSK 140B) and SKYUS 110B (FCC ID: PKRSK110B) only for LTE chip is different, other circuits are the same (including BT/WIFI chip), so all the wifi test data of SKYUS 140B refer to Report No. SZEM180300180801 of SKYUS 110B.

Report No.: SZEM180600552001 Page: 4 of 93

4 Contents

			0
1	COV	ER PAGE	. 1
2	VER	SION	. 2
3	TES	T SUMMARY	3
4	CON	ITENTS	. 4
5	GEN	ERAL INFORMATION	. 5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	. 7
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	. 7
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	5.11	EQUIPMENT LIST	. 9
6	TES	T RESULTS AND MEASUREMENT DATA	12
	6.1	ANTENNA REQUIREMENT	12
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	17
	6.4	6DB OCCUPIED BANDWIDTH	18
	6.5	Power Spectral Density	25
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	RF CONDUCTED SPURIOUS EMISSIONS	
	6.8	RADIATED SPURIOUS EMISSIONS	
	6.8.1		
	6.8.2		
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	67
7	PHO	TOGRAPHS - EUT CONSTRUCTIONAL DETAILS	93

Report No.: SZEM180600552001 Page: 5 of 93

5 General Information

5.1 Client Information

Applicant:	Novatel Wireless, Inc.	
Address of Applicant:	9605 Scranton Rd., Suite 300, San Diego, CA 92121	
Manufacturer:	Novatel Wireless, Inc.	
Address of Manufacturer:	9605 Scranton Rd., Suite 300, San Diego, CA 92121	
Factory:	Fujian Star-net Communication Co.,Ltd	
Address of Factory:	3F,Bldg 1,Star-Net Science-based Haixi Industrial Pack, No. 9 Gaoxin Road, Minhou County, Fuzhou, China	

5.2 General Description of EUT

Product Name:	Industrial Cellular Gateway with Ethernet, WiFi, Bluetooth, GPS/GLNSS and USB Connectivity		
Model No.:	SKYUS 140B		
Trade Mark:	Inseego		
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels		
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels		
Channel Separation:	5MHz		
	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)		
Type of Modulation:	IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)		
	IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM, QPSK,BPSK)		
Antenna Type:	Internal Antenna		
Antenna Gain:	2.6dBi		
	Model:GB-S10-994268-010H		
Power Supply	DC3.8 (1 x 3.8V Rechargeable battery) 4400mAh,16.7Wh		
	Battery: Charge by DC 5V		
	Model:ASSA76a-050200		
AC adaptor:	Input: AC100-240V 50/60Hz 0.45A		
	Output:DC5.0VDC, 2.0A		

Report No.: SZEM180600552001 Page: 6 of 93

Operation F	Operation Frequency of each channel (802.11b/g/n HT20)						
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3 2422MHz 6 2437MHz 9 2452MHz							

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency		
The Lowest channel	2412MHz		
The Middle channel	2437MHz		
The Highest channel	2462MHz		

Report No.: SZEM180600552001 Page: 7 of 93

5.3 Test Environment and Mode

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	50 % RH		
Atmospheric Pressure:	1010 MPa		
Test mode:			
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.		

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

Report No.: SZEM180600552001 Page: 8 of 93

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Total RF power, conducted	0.75dB
2	RF power density, conducted	2.84dB
3	Spurious emissions, conducted	0.75dB
		4.5dB (30MHz-1GHz)
4	Radiated Spurious emission test	4.8dB (1GHz-25GHz)
5	Conduct emission test	3.12 dB(9KHz- 30MHz)
6	Temperature test	1℃
7	Humidity test	3%
8	DC and low frequency voltages	0.5%

Report No.: SZEM180600552001 Page: 9 of 93

5.11 Equipment List

	Conducted Emission						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm- dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017/5/10	2018/5/10	
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2017/10/9	2018/10/9	
3	LISN	ETS-LINDGREN	ETS-LINDGREN 3816/2 SEM007-02		2017/4/14	2018/4/14	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	EMC0120	2017/9/28	2018/9/28	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	EMC0121	2017/9/28	2018/9/28	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	EMC0122	2017/9/28	2018/9/28	
7	EMI Test Receiver	Rohde & Schwarz	ESCI SEM004-02		2017/4/14	2018/4/14	
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017/10/9	2018/10/9	

	RF connected test						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm- dd)	
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017/10/9	2018/10/9	
2	Signal Analyzer	Rohde &Schwarz	FSV	W005-02	2018/3/13	2019/3/12	
3	Signal Generator	Rohde &Schwarz	SML03	SEM006-02	2017/4/14	2018/4/14	
4	Power Meter	Rohde &Schwarz	NRVS	SEM014-02	2017/10/9	2018/10/9	
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2017/10/9	2018/10/9	

Report No.: SZEM180600552001 Page: 10 of 93

	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017/5/10	2018/5/10	
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017/10/9	2018/10/9	
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017/11/1	2020/11/1	
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015/10/17	2018/10/17	
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2017/11/24	2020/11/24	
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017/4/14	2018/4/14	
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A	
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017/10/9	2018/10/9	
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015/5/13	2018/5/13	

	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)	
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2017/5/10	2018/5/10	
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2017/4/14	2018/4/14	
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016/6/29	2019/6/29	
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2017/7/6	2018/7/6	
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015/8/14	2018/8/14	

Report No.: SZEM180600552001 Page: 11 of 93

	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017/5/10	2018/5/10	
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2017/7/19	2018/7/19	
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2017/11/15	2020/11/15	
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017/10/9	2018/10/9	
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015/6/14	2018/6/14	
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2017/11/24	2020/11/24	
7	HornAntenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2017/10/17	2020/10/16	
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2017/10/9	2018/10/9	
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A	

Report No.: SZEM180600552001 Page: 12 of 93

6 Test results and Measurement Data

6.1 Antenna Requirement

47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

Standard requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.6dBi.

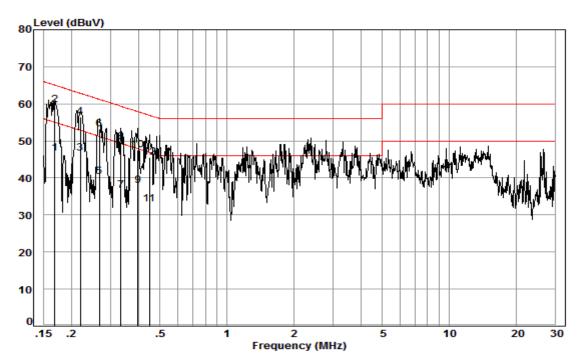
Report No.: SZEM180600552001 Page: 13 of 93

6.2 Conducted	EIIIISSIOIIS			
Test Requirement:	47 CFR Part 15C Section 15.2	207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
		Limit (dBuV)		
	Frequency range (MHz)	Quasi-peak	Average	
Limit:	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm	n of the frequency.		
Test Procedure:	 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 			
Test Setup:	Shielding Room	AE	Test Receiver	

6.2 Conducted Emissions

Report No.: SZEM180600552001 Page: 14 of 93

Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
	Charge + Transmitting mode.
Et al Tarl Made	Through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.
Final Test Mode:	Charge + Transmitting mode.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

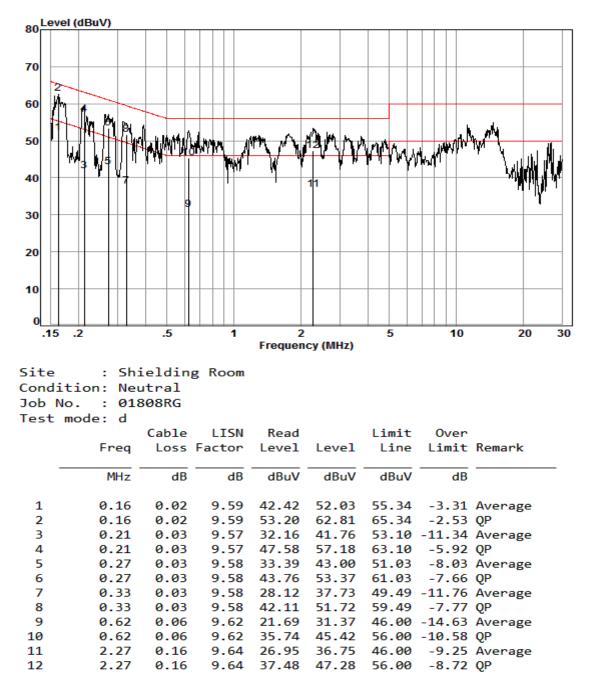

Report No.: SZEM180600552001 Page: 15 of 93

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:


Site : Shielding Room Condition: Line Job No. : 01808RG Test mode: d

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.17	0.02	9.52	37.20	46.74	55.03	-8.29	Average
2	0.17	0.02	9.52	50.13	59.67	65.03	-5.36	QP
3	0.22	0.03	9.50	37.06	46.59	52.83	-6.24	Average
4	0.22	0.03	9.50	46.83	56.36	62.83	-6.47	QP
5	0.27	0.03	9.51	30.70	40.24	51.20	-10.96	Average
6	0.27	0.03	9.51	43.63	53.17	61.20	-8.03	QP
7	0.33	0.03	9.50	27.10	36.63	49.35	-12.72	Average
8	0.33	0.03	9.50	40.14	49.67	59.35	-9.68	QP
9	0.40	0.04	9.49	28.36	37.89	47.90	-10.01	Average
10	0.40	0.04	9.49	37.95	47.48	57.90	-10.42	QP
11	0.45	0.04	9.49	23.39	32.92	46.89	-13.97	Average
12	0.45	0.04	9.49	36.07	45.60	56.89	-11.29	QP

Report No.: SZEM180600552001 Page: 16 of 93

Neutral Line:

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM180600552001 Page: 17 of 93

6.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10 :2013 Section 11.9.1.3				
Test Setup:	POWER METER E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.10 for details				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates				
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;				
Final Test Mode:	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20)				
Limit:	30dBm				
Test Results:	Pass				

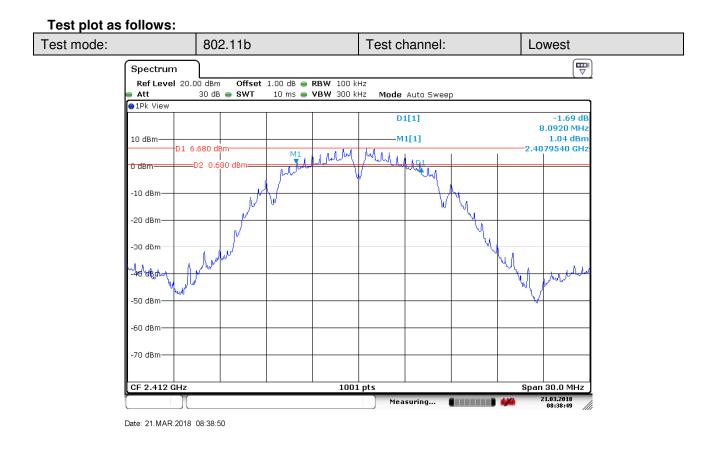
Measurement Data

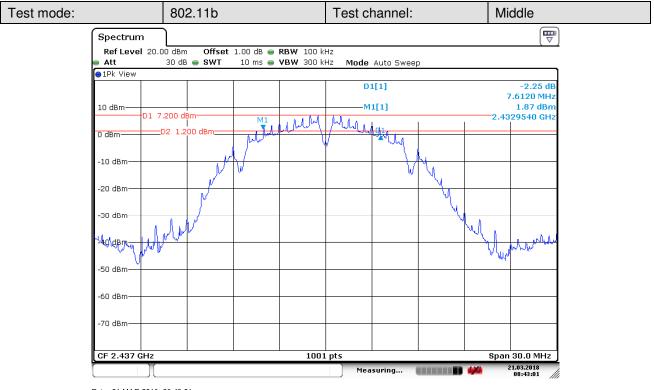
802.11b mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	17.72	30.00	Pass	
Middle	18.21	30.00	Pass	
Highest	17.83	30.00	Pass	
	802.11g mo	de		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	21.35	30.00	Pass	
Middle	21.42	30.00	Pass	
Highest	21.37	30.00	Pass	
	802.11n(HT20)	mode		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	20.49	30.00	Pass	
Middle	20.73	30.00	Pass	
Highest	21.12	30.00	Pass	

Report No.: SZEM180600552001 Page: 18 of 93

6.4 6dB Occupied Bandwidth

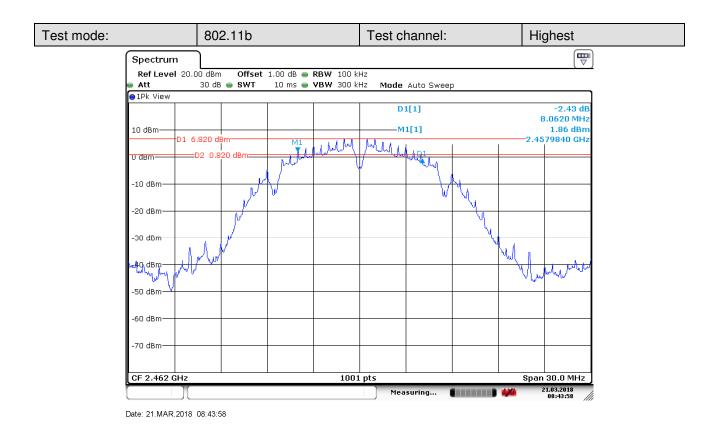
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10: 2013 Section 11.8.1 Option 1		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Instruments Used:	Refer to section 5.10 for details		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20)		
Limit:	≥ 500 kHz		
Test Results:	Pass		

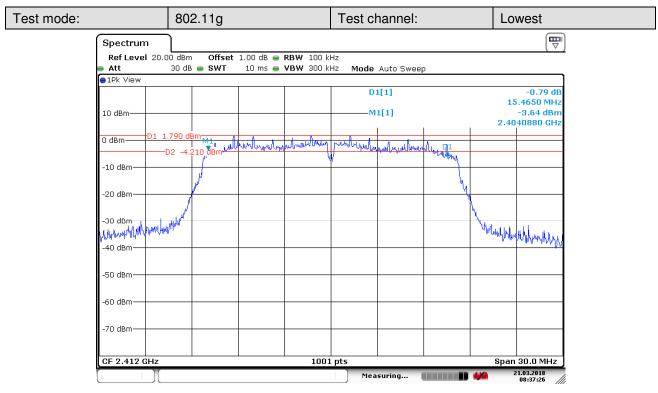

Report No.: SZEM180600552001 Page: 19 of 93


Measurement Data

802.11b mode					
Test channel	6dB Occupied Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	8.09	≥500	Pass		
Middle	7.61	≥500	Pass		
Highest	8.06	≥500	Pass		
	802.11g mode				
Test channel	6dB Occupied Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	15.47	≥500	Pass		
Middle	15.32	≥500	Pass		
Highest	Highest 15.35		Pass		
	802.11n(HT20) mode				
Test channel	6dB Occupied Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	16.09	≥500	Pass		
Middle	16.03	≥500	Pass		
Highest	15.91	≥500	Pass		

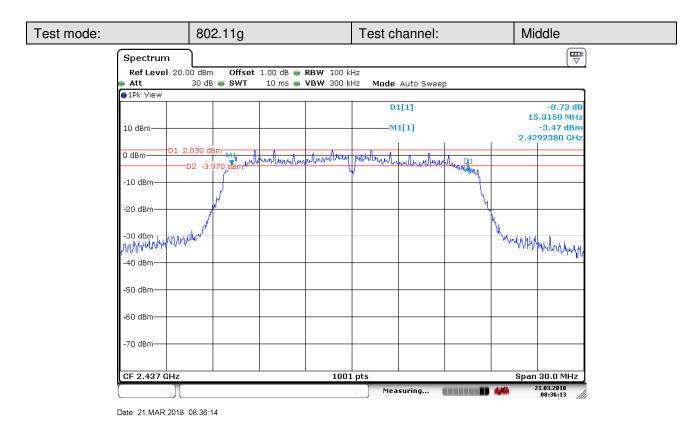
Report No.: SZEM180600552001 Page: 20 of 93

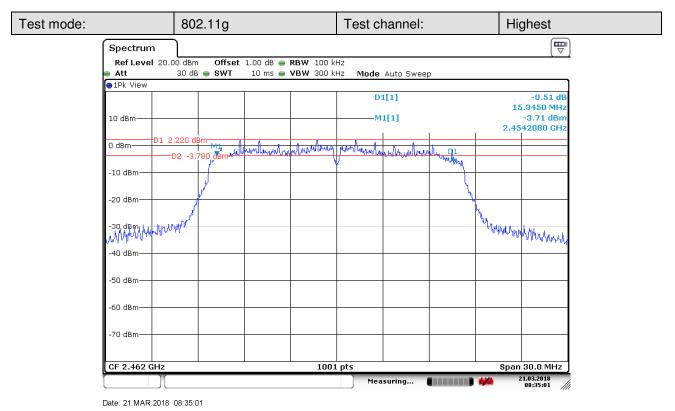




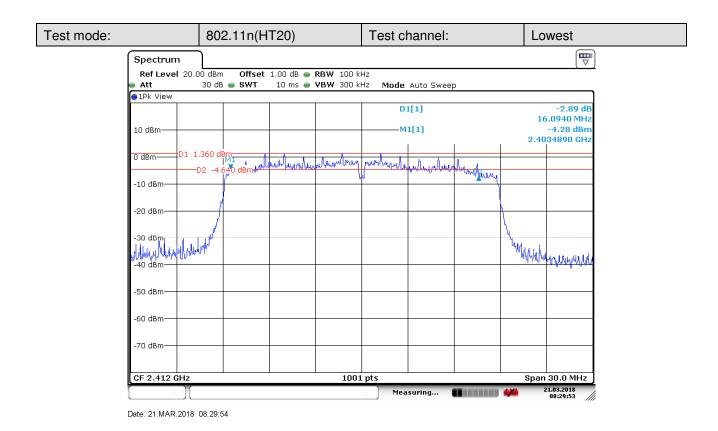
Date: 21.MAR.2018 08:43:01

Report No.: SZEM180600552001 Page: 21 of 93

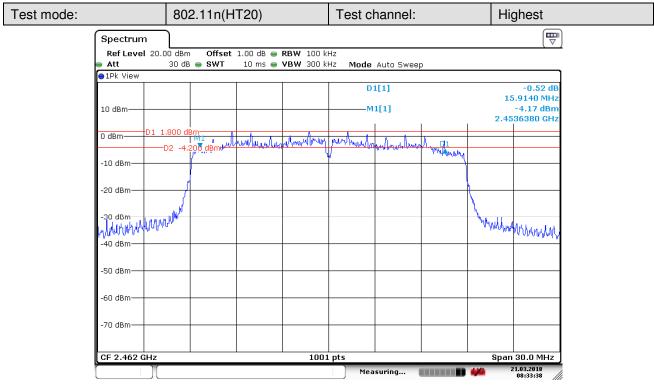




Date: 21.MAR.2018 08:37:27


Report No.: SZEM180600552001 Page: 22 of 93

Report No.: SZEM180600552001 Page: 23 of 93



Test mode: 802.11n(HT20) Test channel: Middle [₩ Spectrum Ref Level 20.00 dBm Offset 1.00 dB 👄 RBW 100 kHz Att 30 dB 👄 SWT 10 ms 👄 VBW 300 kHz Mode Auto Sweep ⊖1Pk View D1[1] 0.44 dE 16.0340 MH; -M1[1] -4.19 dBm 10 dBm-2.4285180 GH 0 dBm the them here DI1 Magalt 20 dBm D2 -4 -10 dBm--20 dBm--30 dBm mahanhannan unurallyland -40 dBm--50 dBm -60 dBm· -70 dBm-1001 pts Span 30.0 MHz CF 2.437 GHz Measuring... 21.03.2018 08:31:13

Date: 21.MAR.2018 08:31:14

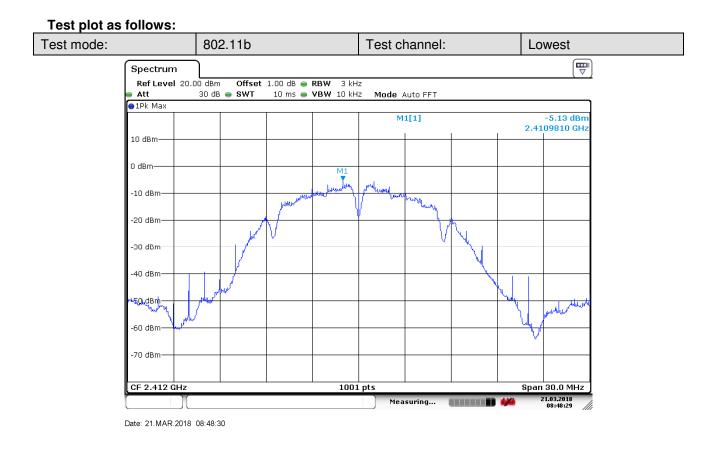
Report No.: SZEM180600552001 Page: 24 of 93

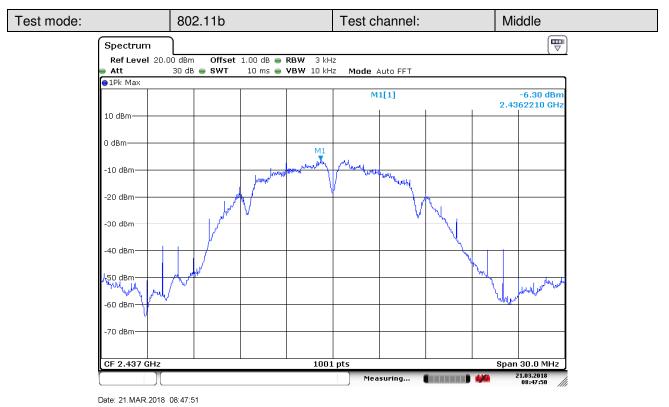
Date: 21.MAR.2018 08:33:39

Report No.: SZEM180600552001 Page: 25 of 93

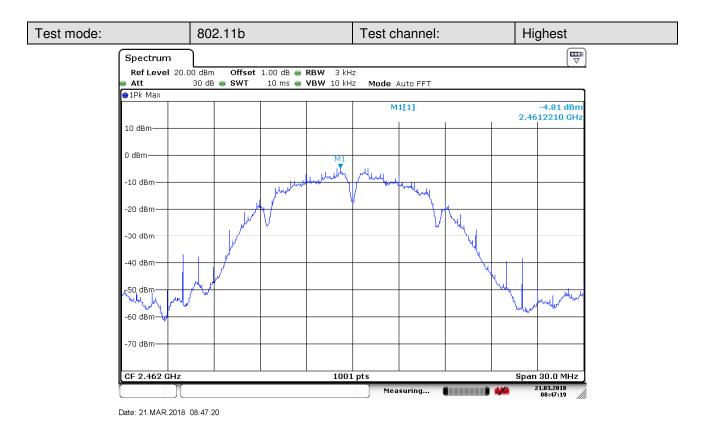
6.5 Power Spectral Density

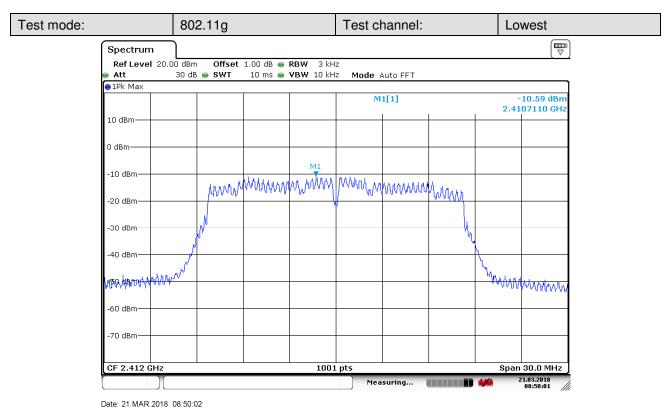
Test Requirement:	47 CFR Part 15C Section 15.247 (e)			
Test Method:	ANSI C63.10 :2013 Section 11.10.2			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.10 for details			
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates			
Final Test Mode: Through Pre-scan, find the 1Mbps of rate is the worst case of 802. 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the of 802.11n(HT20)				
Limit:	≤8.00dBm/3kHz			
Test Results:	Pass			

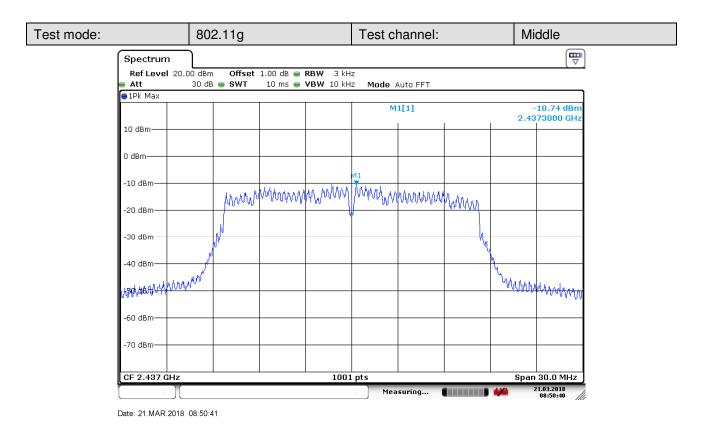

Report No.: SZEM180600552001 Page: 26 of 93

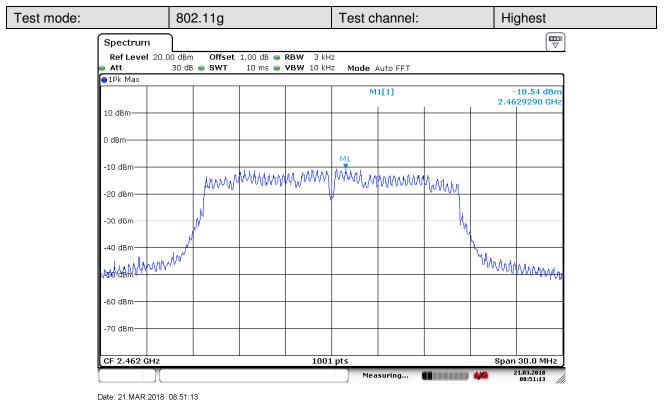

Measurement Data

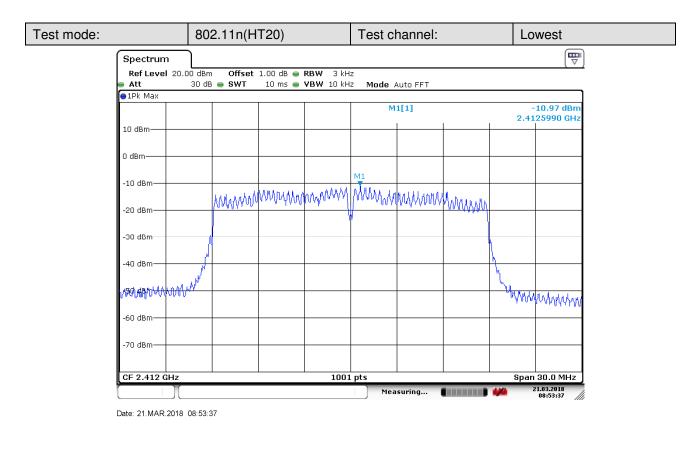
802.11b mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
Lowest	-5.13	≤8.00	Pass	
Middle	-6.30	≤8.00	Pass	
Highest	-4.81	≤8.00	Pass	
802.11g mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
Lowest	-10.59	≤8.00	Pass	
Middle	-10.74	≤8.00	Pass	
Highest	-10.54	≤8.00	Pass	
802.11n(HT20) mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
Lowest	-10.97	≤8.00	Pass	
Middle	-10.30	≤8.00	Pass	
Highest	-10.26	≤8.00	Pass	


Report No.: SZEM180600552001 Page: 27 of 93

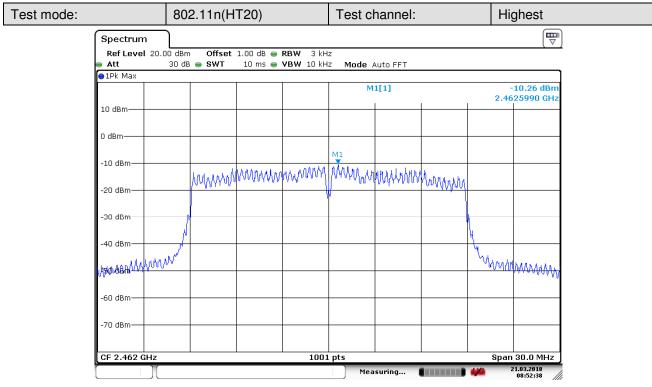



Report No.: SZEM180600552001 Page: 28 of 93




Report No.: SZEM180600552001 Page: 29 of 93

Report No.: SZEM180600552001 Page: 30 of 93

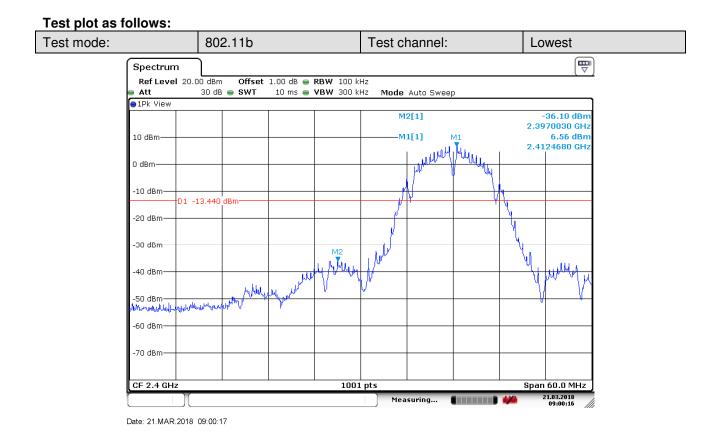


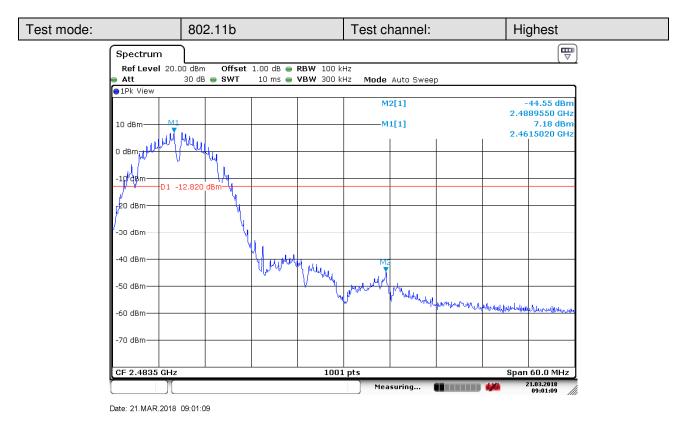
Test mode:	802.11n(HT20)	Test channel:	Middle
Spectrum			
Ref Level 3 Att	20.00 dBm Offset 1.00 dB 👄 RBW 3 30 dB 👄 SWT 10 ms 👄 VBW 10		
● 1Pk Max		M1[1]	-10.30 dBm
10 dBm			2.4375990 GHz
0 dBm			
-10 dBm	Lassanad MANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MI MWWWWWWWWWWWWWWWWWWW	
-20 dBm	10///40/40	II On a had day have a for (1998)	
-30 dBm			
-40 dBm	under the second s		
n n N uraevaelu			www.www.www
-60 dBm			
-70 dBm			
CF 2.437 GH	lz 10	01 pts	Span 30.0 MHz
		Measuring	21.03.2018 08:53:06

Date: 21.MAR.2018 08:53:06

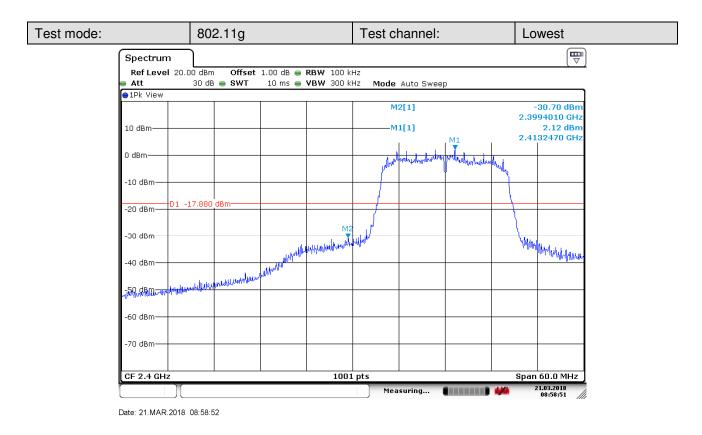
Report No.: SZEM180600552001 Page: 31 of 93

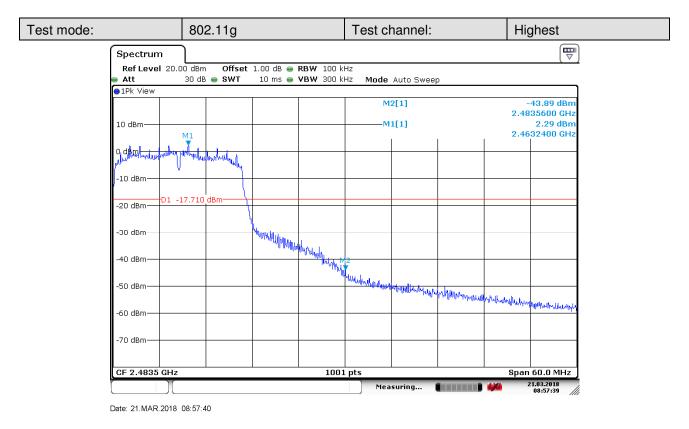
Date: 21.MAR.2018 08:52:38

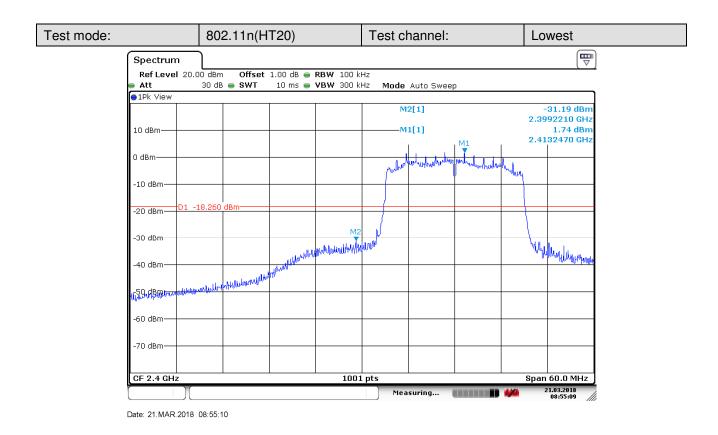

Report No.: SZEM180600552001 Page: 32 of 93

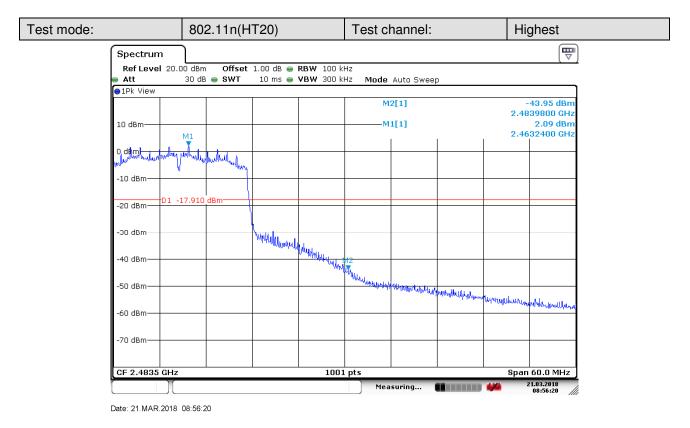

6.6 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10: 2013 Section 11.13		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20)		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		


Report No.: SZEM180600552001 Page: 33 of 93



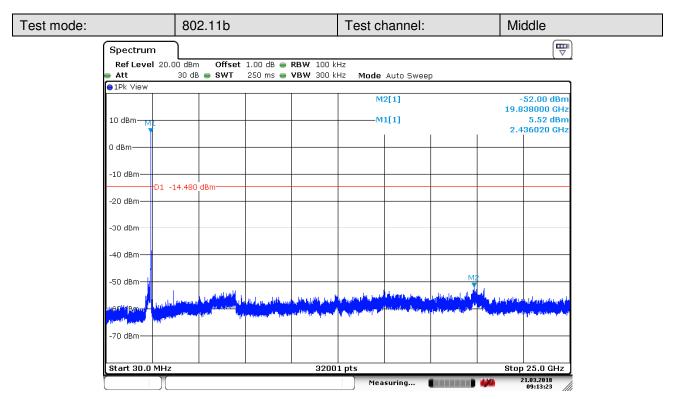

Report No.: SZEM180600552001 Page: 34 of 93



Report No.: SZEM180600552001 Page: 35 of 93

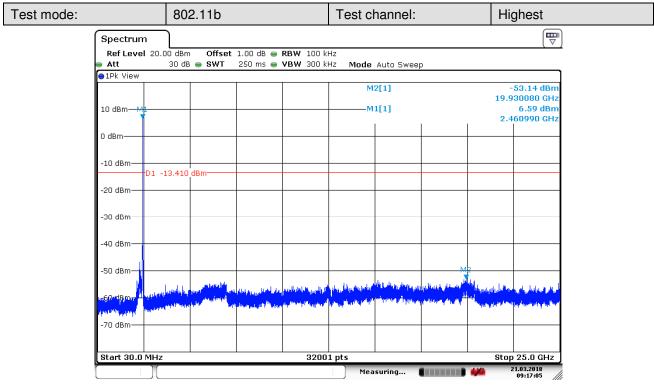
Report No.: SZEM180600552001 Page: 36 of 93

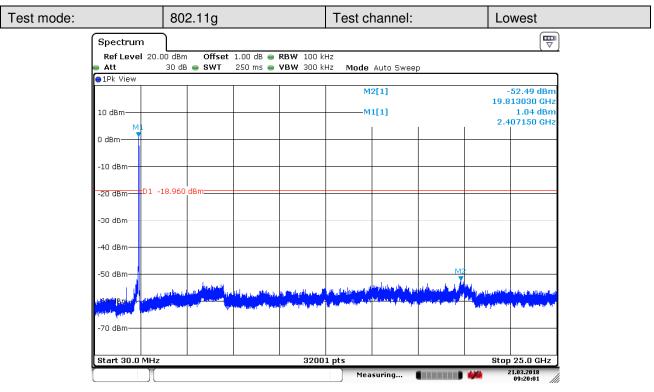
6.7 RF Conducted Spurious Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10: 2013 Section 11.11	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates	
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20)	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Instruments Used:	Refer to section 5.10 for details	
Test Results:	Pass	

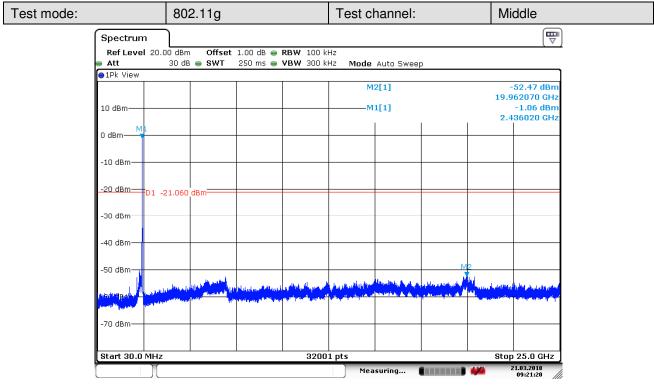
Report No.: SZEM180600552001 Page: 37 of 93

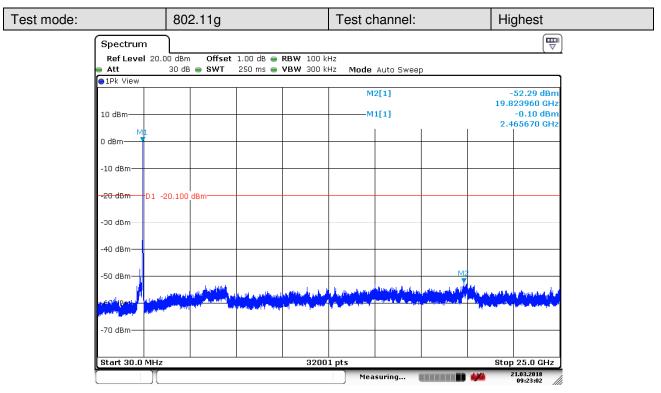
Test plot as follows: Test mode: 802.11b Test channel: Lowest ₩ Spectrum Ref Level 20.00 dBm Offset 1.00 dB RBW 100 kHz 30 dB 🔵 SWT 250 ms 🔵 **VBW** 300 kHz Mode Auto Sweep Att ●1Pk View M2[1] -52.99 dBr 19.958950 GHz -M1[1] 5.31 dBn 10 dBm-2.413390 GHz 0 dBm--10 dBm D1 -14.690 dBm -20 dBm· -30 dBm -40 dBm -50 dBm -70 dBm-Start 30.0 MHz 32001 pts Stop 25.0 GHz 21.03.2018 Measuring...


Date: 21.MAR.2018 09:15:25

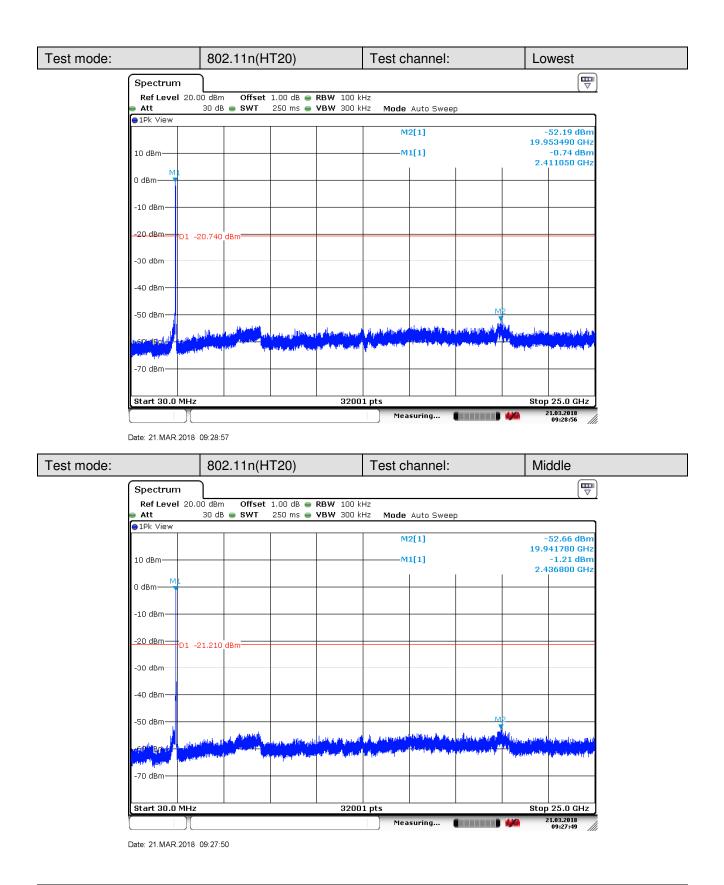

Date: 21.MAR.2018 09:13:24

Report No.: SZEM180600552001 Page: 38 of 93

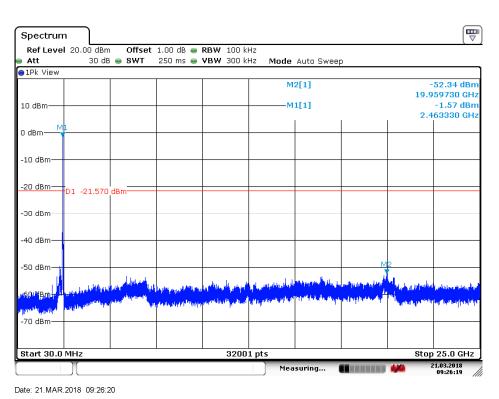

Date: 21.MAR.2018 09:17:05


Date: 21.MAR.2018 09:20:01

Report No.: SZEM180600552001 Page: 39 of 93


Date: 21.MAR.2018 09:21:20

Date: 21.MAR.2018 09:23:03

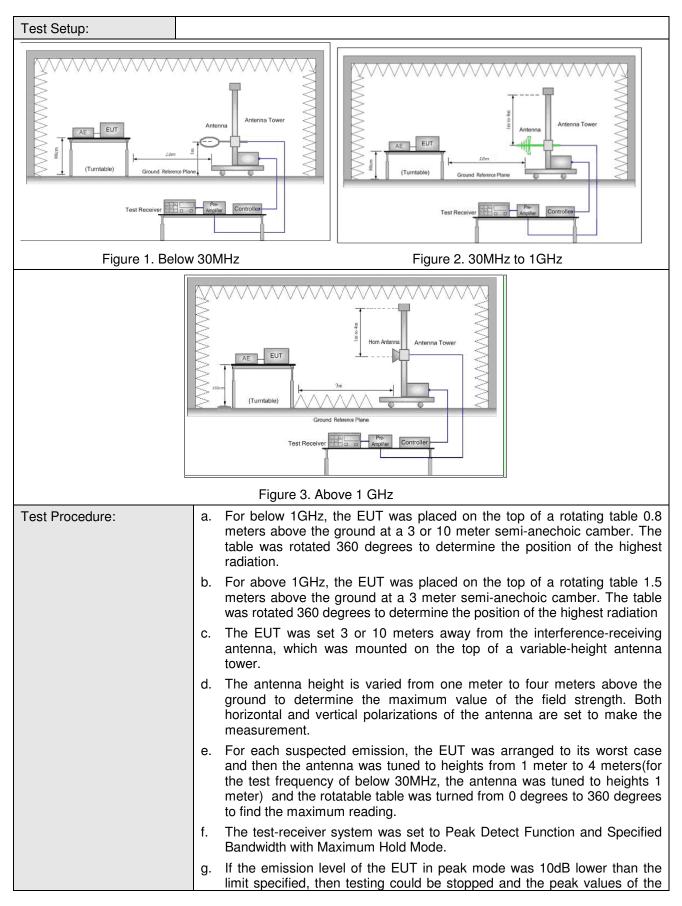

Report No.: SZEM180600552001 Page: 40 of 93

	Test mode:	802.11n(HT20)	Test channel:	Highest
--	------------	---------------	---------------	---------

Report No.: SZEM180600552001 Page: 41 of 93

Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, the amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

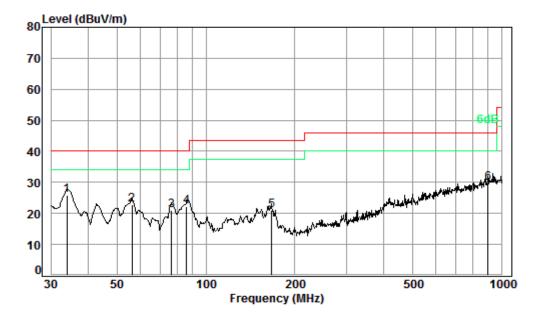

Report No.: SZEM180600552001 Page: 42 of 93

6.8 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section	15.209 and 15.20	5		
Test Method:	ANSI C63.10 :2013 Section	on 11.12			
Test Site:	Measurement Distance: 3	m or 10m (Semi-A	Anechoic Cha	amber)	
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
Receiver Setup:	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	30MHz-88MHz 100		Quasi-peak	3
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Note: 15.35(b), Unless oth	nerwise specified,	the limit on p	beak radio fre	quency
	emissions is 20dB above	the maximum peri	mitted averag	ge emission li	mit
	applicable to the equipme	nt under test. This	peak limit a	pplies to the t	otal peak
	emission level radia	ated by the device.			

Report No.: SZEM180600552001 Page: 43 of 93

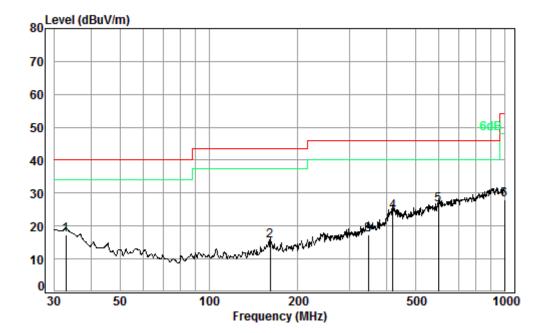
Report No.: SZEM180600552001 Page: 44 of 93


	EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	h. Test the EUT in the lowest channel, the middle channel, the Highest channel
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Charge + Transmitting mode.
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case
	of 802.11n(HT20)
	For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM180600552001 Page: 45 of 93

6.8.1 Radiated emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical


Condition:	3m VERTICAL
Job No. :	01808RG
Test mode:	d

				Preamp Factor				
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp	33.92	0.60	20.37	27.65	32.53	25.85	40.00	-14.15
2	56.20	0.80	13.56	27.58	36.08	22.86	40.00	-17.14
3	76.51	1.00	12.27	27.51	35.31	21.07	40.00	-18.93
4	86.20	1.10	12.70	27.50	35.90	22.20	40.00	-17.80
5	166.65	1.35	15.64	27.52	31.63	21.10	43.50	-22.40
6	897.00	3.59	29.76	27.09	23.64	29.90	46.00	-16.10

Report No.: SZEM180600552001 Page: 46 of 93

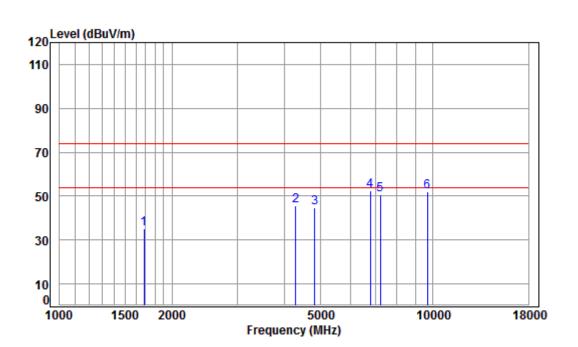
Test mode:	Charge + Transmitting	Horizontal
------------	-----------------------	------------

Condition: 3m HORIZONTAL

Job No. : 01808RG

Test mode: d

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
-	MU-						JD. M/m	
	MHz	dB	ab/m	dB	abuv	abuv/m	abuv/m	dB
1	32.86	0.60	20.92	27.66	23.58	17.44	40.00	-22.56
2	160.91	1.34	15.52	27.52	26.21	15.55	43.50	-27.95
3	345.60	2.05	20.98	27.63	22.04	17.44	46.00	-28.56
4	419.11	2.28	22.86	27.76	26.95	24.33	46.00	-21.67
5 pp	597.22	2.70	26.55	27.71	24.81	26.35	46.00	-19.65
6	1000.00	3.70	30.30	26.77	20.82	28.05	54.00	-25.95



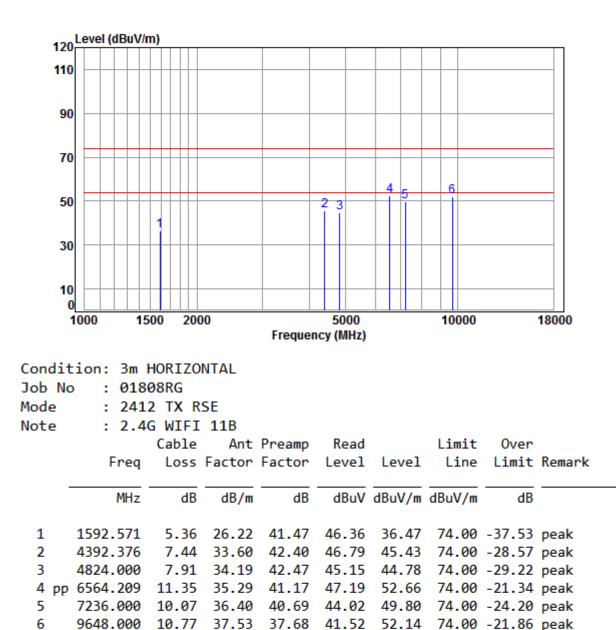
SGS-CSTC Standards Technical Services Co., Ltd. **Shenzhen Branch**

Report No.: SZEM180600552001 47 of 93 Page:

6.8.2 Transmitter emission above 1GHz

Test mode: 802.11b Test channel:	Lowest	Remark:	Peak	Vertical
----------------------------------	--------	---------	------	----------

Job No	: 2412	08RG	SE						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1682.477	5.25	26.60	41.52	44.87	35.20	74.00	-38.80	peak
2	4291.977	7.33	33.60	42.38	46.92	45.47	74.00	-28.53	peak
3	4824.000	7.91	34.19	42.47	45.22	44.85	74.00	-29.15	peak
4 pp	6795.879	10.69	35.94	41.00	47.05	52.68	74.00	-21.32	peak
5	7236.000	10.07	36.40	40.69	45.04	50.82	74.00	-23.18	peak
6	9648.000	10.77	37.53	37.68	41.25	51.87	74.00	-22.13	peak

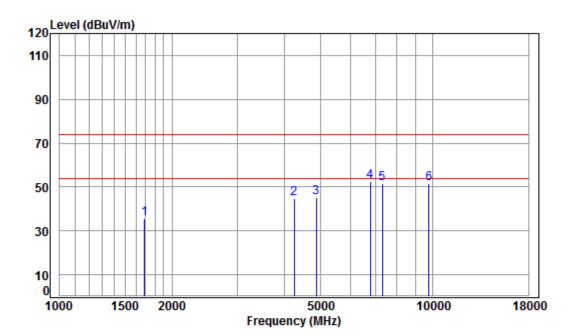


9648.000

SGS-CSTC Standards Technical Services Co., Ltd. **Shenzhen Branch**

Report No.: SZEM180600552001 Page: 48 of 93

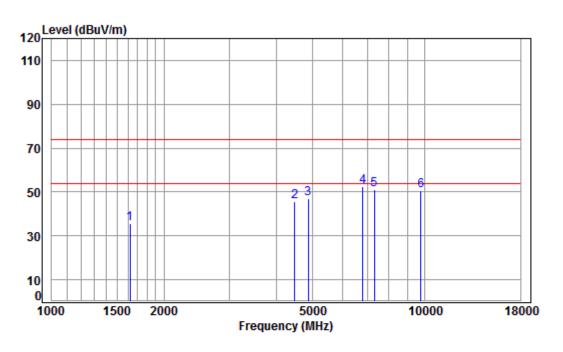
Test mode:	802.11b	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	---------	---------------	--------	---------	------	------------



This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is for a finite diverse in a bit is divident that information contained hereon reflects the Company's findings at the ime of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is enpoduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgere or fallest?

Report No.: SZEM180600552001 Page: 49 of 93

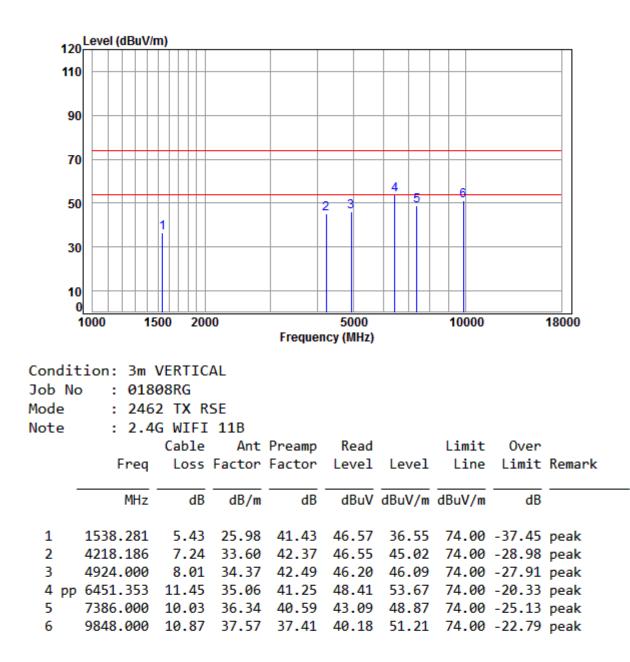
Test mode: 802.11b Test channel: Middle Remark: Peak Vertical



Condit	tion: 3m \	VERTIC	AL						
Job No	o : 0180	08RG							
Mode	: 2437	7 TX R	SE						
Note	: 2.40	G WIFI	11B						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1687.347	5.24	26.62	41.52	45.13	35.47	74.00	-38.53	peak
2	4254.921	7.28	33.60	42.37	46.29	44.80	74.00	-29.20	peak
3	4874.000	7.96	34.28	42.48	45.35	45.11	74.00	-28.89	peak
4 pp	6795.879	10.69	35.94	41.00	46.93	52.56	74.00	-21.44	peak
5	7311.000	10.05	36.37	40.64	45.95	51.73	74.00	-22.27	peak
6	9748.000	10.82	37.55	37.54	40.63	51.46	74.00	-22.54	peak

Report No.: SZEM180600552001 Page: 50 of 93

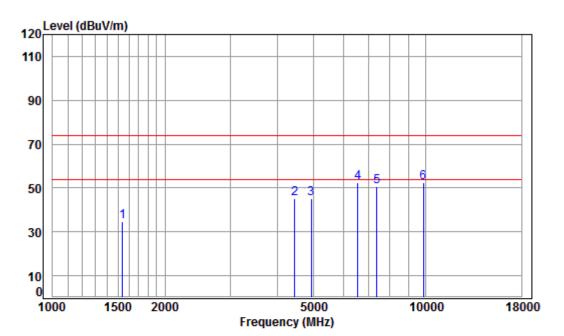
Test mode: 802.11b Test channel: Middle Remark: F	rizontal
---	----------



Condit	ion: 3m H	HORIZO	NTAL						
Job No	o : 0180	08RG							
Mode	: 2437	7 TX R	SE						
Note	: 2.40	G WIFI	11B						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1620.431	5.32	26.34	41.48	45.49	35.67	74.00	-38.33	peak
2	4482.150	7.54	33.60	42.41	46.82	45.55	74.00	-28.45	peak
3	4874.000	7.96	34.28	42.48	47.17	46.93	74.00	-27.07	peak
4 pp	6815.551	10.64	36.00	40.98	46.97	52.63	74.00	-21.37	peak
5	7311.000	10.05	36.37	40.64	45.43	51.21	74.00	-22.79	peak
6	9748.000	10.82	37.55	37.54	39.81	50.64	74.00	-23.36	peak

Report No.: SZEM180600552001 Page: 51 of 93

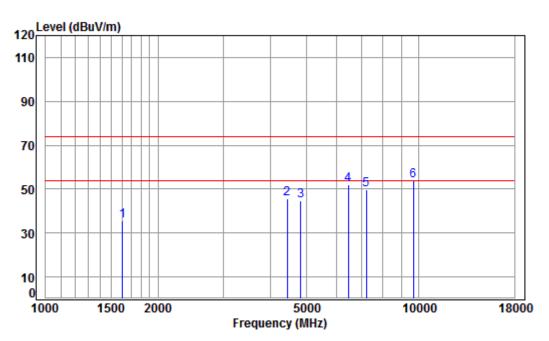
Test mode: 802.11b	Test channel:	Highest	Remark:	Peak	Vertical
--------------------	---------------	---------	---------	------	----------



This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is for a finite diverse in a bit is divident that information contained hereon reflects the Company's findings at the ime of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is enpoduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgere or fallest?

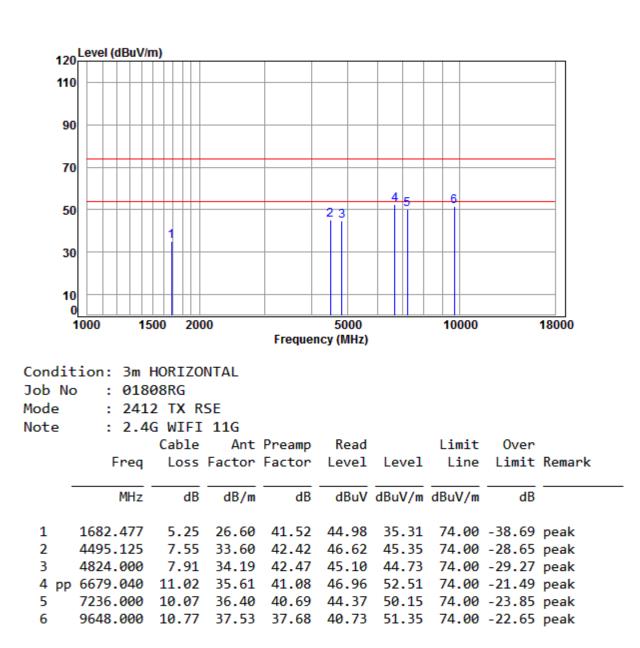
Report No.: SZEM180600552001 Page: 52 of 93

Test mode: 802.11b Test channel: Highest Remark: Peak Horizonta



Job No	: 246	08RG	SE						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1538.281	5.43	25.98	41.43	44.85	34.83	74.00	-39.17	peak
2	4456.315	7.51	33.60	42.41	46.68	45.38	74.00	-28.62	peak
3	4924.000	8.01	34.37	42.49	45.45	45.34	74.00	-28.66	peak
4	6564.209	11.35	35.29	41.17	46.84	52.31	74.00	-21.69	peak
5	7386.000	10.03	36.34	40.59	45.05	50.83	74.00	-23.17	peak
6 pp	9848.000	10.87	37.57	37.41	41.67	52.70	74.00	-21.30	peak

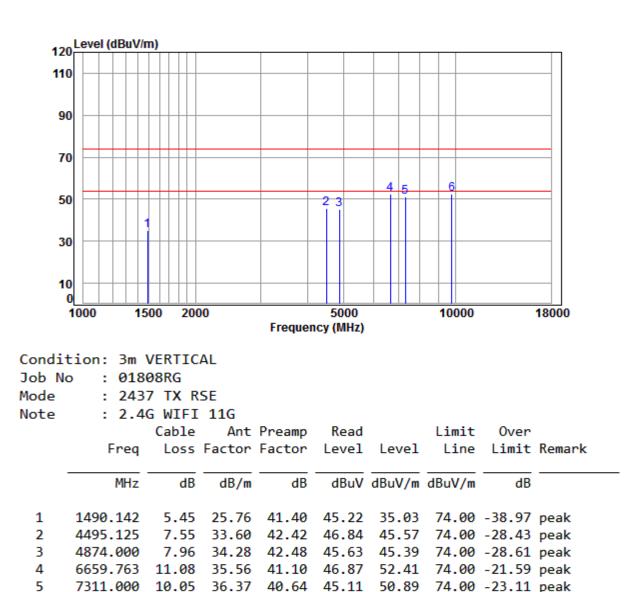
Report No.: SZEM180600552001 Page: 53 of 93


Test mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Vertical

Condit Job No Mode Note	: 241		SE						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
					45 30		74.00		
1	1606.441	5.34	26.28	41.47	45.39	35.54	/4.00	-38.46	peak
2	4430.628	7.48	33.60	42.41	47.16	45.83	74.00	-28.17	peak
3	4824.000	7.91	34.19	42.47	45.13	44.76	74.00	-29.24	peak
4	6470.026	11.48	35.08	41.24	46.47	51.79	74.00	-22.21	peak
5	7236.000	10.07	36.40	40.69	44.14	49.92	74.00	-24.08	peak
6 pp	9648.000	10.77	37.53	37.68	43.02	53.64	74.00	-20.36	peak

Report No.: SZEM180600552001 Page: 54 of 93

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is for a finite diverse in a bit is divident that information contained hereon reflects the Company's findings at the ime of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is enpoduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgere or fallest?



6 pp 9748.000

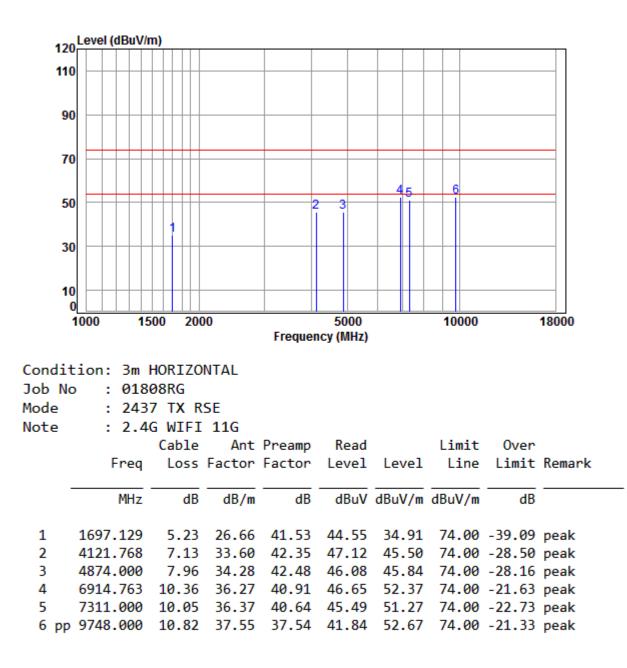
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180600552001 Page: 55 of 93

Test mode: 802.11g	Test channel:	Middle	Remark:	Peak	Vertical
--------------------	---------------	--------	---------	------	----------

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is for a finite diverse in a bit is divident that information contained hereon reflects the Company's findings at the ime of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is enpoduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgere or fallest?

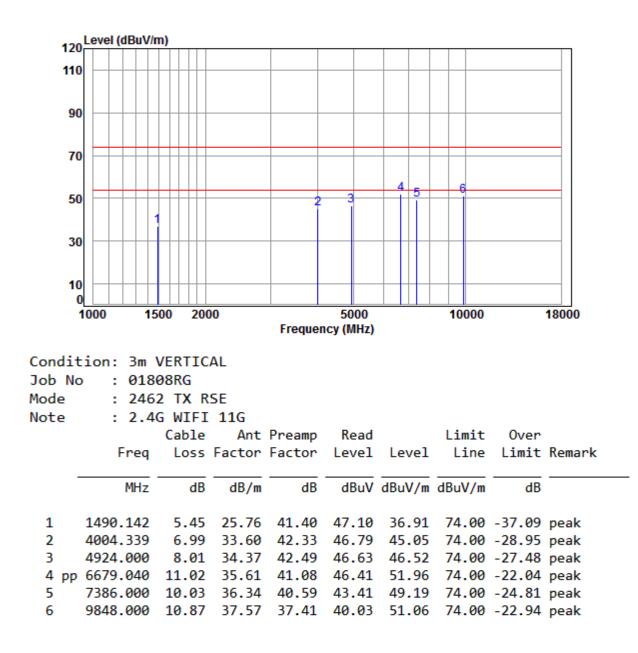
10.82 37.55 37.54 41.64 52.47 74.00 -21.53 peak



Report No.: SZEM180600552001 Page: 56 of 93

Test mode: 802.11	Test channel:	Middle	Remark:	Peak	Horizontal
-------------------	---------------	--------	---------	------	------------

Report No.: SZEM180600552001 Page: 57 of 93



This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is for a finite diverse in a bit is divident that information contained hereon reflects the Company's findings at the ime of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is enpoduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgere or fallest?

Report No.: SZEM180600552001 Page: 58 of 93

Test mode: 802.11g	Test channel:	Highest	Remark:	Peak	Vertical
--------------------	---------------	---------	---------	------	----------

Test mode: 802.11g Test channel:	Highest	Remark:	Peak	Horizontal
----------------------------------	---------	---------	------	------------

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is for a finite diverse in a bit is divident that information contained hereon reflects the Company's findings at the ime of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is enpoduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgere or fallest?

1

2

3

5

6

1494.455

4267.237

4924.000

7386.000

9848.000

4 pp 6835.278

5.46

7.30

8.01

10.58


SGS-CSTC Standards Technical Services Co., Ltd. **Shenzhen Branch**

Report No.: SZEM180600552001 Page: 59 of 93

35.06 74.00 -38.94 peak

45.22 74.00 -28.78 peak 45.61 74.00 -28.39 peak

52.81 74.00 -21.19 peak

25.78 41.40 45.22

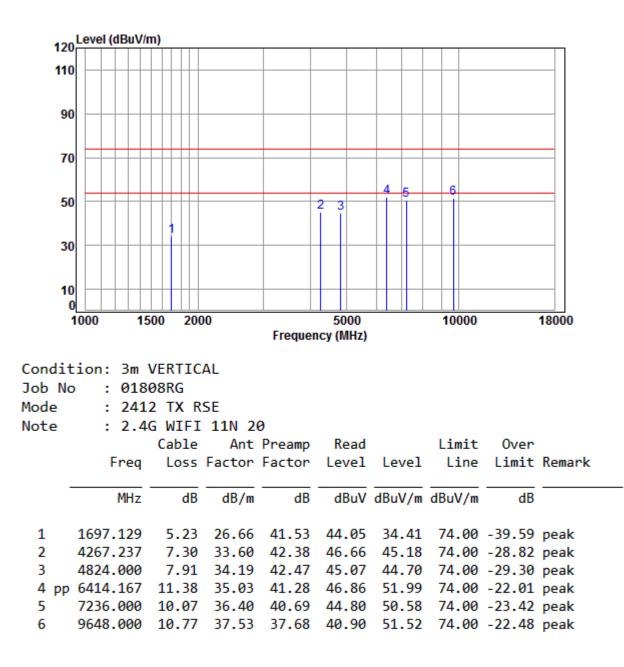
33.60 42.38 46.70

45.72

47.15

10.03 36.34 40.59 44.39 50.17 74.00 -23.83 peak

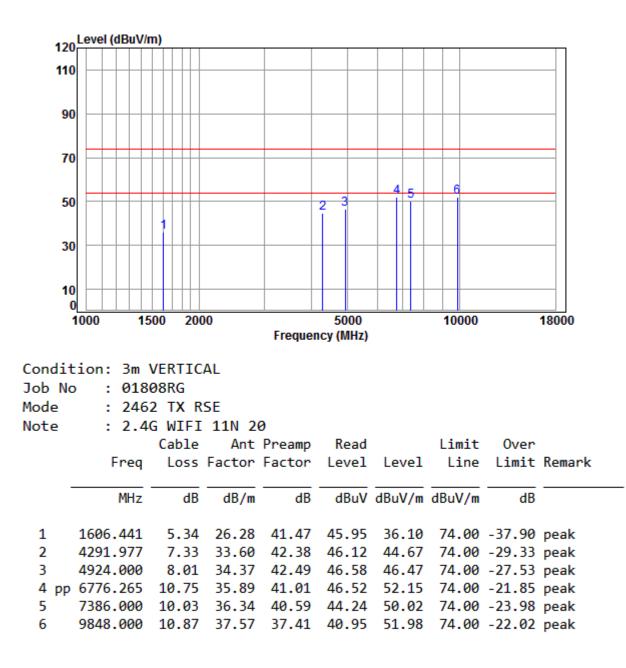
10.87 37.57 37.41 41.11 52.14 74.00 -21.86 peak


34.37 42.49

36.05 40.97

Test mode:	802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Vertical
This document is issued by the Compa for electronic format documents, subje- limitation of liability, indemnification ar its intervention only and within the limi exercising all their rights and obligation alteration, forgery or falsification of the shown in this test report refer only to the	ct to Terms and Conditions for Ele of jurisdiction issues defined there ts of Client's instructions, if any. T ns under the transaction documen content or appearance of this doc	ctronic Documents at <u>http://www.</u> ein. Any holder of this document is 'he Company's sole responsibility s. This document cannot be repro ument is unlawful and offenders r	sgs.com/en/Terms-and s advised that informat is to its Client and this oduced except in full, w nay be prosecuted to t	-Conditions/Terms-e-Docu ion contained hereon refle s document does not exon vithout prior written appro-	<u>ment.aspx</u> . Attention i ects the Company's fine erate parties to a trans val of the Company. Ar	s drawn to the dings at the time of action from ny unauthorized

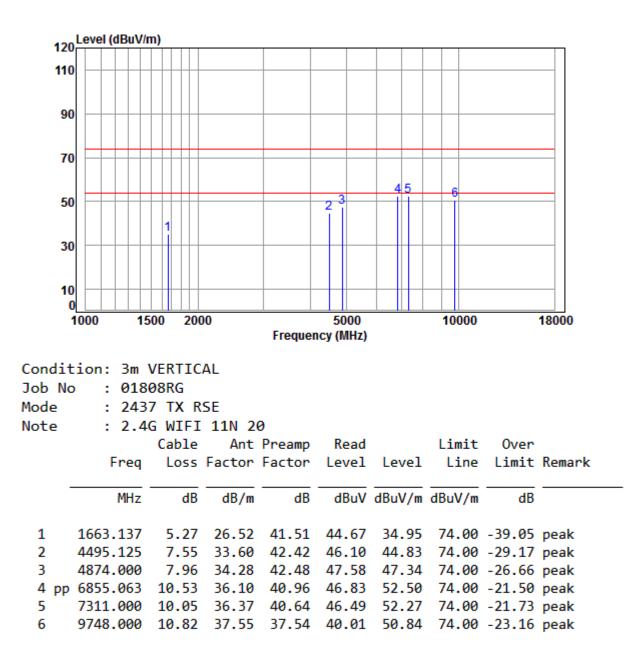
Report No.: SZEM180600552001 Page: 60 of 93



st mode: 802.11n(HT20) Test chann	el: Lowest	Remark: P	eak Horizontal
-----------------------------------	------------	-----------	----------------

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is for a finite diverse in a bit is divident that information contained hereon reflects the Company's findings at the ime of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is enpoduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgere or fallest?

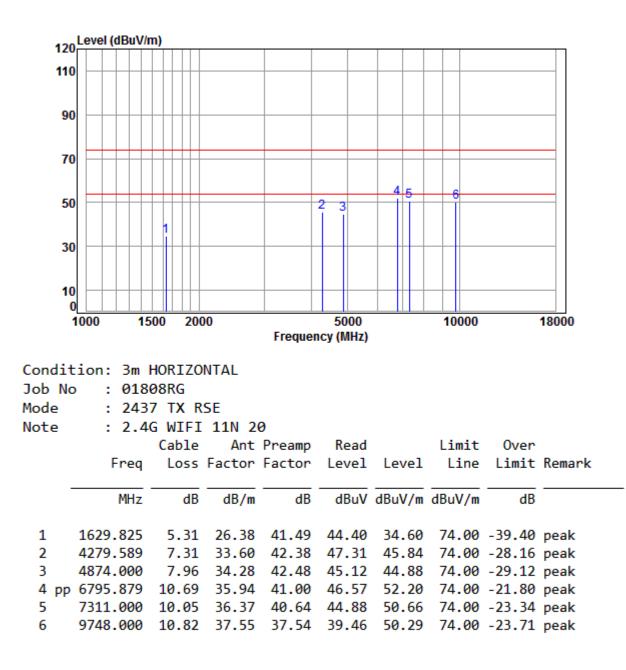
Report No.: SZEM180600552001 Page: 61 of 93



Test mode:	802.11n(HT20)	Test channel:	Middle	Remark:	Peak	Vertical
This document is issued by the Compa	ny subject to its General Condition	ns of Service printed overleafavai	lable on request or ac	cessible at http://www.sos	.com/en/Terms-and-Co	nditions.aspx and.

This document is issued by the Company subject to its General Conditions of Service printed overlear, available on request or accessible at http://www.sgs.com/en/lems-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/lems-and-Conditions.iterms-end-com/en/lems-and-Conditions.iterms-end-com/en/lems-end-com/end/lems-end

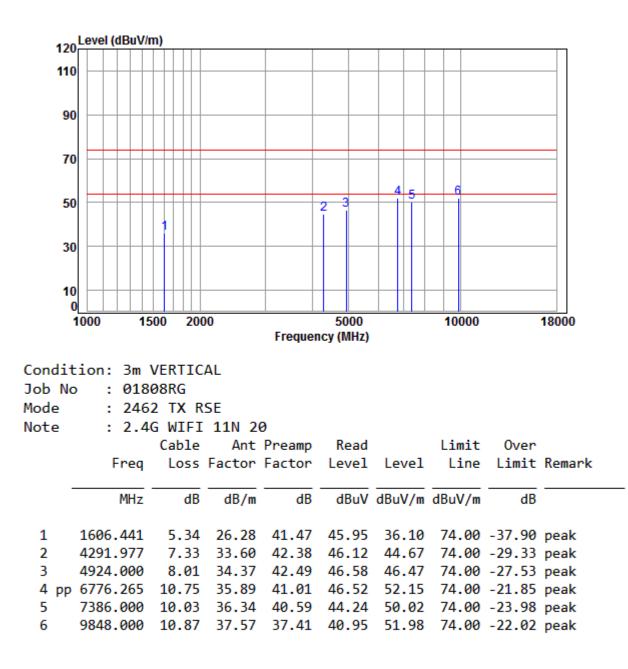
Report No.: SZEM180600552001 Page: 62 of 93



Test mode:	802.11n(HT20)	Test channel:	Middle	Remark:	Peak	Horizontal
This document is issued by the Compa	ny subject to its General Condition	ns of Service printed overleaf,-avai	ilable on request or ac	cessible at http://www.sqs.	com/en/Terms-and-Co	nditions.aspx and,

This document is issued by the Company subject to its General Conditions of Service printed overlear, available on request or accessible at http://www.sgs.com/en/lems-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/lems-and-Conditions.iterms-end-com/en/lems-and-Conditions.iterms-end-com/en/lems-end-com/end/lems-end

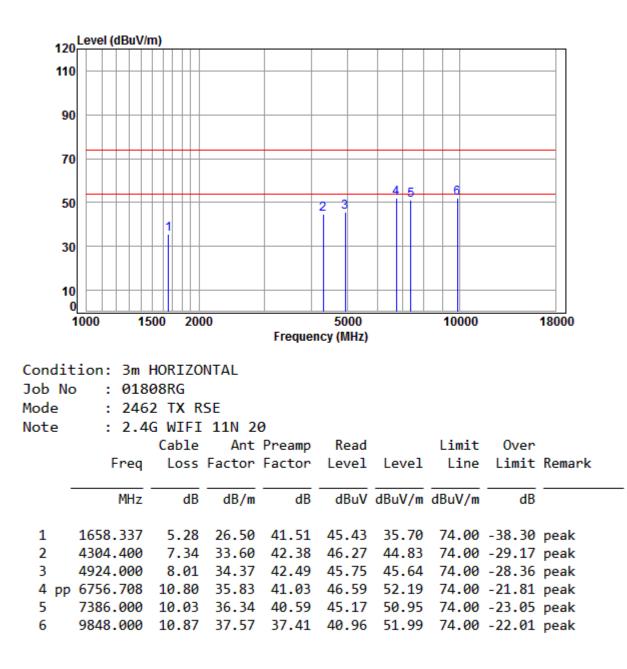
Report No.: SZEM180600552001 Page: 63 of 93



Test mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Vertical
This document is issued by the Compa	ny subject to its General Condition	s of Service printed overleaf -avai	lable on request or ac	essible at http://www.sgs	com/en/Terms-and-Co	nditions asny and

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.spp and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-and-

Report No.: SZEM180600552001 Page: 64 of 93



Test mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Horizontal
This document is issued by the Compa	ny subject to its General Condition	ns of Service printed overleaf, avai	lable on request or acc	cessible at http://www.sqs.	com/en/Terms-and-Co	nditions.aspx and,

This document is issued by the Company subject to its General Conditions of Service printed overlear, available on request or accessible at http://www.sgs.com/en/lems-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/lems-and-Conditions.iterms-end-com/en/lems-and-Conditions.iterms-end-com/en/lems-end-com/end/lems-end

Report No.: SZEM180600552001 Page: 65 of 93

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is for a finite diverse in a bit is divident that information contained hereon reflects the Company's findings at the ime of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is enpoduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgere or fallest?

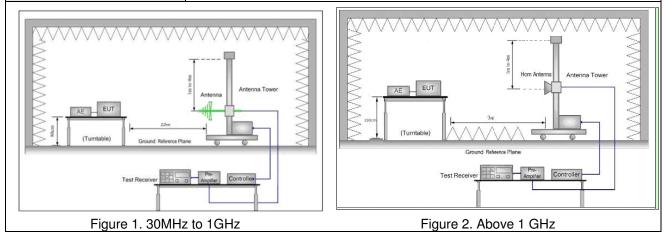
Report No.: SZEM180600552001 Page: 66 of 93

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

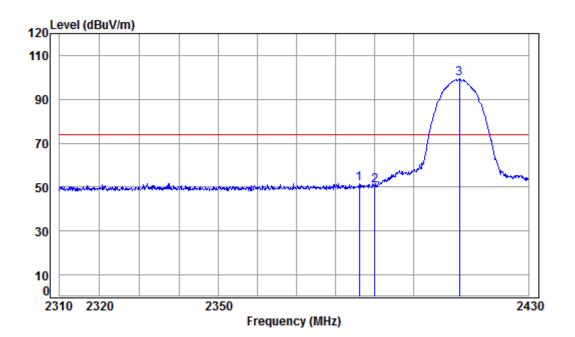


Report No.: SZEM180600552001 Page: 67 of 93

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013 Section	ANSI C63.10: 2013 Section 11.12						
Test Site:	Measurement Distance: 3n	Measurement Distance: 3m (Semi-Anechoic Chamber)						
	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
Limit:	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 1GHz	54.0	Average Value					
		74.0	Peak Value					

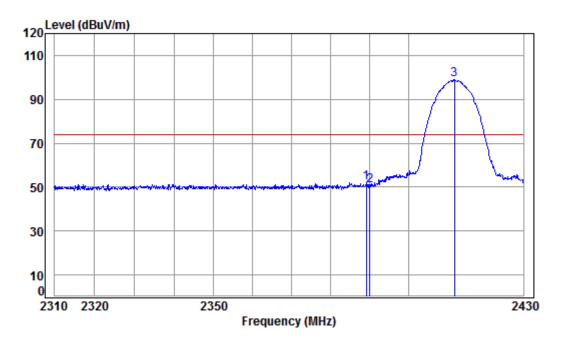
Test Setup:


Report No.: SZEM180600552001 Page: 68 of 93

	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
Test Procedure:	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	h. Test the EUT in the lowest channel, the Highest channel
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode. And found the X axis positioning which it is worse case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Toct Mode	Transmitting with all kind of modulations, data rates.
Exploratory Test Mode:	Charge + Transmitting mode.
	Pretest the EUT at Charge +Transmitting mode.
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20)
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

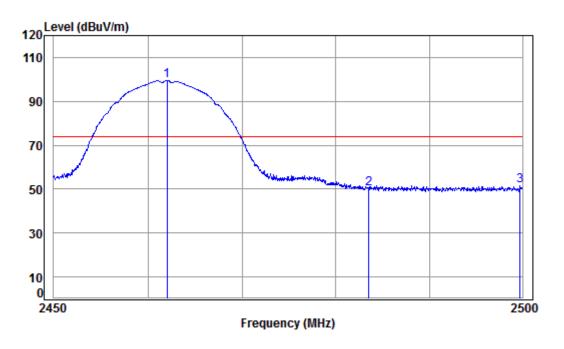
Report No.: SZEM180600552001 Page: 69 of 93

Test plot as follows	S:					
Worse case mode:	802.11b	Test channel:	Lowest	Remark:	Peak	Vertical



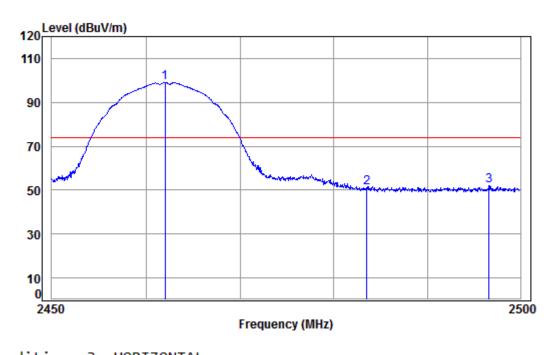
Condit	tion: 3m '	VERTIC	AL							
Job No	o : 018	08RG								
Mode	: 241	2 Band	edge							
	: 2.4	G WiFi	11B							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
	MHz	dB	-			-				
1	MHz 2385.978	dB 5.47	-			-	dBuV/m		Peak	
1 2			29.07	41.87	59.04	51.71		-22.29		
2	2385.978	5.47 5.47	29.07 29.08	41.87 41.87	59.04 57.83	51.71 50.51	74.00 74.00	-22.29 -23.49	Peak	

Report No.: SZEM180600552001 Page: 70 of 93


Worse case mode: 802.11b	Test channel:	Lowest	Remark:	Peak	Horizontal
--------------------------	---------------	--------	---------	------	------------

3m HO	RIZO	ITAL						
01808	RG							
2412	Band	edge						
2.4G	WiFi	11B						
C	able	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
.121	5.4/	29.07	41.8/	59.54	52.21	/4.00	-21./9	peak
.000	5.47	29.08	41.87	58.03	50.71	74.00	-23.29	peak
.000	5.50	29.14	41.88	106.20	98.96	74.00	24.96	peak
	<pre>01808 2412 2.4G Carrier Carrier Freq MHz 0.121 0.000</pre>	01808RG 2412 Band 2.4G WiFi Cable Freq Loss MHz dB 0.121 5.47 0.000 5.47	2412 Band edge 2.4G WiFi 11B Cable Ant Freq Loss Factor MHz dB dB/m 0.121 5.47 29.07 0.000 5.47 29.08	<pre>01808RG 2412 Band edge 2.4G WiFi 11B Cable Ant Preamp Freq Loss Factor Factor MHz dB dB/m dB 0.121 5.47 29.07 41.87 0.000 5.47 29.08 41.87</pre>	<pre> 01808RG 2412 Band edge 2.4G WiFi 11B Cable Ant Preamp Read Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 0.121 5.47 29.07 41.87 59.54 0.000 5.47 29.08 41.87 58.03 </pre>	<pre>01808RG 2412 Band edge 2.4G WiFi 11B Cable Ant Preamp Read Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 0.121 5.47 29.07 41.87 59.54 52.21 0.000 5.47 29.08 41.87 58.03 50.71</pre>	01808RG 2412 Band edge 2.4G WiFi 11B Cable Ant Preamp Read Limit Freq Loss Factor Factor Level Line MHz dB dB/m dB dBuV dBuV/m 0.121 5.47 29.07 41.87 59.54 52.21 74.00 0.000 5.47 29.08 41.87 58.03 50.71 74.00	<pre>01808RG 2412 Band edge 2.4G WiFi 11B Cable Ant Preamp Read Limit Over Freq Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dB 0.121 5.47 29.07 41.87 59.54 52.21 74.00 -21.79</pre>

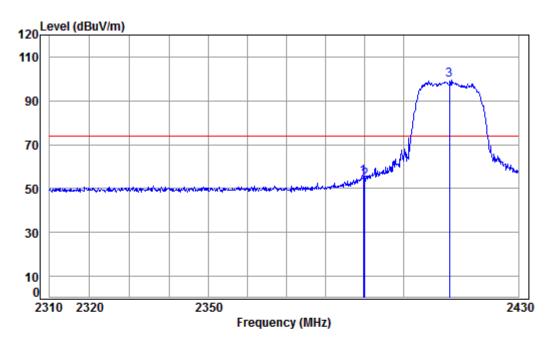
Report No.: SZEM180600552001 Page: 71 of 93



Condit	tion: 3m \	VERTIC	AL						
Job No	o : 0180	98RG							
Mode	: 246	2 Band	edge						
	: 2.40	G WiFi	11B						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp			-				dBuV/m		Peak
1 pp 2		5.57	29.29	41.90	106.51	99.47		25.47	
	2462.000	5.57 5.60	29.29 29.35	41.90 41.91	106.51 57.19	99.47 50.23	74.00	25.47 -23.77	Peak

Report No.: SZEM180600552001 Page: 72 of 93

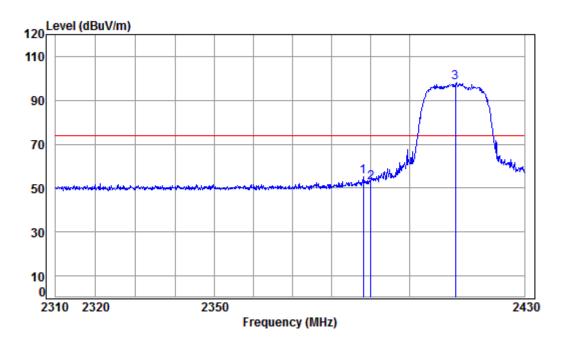
Worse case mode: 802.11	Test channel:	Highest	Remark:	Peak	Horizontal
-------------------------	---------------	---------	---------	------	------------



Condi	tion: 3m H	HORIZO	NTAL						
Job No	o : 0180	98RG							
Mode	: 2462	2 Band	edge						
	: 2.40	G WiFi	11B						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp			-			-	dBuV/m		peak
1 pp 2		5.57	29.29	41.90	106.19	99.15		25.15	•
	2462.000	5.57 5.60	29.29 29.35	41.90 41.91	106.19 58.05	99.15 51.09	74.00	25.15 -22.91	peak

Report No.: SZEM180600552001 Page: 73 of 93

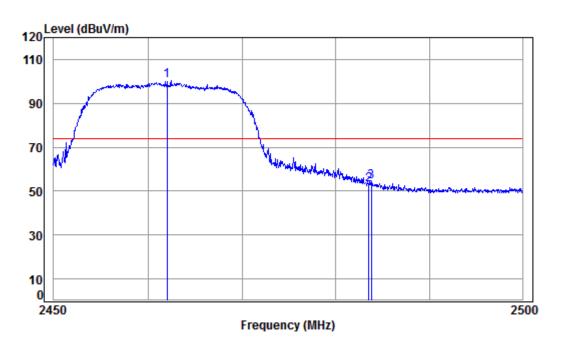
Worse case mode:802.11gTest channel:LowestRemark:PeakVertical



Condit	tion: 3m '	VERTIC	AL						
Job No	o : 018	08RG							
Mode	: 241	2 Band	edge						
	: 2.4	G WiFi	11G						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2389.605	5.47	29.08	41.87	62.67	55.35	74.00	-18.65	Peak
2	2390.000	5.47	29.08	41.87	61.31	53.99	74.00	-20.01	Peak
3 рр	2412.000	5.50	29.14	41.88	106.58	99.34	74.00	25.34	Peak

Report No.: SZEM180600552001 Page: 74 of 93

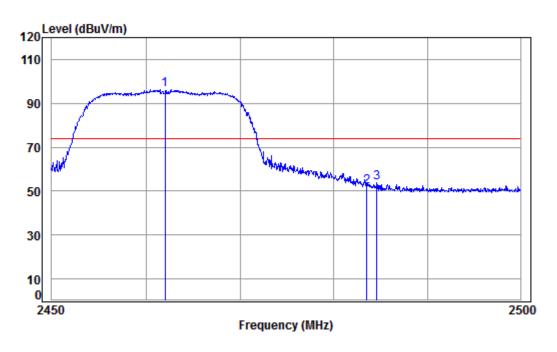
Worse case mode:802.11gTest channel:	Lowest	Remark:	Peak	Horizontal
--------------------------------------	--------	---------	------	------------



Condi	tion: 3m	HORIZO	NTAL							
Job No	o : 018	08RG								
Mode	: 241	2 Band	edge							
	: 2.4	G WiFi	11G							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
										_
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	2388.032	5.47	29.07	41.87	62.75	55.42	74.00	-18.58	peak	
2	2390.000	5.47	29.08	41.87	59.77	52.45	74.00	-21.55	peak	
3 nn	2412 000	E EQ	20 1/	/1 22	105 31	98 07	7/ 00	2/ 07	noak	
- 7 7 7	2412.000	5.50	22.14	41.00	102.21	50.07	74.00	24.07	hear	

Report No.: SZEM180600552001 Page: 75 of 93

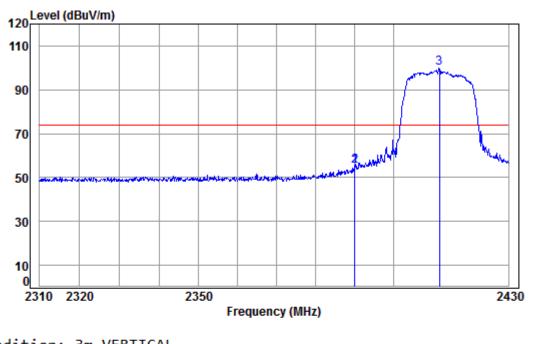
Worse case mode:802.11gTest channel:	Highest	Remark:	Peak	Vertical
--------------------------------------	---------	---------	------	----------



Condit	tion: 3m \	VERTIC	AL						
Job No	o : 0180	08RG							
Mode	: 2462	2 Band	edge						
	: 2.40	G WiFi	11G						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	MHz		-			-	dBuV/m		Peak
1 pp 2			29.29	41.90	107.25	100.21		26.21	
	2462.000	5.57	29.29 29.35	41.90 41.91	107.25 60.04	100.21 53.08	74.00	26.21 -20.92	Peak

Report No.: SZEM180600552001 Page: 76 of 93

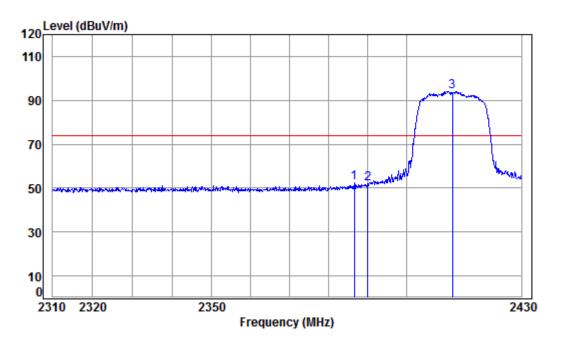
Worse case mode:	802.11g	Test channel:	Highest	Remark:	Peak	Horizontal
------------------	---------	---------------	---------	---------	------	------------



Condi	tion: 3m H	HORIZO	NTAL						
Job N	o : 0180	98RG							
Mode	: 2462	2 Band	edge						
	: 2.40	G WiFi	11G						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2462.000	5.57	29.29	41.90	103.46	96.42	74.00	22.42	peak
2	2483.500	5.60	29.35	41.91	58.83	51.87	74.00	-22.13	peak
3	2484.593	5.60	29.36	41.91	60.67	53.72	74.00	-20.28	peak

Report No.: SZEM180600552001 Page: 77 of 93

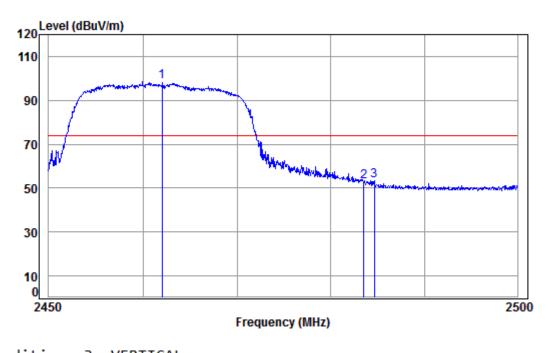
Worse case mode: 802.11n(HT20) Test channel: Lowest Remark: Peak Vertical



tion: 3m \	/ERTIC/	AL							
o : 0180	98RG								
: 2412	2 Band	edge							
: 2.40	G WiFi	11N 20	9						
	Cable	Ant	Preamp	Read		Limit	0ver		
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
2389.968	5.47	29.08	41.87	62.63	55.31	74.00	-18.69	Peak	
2390.000	5.47	29.08	41.87	62.63	55.31	74.00	-18.69	Peak	
2412.000	5.50	29.14	41.88	106.99	99.75	74.00	25.75	Peak	
	0 : 0180 : 2412 : 2.40 Freq MHz 2389.968 2390.000	<pre>c : 01808RG : 2412 Band : 2.4G WiFi</pre>	<pre>> : 01808RG : 2412 Band edge : 2.4G WiFi 11N 20 Cable Ant Freq Loss Factor MHz dB dB/m 2389.968 5.47 29.08 2390.000 5.47 29.08</pre>	<pre>> : 01808RG : 2412 Band edge : 2.4G WiFi 11N 20 Cable Ant Preamp Freq Loss Factor Factor MHz dB dB/m dB 2389.968 5.47 29.08 41.87 2390.000 5.47 29.08 41.87</pre>	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	<pre>D : 01808RG : 2412 Band edge : 2.4G WiFi 11N 20 Cable Ant Preamp Read Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 2389.968 5.47 29.08 41.87 62.63 55.31 2390.000 5.47 29.08 41.87 62.63 55.31</pre>	<pre>Define the form of the fo</pre>	: 2412 Band edge : 2.4G WiFi 11N 20 Cable Ant Preamp Read Limit Over Freq Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB 2389.968 5.47 29.08 41.87 62.63 55.31 74.00 -18.69 2390.000 5.47 29.08 41.87 62.63 55.31 74.00 -18.69	Difference in the formation of the fo

Report No.: SZEM180600552001 Page: 78 of 93

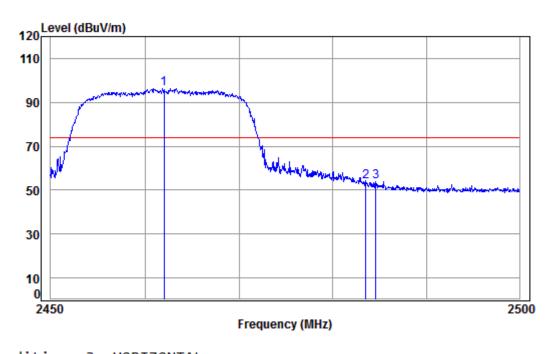
Worse case mode: 802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Horizontal
--------------------------------	---------------	--------	---------	------	------------



Condi	tion: 3m H	HORIZO	NTAL							
Job No	o : 0180	08RG								
Mode	: 2412	2 Band	edge							
	: 2.40	G WiFi	11N 20	9						
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
					-					
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
	MHz									
1	MHz						dBuV/m		peak	
1 2		5.47	29.07	41.87	59.64	52.31		-21.69		
2	2386.582	5.47 5.47	29.07 29.08	41.87 41.87	59.64 59.36	52.31 52.04	74.00 74.00	-21.69 -21.96	peak	

Report No.: SZEM180600552001 Page: 79 of 93

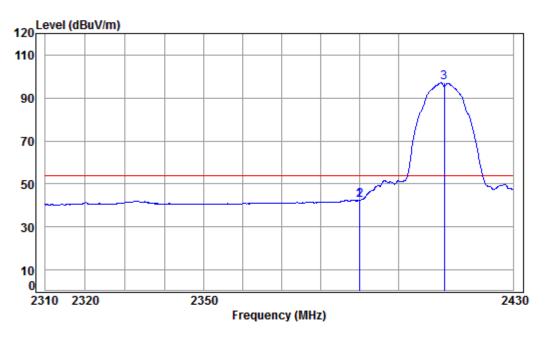
Worse case mode: 802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Vertical	
--------------------------------	---------------	---------	---------	------	----------	--



Condit	tion: 3m \	VERITC	AL							
Job No	o : 0180	98RG								
Mode	: 2462	2 Band	edge							
	: 2.40	G WiFi	11N 2	0						
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
						-				-
1 pp	MHz					-			Peak	•
1 pp 2		5.57	29.29	41.90	105.40	98.36		24.36		-
	2462.000	5.57 5.60	29.29 29.35	41.90 41.91	105.40 59.75	98.36 52.79	74.00	24.36 -21.21	Peak	-

Report No.: SZEM180600552001 Page: 80 of 93

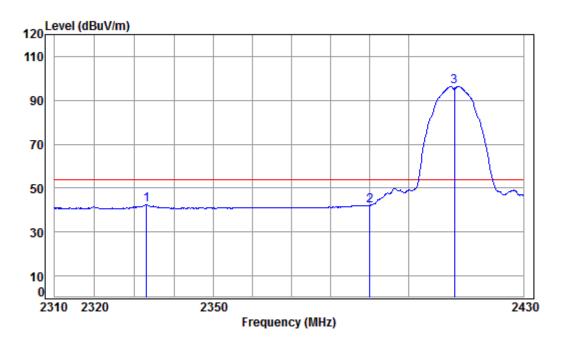
Worse case mode: 802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Horizontal
--------------------------------	---------------	---------	---------	------	------------



Condi	tion: 3m H	HORIZO	NTAL							
Job No	o : 0180	98RG								
Mode	: 2462	2 Band	edge							
	: 2.40	G WiFi	11N 2	9						
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		-
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		-
1 pp						-	dBuV/m		peak	-
1 pp 2		5.57	29.29	41.90	103.28	96.24		22.24		-
	2462.000	5.57 5.60	29.29 29.35	41.90 41.91	103.28 60.61	96.24 53.65	74.00	22.24 -20.35	peak	-

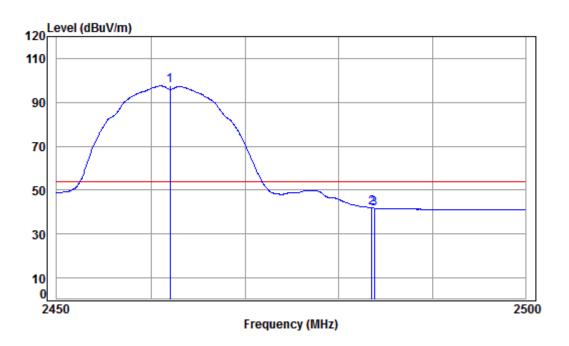
Report No.: SZEM180600552001 Page: 81 of 93

Worse case mode: 802.11b	Test channel:	Lowest	Remark:	Average	Vertical
--------------------------	---------------	--------	---------	---------	----------


Condition:	3m VERTICAL
Job No :	01808RG

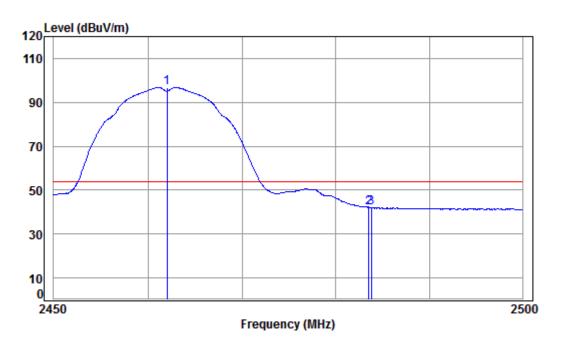
Mode	: 241	2 Band	edge						
	: 2.4	G WiFi	11B						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
_									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2389.847	5.47	29.08	41.87	49.77	42.45	54.00	-11.55	Average
2	2390.000	5.47	29.08	41.87	49.76	42.44	54.00	-11.56	Average
3 pp	2412.000	5.50	29.14	41.88	104.28	97.04	54.00	43.04	Average

Report No.: SZEM180600552001 Page: 82 of 93


Worse case mode:	802.11b	Test channel:	Lowest	Remark:	Average	Horizontal
------------------	---------	---------------	--------	---------	---------	------------

Condit	tion: 3m	HORIZO	NTAL						
Job No	o : 018	08RG							
Mode	: 241	2 Band	edge						
	: 2.4	G WiFi	11B						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	MHz	dB	-						
1	MHz 2333.044	dB 5.40	-						Average
1 2		5.40	28.90	41.85	50.00	42.45	54.00	-11.55	Average Average
2	2333 . 044	5.40 5.47	28.90 29.08	41.85 41.87	50.00 49.30	42.45 41.98	54.00 54.00	-11.55 -12.02	Average

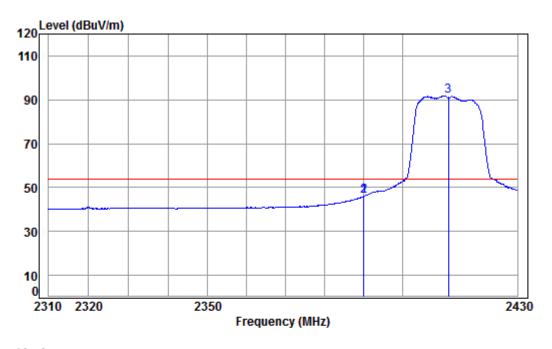
Report No.: SZEM180600552001 Page: 83 of 93



CONULI	tion: 3m	VERTIC	AL						
Job No	o : 018	08RG							
Mode	: 246	2 Band	edge						
	: 2.4	G WiFi	11B						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	MHz 2462.000								Average
1 pp 2			29.29	41.90	104.51	97.47	54.00	43.47	Average Average
	2462.000	5.57	29.29 29.35	41.90 41.91	104.51 48.96	97.47 42.00	54.00 54.00	43.47 -12.00	

Report No.: SZEM180600552001 Page: 84 of 93

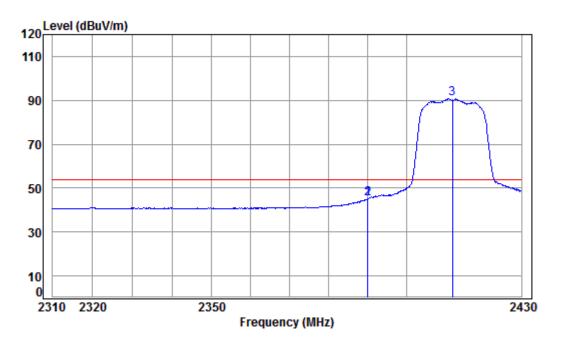
Worse case mode: 802.11b Test cha	annel: Highest	Remark: Avera	ge Horizontal
-----------------------------------	----------------	---------------	---------------



Condi	tion: 3m H	HORIZO	NTAL						
Job No	o : 0180	98RG							
Mode	: 2462	2 Band	edge						
	: 2.40	G WiFi	11B						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	MHz								
1 pp	MHz								Average
1 pp 2			29.29	41.90	103.85	96.81	54.00	42.81	Average Average
	2462.000	5.57	29.29 29.35	41.90 41.91	103.85 49.16	96.81 42.20	54.00 54.00	42.81 -11.80	-

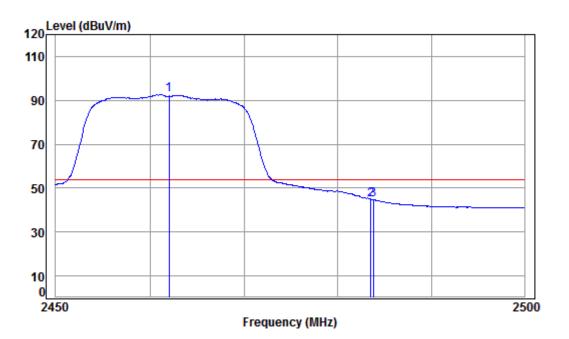
Report No.: SZEM180600552001 Page: 85 of 93

Worse case mode:	802.11g	Test channel:	Lowest	Remark:	Average	Vertical
------------------	---------	---------------	--------	---------	---------	----------



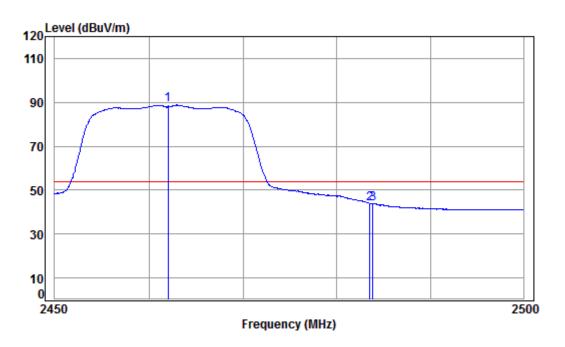
Condit	tion: 3m \	VERTIC	AL						
Job No	o : 0180	98RG							
Mode	: 2412	2 Band	edge						
	: 2.40	G WiFi	11G						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2389.968	5.47	29.08	41.87	53.46	46.14	54.00	-7.86	Average
2	2390.000	5.47	29.08	41.87	53.46	46.14	54.00	-7.86	Average
3 pp	2412.000	5.50	29.14	41.88	99.18	91.94	54.00	37.94	Average

Report No.: SZEM180600552001 Page: 86 of 93


Worse case mode:	802.11g	Test channel:	Lowest	Remark:	Average	Horizontal
------------------	---------	---------------	--------	---------	---------	------------

Condit	tion: 3m H	HORIZO	NTAL						
Job No	o : 0180	08RG							
Mode	: 2412	2 Band	edge						
	: 2.40	G WiFi	11G						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
-			-			-	-		
1	MHz 2389.968	dB	dB/m			-	-		Average
1 2			29.08	41.87	52.42	45.10	54.00	-8.90	Average Average
2	2389.968	5.47 5.47	29.08 29.08	41.87 41.87	52.42 52.42	45.10 45.10	54.00 54.00	-8.90 -8.90	

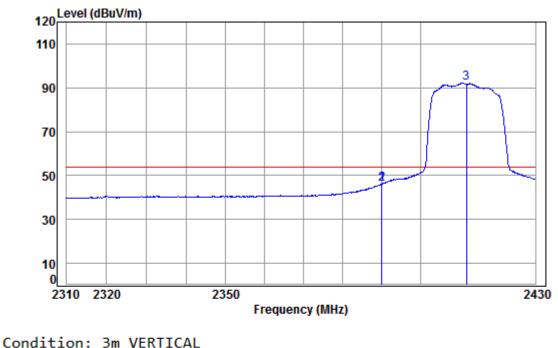
Report No.: SZEM180600552001 Page: 87 of 93



	tion: 3m		AL						
Job No	o : 0180	98RG							
Mode	: 246	2 Band	edge						
	: 2.40	G WiFi	11G						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	MHz		-			-			Average
1 pp 2			29.29	41.90	99.60	92.56	54.00	38.56	Average Average
	2462.000	5.57	29.29 29.35	41.90 41.91	99.60 51.80	92.56 44.84	54.00 54.00	38.56 -9.16	

Report No.: SZEM180600552001 Page: 88 of 93

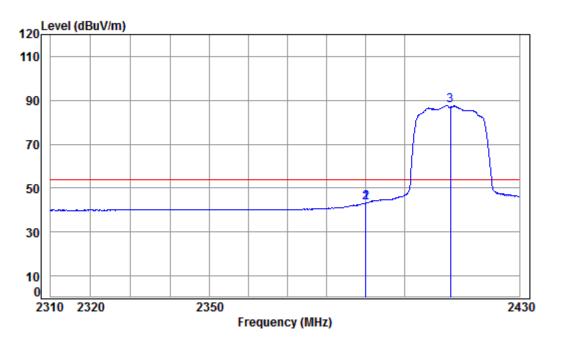
Worse case mode: 802.11g Test channe	: Highest Remark	rk: Average Horizontal
--------------------------------------	------------------	------------------------



Condi	tion: 3m H	HORIZO	NTAL						
Job No	o : 0180	08RG							
Mode	: 2462	2 Band	edge						
	: 2.40	G WiFi	11G						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	MHz								Average
1 pp 2		5.57	29.29	41.90	95.80	88.76	54.00	34.76	Average Average
	2462.000	5.57	29.29 29.35	41.90 41.91	95.80 50.97	88.76 44.01	54.00 54.00	34.76 -9.99	

Report No.: SZEM180600552001 Page: 89 of 93

Worse case mode: 802.11n(HT20) Test chan	nel: Lowest	Remark:	Average	Vertical
--	-------------	---------	---------	----------



Condit	:10n: 3m \	VERITCA	AL							
Job No) : 018 6	98RG								
Mode	: 2412	2 Band	edge							
	: 2.40	G WiFi	11N 20	9						
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
-										_
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	2389.968	5.47	29.08	41.87	53.44	46.12	54.00	-7.88	Average	
2	2390.000	5.47	29.08	41.87	53.44	46.12	54.00	-7.88	Average	
3 рр	2412.000	5.50	29.14	41.88	99.41	92.17	54.00	38.17	Average	

Report No.: SZEM180600552001 Page: 90 of 93

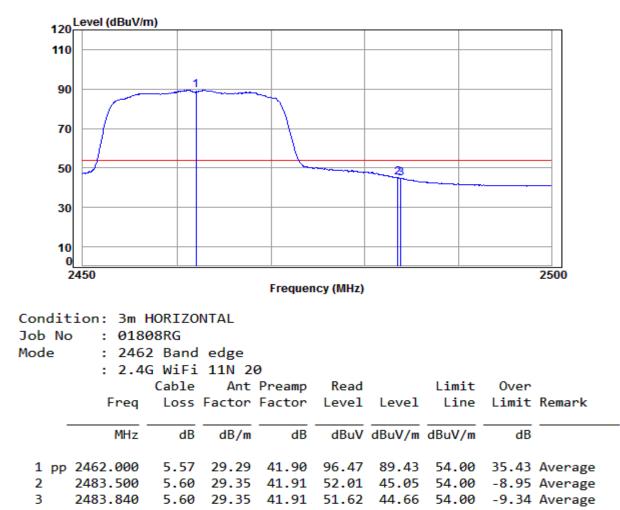
Worse case mode: 802.11n(HT20)	Test channel:	Lowest	Remark:	Average	Horizontal
--------------------------------	---------------	--------	---------	---------	------------



Condi	tion: 3m H	HORIZO	NTAL						
Job No	o : 0180	08RG							
Mode	: 2412	2 Band	edge						
	: 2.40	G WiFi	11N 2	9					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	MHz	dB	-						Average
1 2			29.08	41.87	50.46	43.14	54.00	-10.86	Average Average
2	2389.968	5.47 5.47	29.08 29.08	41.87 41.87	50.46 50.46	43.14 43.14	54.00 54.00	-10.86 -10.86	-

Report No.: SZEM180600552001 Page: 91 of 93

Worse case mode: 802.11n(HT20)	Test channel:	Highest	Remark:	Average	Vertical
--------------------------------	---------------	---------	---------	---------	----------



Condi	tion: 3m \	/ERIIC/	AL						
Job No	o : 0180	98RG							
Mode	: 2462	2 Band	edge						
	: 2.40	G WiFi	11N 20	9					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	MHz								Average
1 pp 2			29.29	41.90	98.34	91.30	54.00	37.30	Average Average
	2462.000	5.57 5.60	29.29 29.35	41.90 41.91	98.34 51.06	91.30 44.10	54.00 54.00	37.30 -9.90	-

Report No.: SZEM180600552001 Page: 92 of 93

Worse case mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Average	Horizontal
------------------	---------------	---------------	---------	---------	---------	------------

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

Report No.: SZEM180600552001 Page: 93 of 93

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1806005520RG.

The End