

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057 Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com

Report No.: SZEM180600551901 Page: 1 of 92

### **FCC REPORT**

**Application No:** SZEM180600551901RG

**Applicant:** Novatel Wireless, Inc. **Manufacturer:** Novatel Wireless, Inc.

Factory: Fujian Star-net Communication Co.,Ltd

Product Name: Industrial Cellular Gateway with Ethernet, WiFi, Bluetooth, GPS/GLNSS

and USB Connectivity

Model No.(EUT): SKYUS 110B

Trade Mark: Inseego

FCC ID: PKRNVWSK110B

Standards: 47 CFR Part 15, Subpart C

Test Method: KDB 558074 D01 DTS Meas Guidance v04

ANSI C63.10 (2013)

**Date of Receipt:** 2018-03-09

**Date of Test:** 2018-03-09 to 2018-03-25

**Date of Issue:** 2018-06-25

Test Result: PASS \*

. \* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derek Yang

Derole yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM180600551901

Page: 2 of 92

### 2 Version

| Revision Record                      |  |            |  |          |  |  |  |
|--------------------------------------|--|------------|--|----------|--|--|--|
| Version Chapter Date Modifier Remark |  |            |  |          |  |  |  |
| 01                                   |  | 2018-06-25 |  | Original |  |  |  |
|                                      |  |            |  |          |  |  |  |
|                                      |  |            |  |          |  |  |  |

| Authorized for issue by: |                             |            |
|--------------------------|-----------------------------|------------|
| Tested By                | Mike Mu                     | 2018-06-25 |
|                          | (Mike Hu) /Project Engineer | Date       |
| Checked By               | Jihn Hong                   | 2018-06-25 |
|                          | (Jim Huang) /Reviewer       | Date       |



Report No.: SZEM180600551901

Page: 3 of 92

### 3 Test Summary

| Test Item                                                         | Test Requirement                                       | Test method              | Result |
|-------------------------------------------------------------------|--------------------------------------------------------|--------------------------|--------|
| Antenna Requirement                                               | 47 CFR Part 15, Subpart C Section<br>15.203/15.247 (c) | ANSI C63.10 2013         | PASS   |
| AC Power Line Conducted Emission                                  | 47 CFR Part 15, Subpart C Section<br>15.207            | ANSI C63.10 2013         | PASS   |
| Conducted Peak Output<br>Power                                    | 47 CFR Part 15, Subpart C Section<br>15.247 (b)(3)     | Section ANSI C63.10 2013 |        |
| 6dB Occupied  Bandwidth                                           | 47 CFR Part 15, Subpart C Section<br>15.247 (a)(2)     | ANSI C63.10 2013         | PASS   |
| Power Spectral Density                                            | 47 CFR Part 15, Subpart C Section 15.247 (e)           | ANSI C63.10 2013         | PASS   |
| Band-edge for RF Conducted Emissions                              | 47 CFR Part 15, Subpart C Section 15.247(d)            | ANSI C63.10 2013         | PASS   |
| RF Conducted Spurious<br>Emissions                                | 47 CFR Part 15, Subpart C Section<br>15.247(d)         | ANSI C63.10 2013         | PASS   |
| Radiated Spurious Emissions                                       | 47 CFR Part 15, Subpart C Section<br>15.205/15.209     | ANSI C63.10 2013         | PASS   |
| Restricted bands around fundamental frequency (Radiated Emission) | 47 CFR Part 15, Subpart C Section<br>15.205/15.209     | ANSI C63.10 2013         | PASS   |



Report No.: SZEM180600551901

Page: 4 of 92

### 4 Contents

|   |                                                                             |                                                                                                                                                                                                                                                                                                                  | Page |
|---|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1 | CO                                                                          | VER PAGE                                                                                                                                                                                                                                                                                                         | 1    |
| 2 | VEF                                                                         | RSION                                                                                                                                                                                                                                                                                                            | 2    |
| 3 | TES                                                                         | ST SUMMARY                                                                                                                                                                                                                                                                                                       | 3    |
| 4 | COI                                                                         | NTENTS                                                                                                                                                                                                                                                                                                           | 4    |
| 5 | GEI                                                                         | NERAL INFORMATION                                                                                                                                                                                                                                                                                                | 5    |
|   | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>5.9<br>5.10<br>5.11 | CLIENT INFORMATION GENERAL DESCRIPTION OF EUT TEST ENVIRONMENT AND MODE DESCRIPTION OF SUPPORT UNITS TEST LOCATION TEST FACILITY DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITIONS OTHER INFORMATION REQUESTED BY THE CUSTOMER MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) EQUIPMENT LIST |      |
| 6 |                                                                             | ST RESULTS AND MEASUREMENT DATA                                                                                                                                                                                                                                                                                  |      |
|   | 6.1<br>6.2<br>6.3<br>6.4<br>6.5<br>6.6<br>6.7<br>6.8<br>6.8.<br>6.9         |                                                                                                                                                                                                                                                                                                                  |      |
| 7 |                                                                             | OTOGRADUS - ELIT CONSTRUCTIONAL DETAILS                                                                                                                                                                                                                                                                          |      |



Report No.: SZEM180600551901

Page: 5 of 92

### 5 General Information

### 5.1 Client Information

| Applicant:               | Novatel Wireless, Inc.                                                                                     |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| Address of Applicant:    | 9605 Scranton Rd., Suite 300, San Diego, CA 92121                                                          |  |  |
| Manufacturer:            | Novatel Wireless, Inc.                                                                                     |  |  |
| Address of Manufacturer: | 9605 Scranton Rd., Suite 300, San Diego, CA 92121                                                          |  |  |
| Factory:                 | Fujian Star-net Communication Co.,Ltd                                                                      |  |  |
| Address of Factory:      | 3F,Bldg 1,Star-Net Science-based Haixi Industrial Pack, No. 9 Gaoxin<br>Road, Minhou County, Fuzhou, China |  |  |

### 5.2 General Description of EUT

| Product Name:        | Industrial Cellular Gateway with Ethernet, WiFi, Bluetooth, GPS/GLNSS and USB Connectivity |  |
|----------------------|--------------------------------------------------------------------------------------------|--|
| Model No.:           | SKYUS 110B                                                                                 |  |
| Trade Mark:          | Inseego                                                                                    |  |
| Operation Frequency: | IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz                                                 |  |
| Channel Numbers:     | IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels                                             |  |
| Channel Separation:  | 5MHz                                                                                       |  |
|                      | IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)                                                    |  |
| Type of Modulation:  | IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)                                          |  |
|                      | IEEE for 802.11n(HT20): OFDM (64QAM, 16QAM, QPSK,BPSK)                                     |  |
| Antenna Type:        | Internal Antenna                                                                           |  |
| Antenna Gain:        | 2.6dBi                                                                                     |  |
|                      | Model:GB-S10-994268-010H                                                                   |  |
| Power Supply         | DC3.8 (1 x 3.8V Rechargeable battery) 4400mAh,16.7Wh                                       |  |
|                      | Battery: Charge by DC 5V                                                                   |  |
|                      | Model:ASSA76a-050200                                                                       |  |
| AC adaptor:          | Input: AC100-240V 50/60Hz 0.45A                                                            |  |
|                      | Output:DC5.0VDC, 2.0A                                                                      |  |



Report No.: SZEM180600551901

Page: 6 of 92

| Operation Frequency of each channel (802.11b/g/n HT20)               |         |   |         |   |         |    |           |
|----------------------------------------------------------------------|---------|---|---------|---|---------|----|-----------|
| Channel Frequency Channel Frequency Channel Frequency Channel Freque |         |   |         |   |         |    | Frequency |
| 1                                                                    | 2412MHz | 4 | 2427MHz | 7 | 2442MHz | 10 | 2457MHz   |
| 2                                                                    | 2417MHz | 5 | 2432MHz | 8 | 2447MHz | 11 | 2462MHz   |
| 3                                                                    | 2422MHz | 6 | 2437MHz | 9 | 2452MHz |    |           |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

#### For 802.11b/g/n (HT20):

| Channel             | Frequency |  |  |
|---------------------|-----------|--|--|
| The Lowest channel  | 2412MHz   |  |  |
| The Middle channel  | 2437MHz   |  |  |
| The Highest channel | 2462MHz   |  |  |



Report No.: SZEM180600551901

Page: 7 of 92

#### 5.3 Test Environment and Mode

| Operating Enviro      | Operating Environment:                                                                   |  |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|
| Temperature:          | 25.0 °C                                                                                  |  |  |  |  |  |
| Humidity:             | 50 % RH                                                                                  |  |  |  |  |  |
| Atmospheric Pressure: | 1010 MPa                                                                                 |  |  |  |  |  |
| Test mode:            |                                                                                          |  |  |  |  |  |
| Transmitting mode:    | Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate. |  |  |  |  |  |

### 5.4 Description of Support Units

The EUT has been tested independent unit.

#### 5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

### 5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

#### A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

#### VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

#### • FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

#### Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.



Report No.: SZEM180600551901

Page: 8 of 92

#### 5.7 Deviation from Standards

None.

#### 5.8 Abnormalities from Standard Conditions

None.

### 5.9 Other Information Requested by the Customer

None.

### 5.10 Measurement Uncertainty (95% confidence levels, k=2)

| No. | Item                            | Measurement Uncertainty |
|-----|---------------------------------|-------------------------|
| 1   | Total RF power, conducted       | 0.75dB                  |
| 2   | RF power density, conducted     | 2.84dB                  |
| 3   | Spurious emissions, conducted   | 0.75dB                  |
|     |                                 | 4.5dB (30MHz-1GHz)      |
| 4   | Radiated Spurious emission test | 4.8dB (1GHz-25GHz)      |
| 5   | Conduct emission test           | 3.12 dB(9KHz- 30MHz)    |
| 6   | Temperature test                | 1℃                      |
| 7   | Humidity test                   | 3%                      |
| 8   | DC and low frequency voltages   | 0.5%                    |



Report No.: SZEM180600551901

Page: 9 of 92

### 5.11 Equipment List

|      | Conducted Emission |                                    |                     |               |                           |                                 |  |  |  |
|------|--------------------|------------------------------------|---------------------|---------------|---------------------------|---------------------------------|--|--|--|
| Item | Test Equipment     | Manufacturer                       | Model No.           | Inventory No. | Cal. date<br>(yyyy-mm-dd) | Cal.Duedate<br>(yyyy-mm-<br>dd) |  |  |  |
| 1    | Shielding Room     | ZhongYu Electron                   | GB-88               | SEM001-06     | 2017/5/10                 | 2018/5/10                       |  |  |  |
| 2    | LISN               | Rohde & Schwarz                    | ENV216              | SEM007-01     | 2017/10/9                 | 2018/10/9                       |  |  |  |
| 3    | LISN               | ETS-LINDGREN                       | 3816/2              | SEM007-02     | 2017/4/14                 | 2018/4/14                       |  |  |  |
| 4    | 8 Line ISN         | Fischer Custom Communications Inc. | FCC-TLISN-<br>T8-02 | EMC0120       | 2017/9/28                 | 2018/9/28                       |  |  |  |
| 5    | 4 Line ISN         | Fischer Custom Communications Inc. | FCC-TLISN-<br>T4-02 | EMC0121       | 2017/9/28                 | 2018/9/28                       |  |  |  |
| 6    | 2 Line ISN         | Fischer Custom Communications Inc. | FCC-TLISN-<br>T2-02 | EMC0122       | 2017/9/28                 | 2018/9/28                       |  |  |  |
| 7    | EMI Test Receiver  | Rohde & Schwarz                    | ESCI                | SEM004-02     | 2017/4/14                 | 2018/4/14                       |  |  |  |
| 8    | DC Power Supply    | Zhao Xin                           | RXN-305D            | SEM011-02     | 2017/10/9                 | 2018/10/9                       |  |  |  |

|      | RF connected test |                         |           |               |                           |                                 |  |  |
|------|-------------------|-------------------------|-----------|---------------|---------------------------|---------------------------------|--|--|
| Item | Test Equipment    | Manufacturer            | Model No. | Inventory No. | Cal. date<br>(yyyy-mm-dd) | Cal.Duedate<br>(yyyy-mm-<br>dd) |  |  |
| 1    | DC Power Supply   | ZhaoXin                 | RXN-305D  | SEM011-02     | 2017/10/9                 | 2018/10/9                       |  |  |
| 2    | Signal Analyzer   | Rohde &Schwarz          | FSV       | W005-02       | 2018/3/13                 | 2019/3/12                       |  |  |
| 3    | Signal Generator  | Rohde &Schwarz          | SML03     | SEM006-02     | 2017/4/14                 | 2018/4/14                       |  |  |
| 4    | Power Meter       | Rohde &Schwarz          | NRVS      | SEM014-02     | 2017/10/9                 | 2018/10/9                       |  |  |
| 5    | Power Sensor      | Agilent<br>Technologies | U2021XA   | SEM009-01     | 2017/10/9                 | 2018/10/9                       |  |  |



Report No.: SZEM180600551901

Page: 10 of 92

|      | RE in Chamber                     |                         |           |               |                           |                              |
|------|-----------------------------------|-------------------------|-----------|---------------|---------------------------|------------------------------|
| Item | Test Equipment                    | Manufacturer            | Model No. | Inventory No. | Cal. date<br>(yyyy-mm-dd) | Cal.Due date<br>(yyyy-mm-dd) |
| 1    | 3m Semi-Anechoic<br>Chamber       | ETS-LINDGREN            | N/A       | SEM001-01     | 2017/5/10                 | 2018/5/10                    |
| 2    | EMI Test Receiver                 | Agilent<br>Technologies | N9038A    | SEM004-05     | 2017/10/9                 | 2018/10/9                    |
| 3    | BiConiLog Antenna<br>(26-3000MHz) | ETS-LINDGREN            | 3142C     | SEM003-01     | 2017/11/1                 | 2020/11/1                    |
| 4    | Double-ridged horn<br>(1-18GHz)   | ETS-LINDGREN            | 3117      | SEM003-11     | 2015/10/17                | 2018/10/17                   |
| 5    | Horn Antenna<br>(18-26GHz)        | ETS-LINDGREN            | 3160      | SEM003-12     | 2017/11/24                | 2020/11/24                   |
| 6    | Pre-amplifier<br>(0.1-1300MHz)    | Agilent<br>Technologies | 8447D     | SEM005-01     | 2017/4/14                 | 2018/4/14                    |
| 7    | Band filter                       | Amindeon                | Asi 3314  | SEM023-01     | N/A                       | N/A                          |
| 8    | DC Power Supply                   | Zhao Xin                | RXN-305D  | SEM011-02     | 2017/10/9                 | 2018/10/9                    |
| 9    | Loop Antenna                      | Beijing Daze            | ZN30401   | SEM003-09     | 2015/5/13                 | 2018/5/13                    |

|      | RE in Chamber                         |                         |           |               |                        |                            |
|------|---------------------------------------|-------------------------|-----------|---------------|------------------------|----------------------------|
| Item | Test Equipment                        | Manufacturer            | Model No. | Inventory No. | Cal. Date (yyyy-mm-dd) | Cal. Due date (yyyy-mm-dd) |
| 1    | 10m Semi-Anechoic<br>Chamber          | SAEMC                   | FSAC1018  | SEM001-03     | 2017/5/10              | 2018/5/10                  |
| 2    | EMI Test Receiver<br>(9k-7GHz)        | Rohde &<br>Schwarz      | ESR       | SEM004-03     | 2017/4/14              | 2018/4/14                  |
| 3    | Trilog-Broadband<br>Antenna(30M-1GHz) | Schwarzbeck             | VULB9168  | SEM003-18     | 2016/6/29              | 2019/6/29                  |
| 4    | Pre-amplifier                         | Sonoma<br>Instrument Co | 310N      | SEM005-03     | 2017/7/6               | 2018/7/6                   |
| 5    | .Loop Antenna                         | ETS-Lindgren            | 6502      | SEM003-08     | 2015/8/14              | 2018/8/14                  |



Report No.: SZEM180600551901

Page: 11 of 92

|      | RE in Chamber                     |                             |                           |                  |                           |                              |
|------|-----------------------------------|-----------------------------|---------------------------|------------------|---------------------------|------------------------------|
| Item | Test Equipment                    | Manufacturer                | Model No.                 | Inventory<br>No. | Cal. date<br>(yyyy-mm-dd) | Cal.Due date<br>(yyyy-mm-dd) |
| 1    | 3m Semi-Anechoic<br>Chamber       | AUDIX                       | N/A                       | SEM001-02        | 2017/5/10                 | 2018/5/10                    |
| 2    | EXA Spectrum<br>Analyzer          | Agilent<br>Technologies Inc | N9010A                    | SEM004-09        | 2017/7/19                 | 2018/7/19                    |
| 3    | BiConiLog Antenna<br>(26-3000MHz) | ETS-Lindgren                | 3142C                     | SEM003-02        | 2017/11/15                | 2020/11/15                   |
| 4    | Amplifier<br>(0.1-1300MHz)        | HP                          | 8447D                     | SEM005-02        | 2017/10/9                 | 2018/10/9                    |
| 5    | Horn Antenna<br>(1-18GHz)         | Rohde &<br>Schwarz          | HF907                     | SEM003-07        | 2015/6/14                 | 2018/6/14                    |
| 6    | Horn Antenna<br>(18-26GHz)        | ETS-Lindgren                | 3160                      | SEM003-12        | 2017/11/24                | 2020/11/24                   |
| 7    | HornAntenna<br>(26GHz-40GHz)      | A.H.Systems,<br>inc.        | SAS-573                   | SEM003-13        | 2017/10/17                | 2020/10/16                   |
| 8    | Low Noise Amplifier               | Black Diamond<br>Series     | BDLNA-<br>0118-<br>352810 | SEM005-05        | 2017/10/9                 | 2018/10/9                    |
| 9    | Band filter                       | Amindeon                    | Asi 3314                  | SEM023-01        | N/A                       | N/A                          |



Report No.: SZEM180600551901

Page: 12 of 92

#### 6 Test results and Measurement Data

### 6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.6dBi.



Report No.: SZEM180600551901

Page: 13 of 92

### 6.2 Conducted Emissions

| Test Requirement:     | 47 CFR Part 15C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                |                          |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| Test Method:          | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                |                          |  |
| Test Frequency Range: | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                |                          |  |
|                       | Francisco (MIII-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit (                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dBuV)                                                                                                                                                                                                                                                                                                                                                          |                          |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Average                                                                                                                                                                                                                                                                                                                                                        |                          |  |
| Limit:                | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66 to 56*                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56 to 46*                                                                                                                                                                                                                                                                                                                                                      |                          |  |
| Lilling.              | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                             |                          |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                                                                                                             |                          |  |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n of the frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                | ı                        |  |
| Test Procedure:       | <ol> <li>The mains terminal disturb room.</li> <li>The EUT was connected to Impedance Stabilization N impedance. The power cal connected to a second LIS plane in the same way as multiple socket outlet strip single LISN provided the ration of the tabletop EUT was placed on the horizontal ground reference plane. A placed on the horizontal ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated ed.</li> <li>In order to find the maximule equipment and all of the in ANSI C63.10: 2013 on corrected.</li> </ol> | o AC power source throetwork) which provides bles of all other units of SN 2, which was bonder the LISN 1 for the unit I was used to connect mating of the LISN was noted upon a non-metallished for floor-standing arround reference plane, ith a vertical ground refform the vertical ground reference blane was bonded to the 1 was placed 0.8 m from the unit of the LISN 1 and the quipment was at least 0 the cum emission, the relative terface cables must be | bugh a LISN 1 (Line a 50Ω/50μH + 5Ω line if the EUT were do to the ground referenceing measured. A multiple power cables to tot exceeded. In the EUT were dote the exceeded. In the EUT were dote the exceeded are ference plane. The reard reference plane. The exceeded plane is distance was EUT. All other units of 0.8 m from the LISN 2. We positions of | ear<br>nce<br>o a<br>vas |  |
| Test Setup:           | Shielding Room  EUT  AC Mains  LISN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Receiver                                                                                                                                                                                                                                                                                                                                                  |                          |  |

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawforded may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



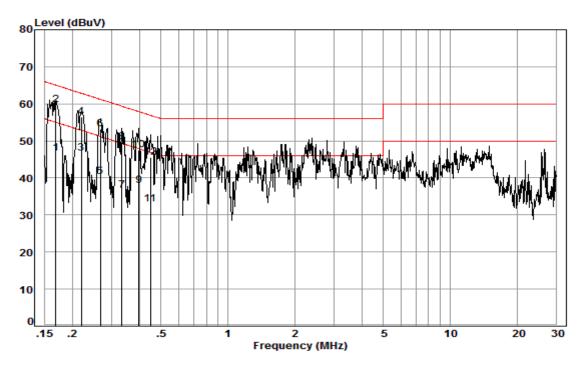
Report No.: SZEM180600551901

Page: 14 of 92

| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates at lowest, middle and highest channel. |
|------------------------|----------------------------------------------------------------------------------------------|
|                        | Charge + Transmitting mode.                                                                  |
| Electron Mark          | Through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.     |
| Final Test Mode:       | Charge + Transmitting mode.                                                                  |
|                        | Only the worst case is recorded in the report.                                               |
| Instruments Used:      | Refer to section 5.10 for details                                                            |
| Test Results:          | Pass                                                                                         |



Report No.: SZEM180600551901


Page: 15 of 92

#### **Measurement Data**

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

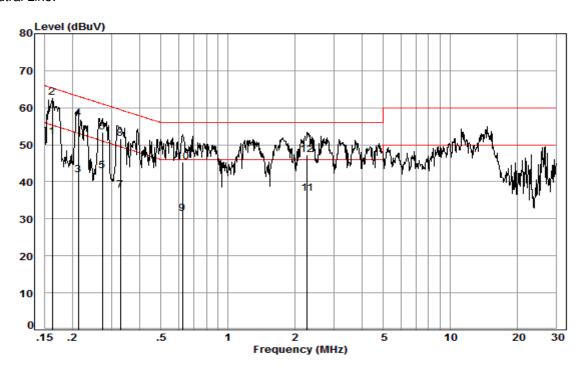
Live Line:



Site : Shielding Room

Condition: Line Job No. : 01808RG

Test mode: d


LISN Cable Read Limit 0ver Freq Loss Factor Level Level Limit Remark dBuV MHz dB dB dBuV dBuV dΒ 0.17 1 0.02 9.52 37.20 46.74 55.03 -8.29 Average 59.67 65.03 2 0.17 0.02 9.52 50.13 -5.36 QP 3 0.22 0.03 9.50 37.06 46.59 52.83 -6.24 Average -6.47 QP 4 0.22 0.03 9.50 46.83 56.36 62.83 5 9.51 30.70 40.24 51.20 -10.96 Average 0.27 0.03 6 0.27 0.03 9.51 43.63 53.17 61.20 -8.03 QP 7 0.33 0.03 9.50 27.10 36.63 49.35 -12.72 Average 0.33 8 0.03 9.50 40.14 49.67 59.35 -9.68 QP 9 0.40 0.04 9.49 28.36 37.89 47.90 -10.01 Average 0.40 10 0.04 9.49 37.95 47.48 57.90 -10.42 QP 32.92 46.89 -13.97 Average 0.45 9.49 23.39 11 0.04 12 0.45 0.04 9.49 36.07 45.60 56.89 -11.29 QP



Report No.: SZEM180600551901

Page: 16 of 92

#### Neutral Line:



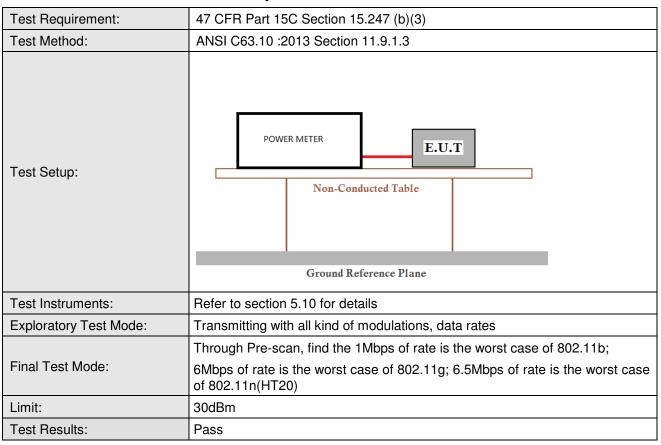
Site : Shielding Room

Condition: Neutral Job No. : 01808RG

Test mode: d

|    | Freq | Cable<br>Loss | LISN<br>Factor | Read<br>Level | Level | Limit<br>Line | Over<br>Limit | Remark  |
|----|------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|    | MHz  | dB            | dB             | dBuV          | dBuV  | dBuV          | dB            |         |
| 1  | 0.16 | 0.02          | 9.59           | 42.42         | 52.03 | 55.34         | -3.31         | Average |
| 2  | 0.16 | 0.02          | 9.59           | 53.20         | 62.81 | 65.34         | -2.53         | QP      |
| 3  | 0.21 | 0.03          | 9.57           | 32.16         | 41.76 | 53.10         | -11.34        | Average |
| 4  | 0.21 | 0.03          | 9.57           | 47.58         | 57.18 | 63.10         | -5.92         | QP      |
| 5  | 0.27 | 0.03          | 9.58           | 33.39         | 43.00 | 51.03         | -8.03         | Average |
| 6  | 0.27 | 0.03          | 9.58           | 43.76         | 53.37 | 61.03         | -7.66         | QP      |
| 7  | 0.33 | 0.03          | 9.58           | 28.12         | 37.73 | 49.49         | -11.76        | Average |
| 8  | 0.33 | 0.03          | 9.58           | 42.11         | 51.72 | 59.49         | -7.77         | QP      |
| 9  | 0.62 | 0.06          | 9.62           | 21.69         | 31.37 | 46.00         | -14.63        | Average |
| 10 | 0.62 | 0.06          | 9.62           | 35.74         | 45.42 | 56.00         | -10.58        | QP      |
| 11 | 2.27 | 0.16          | 9.64           | 26.95         | 36.75 | 46.00         | -9.25         | Average |
| 12 | 2.27 | 0.16          | 9.64           | 37.48         | 47.28 | 56.00         | -8.72         | QP      |

#### Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.



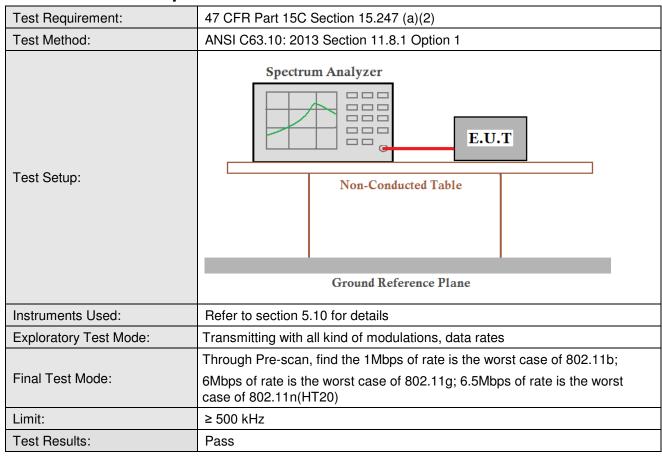
Report No.: SZEM180600551901

Page: 17 of 92

### 6.3 Conducted Peak Output Power



#### Measurement Data


|              | 802.11b mode            |             |        |  |  |
|--------------|-------------------------|-------------|--------|--|--|
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |  |
| Lowest       | 17.72                   | 30.00       | Pass   |  |  |
| Middle       | 18.21                   | 30.00       | Pass   |  |  |
| Highest      | 17.83                   | 30.00       | Pass   |  |  |
|              | 802.11g mo              | de          |        |  |  |
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |  |
| Lowest       | 21.35                   | 30.00       | Pass   |  |  |
| Middle       | 21.42                   | 30.00       | Pass   |  |  |
| Highest      | 21.37                   | 30.00       | Pass   |  |  |
|              | 802.11n(HT20)           | mode        |        |  |  |
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |  |
| Lowest       | 20.49                   | 30.00       | Pass   |  |  |
| Middle       | 20.73                   | 30.00       | Pass   |  |  |
| Highest      | 21.12                   | 30.00       | Pass   |  |  |



Report No.: SZEM180600551901

Page: 18 of 92

### 6.4 6dB Occupied Bandwidth

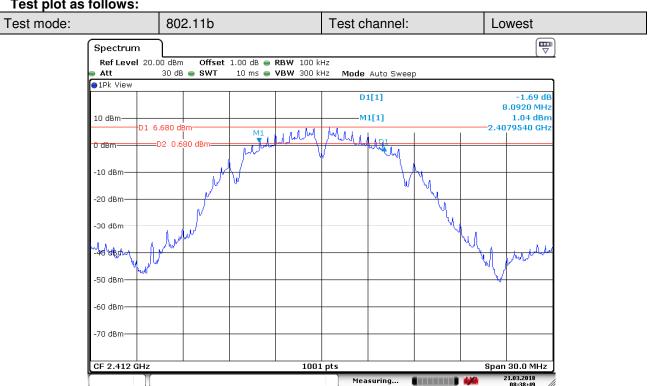




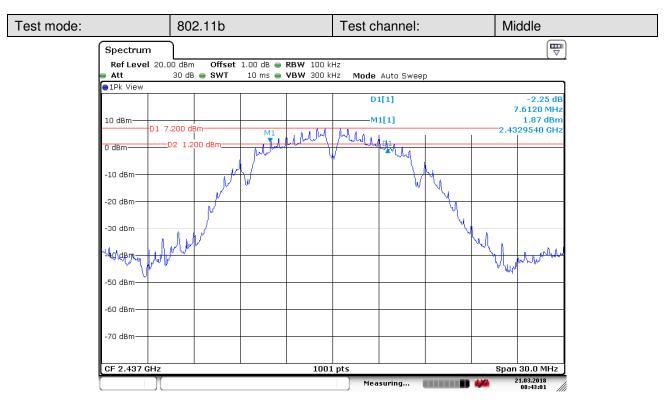
Report No.: SZEM180600551901

Page: 19 of 92

#### **Measurement Data**


| Measurement Data |                              |             |        |  |  |  |
|------------------|------------------------------|-------------|--------|--|--|--|
|                  | 802.11b mode                 |             |        |  |  |  |
| Test channel     | 6dB Occupied Bandwidth (MHz) | Limit (kHz) | Result |  |  |  |
| Lowest           | 8.09                         | ≥500        | Pass   |  |  |  |
| Middle           | 7.61                         | ≥500        | Pass   |  |  |  |
| Highest          | 8.06                         | ≥500        | Pass   |  |  |  |
|                  | 802.11g mode                 |             |        |  |  |  |
| Test channel     | 6dB Occupied Bandwidth (MHz) | Limit (kHz) | Result |  |  |  |
| Lowest           | 15.47                        | ≥500        | Pass   |  |  |  |
| Middle           | 15.32                        | ≥500        | Pass   |  |  |  |
| Highest          | 15.35                        | ≥500        | Pass   |  |  |  |
|                  | 802.11n(HT20) mode           |             |        |  |  |  |
| Test channel     | 6dB Occupied Bandwidth (MHz) | Limit (kHz) | Result |  |  |  |
| Lowest           | 16.09                        | ≥500        | Pass   |  |  |  |
| Middle           | 16.03                        | ≥500        | Pass   |  |  |  |
| Highest          | 15.91                        | ≥500        | Pass   |  |  |  |



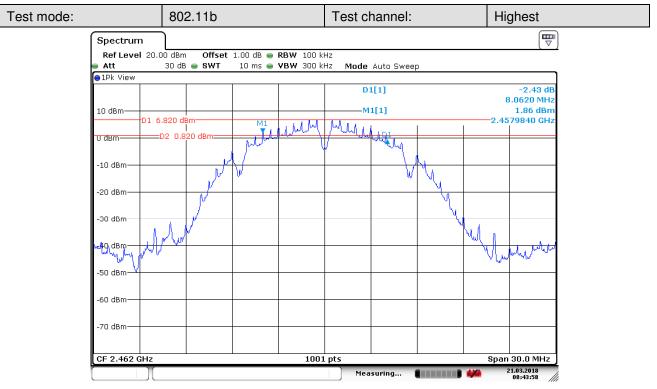

Report No.: SZEM180600551901

Page: 20 of 92

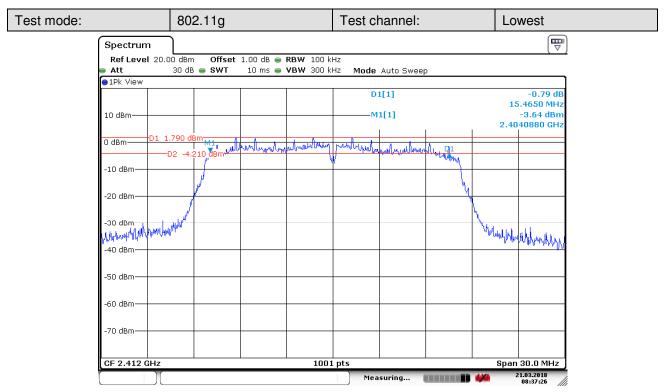
#### Test plot as follows:



Date: 21.MAR.2018 08:38:50




Date: 21.MAR.2018 08:43:01

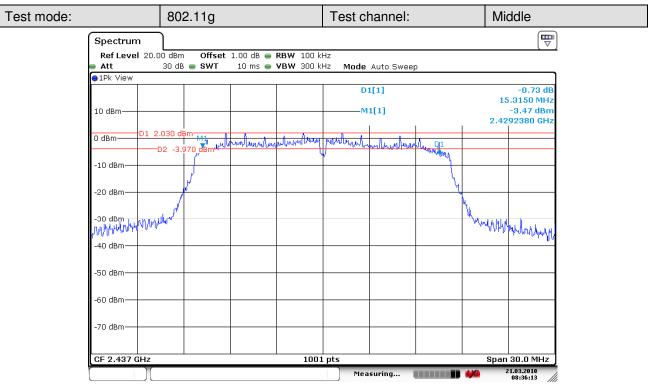



Report No.: SZEM180600551901

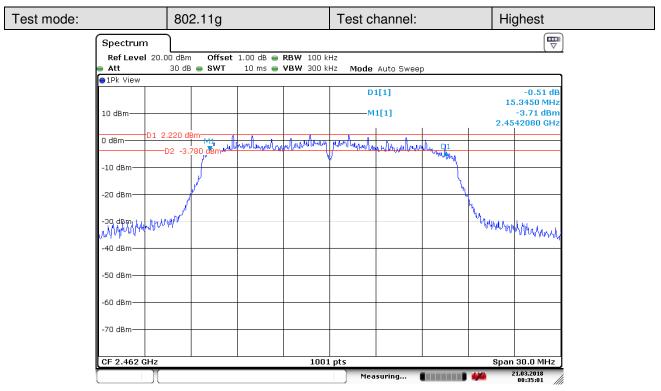
Page: 21 of 92



Date: 21.MAR.2018 08:43:58




Date: 21.MAR.2018 08:37:27

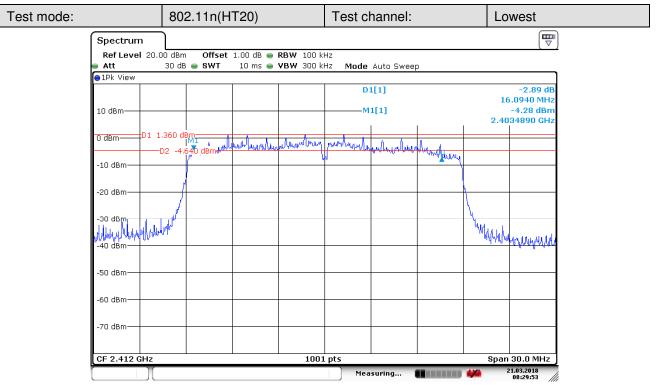



Report No.: SZEM180600551901

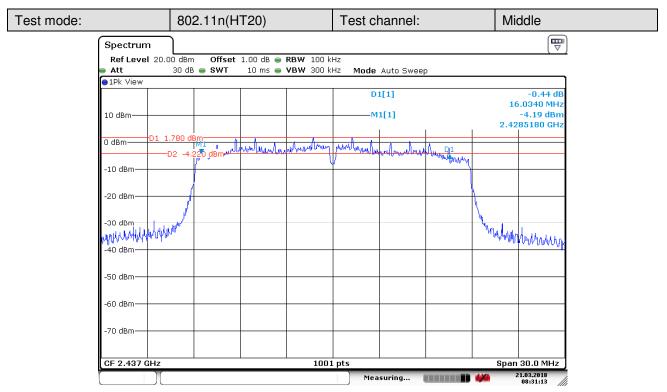
Page: 22 of 92



Date: 21.MAR.2018 08:36:14




Date: 21.MAR.2018 08:35:01

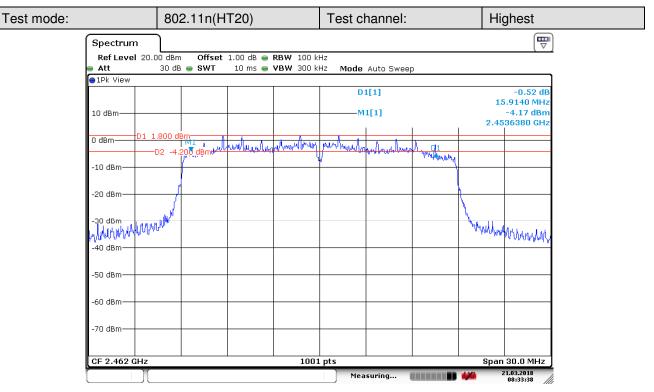



Report No.: SZEM180600551901

Page: 23 of 92



Date: 21.MAR.2018 08:29:54




Date: 21.MAR.2018 08:31:14



Report No.: SZEM180600551901

Page: 24 of 92



Date: 21.MAR.2018 08:33:39



Report No.: SZEM180600551901

Page: 25 of 92

### 6.5 Power Spectral Density

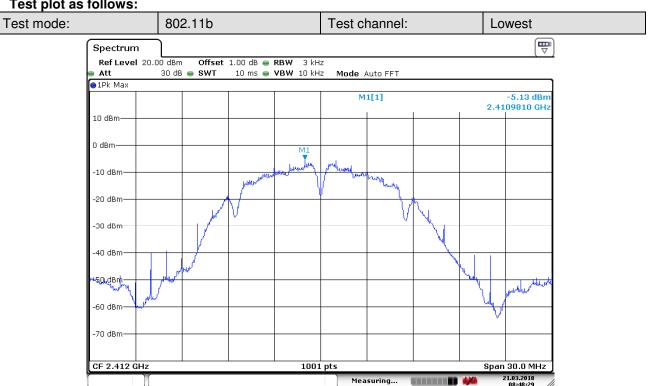
| Test Requirement:      | 47 CFR Part 15C Section 15.247 (e)                                                                                                                                    |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:           | ANSI C63.10 :2013 Section 11.10.2                                                                                                                                     |  |  |
| Test Setup:            | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                 |  |  |
| Test Instruments:      | Refer to section 5.10 for details                                                                                                                                     |  |  |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates                                                                                                                 |  |  |
| Final Test Mode:       | Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20) |  |  |
| Limit:                 | ≤8.00dBm/3kHz                                                                                                                                                         |  |  |
| Test Results:          | Pass                                                                                                                                                                  |  |  |



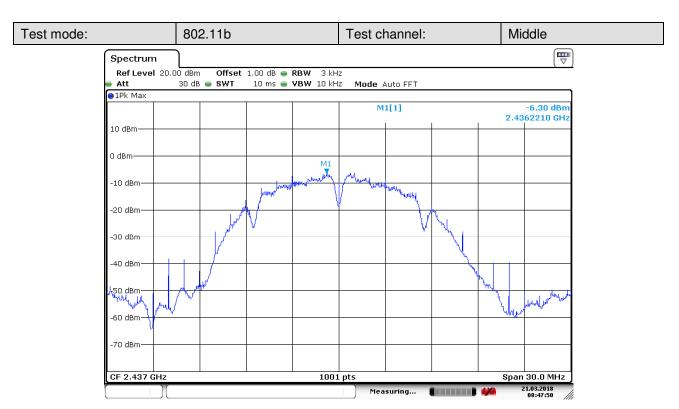
Report No.: SZEM180600551901

Page: 26 of 92

#### **Measurement Data**


| Weasurement Data |                                   |                  |        |  |  |  |
|------------------|-----------------------------------|------------------|--------|--|--|--|
|                  | 802.11b mode                      |                  |        |  |  |  |
| Test channel     | Power Spectral Density (dBm/3kHz) | Limit (dBm/3kHz) | Result |  |  |  |
| Lowest           | -5.13                             | ≤8.00            | Pass   |  |  |  |
| Middle           | -6.30                             | ≤8.00            | Pass   |  |  |  |
| Highest          | -4.81                             | ≤8.00            | Pass   |  |  |  |
|                  | 802.11g mode                      |                  |        |  |  |  |
| Test channel     | Power Spectral Density (dBm/3kHz) | Limit (dBm/3kHz) | Result |  |  |  |
| Lowest           | -10.59                            | ≤8.00            | Pass   |  |  |  |
| Middle           | -10.74                            | ≤8.00            | Pass   |  |  |  |
| Highest          | -10.54                            | ≤8.00            | Pass   |  |  |  |
|                  | 802.11n(HT20) mode                |                  |        |  |  |  |
| Test channel     | Power Spectral Density (dBm/3kHz) | Limit (dBm/3kHz) | Result |  |  |  |
| Lowest           | -10.97                            | ≤8.00            | Pass   |  |  |  |
| Middle           | -10.30                            | ≤8.00            | Pass   |  |  |  |
| Highest          | -10.26                            | ≤8.00            | Pass   |  |  |  |



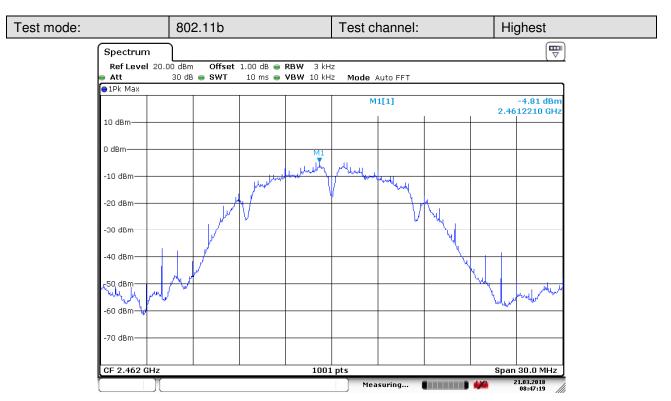

Report No.: SZEM180600551901

27 of 92 Page:

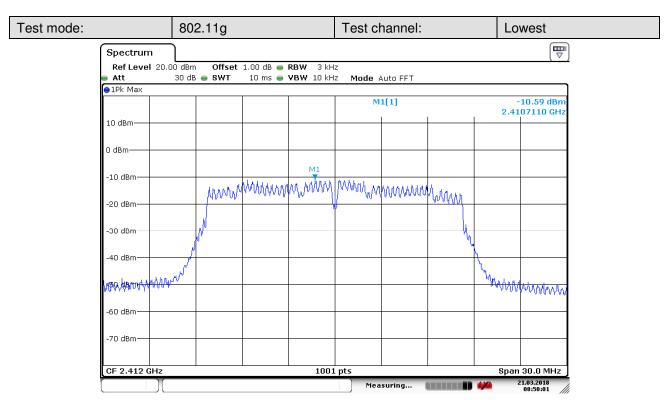
#### Test plot as follows:



Date: 21.MAR.2018 08:48:30




Date: 21.MAR.2018 08:47:51

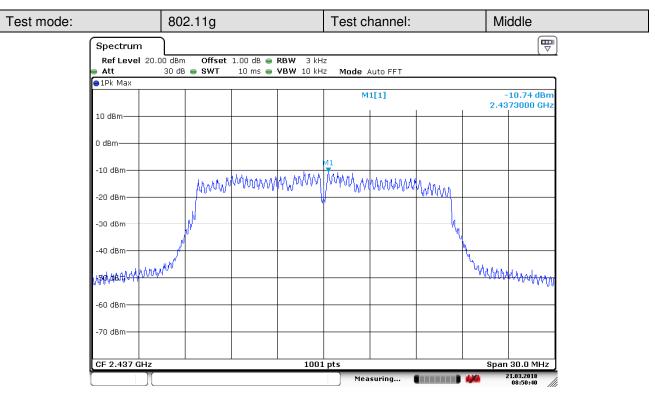



Report No.: SZEM180600551901

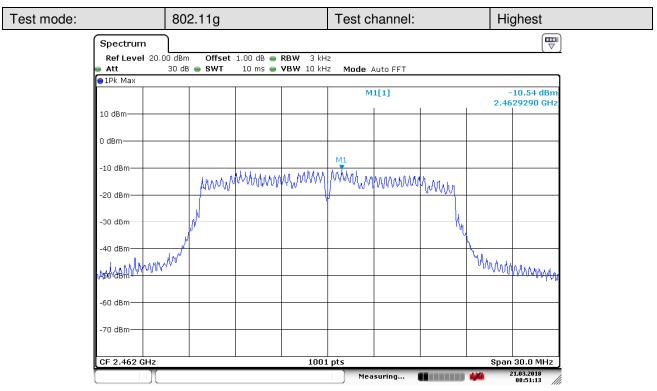
Page: 28 of 92



Date: 21.MAR.2018 08:47:20




Date: 21.MAR.2018 08:50:02




Report No.: SZEM180600551901

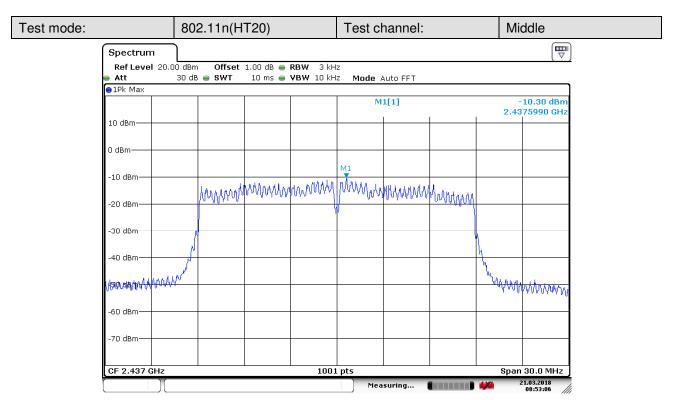
Page: 29 of 92



Date: 21.MAR.2018 08:50:41



Date: 21.MAR.2018 08:51:13

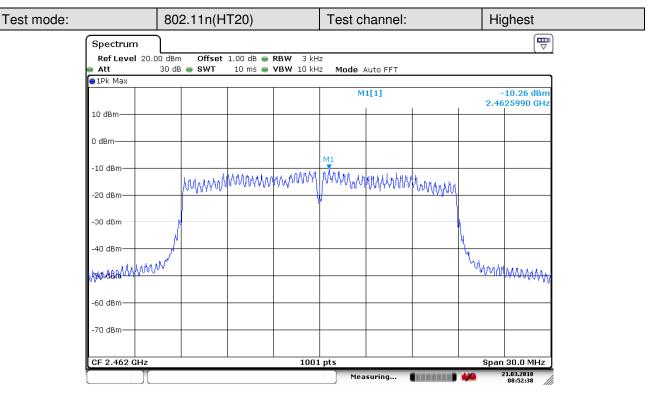



Report No.: SZEM180600551901

Page: 30 of 92



Date: 21.MAR.2018 08:53:37




Date: 21.MAR.2018 08:53:06



Report No.: SZEM180600551901

Page: 31 of 92



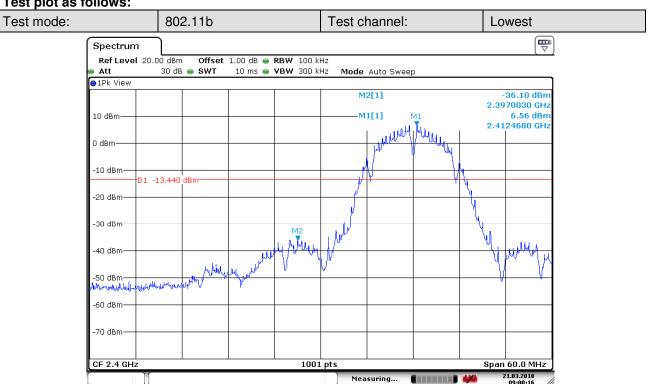
Date: 21.MAR.2018 08:52:38



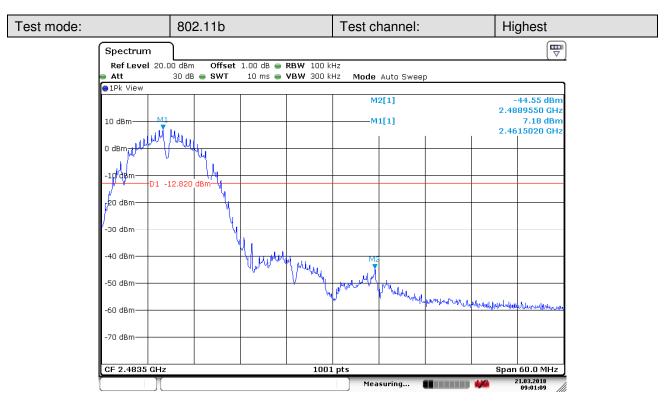
Report No.: SZEM180600551901

Page: 32 of 92

### 6.6 Band-edge for RF Conducted Emissions


| Test Requirement:      | 47 CFR Part 15C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:           | ANSI C63.10: 2013 Section 11.13                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Test Setup:            | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates                                                                                                                                                                                                                                                                                                                                   |  |  |
| Final Test Mode:       | Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20)                                                                                                                                                                                                                   |  |  |
| Limit:                 | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |
| Instruments Used:      | Refer to section 5.10 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |



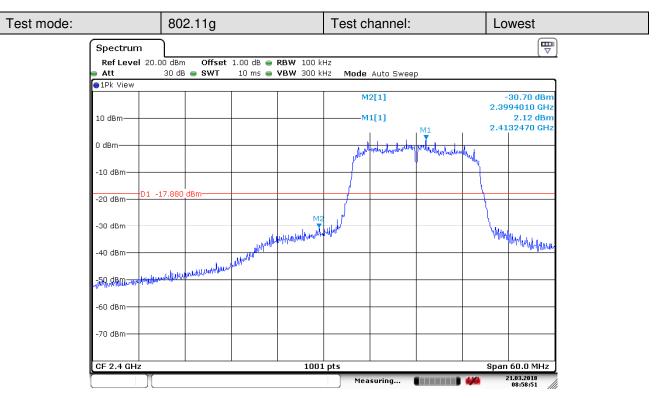

Report No.: SZEM180600551901

Page: 33 of 92

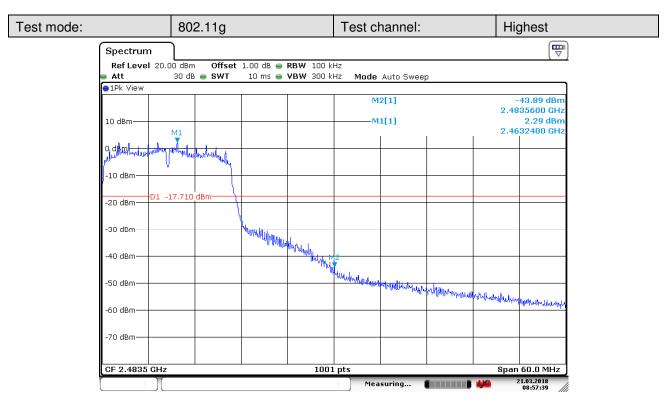
#### Test plot as follows:



Date: 21.MAR.2018 09:00:17




Date: 21.MAR.2018 09:01:09

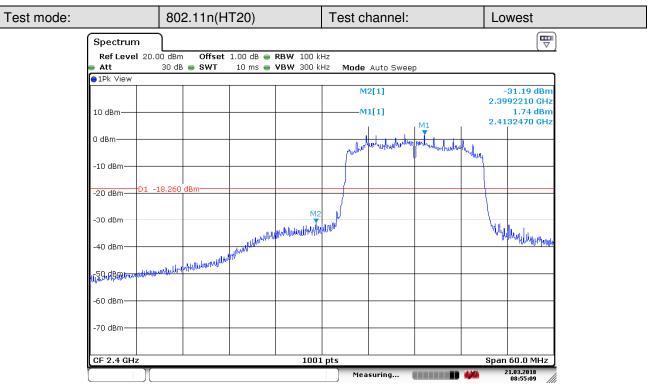



Report No.: SZEM180600551901

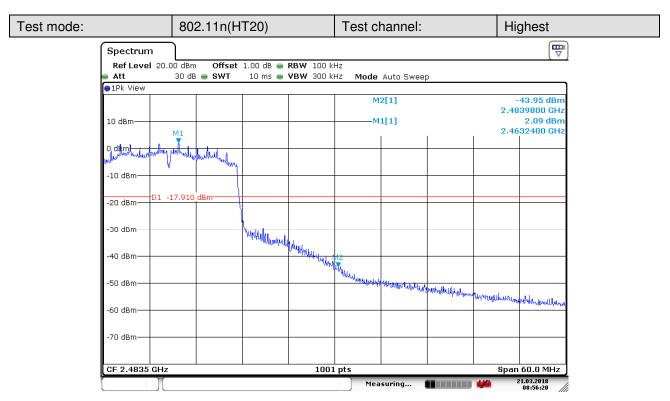
Page: 34 of 92



Date: 21.MAR.2018 08:58:52




Date: 21.MAR.2018 08:57:40




Report No.: SZEM180600551901

Page: 35 of 92



Date: 21.MAR.2018 08:55:10



Date: 21.MAR.2018 08:56:20

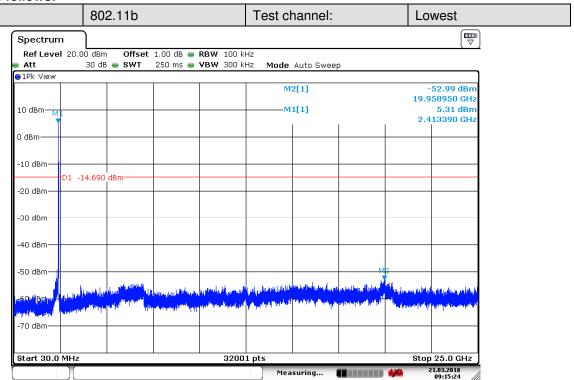


Report No.: SZEM180600551901

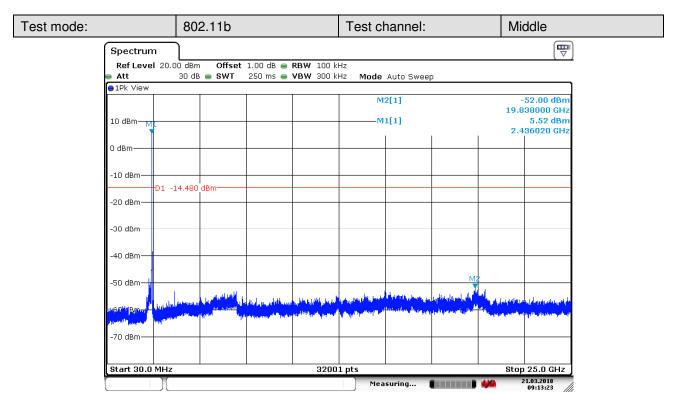
Page: 36 of 92

### 6.7 RF Conducted Spurious Emissions

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:           | ANSI C63.10: 2013 Section 11.11                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Test Setup:            | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates                                                                                                                                                                                                                                                                                                                                   |  |  |
| Final Test Mode:       | Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20)                                                                                                                                                                                                                   |  |  |
| Limit:                 | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |
| Instruments Used:      | Refer to section 5.10 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |




Report No.: SZEM180600551901

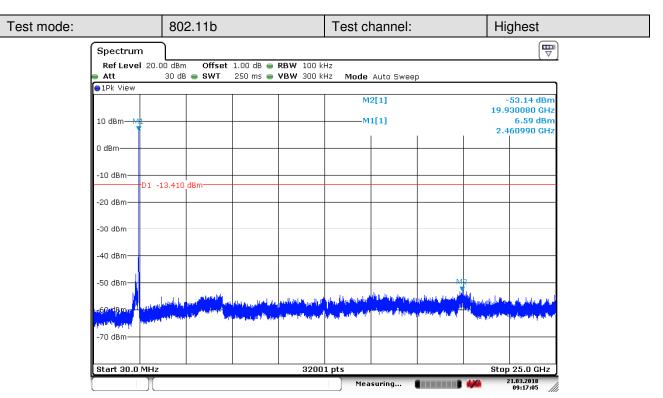

Page: 37 of 92

Test plot as follows:

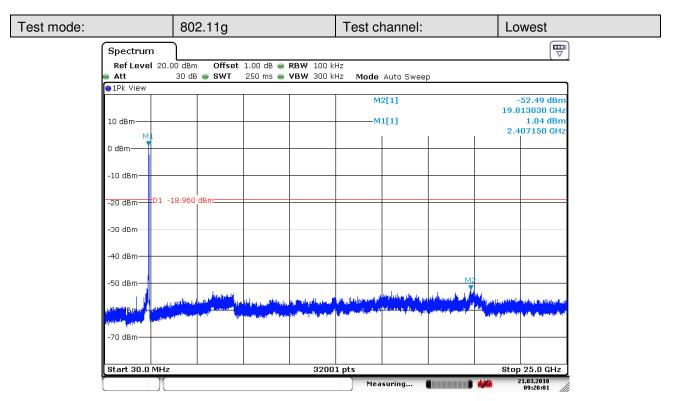
Test mode:



Date: 21.MAR.2018 09:15:25




Date: 21.MAR.2018 09:13:24

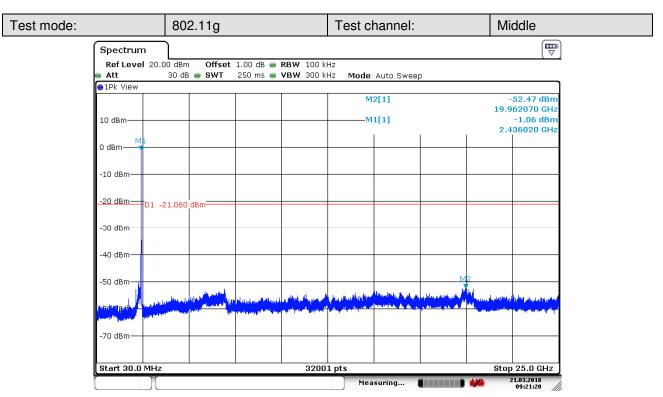



Report No.: SZEM180600551901

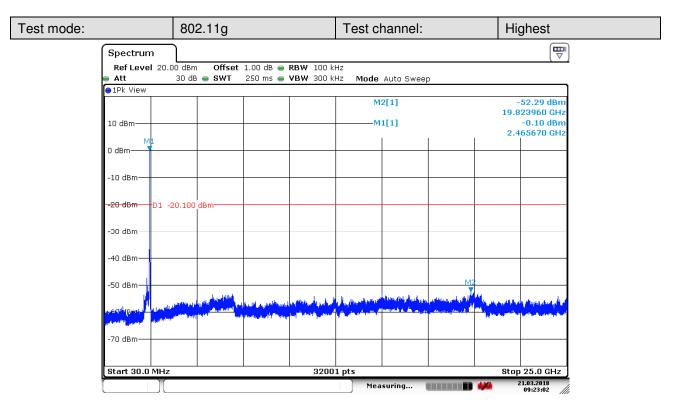
Page: 38 of 92



Date: 21.MAR.2018 09:17:05




Date: 21.MAR.2018 09:20:01

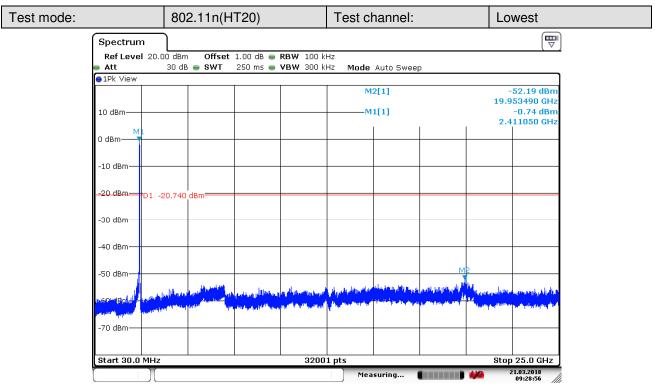



Report No.: SZEM180600551901

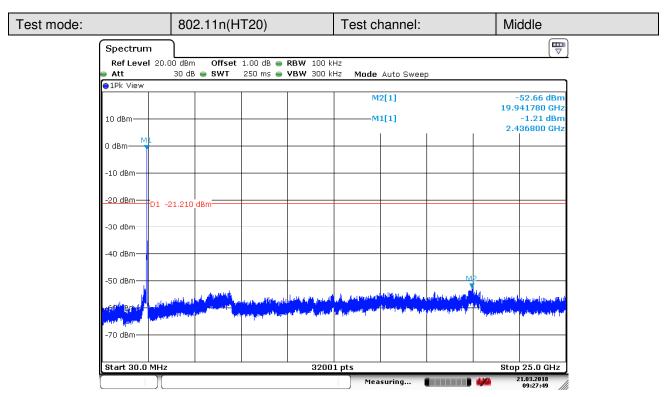
Page: 39 of 92



Date: 21.MAR.2018 09:21:20




Date: 21.MAR.2018 09:23:03



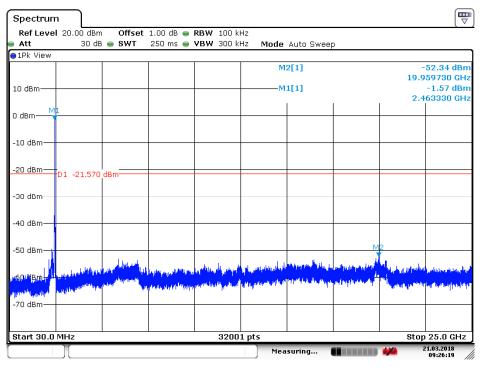

Report No.: SZEM180600551901

Page: 40 of 92



Date: 21.MAR.2018 09:28:57




Date: 21.MAR.2018 09:27:50

| Test mode:  | 802.11n(HT20)   | Test channel: | Highest   |
|-------------|-----------------|---------------|-----------|
| 1001111000. | 002.1111(11120) | 1 oot onamon. | riigiioot |



Report No.: SZEM180600551901

Page: 41 of 92



Date: 21.MAR.2018 09:26:20

#### Remark:

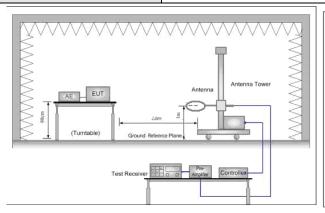
Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, the amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



Report No.: SZEM180600551901

Page: 42 of 92

#### 6.8 Radiated Spurious Emissions


| 47 CFR Part 15C Section 15.209 and 15.205               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                |  |  |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|--|--|--|--|
| ANSI C63.10 :2013 Section 11.12                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                |  |  |  |  |
| Measurement Distance: 3m or 10m (Semi-Anechoic Chamber) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                |  |  |  |  |
| Frequency                                               | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VBW                             | Remark                         |  |  |  |  |
| 0.009MHz-0.090MHz                                       | : Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30kHz                           | Peak                           |  |  |  |  |
| 0.009MHz-0.090MHz                                       | . Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30kHz                           | Average                        |  |  |  |  |
| 0.090MHz-0.110MHz                                       | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30kHz                           | Quasi-peak                     |  |  |  |  |
| 0.110MHz-0.490MHz                                       | . Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30kHz                           | Peak                           |  |  |  |  |
| 0.110MHz-0.490MHz                                       | . Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30kHz                           | Average                        |  |  |  |  |
| 0.490MHz -30MHz                                         | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30kHz                           | Quasi-peak                     |  |  |  |  |
| 30MHz-1GHz                                              | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300kHz                          | Quasi-peak                     |  |  |  |  |
| Above 1011                                              | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3MHz                            | Peak                           |  |  |  |  |
| Above 1GHZ                                              | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10Hz                            | Average                        |  |  |  |  |
| _                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                |  |  |  |  |
| Fraguenav                                               | Field strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Domork                          | Measurement                    |  |  |  |  |
| Frequency                                               | (microvolt/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hemark                          | distance (m)                   |  |  |  |  |
| 0.009MHz-0.490MHz                                       | 2400/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                               | 300                            |  |  |  |  |
| 0.490MHz-1.705MHz                                       | 24000/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                               | 30                             |  |  |  |  |
| 1.705MHz-30MHz                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı                               | 30                             |  |  |  |  |
| 30MHz-88MHz                                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quasi-peak                      | 3                              |  |  |  |  |
| 88MHz-216MHz                                            | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quasi-peak                      | 3                              |  |  |  |  |
| 216MHz-960MHz                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quasi-peak                      | 3                              |  |  |  |  |
| 960MHz-1GHz                                             | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quasi-peak                      | 3                              |  |  |  |  |
| Above 1GHz                                              | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average                         | 3                              |  |  |  |  |
| Note: 15.35(b), Unless of                               | therwise specified,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the limit on p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eak radio fre                   | quency                         |  |  |  |  |
| emissions is 20dB above                                 | the maximum per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mitted avera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ge emission li                  | mit                            |  |  |  |  |
| applicable to the equipm                                | ent under test. This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s peak limit a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pplies to the t                 | otal peak                      |  |  |  |  |
| emission level rad                                      | ated by the device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                |  |  |  |  |
|                                                         | Frequency 0.009MHz-0.090MHz 0.009MHz-0.110MHz 0.110MHz-0.490MHz 0.490MHz-30MHz 0.490MHz-30MHz 30MHz-1GHz Above 1GHz Frequency 1.705MHz-30MHz 1.705MHz-30MHz 30MHz-16Hz 400MHz-1.705MHz 1.705MHz-30MHz 1.705MHz-30MHz 30MHz-16Hz 1.705MHz-30MHz 30MHz-16Hz 400MHz-16Hz 400MHz-1 | Peak   Peak | ANSI C63.10 :2013 Section 11.12 | NSI C63.10 :2013 Section 11.12 |  |  |  |  |



Report No.: SZEM180600551901

Page: 43 of 92

#### Test Setup:



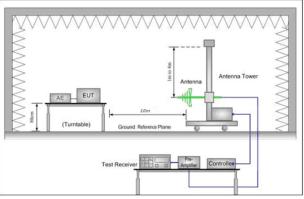



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

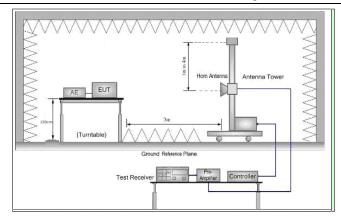



Figure 3. Above 1 GHz

#### Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sqs.com/en/Terms-and-Conditions.aspx">http://www.sqs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the ilimitation of liability, indemnification and jurisdiction issues defined therein. Any holder of his document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM180600551901

Page: 44 of 92

|                        | EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        | h. Test the EUT in the lowest channel, the middle channel, the Highest channel                                                                                                                      |  |  |  |  |
|                        | i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.                                             |  |  |  |  |
|                        | j. Repeat above procedures until all frequencies measured was complete.                                                                                                                             |  |  |  |  |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates.                                                                                                                                              |  |  |  |  |
|                        | Charge + Transmitting mode.                                                                                                                                                                         |  |  |  |  |
| Final Test Mode:       | Pretest the EUT at Charge + Transmitting mode.                                                                                                                                                      |  |  |  |  |
|                        | Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;                                                                                                                              |  |  |  |  |
|                        | 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case                                                                                                                       |  |  |  |  |
|                        | of 802.11n(HT20)                                                                                                                                                                                    |  |  |  |  |
|                        | For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case. Only the worst case is recorded in the report.                                             |  |  |  |  |
| Instruments Used:      | Refer to section 5.10 for details                                                                                                                                                                   |  |  |  |  |
| Test Results:          | Pass                                                                                                                                                                                                |  |  |  |  |



Report No.: SZEM180600551901

Page: 45 of 92

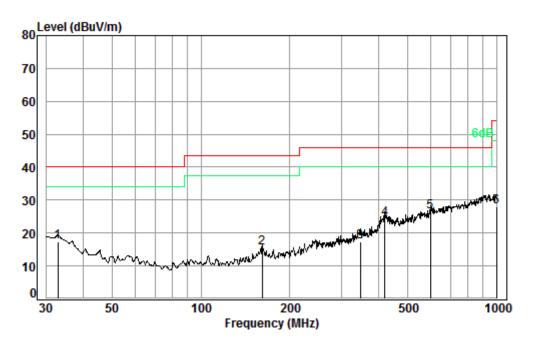
#### 6.8.1 Radiated emission below 1GHz

| 30MHz~1GHz (QP) |                       |          |
|-----------------|-----------------------|----------|
| Test mode:      | Charge + Transmitting | Vertical |



Condition: 3m VERTICAL Job No. : 01808RG

Test mode: d


|      |        | Cable | Ant    | Preamp | Read  |        | Limit  | 0ver   |
|------|--------|-------|--------|--------|-------|--------|--------|--------|
|      | Freq   | Loss  | Factor | Factor | Level | Level  | Line   | Limit  |
| _    |        |       |        |        |       |        |        |        |
|      | MHz    | dB    | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |
|      |        |       |        |        |       |        |        |        |
| 1 pp | 33.92  | 0.60  | 20.37  | 27.65  | 32.53 | 25.85  | 40.00  | -14.15 |
| 2    | 56.20  | 0.80  | 13.56  | 27.58  | 36.08 | 22.86  | 40.00  | -17.14 |
| 3    | 76.51  | 1.00  | 12.27  | 27.51  | 35.31 | 21.07  | 40.00  | -18.93 |
| 4    | 86.20  | 1.10  | 12.70  | 27.50  | 35.90 | 22.20  | 40.00  | -17.80 |
| 5    | 166.65 | 1.35  | 15.64  | 27.52  | 31.63 | 21.10  | 43.50  | -22.40 |
| 6    | 897.00 | 3.59  | 29.76  | 27.09  | 23.64 | 29.90  | 46.00  | -16.10 |



Report No.: SZEM180600551901

Page: 46 of 92

Test mode: Charge + Transmitting Horizontal

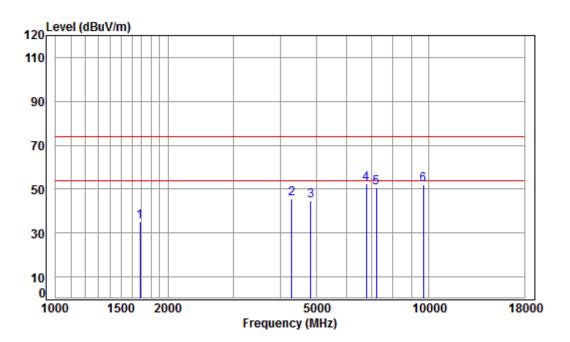


Condition: 3m HORIZONTAL

Job No. : 01808RG

Test mode: d

|      | Freq    |      |       | Preamp<br>Factor |       |        |        |        |
|------|---------|------|-------|------------------|-------|--------|--------|--------|
| -    | MHz     | dB   | dB/m  | dB               | dBuV  | dBuV/m | dBuV/m | dB     |
| 1    | 32.86   | 0.60 | 20.92 | 27.66            | 23.58 | 17.44  | 40.00  | -22.56 |
| 2    | 160.91  | 1.34 | 15.52 | 27.52            | 26.21 | 15.55  | 43.50  | -27.95 |
| 3    | 345.60  | 2.05 | 20.98 | 27.63            | 22.04 | 17.44  | 46.00  | -28.56 |
| 4    | 419.11  | 2.28 | 22.86 | 27.76            | 26.95 | 24.33  | 46.00  | -21.67 |
| 5 pp | 597.22  | 2.70 | 26.55 | 27.71            | 24.81 | 26.35  | 46.00  | -19.65 |
| 6    | 1000.00 | 3.70 | 30.30 | 26.77            | 20.82 | 28.05  | 54.00  | -25.95 |




Report No.: SZEM180600551901

Page: 47 of 92

#### 6.8.2 Transmitter emission above 1GHz

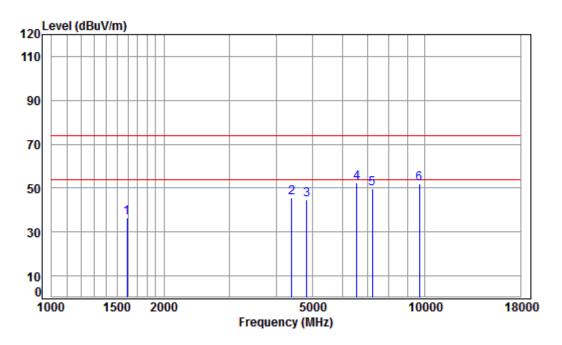
| Test mode: | 802.11b | Test channel:    | Lowest | Remark:      | Peak | Vertical  |
|------------|---------|------------------|--------|--------------|------|-----------|
|            | 00=0    | 1 001 0114111011 | _0000  | 1 1011141111 |      | · o. aoa. |



Condition: 3m VERTICAL

Job No : 01808RG

Mode : 2412 TX RSE Note : 2.4G WIFI 11B


|      | _        |       |        | Preamp |       |        |        |        |        |
|------|----------|-------|--------|--------|-------|--------|--------|--------|--------|
|      | Freq     | Loss  | Factor | Factor | Level | Level  | Line   | Limit  | Kemark |
|      | MHz      | dB    | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |        |
| 1    | 1682.477 | 5.25  | 26.60  | 41.52  | 44.87 | 35.20  | 74.00  | -38.80 | peak   |
| 2    | 4291.977 | 7.33  | 33.60  | 42.38  | 46.92 | 45.47  | 74.00  | -28.53 | peak   |
| 3    | 4824.000 | 7.91  | 34.19  | 42.47  | 45.22 | 44.85  | 74.00  | -29.15 | peak   |
| 4 pp | 6795.879 | 10.69 | 35.94  | 41.00  | 47.05 | 52.68  | 74.00  | -21.32 | peak   |
| 5    | 7236.000 | 10.07 | 36.40  | 40.69  | 45.04 | 50.82  | 74.00  | -23.18 | peak   |
| 6    | 9648.000 | 10.77 | 37.53  | 37.68  | 41.25 | 51.87  | 74.00  | -22.13 | peak   |



Report No.: SZEM180600551901

Page: 48 of 92

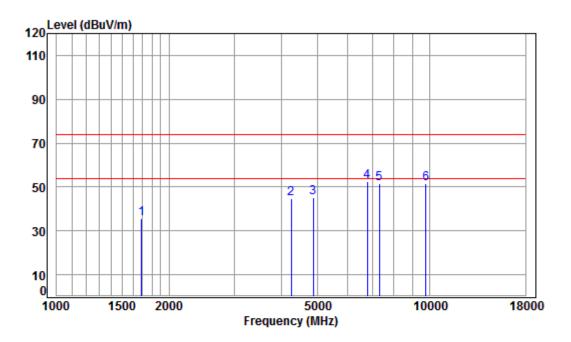
| Test mode: | 802.11b | Test channel: | Lowest | Remark: | Peak | Horizontal |
|------------|---------|---------------|--------|---------|------|------------|
|            |         |               |        |         |      |            |



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2412 TX RSE Note : 2.4G WIFT 11B


| lore | . 2.4    | G MILI | IID    |        |       |        |        |        |        |
|------|----------|--------|--------|--------|-------|--------|--------|--------|--------|
|      |          | Cable  | Ant    | Preamp | Read  |        | Limit  | 0ver   |        |
|      | Freq     | Loss   | Factor | Factor | Level | Level  | Line   | Limit  | Remark |
|      |          |        |        |        |       |        |        |        |        |
|      | MHz      | dB     | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |        |
|      |          |        |        |        |       |        |        |        |        |
| 1    | 1592.571 | 5.36   | 26.22  | 41.47  | 46.36 | 36.47  | 74.00  | -37.53 | peak   |
| 2    | 4392.376 | 7.44   | 33.60  | 42.40  | 46.79 | 45.43  | 74.00  | -28.57 | peak   |
| 3    | 4824.000 | 7.91   | 34.19  | 42.47  | 45.15 | 44.78  | 74.00  | -29.22 | peak   |
| 4 pp | 6564.209 | 11.35  | 35.29  | 41.17  | 47.19 | 52.66  | 74.00  | -21.34 | peak   |
| 5    | 7236.000 | 10.07  | 36.40  | 40.69  | 44.02 | 49.80  | 74.00  | -24.20 | peak   |
| 6    | 9648.000 | 10.77  | 37.53  | 37.68  | 41.52 | 52.14  | 74.00  | -21.86 | peak   |



Report No.: SZEM180600551901

Page: 49 of 92

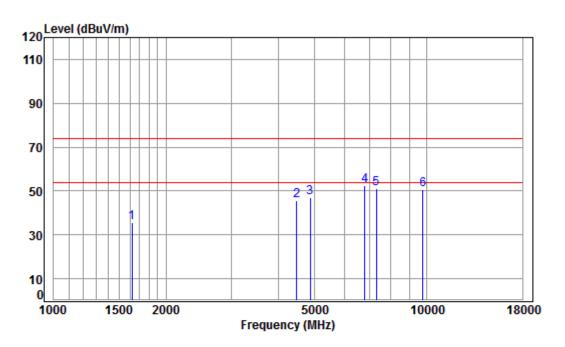
| Test mode:   802.11b   Test channel:   Middle   Remark:   Peak   Vertical |
|---------------------------------------------------------------------------|
|---------------------------------------------------------------------------|



Condition: 3m VERTICAL

Job No : 01808RG

Mode : 2437 TX RSE Note : 2.4G WIFI 11B


|      |          | Cable | Ant    | Preamp | Read  |        | Limit  | 0ver   |        |
|------|----------|-------|--------|--------|-------|--------|--------|--------|--------|
|      | Freq     | Loss  | Factor | Factor | Level | Level  | Line   | Limit  | Remark |
|      | MHz      | dB    | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |        |
| 1    | 1687.347 | 5.24  | 26.62  | 41.52  | 45.13 | 35.47  | 74.00  | -38.53 | peak   |
| 2    | 4254.921 | 7.28  | 33.60  | 42.37  | 46.29 | 44.80  | 74.00  | -29.20 | peak   |
| 3    | 4874.000 | 7.96  | 34.28  | 42.48  | 45.35 | 45.11  | 74.00  | -28.89 | peak   |
| 4 pp | 6795.879 | 10.69 | 35.94  | 41.00  | 46.93 | 52.56  | 74.00  | -21.44 | peak   |
| 5    | 7311.000 | 10.05 | 36.37  | 40.64  | 45.95 | 51.73  | 74.00  | -22.27 | peak   |
| 6    | 9748.000 | 10.82 | 37.55  | 37.54  | 40.63 | 51.46  | 74.00  | -22.54 | peak   |



Report No.: SZEM180600551901

Page: 50 of 92

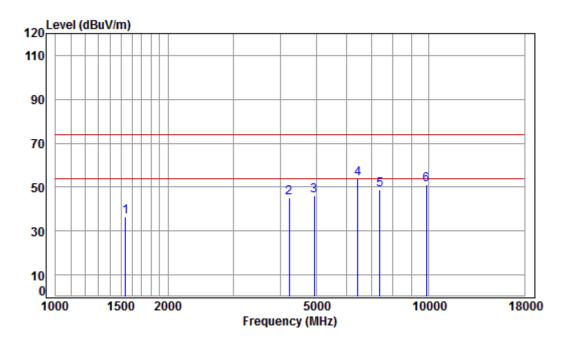
| Test mode: | 802.11b | Test channel: | Middle | Remark: | Peak | Horizontal |
|------------|---------|---------------|--------|---------|------|------------|
|------------|---------|---------------|--------|---------|------|------------|



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2437 TX RSE Note : 2.4G WIFI 11B


|    | . 2      | u                                                                  | 110                                                                                          |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |        |
|----|----------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
|    |          | Cable                                                              | Ant                                                                                          | Preamp                                                                                                                                  | Read                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0ver                                            |        |
|    | Freq     | Loss                                                               | Factor                                                                                       | Factor                                                                                                                                  | Level                                                                                                                                                                                                                                                                                                                                                                                                     | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit                                           | Remark |
| _  |          |                                                                    |                                                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |        |
|    | MHz      | dB                                                                 | dB/m                                                                                         | dB                                                                                                                                      | dBuV                                                                                                                                                                                                                                                                                                                                                                                                      | dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dB                                              |        |
|    | 4600 404 | F 33                                                               | 26.24                                                                                        | 44 40                                                                                                                                   | 45 40                                                                                                                                                                                                                                                                                                                                                                                                     | 35 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.22                                           |        |
|    | 1620.431 | 5.32                                                               | 26.34                                                                                        | 41.48                                                                                                                                   | 45.49                                                                                                                                                                                                                                                                                                                                                                                                     | 35.6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -38.33                                          | реак   |
|    | 4482.150 | 7.54                                                               | 33.60                                                                                        | 42.41                                                                                                                                   | 46.82                                                                                                                                                                                                                                                                                                                                                                                                     | 45.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -28.45                                          | peak   |
|    | 4874.000 | 7.96                                                               | 34.28                                                                                        | 42.48                                                                                                                                   | 47.17                                                                                                                                                                                                                                                                                                                                                                                                     | 46.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -27.07                                          | peak   |
| ор | 6815.551 | 10.64                                                              | 36.00                                                                                        | 40.98                                                                                                                                   | 46.97                                                                                                                                                                                                                                                                                                                                                                                                     | 52.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -21.37                                          | peak   |
|    | 7311.000 | 10.05                                                              | 36.37                                                                                        | 40.64                                                                                                                                   | 45.43                                                                                                                                                                                                                                                                                                                                                                                                     | 51.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -22.79                                          | peak   |
|    | 9748.000 | 10.82                                                              | 37.55                                                                                        | 37.54                                                                                                                                   | 39.81                                                                                                                                                                                                                                                                                                                                                                                                     | 50.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -23.36                                          | peak   |
|    | p        | MHz<br>1620.431<br>4482.150<br>4874.000<br>op 6815.551<br>7311.000 | Freq Loss  MHz dB  1620.431 5.32 4482.150 7.54 4874.000 7.96 p 6815.551 10.64 7311.000 10.05 | Freq Loss Factor  MHz dB dB/m  1620.431 5.32 26.34 4482.150 7.54 33.60 4874.000 7.96 34.28 pp 6815.551 10.64 36.00 7311.000 10.05 36.37 | Freq         Loss Factor         Factor           MHz         dB         dB/m         dB           1620.431         5.32         26.34         41.48           4482.150         7.54         33.60         42.41           4874.000         7.96         34.28         42.48           op 6815.551         10.64         36.00         40.98           7311.000         10.05         36.37         40.64 | Freq Loss Factor Factor Level           MHz         dB         dB/m         Level           MHz         dB         dBuV           1620.431         5.32         26.34         41.48         45.49           4482.150         7.54         33.60         42.41         46.82           4874.000         7.96         34.28         42.48         47.17           op 6815.551         10.64         36.00         40.98         46.97           7311.000         10.05         36.37         40.64         45.43 | Freq Loss Factor Factor Level Level           MHz         dB         dB/m         dB dBuV dBuV/m           1620.431         5.32         26.34         41.48         45.49         35.67           4482.150         7.54         33.60         42.41         46.82         45.55           4874.000         7.96         34.28         42.48         47.17         46.93           op 6815.551         10.64         36.00         40.98         46.97         52.63           7311.000         10.05         36.37         40.64         45.43         51.21 | Freq Loss Factor Factor Level Level Line    MHz |        |



Report No.: SZEM180600551901

Page: 51 of 92

| Test mode: 802. | 11b Test channel: | Highest | Remark: | Peak | Vertical |  |
|-----------------|-------------------|---------|---------|------|----------|--|
|-----------------|-------------------|---------|---------|------|----------|--|



Condition: 3m VERTICAL

Job No : 01808RG

Mode : 2462 TX RSE Note : 2.4G WIFT 11B

| lore | . 2.4    | G MILI | IID    |        |       |        |        |        |        |
|------|----------|--------|--------|--------|-------|--------|--------|--------|--------|
|      |          | Cable  | Ant    | Preamp | Read  |        | Limit  | 0ver   |        |
|      | Freq     | Loss   | Factor | Factor | Level | Level  | Line   | Limit  | Remark |
|      |          |        |        |        |       |        |        |        |        |
|      | MHz      | dB     | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |        |
|      |          |        |        |        |       |        |        |        |        |
| 1    | 1538.281 | 5.43   | 25.98  | 41.43  | 46.57 | 36.55  | 74.00  | -37.45 | peak   |
| 2    | 4218.186 | 7.24   | 33.60  | 42.37  | 46.55 | 45.02  | 74.00  | -28.98 | peak   |
| 3    | 4924.000 | 8.01   | 34.37  | 42.49  | 46.20 | 46.09  | 74.00  | -27.91 | peak   |
| 4 pp | 6451.353 | 11.45  | 35.06  | 41.25  | 48.41 | 53.67  | 74.00  | -20.33 | peak   |
| 5    | 7386.000 | 10.03  | 36.34  | 40.59  | 43.09 | 48.87  | 74.00  | -25.13 | peak   |
| 6    | 9848.000 | 10.87  | 37.57  | 37.41  | 40.18 | 51.21  | 74.00  | -22.79 | peak   |



Report No.: SZEM180600551901

Page: 52 of 92

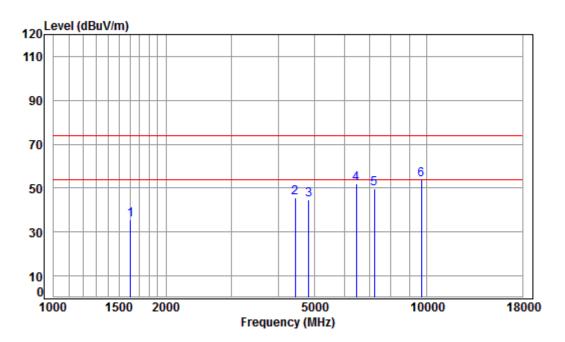
| Test mode: | 802.11b | Test channel: | Highest | Remark: | Peak | Horizontal |
|------------|---------|---------------|---------|---------|------|------------|
|------------|---------|---------------|---------|---------|------|------------|



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2462 TX RSE Note : 2.4G WIFI 11B


|    |          | Cable                                                           | Ant                                                                                        | Preamp                                                                                                                               | Read                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|----------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Freq     | Loss                                                            | Factor                                                                                     | Factor                                                                                                                               | Level                                                                                                                                                                                                                                                                                                                                                                                          | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _  |          |                                                                 |                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | MHz      | dB                                                              | dB/m                                                                                       | dB                                                                                                                                   | dBuV                                                                                                                                                                                                                                                                                                                                                                                           | dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |          |                                                                 |                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | 1538.281 | 5.43                                                            | 25.98                                                                                      | 41.43                                                                                                                                | 44.85                                                                                                                                                                                                                                                                                                                                                                                          | 34.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -39.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | peak                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | 4456.315 | 7.51                                                            | 33.60                                                                                      | 42.41                                                                                                                                | 46.68                                                                                                                                                                                                                                                                                                                                                                                          | 45.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -28.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | peak                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | 4924.000 | 8.01                                                            | 34.37                                                                                      | 42.49                                                                                                                                | 45.45                                                                                                                                                                                                                                                                                                                                                                                          | 45.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -28.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | peak                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | 6564.209 | 11.35                                                           | 35.29                                                                                      | 41.17                                                                                                                                | 46.84                                                                                                                                                                                                                                                                                                                                                                                          | 52.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -21.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | peak                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | 7386.000 | 10.03                                                           | 36.34                                                                                      | 40.59                                                                                                                                | 45.05                                                                                                                                                                                                                                                                                                                                                                                          | 50.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -23.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | peak                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| рр | 9848.000 | 10.87                                                           | 37.57                                                                                      | 37.41                                                                                                                                | 41.67                                                                                                                                                                                                                                                                                                                                                                                          | 52.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -21.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | peak                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |          | MHz<br>1538.281<br>4456.315<br>4924.000<br>6564.209<br>7386.000 | Freq Loss  MHz dB  1538.281 5.43 4456.315 7.51 4924.000 8.01 6564.209 11.35 7386.000 10.03 | Freq Loss Factor  MHz dB dB/m  1538.281 5.43 25.98 4456.315 7.51 33.60 4924.000 8.01 34.37 6564.209 11.35 35.29 7386.000 10.03 36.34 | Freq         Loss Factor Factor           MHz         dB         dB/m         dB           1538.281         5.43         25.98         41.43           4456.315         7.51         33.60         42.41           4924.000         8.01         34.37         42.49           6564.209         11.35         35.29         41.17           7386.000         10.03         36.34         40.59 | Freq Loss Factor Factor Level           MHz         dB         dB/m         dB         dBuV           1538.281         5.43         25.98         41.43         44.85           4456.315         7.51         33.60         42.41         46.68           4924.000         8.01         34.37         42.49         45.45           6564.209         11.35         35.29         41.17         46.84           7386.000         10.03         36.34         40.59         45.05 | Freq Loss Factor Factor Level Level           MHz         dB         dB/m         dB dBuV dBuV/m           1538.281         5.43         25.98         41.43         44.85         34.83           4456.315         7.51         33.60         42.41         46.68         45.38           4924.000         8.01         34.37         42.49         45.45         45.34           6564.209         11.35         35.29         41.17         46.84         52.31           7386.000         10.03         36.34         40.59         45.05         50.83 | Freq Loss Factor Factor Level Level Line           MHz         dB         dB         dBuV         dBuV/m         dBuV/m           1538.281         5.43         25.98         41.43         44.85         34.83         74.00           4456.315         7.51         33.60         42.41         46.68         45.38         74.00           4924.000         8.01         34.37         42.49         45.45         45.34         74.00           6564.209         11.35         35.29         41.17         46.84         52.31         74.00           7386.000         10.03         36.34         40.59         45.05         50.83         74.00 | Cable Ant Preamp Read Limit Over Loss Factor Factor Level Level Line Limit  MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB  1538.281 5.43 25.98 41.43 44.85 34.83 74.00 -39.17 4456.315 7.51 33.60 42.41 46.68 45.38 74.00 -28.62 4924.000 8.01 34.37 42.49 45.45 45.34 74.00 -28.66 6564.209 11.35 35.29 41.17 46.84 52.31 74.00 -21.69 7386.000 10.03 36.34 40.59 45.05 50.83 74.00 -23.17 pp 9848.000 10.87 37.57 37.41 41.67 52.70 74.00 -21.30 |



Report No.: SZEM180600551901

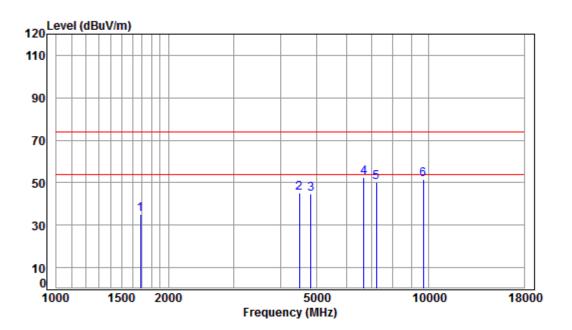
53 of 92 Page:

| Test mode: | 802.11g | Test channel: | Lowest | Remark: | Peak | Vertical |
|------------|---------|---------------|--------|---------|------|----------|
|------------|---------|---------------|--------|---------|------|----------|



Condition: 3m VERTICAL

Job No : 01808RG


Mode : 2412 TX RSE

|     |            | Cable | Ant    | Preamp | Read  |        | Limit  | 0ver   |        |
|-----|------------|-------|--------|--------|-------|--------|--------|--------|--------|
|     | Freq       | Loss  | Factor | Factor | Level | Level  | Line   | Limit  | Remark |
|     |            |       |        |        |       |        |        |        |        |
|     | MHz        | dB    | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |        |
|     |            |       |        |        |       |        |        |        |        |
| 1   | 1606.441   | 5.34  | 26.28  | 41.47  | 45.39 | 35.54  | 74.00  | -38.46 | peak   |
| 2   | 4430.628   | 7.48  | 33.60  | 42.41  | 47.16 | 45.83  | 74.00  | -28.17 | peak   |
| 3   | 4824.000   | 7.91  | 34.19  | 42.47  | 45.13 | 44.76  | 74.00  | -29.24 | peak   |
| 4   | 6470.026   | 11.48 | 35.08  | 41.24  | 46.47 | 51.79  | 74.00  | -22.21 | peak   |
| 5   | 7236.000   | 10.07 | 36.40  | 40.69  | 44.14 | 49.92  | 74.00  | -24.08 | peak   |
| 6 p | p 9648.000 | 10.77 | 37.53  | 37.68  | 43.02 | 53.64  | 74.00  | -20.36 | peak   |



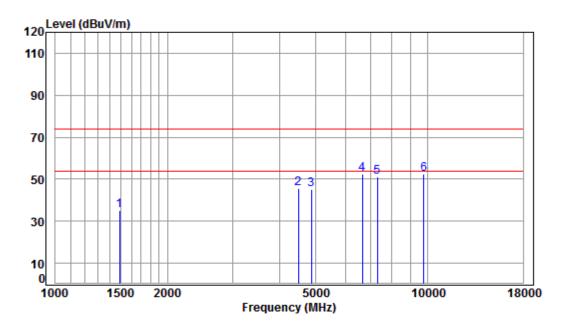
Report No.: SZEM180600551901

Page: 54 of 92



Condition: 3m HORIZONTAL

Job No : 01808RG


Mode : 2412 TX RSE Note : 2.4G WIFI 11G

|     |            | Cable | Ant    | Preamp | Read  |        | Limit  | 0ver   |        |
|-----|------------|-------|--------|--------|-------|--------|--------|--------|--------|
|     | Freq       | Loss  | Factor | Factor | Level | Level  | Line   | Limit  | Remark |
|     |            |       |        |        |       |        |        |        |        |
|     | MHz        | dB    | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |        |
|     |            |       |        |        |       |        |        |        |        |
| 1   | 1682.477   | 5.25  | 26.60  | 41.52  | 44.98 | 35.31  | 74.00  | -38.69 | peak   |
| 2   | 4495.125   | 7.55  | 33.60  | 42.42  | 46.62 | 45.35  | 74.00  | -28.65 | peak   |
| 3   | 4824.000   | 7.91  | 34.19  | 42.47  | 45.10 | 44.73  | 74.00  | -29.27 | peak   |
| 4 p | p 6679.040 | 11.02 | 35.61  | 41.08  | 46.96 | 52.51  | 74.00  | -21.49 | peak   |
| 5   | 7236.000   | 10.07 | 36.40  | 40.69  | 44.37 | 50.15  | 74.00  | -23.85 | peak   |
| 6   | 9648.000   | 10.77 | 37.53  | 37.68  | 40.73 | 51.35  | 74.00  | -22.65 | peak   |



Report No.: SZEM180600551901

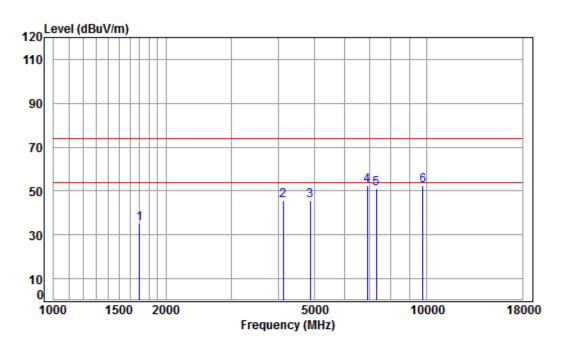
Page: 55 of 92



Condition: 3m VERTICAL

Job No : 01808RG

Mode : 2437 TX RSE Note : 2.4G WIFI 11G


|   | _  |          |       |        |        |       |          |          |        |        |
|---|----|----------|-------|--------|--------|-------|----------|----------|--------|--------|
|   |    |          | Cable | Ant    | Preamp | Read  |          | Limit    | 0ver   |        |
|   |    | Freq     | Loss  | Factor | Factor | Level | Level    | Line     | Limit  | Remark |
|   | -  | MHz      | ——dB  |        | dB     |       | dBul//m  | dBul//m  | ——dB   |        |
|   |    | PINZ     | ub    | ub/III | ub     | abuv  | ubuv/III | ubuv/III | ub     |        |
| 1 |    | 1490.142 | 5.45  | 25.76  | 41.40  | 45.22 | 35.03    | 74.00    | -38.97 | peak   |
| 2 |    | 4495.125 | 7.55  | 33.60  | 42.42  | 46.84 | 45.57    | 74.00    | -28.43 | peak   |
| 3 |    | 4874.000 | 7.96  | 34.28  | 42.48  | 45.63 | 45.39    | 74.00    | -28.61 | peak   |
| 4 |    | 6659.763 | 11.08 | 35.56  | 41.10  | 46.87 | 52.41    | 74.00    | -21.59 | peak   |
| 5 |    | 7311.000 | 10.05 | 36.37  | 40.64  | 45.11 | 50.89    | 74.00    | -23.11 | peak   |
| 6 | pp | 9748.000 | 10.82 | 37.55  | 37.54  | 41.64 | 52.47    | 74.00    | -21.53 | peak   |



Report No.: SZEM180600551901

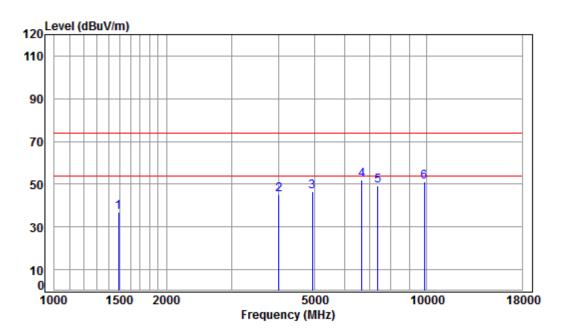
Page: 56 of 92

| Test mode: | 802.11g | Test channel: | Middle | Remark: | Peak | Horizontal |
|------------|---------|---------------|--------|---------|------|------------|
|------------|---------|---------------|--------|---------|------|------------|



Condition: 3m HORIZONTAL

Job No : 01808RG


Mode : 2437 TX RSE Note : 2.4G WIFI 11G

|   | _  |          |       |        |        |       |        |         |        |        |
|---|----|----------|-------|--------|--------|-------|--------|---------|--------|--------|
|   |    |          | Cable | Ant    | Preamp | Read  |        | Limit   | 0ver   |        |
|   |    | Freq     | Loss  | Factor | Factor | Level | Level  | Line    | Limit  | Remark |
|   | -  | MHz      | dB    |        | dB     |       | dD.M/m | dD. W/m | dB     |        |
|   |    | МПΖ      | ub    | ub/m   | ub     | abuv  | ubuv/m | ubuv/m  | ub     |        |
| 1 |    | 1697.129 | 5.23  | 26.66  | 41.53  | 44.55 | 34.91  | 74.00   | -39.09 | peak   |
| 2 |    | 4121.768 | 7.13  | 33.60  | 42.35  | 47.12 | 45.50  | 74.00   | -28.50 | peak   |
| 3 |    | 4874.000 | 7.96  | 34.28  | 42.48  | 46.08 | 45.84  | 74.00   | -28.16 | peak   |
| 4 |    | 6914.763 | 10.36 | 36.27  | 40.91  | 46.65 | 52.37  | 74.00   | -21.63 | peak   |
| 5 |    | 7311.000 | 10.05 | 36.37  | 40.64  | 45.49 | 51.27  | 74.00   | -22.73 | peak   |
| 6 | pp | 9748.000 | 10.82 | 37.55  | 37.54  | 41.84 | 52.67  | 74.00   | -21.33 | peak   |



Report No.: SZEM180600551901

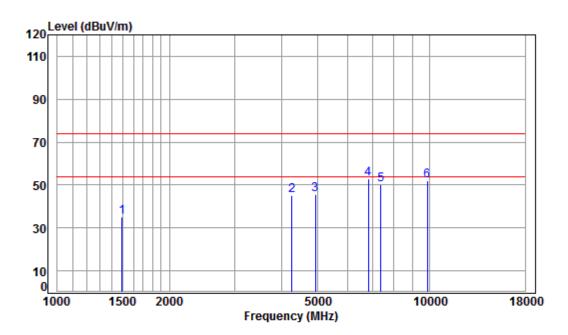
Page: 57 of 92



Condition: 3m VERTICAL

Job No : 01808RG

Mode : 2462 TX RSE Note : 2.4G WIFI 11G


| IO CC | . 2.4    | G MILI | 110    |        |       |        |        |        |        |
|-------|----------|--------|--------|--------|-------|--------|--------|--------|--------|
|       |          | Cable  | Ant    | Preamp | Read  |        | Limit  | 0ver   |        |
|       | Freq     | Loss   | Factor | Factor | Level | Level  | Line   | Limit  | Remark |
|       |          |        |        |        |       |        |        |        |        |
|       | MHz      | dB     | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |        |
|       |          |        |        |        |       |        |        |        |        |
| 1     | 1490.142 | 5.45   | 25.76  | 41.40  | 47.10 | 36.91  | 74.00  | -37.09 | peak   |
| 2     | 4004.339 | 6.99   | 33.60  | 42.33  | 46.79 | 45.05  | 74.00  | -28.95 | peak   |
| 3     | 4924.000 | 8.01   | 34.37  | 42.49  | 46.63 | 46.52  | 74.00  | -27.48 | peak   |
| 4 pp  | 6679.040 | 11.02  | 35.61  | 41.08  | 46.41 | 51.96  | 74.00  | -22.04 | peak   |
| 5     | 7386.000 | 10.03  | 36.34  | 40.59  | 43.41 | 49.19  | 74.00  | -24.81 | peak   |
| 6     | 9848.000 | 10.87  | 37.57  | 37.41  | 40.03 | 51.06  | 74.00  | -22.94 | peak   |
|       |          |        |        |        |       |        |        |        |        |



Report No.: SZEM180600551901

Page: 58 of 92

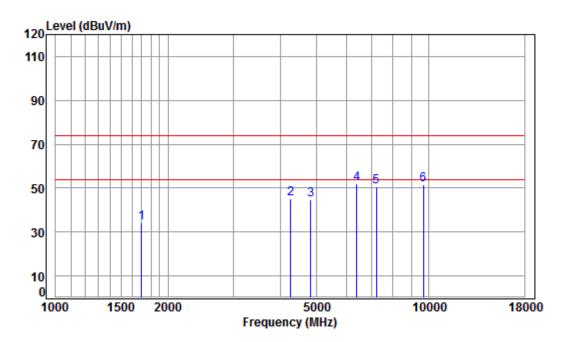
| Test mode: | 802.11g | Test channel: | Highest | Remark: | Peak | Horizontal |
|------------|---------|---------------|---------|---------|------|------------|
|------------|---------|---------------|---------|---------|------|------------|



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2462 TX RSE Note : 2.4G WIFI 11G


|      | Freq     |       |       | Preamp<br>Factor |       |        |        |        | Remark |
|------|----------|-------|-------|------------------|-------|--------|--------|--------|--------|
|      | MHz      | dB    | dB/m  | dB               | dBuV  | dBuV/m | dBuV/m | ——dB   |        |
| 1    | 1494.455 | 5.46  | 25.78 | 41.40            | 45.22 | 35.06  | 74.00  | -38.94 | peak   |
| 2    | 4267.237 | 7.30  | 33.60 | 42.38            | 46.70 | 45.22  | 74.00  | -28.78 | peak   |
| 3    | 4924.000 | 8.01  | 34.37 | 42.49            | 45.72 | 45.61  | 74.00  | -28.39 | peak   |
| 4 pp | 6835.278 | 10.58 | 36.05 | 40.97            | 47.15 | 52.81  | 74.00  | -21.19 | peak   |
| 5    | 7386.000 | 10.03 | 36.34 | 40.59            | 44.39 | 50.17  | 74.00  | -23.83 | peak   |
|      | 9848.000 |       |       |                  |       |        |        |        | •      |



Report No.: SZEM180600551901

Page: 59 of 92

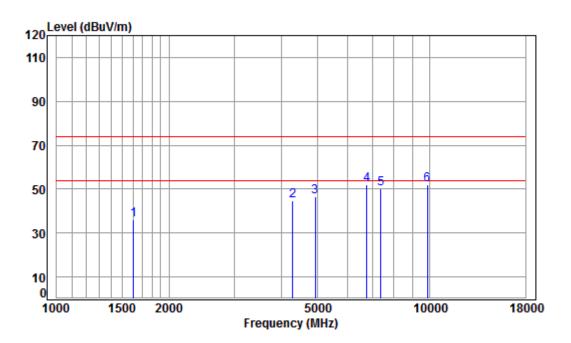
| Test mode: | 802.11n(HT20) | Test channel: | Lowest | Remark: | Peak | Vertical |
|------------|---------------|---------------|--------|---------|------|----------|
|            |               |               |        |         |      |          |



Condition: 3m VERTICAL

Job No : 01808RG

Mode : 2412 TX RSE


|     |            |       |        | _      |       |        |        |        |        |
|-----|------------|-------|--------|--------|-------|--------|--------|--------|--------|
|     |            | Cable | Ant    | Preamp | Read  |        | Limit  | 0ver   |        |
|     | Freq       | Loss  | Factor | Factor | Level | Level  | Line   | Limit  | Remark |
|     |            |       |        |        |       |        |        |        |        |
|     | MHz        | dB    | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | aв     |        |
| 1   | 1697.129   | 5.23  | 26.66  | 41.53  | 44.05 | 34.41  | 74.00  | -39.59 | peak   |
| 2   | 4267.237   | 7.30  | 33.60  | 42.38  | 46.66 | 45.18  | 74.00  | -28.82 | peak   |
| 3   | 4824.000   | 7.91  | 34.19  | 42.47  | 45.07 | 44.70  | 74.00  | -29.30 | peak   |
| 4 p | p 6414.167 | 11.38 | 35.03  | 41.28  | 46.86 | 51.99  | 74.00  | -22.01 | peak   |
| 5   | 7236.000   | 10.07 | 36.40  | 40.69  | 44.80 | 50.58  | 74.00  | -23.42 | peak   |
| 6   | 9648.000   | 10.77 | 37.53  | 37.68  | 40.90 | 51.52  | 74.00  | -22.48 | peak   |



Report No.: SZEM180600551901

Page: 60 of 92

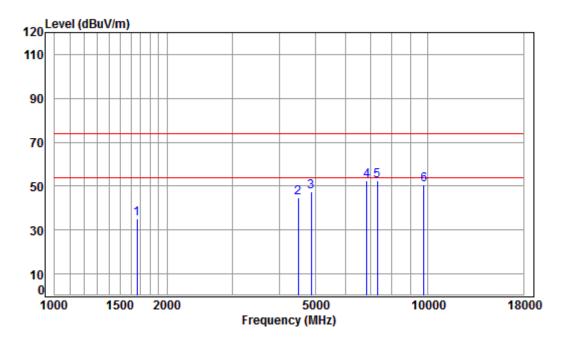
| Test mode: | 802.11n(HT20) | Test channel: | Lowest | Remark: | Peak | Horizontal |
|------------|---------------|---------------|--------|---------|------|------------|
|------------|---------------|---------------|--------|---------|------|------------|



Condition: 3m VERTICAL

Job No : 01808RG

Mode : 2462 TX RSE


| voce | . 2.4    | G MILI | TIN Z  | 0      |       |        |        |        |        |
|------|----------|--------|--------|--------|-------|--------|--------|--------|--------|
|      |          | Cable  | Ant    | Preamp | Read  |        | Limit  | 0ver   |        |
|      | Freq     | Loss   | Factor | Factor | Level | Level  | Line   | Limit  | Remark |
|      | MHz      | dB     | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |        |
| 1    | 1606.441 | 5.34   | 26.28  | 41.47  | 45.95 | 36.10  | 74.00  | -37.90 | peak   |
| 2    | 4291.977 | 7.33   | 33.60  | 42.38  | 46.12 | 44.67  | 74.00  | -29.33 | peak   |
| 3    | 4924.000 | 8.01   | 34.37  | 42.49  | 46.58 | 46.47  | 74.00  | -27.53 | peak   |
| 4 pp | 6776.265 | 10.75  | 35.89  | 41.01  | 46.52 | 52.15  | 74.00  | -21.85 | peak   |
| 5    | 7386.000 | 10.03  | 36.34  | 40.59  | 44.24 | 50.02  | 74.00  | -23.98 | peak   |
| 6    | 9848.000 | 10.87  | 37.57  | 37.41  | 40.95 | 51.98  | 74.00  | -22.02 | peak   |



Report No.: SZEM180600551901

Page: 61 of 92

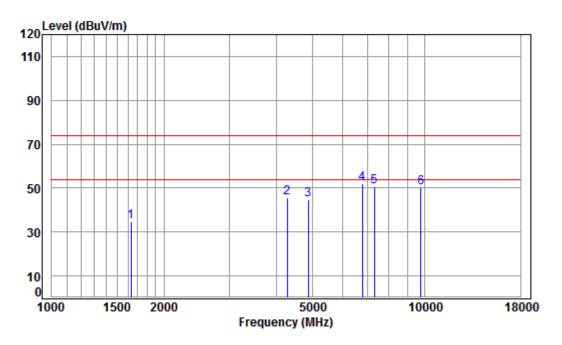
| Test mode: | 802.11n(HT20) | Test channel: | Middle | Remark: | Peak | Vertical |
|------------|---------------|---------------|--------|---------|------|----------|
|            |               |               |        |         |      |          |



Condition: 3m VERTICAL

Job No : 01808RG

Mode : 2437 TX RSE


| lore | . 2.4    | g MILI | TIN Z  | 0      |       |        |        |        |        |
|------|----------|--------|--------|--------|-------|--------|--------|--------|--------|
|      |          | Cable  | Ant    | Preamp | Read  |        | Limit  | 0ver   |        |
|      | Freq     | Loss   | Factor | Factor | Level | Level  | Line   | Limit  | Remark |
|      |          |        |        |        |       |        |        |        |        |
|      | MHz      | dB     | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |        |
|      |          |        |        |        |       |        |        |        |        |
| 1    | 1663.137 | 5.27   | 26.52  | 41.51  | 44.67 | 34.95  | 74.00  | -39.05 | peak   |
| 2    | 4495.125 | 7.55   | 33.60  | 42.42  | 46.10 | 44.83  | 74.00  | -29.17 | peak   |
| 3    | 4874.000 | 7.96   | 34.28  | 42.48  | 47.58 | 47.34  | 74.00  | -26.66 | peak   |
| 4 pp | 6855.063 | 10.53  | 36.10  | 40.96  | 46.83 | 52.50  | 74.00  | -21.50 | peak   |
| 5    | 7311.000 | 10.05  | 36.37  | 40.64  | 46.49 | 52.27  | 74.00  | -21.73 | peak   |
| 6    | 9748.000 | 10.82  | 37.55  | 37.54  | 40.01 | 50.84  | 74.00  | -23.16 | peak   |



Report No.: SZEM180600551901

Page: 62 of 92

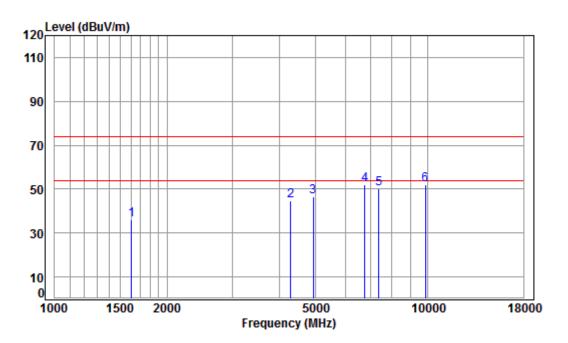
Test mode: 802.11n(HT20) Test channel: Middle Remark: Peak Horizontal



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2437 TX RSE


| oce | . 2.4      | G MILI | TIN Z  | •      |       |        |        |        |        |
|-----|------------|--------|--------|--------|-------|--------|--------|--------|--------|
|     |            | Cable  | Ant    | Preamp | Read  |        | Limit  | 0ver   |        |
|     | Freq       | Loss   | Factor | Factor | Level | Level  | Line   | Limit  | Remark |
|     |            |        |        |        |       |        |        |        |        |
|     | MHz        | dB     | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |        |
|     | 4500 005   |        | 06.30  |        |       | 24.60  | 74.00  | 20.40  |        |
| 1   | 1629.825   | 5.31   | 26.38  | 41.49  | 44.40 | 34.60  | /4.00  | -39.40 | peak   |
| 2   | 4279.589   | 7.31   | 33.60  | 42.38  | 47.31 | 45.84  | 74.00  | -28.16 | peak   |
| 3   | 4874.000   | 7.96   | 34.28  | 42.48  | 45.12 | 44.88  | 74.00  | -29.12 | peak   |
| 4 p | p 6795.879 | 10.69  | 35.94  | 41.00  | 46.57 | 52.20  | 74.00  | -21.80 | peak   |
| 5   | 7311.000   | 10.05  | 36.37  | 40.64  | 44.88 | 50.66  | 74.00  | -23.34 | peak   |
| 6   | 9748.000   | 10.82  | 37.55  | 37.54  | 39.46 | 50.29  | 74.00  | -23.71 | peak   |



Report No.: SZEM180600551901

Page: 63 of 92

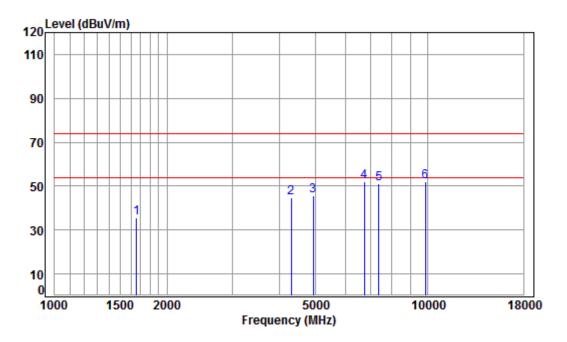
| Test mode: | 802.11n(HT20) | Test channel: | Highest | Remark: | Peak | Vertical |
|------------|---------------|---------------|---------|---------|------|----------|
|------------|---------------|---------------|---------|---------|------|----------|



Condition: 3m VERTICAL

Job No : 01808RG

Mode : 2462 TX RSE


| voce | . 2.4    | G MILI | TIN Z  | 0      |       |        |        |        |        |
|------|----------|--------|--------|--------|-------|--------|--------|--------|--------|
|      |          | Cable  | Ant    | Preamp | Read  |        | Limit  | 0ver   |        |
|      | Freq     | Loss   | Factor | Factor | Level | Level  | Line   | Limit  | Remark |
|      | MHz      | dB     | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |        |
| 1    | 1606.441 | 5.34   | 26.28  | 41.47  | 45.95 | 36.10  | 74.00  | -37.90 | peak   |
| 2    | 4291.977 | 7.33   | 33.60  | 42.38  | 46.12 | 44.67  | 74.00  | -29.33 | peak   |
| 3    | 4924.000 | 8.01   | 34.37  | 42.49  | 46.58 | 46.47  | 74.00  | -27.53 | peak   |
| 4 pp | 6776.265 | 10.75  | 35.89  | 41.01  | 46.52 | 52.15  | 74.00  | -21.85 | peak   |
| 5    | 7386.000 | 10.03  | 36.34  | 40.59  | 44.24 | 50.02  | 74.00  | -23.98 | peak   |
| 6    | 9848.000 | 10.87  | 37.57  | 37.41  | 40.95 | 51.98  | 74.00  | -22.02 | peak   |



Report No.: SZEM180600551901

Page: 64 of 92

| Test mode: | 802.11n(HT20) | Test channel: | Highest | Remark: | Peak | Horizontal |
|------------|---------------|---------------|---------|---------|------|------------|
|------------|---------------|---------------|---------|---------|------|------------|



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2462 TX RSE

| lore | . 2.4    | G MILI | TIN Z  | 0      |       |        |        |        |        |
|------|----------|--------|--------|--------|-------|--------|--------|--------|--------|
|      |          | Cable  | Ant    | Preamp | Read  |        | Limit  | 0ver   |        |
|      | Freq     | Loss   | Factor | Factor | Level | Level  | Line   | Limit  | Remark |
|      |          |        |        |        |       |        |        |        |        |
|      | MHz      | dB     | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |        |
|      |          |        |        |        |       |        |        |        |        |
| 1    | 1658.337 | 5.28   | 26.50  | 41.51  | 45.43 | 35.70  | 74.00  | -38.30 | peak   |
| 2    | 4304.400 | 7.34   | 33.60  | 42.38  | 46.27 | 44.83  | 74.00  | -29.17 | peak   |
| 3    | 4924.000 | 8.01   | 34.37  | 42.49  | 45.75 | 45.64  | 74.00  | -28.36 | peak   |
| 4 pp | 6756.708 | 10.80  | 35.83  | 41.03  | 46.59 | 52.19  | 74.00  | -21.81 | peak   |
| 5    | 7386.000 | 10.03  | 36.34  | 40.59  | 45.17 | 50.95  | 74.00  | -23.05 | peak   |
| 6    | 9848.000 | 10.87  | 37.57  | 37.41  | 40.96 | 51.99  | 74.00  | -22.01 | peak   |



Report No.: SZEM180600551901

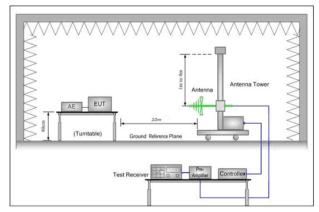
Page: 65 of 92

#### Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.




Report No.: SZEM180600551901

Page: 66 of 92

#### Restricted bands around fundamental frequency 6.9

| Test Requirement: | 47 CFR Part 15C Section 1 | 47 CFR Part 15C Section 15.209 and 15.205        |                  |  |  |  |  |  |  |
|-------------------|---------------------------|--------------------------------------------------|------------------|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10: 2013 Section | ANSI C63.10: 2013 Section 11.12                  |                  |  |  |  |  |  |  |
| Test Site:        | Measurement Distance: 3n  | Measurement Distance: 3m (Semi-Anechoic Chamber) |                  |  |  |  |  |  |  |
|                   | Frequency                 | Limit (dBuV/m @3m)                               | Remark           |  |  |  |  |  |  |
|                   | 30MHz-88MHz               | 40.0                                             | Quasi-peak Value |  |  |  |  |  |  |
|                   | 88MHz-216MHz              | 43.5                                             | Quasi-peak Value |  |  |  |  |  |  |
| Limit:            | 216MHz-960MHz             | 46.0                                             | Quasi-peak Value |  |  |  |  |  |  |
|                   | 960MHz-1GHz               | 54.0                                             | Quasi-peak Value |  |  |  |  |  |  |
|                   | Above 1GHz                | 54.0                                             | Average Value    |  |  |  |  |  |  |
|                   | Above IGHZ                | 74.0                                             | Peak Value       |  |  |  |  |  |  |
| Test Setup:       |                           |                                                  |                  |  |  |  |  |  |  |



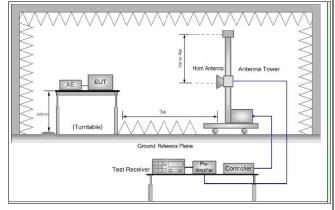



Figure 1. 30MHz to 1GHz

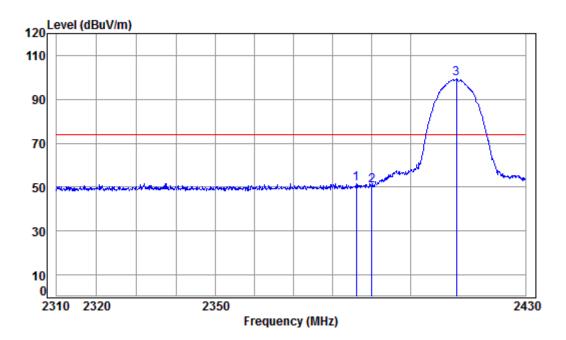
Figure 2. Above 1 GHz



Report No.: SZEM180600551901

Page: 67 of 92


|                        | a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.                                          |  |  |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        | b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.                                          |  |  |  |  |
|                        | c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                         |  |  |  |  |
|                        | d. The antenna height is varied from one meter to four meters above the<br>ground to determine the maximum value of the field strength. Both<br>horizontal and vertical polarizations of the antenna are set to make the<br>measurement.                           |  |  |  |  |
| Test Procedure:        | e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.                            |  |  |  |  |
|                        | f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                        |  |  |  |  |
|                        | g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel |  |  |  |  |
|                        | h. Test the EUT in the lowest channel, the Highest channel                                                                                                                                                                                                         |  |  |  |  |
|                        | i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode. And found the X axis positioning which it is worse case.                                                                                                            |  |  |  |  |
|                        | j. Repeat above procedures until all frequencies measured was complete.                                                                                                                                                                                            |  |  |  |  |
| Evoloratory Tost Made: | Transmitting with all kind of modulations, data rates.                                                                                                                                                                                                             |  |  |  |  |
| Exploratory Test Mode: | Charge + Transmitting mode.                                                                                                                                                                                                                                        |  |  |  |  |
|                        | Pretest the EUT at Charge +Transmitting mode.                                                                                                                                                                                                                      |  |  |  |  |
| Final Test Mode:       | Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;                                                                                                                                                                                             |  |  |  |  |
|                        | 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20)                                                                                                                                                                     |  |  |  |  |
| Instruments Used:      | Refer to section 5.10 for details                                                                                                                                                                                                                                  |  |  |  |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                               |  |  |  |  |
|                        |                                                                                                                                                                                                                                                                    |  |  |  |  |




Report No.: SZEM180600551901

Page: 68 of 92

Test plot as follows:

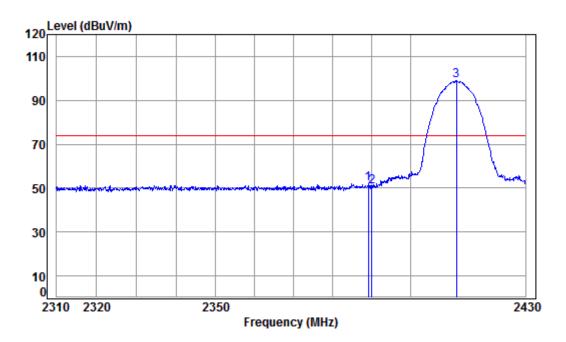




Condition: 3m VERTICAL Job No : 01808RG

: 2412 Band edge Mode

: 2.4G WiFi 11B


|      | . 2.4    | a will | 110    |        |        |        |        |        |        |
|------|----------|--------|--------|--------|--------|--------|--------|--------|--------|
|      |          | Cable  | Ant    | Preamp | Read   |        | Limit  | 0ver   |        |
|      | Freq     | Loss   | Factor | Factor | Level  | Level  | Line   | Limit  | Remark |
|      |          |        |        |        |        |        |        |        |        |
|      | MHz      | dB     | dB/m   | dB     | dBuV   | dBuV/m | dBuV/m | dB     |        |
|      |          | 40     | u.,    | 45     | ubu.   | uou+/  | ubu*/  | 40     |        |
| 1    | 2385.978 | 5 /17  | 29 07  | /11 27 | 59 01  | 51 71  | 7/ 00  | _22_29 | Poak   |
| -    | 2303.370 | 3.47   | 25.07  | 41.07  | 33.04  | J1./1  | 74.00  | -22.25 | I Cak  |
| 2    | 2390.000 | 5.47   | 29.08  | 41.87  | 57.83  | 50.51  | 74.00  | -23.49 | Peak   |
| 3 pp | 2412.000 | 5.50   | 29.14  | 41.88  | 106.49 | 99.25  | 74.00  | 25.25  | Peak   |
|      |          |        |        |        |        |        |        |        |        |



Report No.: SZEM180600551901

Page: 69 of 92

| Worse case mode:   802.11b   Test channel:   Lowest   Remark:   Peak   Horizontal |
|-----------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------|

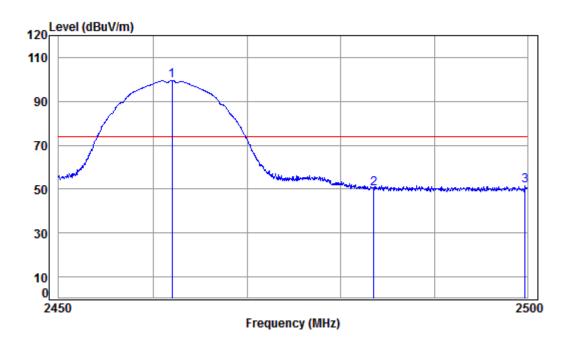


Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2412 Band edge

: 2.4G WiFi 11B


|   |    | Freq     |      | Ant<br>Factor |       |        |        |        |        | Remark |  |
|---|----|----------|------|---------------|-------|--------|--------|--------|--------|--------|--|
|   | -  | MHz      | dB   | dB/m          | dB    | dBuV   | dBuV/m | dBuV/m | dB     |        |  |
| 1 |    | 2389.121 | 5.47 | 29.07         | 41.87 | 59.54  | 52.21  | 74.00  | -21.79 | peak   |  |
| 2 |    | 2390.000 | 5.47 | 29.08         | 41.87 | 58.03  | 50.71  | 74.00  | -23.29 | peak   |  |
| 3 | pp | 2412.000 | 5.50 | 29.14         | 41.88 | 106.20 | 98.96  | 74.00  | 24.96  | peak   |  |



Report No.: SZEM180600551901

Page: 70 of 92

|--|

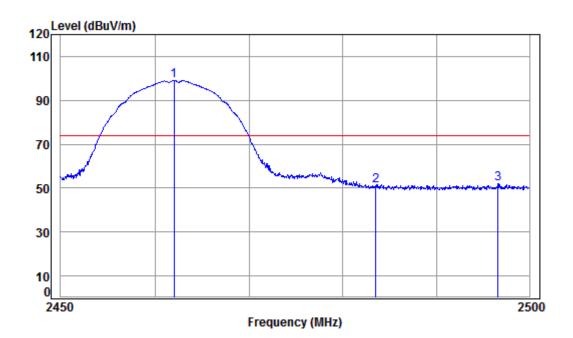


Condition: 3m VERTICAL Job No : 01808RG

3

: 2462 Band edge Mode

: 2.4G WiFi 11B


Cable Ant Preamp Read Limit 0ver Loss Factor Factor Freq Level Level Line Limit Remark dBuV dBuV/m dBuV/m MHz dB dB/m dB dB 1 pp 2462.000 5.57 29.29 41.90 106.51 99.47 74.00 25.47 Peak 41.91 57.19 2483.500 5.60 29.35 50.23 74.00 -23.77 Peak 2499.748 5.62 29.40 41.92 58.69 51.79 74.00 -22.21 Peak



Report No.: SZEM180600551901

Page: 71 of 92

| Worse case mode: | 802.11b | Test channel: | Highest | Remark: | Peak | Horizontal |
|------------------|---------|---------------|---------|---------|------|------------|
|------------------|---------|---------------|---------|---------|------|------------|



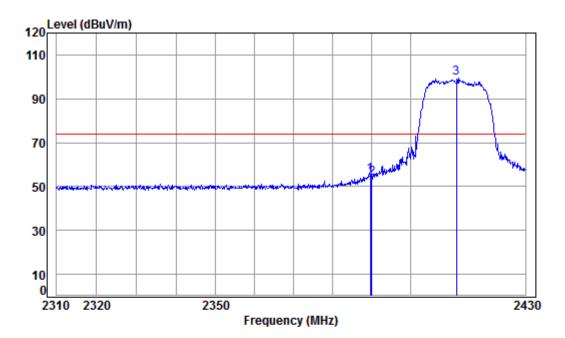
Condition: 3m HORIZONTAL

Job No : 01808RG

2

Mode : 2462 Band edge

: 2.4G WiFi 11B


|     | Freq       |      |       |       | Read<br>Level |        |        |        | Remark |   |
|-----|------------|------|-------|-------|---------------|--------|--------|--------|--------|---|
|     | MHz        | dB   | dB/m  | dB    | dBuV          | dBuV/m | dBuV/m | dB     |        | - |
| L p | p 2462.000 | 5.57 | 29.29 | 41.90 | 106.19        | 99.15  | 74.00  | 25.15  | peak   |   |
| )   | 2483.500   | 5.60 | 29.35 | 41.91 | 58.05         | 51.09  | 74.00  | -22.91 | peak   |   |
| 3   | 2496.618   | 5.62 | 29.39 | 41.92 | 58.74         | 51.83  | 74.00  | -22.17 | peak   |   |



Report No.: SZEM180600551901

Page: 72 of 92

| Worse case mode: 8 | 802.11g | Test channel: | Lowest | Remark: | Peak | Vertical |
|--------------------|---------|---------------|--------|---------|------|----------|
|--------------------|---------|---------------|--------|---------|------|----------|



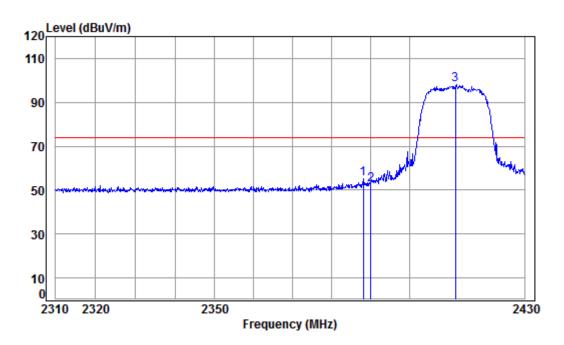
Condition: 3m VERTICAL Job No : 01808RG

1

2

Mode : 2412 Band edge

: 2.4G WiFi 11G


Cable Ant Preamp Limit Read 0ver Loss Factor Factor Level Level Line Limit Remark Freq MHz dB dB/m dΒ dBuV dBuV/m dBuV/m 2389.605 5.47 29.08 41.87 62.67 55.35 74.00 -18.65 Peak 2390.000 5.47 29.08 41.87 61.31 53.99 74.00 -20.01 Peak 3 pp 2412.000 5.50 29.14 41.88 106.58 99.34 74.00 25.34 Peak



Report No.: SZEM180600551901

73 of 92 Page:

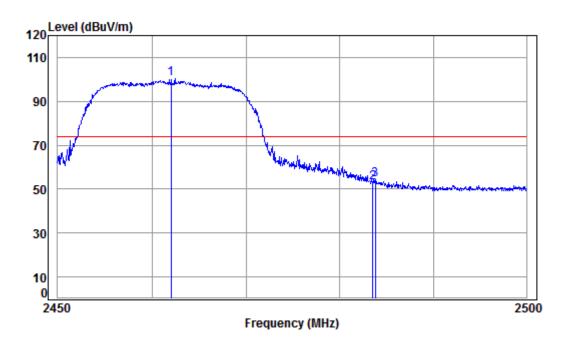
| Worse case mode: | 802.11g | Test channel: | Lowest | Remark: | Peak | Horizontal |
|------------------|---------|---------------|--------|---------|------|------------|
|------------------|---------|---------------|--------|---------|------|------------|



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2412 Band edge


|      | . 2.4    | G MILL | 110    |        |        |        |        |        |        |
|------|----------|--------|--------|--------|--------|--------|--------|--------|--------|
|      |          | Cable  | Ant    | Preamp | Read   |        | Limit  | 0ver   |        |
|      | Freq     | Loss   | Factor | Factor | Level  | Level  | Line   | Limit  | Remark |
|      |          |        |        |        |        |        |        |        |        |
|      | MHz      | dB     | dB/m   | dB     | dBuV   | dBuV/m | dBuV/m | dB     |        |
|      |          |        | •      |        |        | •      | •      |        |        |
| 1    | 2388.032 | 5.47   | 29.07  | 41.87  | 62.75  | 55.42  | 74.00  | -18.58 | peak   |
| 2    | 2390.000 |        |        |        |        |        |        |        | •      |
| _    |          |        |        |        |        |        |        |        | •      |
| 3 pp | 2412.000 | 5.50   | 29.14  | 41.88  | 105.31 | 98.07  | 74.00  | 24.07  | peak   |



Report No.: SZEM180600551901

Page: 74 of 92

| Wor | se case mode: | 802.11g | Test channel: | Highest | Remark: | Peak | Vertical |  |
|-----|---------------|---------|---------------|---------|---------|------|----------|--|
|-----|---------------|---------|---------------|---------|---------|------|----------|--|



Condition: 3m VERTICAL Job No : 01808RG

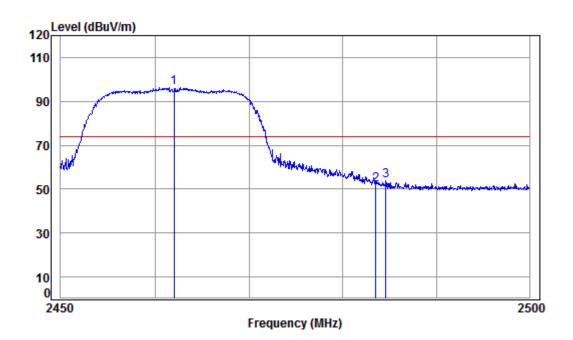
Mode : 2462 Band edge

2483.790

3

: 2.4G WiFi 11G

Cable Ant Preamp Read Limit 0ver Loss Factor Factor Freq Level Level Line Limit Remark dBuV dBuV/m dBuV/m MHz dB dB/m dB dB 1 pp 2462.000 5.57 29.29 41.90 107.25 100.21 74.00 26.21 Peak 2483.500 5.60 29.35 41.91 60.04 53.08 74.00 -20.92 Peak


5.60 29.35 41.91 61.05 54.09 74.00 -19.91 Peak



Report No.: SZEM180600551901

Page: 75 of 92

| Worse case mode: 8 | 802.11g | Test channel: | Highest | Remark: | Peak | Horizontal |
|--------------------|---------|---------------|---------|---------|------|------------|
|--------------------|---------|---------------|---------|---------|------|------------|



Condition: 3m HORIZONTAL

Job No : 01808RG

2

Mode : 2462 Band edge

|    | Freq     |      | Ant<br>Factor |       |        |        |        |        | Remark |  |
|----|----------|------|---------------|-------|--------|--------|--------|--------|--------|--|
|    | MHz      | dB   | dB/m          | dB    | dBuV   | dBuV/m | dBuV/m | dB     |        |  |
| рр | 2462.000 | 5.57 | 29.29         | 41.90 | 103.46 | 96.42  | 74.00  | 22.42  | peak   |  |
|    | 2483.500 | 5.60 | 29.35         | 41.91 | 58.83  | 51.87  | 74.00  | -22.13 | peak   |  |
|    | 2484.593 | 5.60 | 29.36         | 41.91 | 60.67  | 53.72  | 74.00  | -20.28 | peak   |  |



Report No.: SZEM180600551901

Page: 76 of 92

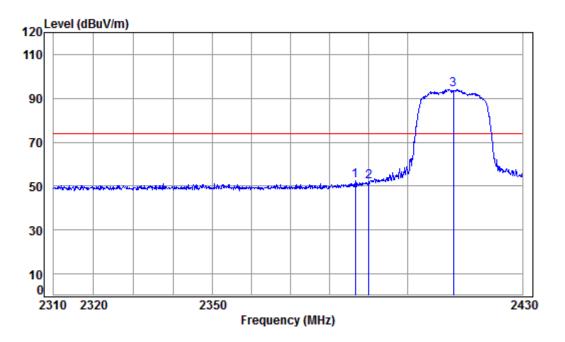
| Worse case mode: 802. | 2.11n(HT20) Test channel: | Lowest | Remark: | Peak | Vertical |
|-----------------------|---------------------------|--------|---------|------|----------|
|-----------------------|---------------------------|--------|---------|------|----------|



Condition: 3m VERTICAL Job No : 01808RG

Mode : 2412 Band edge

: 2.4G WiFi 11N 20


Cable Ant Preamp Limit Read 0ver Loss Factor Factor Level Level Line Limit Remark Freq MHz dB dB/m dΒ dBuV dBuV/m dBuV/m 1 2389.968 5.47 29.08 41.87 62.63 55.31 74.00 -18.69 Peak 2 2390.000 5.47 29.08 41.87 62.63 55.31 74.00 -18.69 Peak 3 pp 2412.000 5.50 29.14 41.88 106.99 99.75 74.00 25.75 Peak



Report No.: SZEM180600551901

Page: 77 of 92

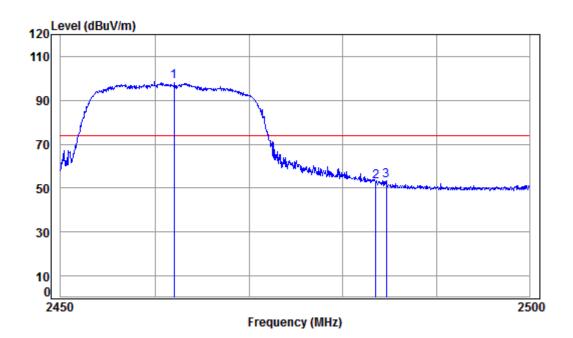
| Worse case mode:   802.11n(HT20)   Test channel:   Lowest   Remark:   Peak   Horizor |
|--------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------|



Condition: 3m HORIZONTAL

Job No : 01808RG

1 2 3


Mode : 2412 Band edge

|   | Freq   |    | Ant<br>Factor |    |      |        |        |    | Remark |   |
|---|--------|----|---------------|----|------|--------|--------|----|--------|---|
| _ | MHz    | dB | dB/m          | dB | dBuV | dBuV/m | dBuV/m | dB |        | - |
|   | 86.582 |    |               |    |      |        |        |    | •      |   |
|   | 90.000 |    |               |    |      |        |        |    | •      |   |



Report No.: SZEM180600551901

Page: 78 of 92

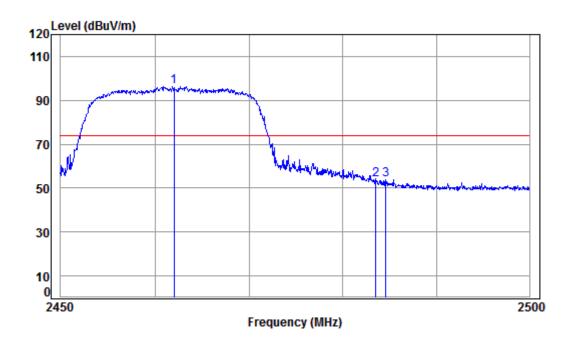


Condition: 3m VERTICAL

Job No : 01808RG

2

Mode : 2462 Band edge


|   |    |          | Cable | Ant    | Preamp | Read   |        | Limit  | 0ver   |        |  |
|---|----|----------|-------|--------|--------|--------|--------|--------|--------|--------|--|
|   |    | Freq     | Loss  | Factor | Factor | Level  | Level  | Line   | Limit  | Remark |  |
|   |    |          |       |        |        |        |        |        |        |        |  |
|   |    | MHz      | dB    | dB/m   | dB     | dBuV   | dBuV/m | dBuV/m | dB     |        |  |
|   |    |          |       |        |        |        |        |        |        |        |  |
| L | pp | 2462.000 | 5.57  | 29.29  | 41.90  | 105.40 | 98.36  | 74.00  | 24.36  | Peak   |  |
| ) |    | 2483.500 | 5.60  | 29.35  | 41.91  | 59.75  | 52.79  | 74.00  | -21.21 | Peak   |  |
| 3 |    | 2484.643 | 5.60  | 29.36  | 41.91  | 60.53  | 53.58  | 74.00  | -20.42 | Peak   |  |
|   |    |          |       |        |        |        |        |        |        |        |  |



Report No.: SZEM180600551901

79 of 92 Page:

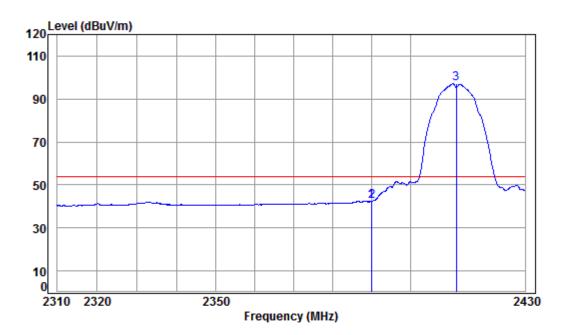
| Worse case mode: | 802.11n(HT20) | Test channel: | Highest | Remark: | Peak | Horizontal |
|------------------|---------------|---------------|---------|---------|------|------------|
|------------------|---------------|---------------|---------|---------|------|------------|



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2462 Band edge


|      | Freq     |      |       |       |        | Level  |        |        | Remark |
|------|----------|------|-------|-------|--------|--------|--------|--------|--------|
| -    | MHz      | dB   | dB/m  | dB    | dBuV   | dBuV/m | dBuV/m | dB     |        |
| 1 pp | 2462.000 | 5.57 | 29.29 | 41.90 | 103.28 | 96.24  | 74.00  | 22.24  | peak   |
| 2    | 2483.500 | 5.60 | 29.35 | 41.91 | 60.61  | 53.65  | 74.00  | -20.35 | peak   |
| 3    | 2484.593 | 5.60 | 29.36 | 41.91 | 60.92  | 53.97  | 74.00  | -20.03 | peak   |



Report No.: SZEM180600551901

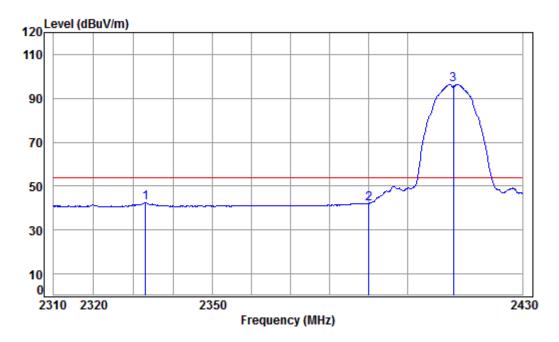
Page: 80 of 92

| ٧ | Worse case mode: | 802.11b | Test channel: | Lowest | Remark: | Average | Vertical |
|---|------------------|---------|---------------|--------|---------|---------|----------|
|---|------------------|---------|---------------|--------|---------|---------|----------|



Condition: 3m VERTICAL Job No : 01808RG

Mode : 2412 Band edge


|   |    | Freq     |      |       |       |        |        | Limit<br>Line |        | Remark  |
|---|----|----------|------|-------|-------|--------|--------|---------------|--------|---------|
|   | -  | MHz      | dB   | dB/m  | dB    | dBuV   | dBuV/m | dBuV/m        | dB     |         |
| 1 |    | 2389.847 | 5.47 | 29.08 | 41.87 | 49.77  | 42.45  | 54.00         | -11.55 | Average |
| 2 |    | 2390.000 | 5.47 | 29.08 | 41.87 | 49.76  | 42.44  | 54.00         | -11.56 | Average |
| 3 | pp | 2412.000 | 5.50 | 29.14 | 41.88 | 104.28 | 97.04  | 54.00         | 43.04  | Average |



Report No.: SZEM180600551901

Page: 81 of 92

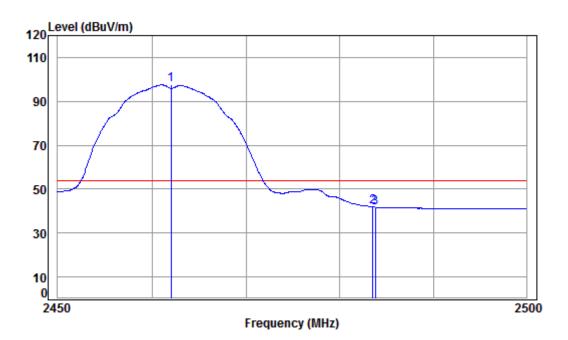
| Worse case mode: | 802.11b | Test channel: | Lowest | Remark: | Average | Horizontal |
|------------------|---------|---------------|--------|---------|---------|------------|
|------------------|---------|---------------|--------|---------|---------|------------|



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2412 Band edge


|   |    | Freq     |      |       |       |        | Level  |        |        | Remark  |   |
|---|----|----------|------|-------|-------|--------|--------|--------|--------|---------|---|
|   | -  | MHz      | dB   | dB/m  | dB    | dBuV   | dBuV/m | dBuV/m | dB     |         | - |
| 1 |    | 2333.044 | 5.40 | 28.90 | 41.85 | 50.00  | 42.45  | 54.00  | -11.55 | Average |   |
| 2 |    | 2390.000 | 5.47 | 29.08 | 41.87 | 49.30  | 41.98  | 54.00  | -12.02 | Average |   |
| 3 | pp | 2412.000 | 5.50 | 29.14 | 41.88 | 103.71 | 96.47  | 54.00  | 42.47  | Average |   |



Report No.: SZEM180600551901

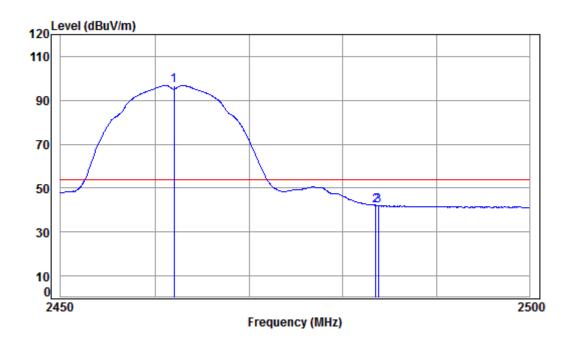
82 of 92 Page:

| Worse case mode: | 802.11b | Test channel: | Highest | Remark: | Average | Vertical |
|------------------|---------|---------------|---------|---------|---------|----------|
|------------------|---------|---------------|---------|---------|---------|----------|



Condition: 3m VERTICAL Job No : 01808RG

Mode : 2462 Band edge


|      | 1 21 10 1121 220 |       |        |        |        |        |        |        |         |  |  |
|------|------------------|-------|--------|--------|--------|--------|--------|--------|---------|--|--|
|      |                  | Cable | Ant    | Preamp | Read   |        | Limit  | 0ver   |         |  |  |
|      | Freq             | Loss  | Factor | Factor | Level  | Level  | Line   | Limit  | Remark  |  |  |
|      |                  |       |        |        |        |        |        |        |         |  |  |
|      | MHz              | dB    | dB/m   | dB     | dBuV   | dBuV/m | dBuV/m | dB     |         |  |  |
|      |                  |       |        |        |        |        |        |        |         |  |  |
| 1 pp | 2462.000         | 5.57  | 29.29  | 41.90  | 104.51 | 97.47  | 54.00  | 43.47  | Average |  |  |
|      | 2483.500         |       |        |        |        |        |        |        | _       |  |  |
| 3    | 2483.790         | 5.60  | 29.35  | 41.91  | 48.69  | 41.73  | 54.00  | -12.27 | Average |  |  |



Report No.: SZEM180600551901

Page: 83 of 92

| Worse case mode: | 802.11b | Test channel: | Highest | Remark: | Average | Horizontal |  |
|------------------|---------|---------------|---------|---------|---------|------------|--|
|------------------|---------|---------------|---------|---------|---------|------------|--|

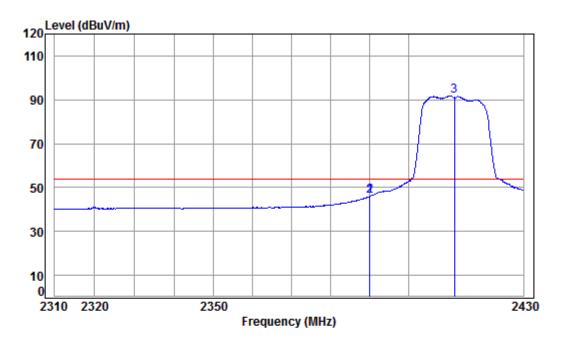


Condition: 3m HORIZONTAL

Job No : 01808RG

2

Mode : 2462 Band edge


|    | Freq     |      | Ant<br>Factor | •     |        |        |        |        | Remark  |   |
|----|----------|------|---------------|-------|--------|--------|--------|--------|---------|---|
|    | MHz      | dB   | dB/m          | ——dB  | dBuV   | dBuV/m | dBuV/m | ——dB   |         | _ |
| рр | 2462.000 | 5.57 | 29.29         | 41.90 | 103.85 | 96.81  | 54.00  | 42.81  | Average |   |
|    | 2483.500 | 5.60 | 29.35         | 41.91 | 49.16  | 42.20  | 54.00  | -11.80 | Average |   |
|    | 2483.790 | 5.60 | 29.35         | 41.91 | 48.95  | 41.99  | 54.00  | -12.01 | Average |   |



Report No.: SZEM180600551901

Page: 84 of 92

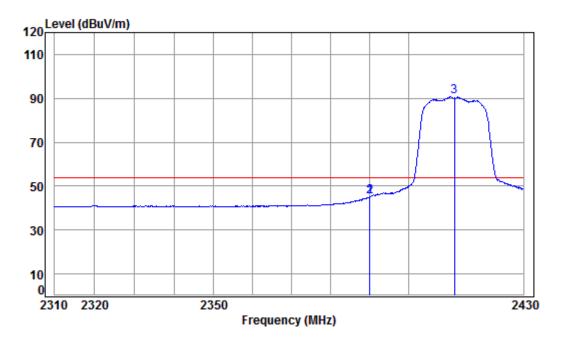
| Worse case mode: 8 | 802.11g | Test channel: | Lowest | Remark: | Average | Vertical | l |
|--------------------|---------|---------------|--------|---------|---------|----------|---|
|--------------------|---------|---------------|--------|---------|---------|----------|---|



Condition: 3m VERTICAL Job No : 01808RG

Mode : 2412 Band edge

: 2.4G WiFi 11G


Cable Ant Preamp Limit 0ver Read Loss Factor Factor Level Level Line Limit Remark Freq MHz dB dB/m dΒ dBuV dBuV/m dBuV/m dB 1 2389.968 5.47 29.08 41.87 53.46 46.14 54.00 -7.86 Average 2 2390.000 5.47 29.08 41.87 53.46 46.14 54.00 -7.86 Average 3 pp 2412.000 5.50 29.14 41.88 99.18 91.94 54.00 37.94 Average



Report No.: SZEM180600551901

Page: 85 of 92

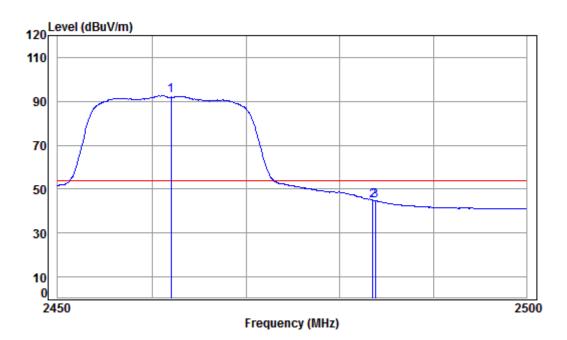
| Worse case mode: | 802.11g | Test channel: | Lowest | Remark: | Average | Horizontal |
|------------------|---------|---------------|--------|---------|---------|------------|
|------------------|---------|---------------|--------|---------|---------|------------|



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2412 Band edge


|   |    | Freq     |      |       | Preamp<br>Factor |       |        |        |       |         |
|---|----|----------|------|-------|------------------|-------|--------|--------|-------|---------|
|   | -  | MHz      | dB   | dB/m  | dB               | dBuV  | dBuV/m | dBuV/m | dB    |         |
| 1 |    | 2389.968 | 5.47 | 29.08 | 41.87            | 52.42 | 45.10  | 54.00  | -8.90 | Average |
| 2 |    | 2390.000 | 5.47 | 29.08 | 41.87            | 52.42 | 45.10  | 54.00  | -8.90 | Average |
| 3 | pp | 2412.000 | 5.50 | 29.14 | 41.88            | 97.99 | 90.75  | 54.00  | 36.75 | Average |



Report No.: SZEM180600551901

Page: 86 of 92

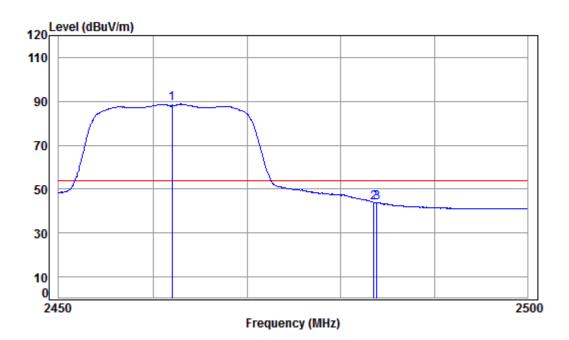
| Worse case mode | e: 802.11g | Test channel: | Highest | Remark: | Average | Vertical | l |
|-----------------|------------|---------------|---------|---------|---------|----------|---|
|-----------------|------------|---------------|---------|---------|---------|----------|---|



Condition: 3m VERTICAL Job No : 01808RG

Mode : 2462 Band edge

: 2.4G WiFi 11G


Cable Ant Preamp Read Limit 0ver Loss Factor Factor Freq Level Level Line Limit Remark dBuV dBuV/m dBuV/m MHz dB dB/m dB dB 1 pp 2462.000 5.57 29.29 41.90 99.60 92.56 54.00 38.56 Average 2483.500 5.60 29.35 41.91 51.80 44.84 54.00 -9.16 Average 3 2483.790 5.60 29.35 41.91 51.66 44.70 54.00 -9.30 Average



Report No.: SZEM180600551901

Page: 87 of 92

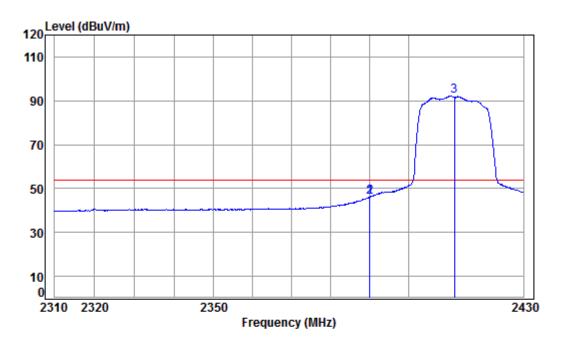
| Worse case mode: | 802.11g | Test channel: | Highest | Remark: | Average | Horizontal |  |
|------------------|---------|---------------|---------|---------|---------|------------|--|
|------------------|---------|---------------|---------|---------|---------|------------|--|



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2462 Band edge


| Limit  | 0ver                             |
|--------|----------------------------------|
| Line   | Limit Remark                     |
|        |                                  |
| dBuV/m | dB                               |
|        |                                  |
| 54.00  | 34.76 Average                    |
| 54.00  | -9.99 Average                    |
| 54.00  | -10.05 Average                   |
|        | Line<br>dBuV/m<br>54.00<br>54.00 |



Report No.: SZEM180600551901

Page: 88 of 92

| Worse case mode: | 802.11n(HT20) | Test channel: | Lowest | Remark: | Average | Vertical |
|------------------|---------------|---------------|--------|---------|---------|----------|
|------------------|---------------|---------------|--------|---------|---------|----------|



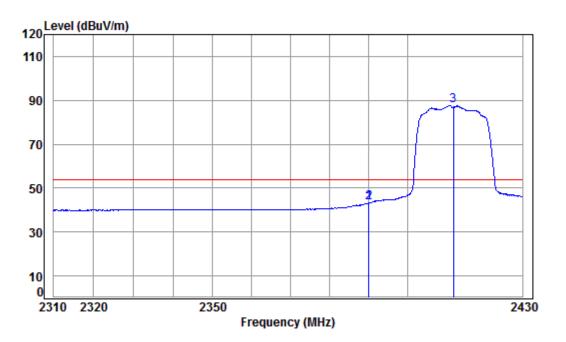
Condition: 3m VERTICAL Job No : 01808RG

1

2

Mode : 2412 Band edge

: 2.4G WiFi 11N 20


Cable Ant Preamp Limit 0ver Read Loss Factor Factor Level Level Line Limit Remark Freq MHz dB dB/m dΒ dBuV dBuV/m dBuV/m dB 2389.968 5.47 29.08 41.87 53.44 46.12 54.00 -7.88 Average 2390.000 5.47 29.08 41.87 53.44 46.12 54.00 -7.88 Average 3 pp 2412.000 5.50 29.14 41.88 99.41 92.17 54.00 38.17 Average



Report No.: SZEM180600551901

89 of 92 Page:

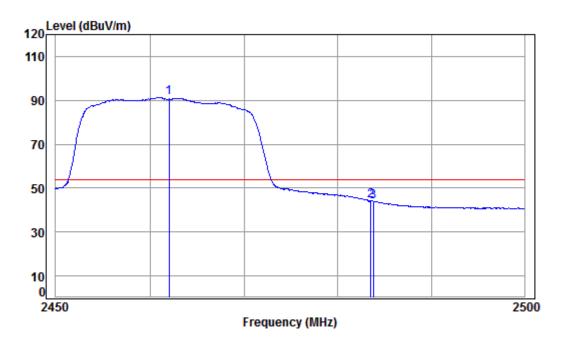
| Worse case mode: | 802.11n(HT20) | Test channel: | Lowest | Remark: | Average | Horizontal |
|------------------|---------------|---------------|--------|---------|---------|------------|
|                  |               |               |        |         |         |            |



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2412 Band edge


|      |          | Cable | Ant    | Preamp | Read  |        | Limit  | 0ver   |         |
|------|----------|-------|--------|--------|-------|--------|--------|--------|---------|
|      | Freq     | Loss  | Factor | Factor | Level | Level  | Line   | Limit  | Remark  |
|      |          |       |        |        |       |        |        |        |         |
|      | MHz      | dB    | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |         |
|      |          |       |        |        |       |        |        |        |         |
| 1    | 2389.968 | 5.47  | 29.08  | 41.87  | 50.46 | 43.14  | 54.00  | -10.86 | Average |
| 2    | 2390.000 | 5.47  | 29.08  | 41.87  | 50.46 | 43.14  | 54.00  | -10.86 | Average |
| 3 рр | 2412.000 | 5.50  | 29.14  | 41.88  | 94.87 | 87.63  | 54.00  | 33.63  | Average |



Report No.: SZEM180600551901

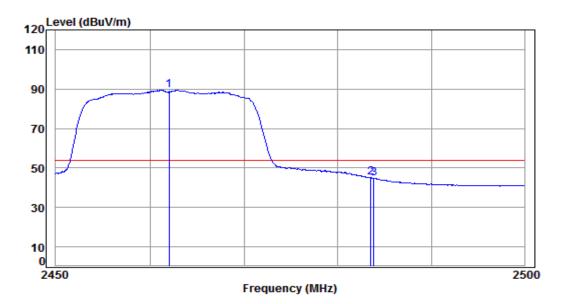
90 of 92 Page:

| Worse case mode: | 802.11n(HT20) | Test channel: | Highest | Remark: | Average | Vertical | l |
|------------------|---------------|---------------|---------|---------|---------|----------|---|
|------------------|---------------|---------------|---------|---------|---------|----------|---|



Condition: 3m VERTICAL Job No : 01808RG

Mode : 2462 Band edge


|      | Freq     |      |       | Preamp<br>Factor |       |        |        |        | Remark  |   |
|------|----------|------|-------|------------------|-------|--------|--------|--------|---------|---|
|      | MHz      | dB   | dB/m  | dB               | dBuV  | dBuV/m | dBuV/m | dB     |         | _ |
| 1 pp | 2462.000 | 5.57 | 29.29 | 41.90            | 98.34 | 91.30  | 54.00  | 37.30  | Average |   |
| 2    | 2483.500 | 5.60 | 29.35 | 41.91            | 51.06 | 44.10  | 54.00  | -9.90  | Average |   |
| 3    | 2483.790 | 5.60 | 29.35 | 41.91            | 50.83 | 43.87  | 54.00  | -10.13 | Average |   |



Report No.: SZEM180600551901

Page: 91 of 92

| Worse case mode: | 802.11n(HT20) | Test channel: | Highest | Remark: | Average | Horizontal |  |
|------------------|---------------|---------------|---------|---------|---------|------------|--|
|------------------|---------------|---------------|---------|---------|---------|------------|--|



Condition: 3m HORIZONTAL

Job No : 01808RG

Mode : 2462 Band edge

: 2.4G WiFi 11N 20

|      | Freq     |      |       |       |       |        | Limit<br>Line |       | Remark  |
|------|----------|------|-------|-------|-------|--------|---------------|-------|---------|
|      | MHz      | dB   | dB/m  | dB    | dBuV  | dBuV/m | dBuV/m        | dB    |         |
| 1 pp | 2462.000 | 5.57 | 29.29 | 41.90 | 96.47 | 89.43  | 54.00         | 35.43 | Average |
| 2    | 2483.500 | 5.60 | 29.35 | 41.91 | 52.01 | 45.05  | 54.00         | -8.95 | Average |
| 3    | 2483.840 | 5.60 | 29.35 | 41.91 | 51.62 | 44.66  | 54.00         | -9.34 | Average |

#### Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor



Report No.: SZEM180600551901

Page: 92 of 92

#### 7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1806005519RG.

The End