

Report Number: SAR.20160808

	LTE B4 (1700MHz) / Setup Path Loss = 5.4 (TS9)									
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM				
				1	23.13	22.41				
			1	3	23.17	22.49				
				5	22.99	22.28				
	19957	1710.7		1	23.20	22.34				
			3	2	23.21	22.29				
				3	23.11	22.15				
			6	0	22.25	21.23				
		1732.5	1	1	23.18	22.46				
				3	23.16	22.53				
				5	22.99	22.32				
1.4 MHz	20175		3	1	23.22	22.29				
				2	23.19	22.25				
				3	23.13	22.17				
			6	0	22.24	21.26				
				1	21.96	22.02				
			1	3	21.89	22.02				
				5	21.67	21.82				
	20393	1754.3		1	22.01	21.83				
		Control of the Sources Source C	3	2	21.93	21.78				
				3	21.86	21.71				
			6	0	21.79	20.85				

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	22.56	21.97
			1	7	22.68	22.08
				14	22.57	21.93
	19965	1711.5		1	21.96	21.45
		(1996), a serie de la social a	7	4	22.08	21.68
				8	21.92	21.39
			15	0	21.78	21.05
		1732.5		1	22.94	22.25
			1	7	23.14	22.54
				14	23.09	22.43
3 MHz	20175		7	1	21.59	21.2
				4	21.68	21.29
				8	21.42	21.13
			15	0	22.27	21.31
				1	22.78	22.07
			1	7	22.83	22.15
				14	22.58	21.93
	20385	1753.5		1	21.27	21.04
			7	4	21.36	21.37
				8	21.28	21.09
			15	0	21.84	20.85

Report Number: SAR.20160808

	LTE E	34 (1700MHz) / S	etup Path	Loss = 5.4 (TS	9)	
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	23.03	22.24
			1	12	23.17	22.42
		-	24	23.09	22.50	
	19975	1712.5		1	22.32	21.36
			12	7	22.33	21.31
				13	22.29	21.27
			25	0	22.23	21.31
			1	23.07	22.16	
		1732.5	1	12	23.12	22.35
				24	23.09	22.43
5 MHz	20175		12	1	22.30	21.36
				7	22.33	21.34
				13	22.30	21.32
			25	0	22.23	21.34
				1	22.81	21.57
			1	12	22.73	21.43
				24	22.59	20.81
	20375	1752.5		1	21.90	20.97
			12	7	21.85	20.90
				13	21.80	20.84
			25	0	21.88	20.89

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	22.35	21.66
			1	24	22.43	21.75
			_	49	21.83	21.40
	20000	1715.0		1	21.70	20.82
			25	13	21.62	20.68
				25	21.44	20.58
			50	0	21.55	20.72
		1732.5		1	22.80	22.19
			1	24	23.11	22.52
				49	23.01	22.38
10 MHz	20175		25	1	22.13	21.23
				13	22.27	21.37
				25	22.26	21.28
			50	0	22.18	21.34
				1	22.96	22.59
			1	24	22.58	22.08
				49	21.44	21.53
	20350	1750.0		1	22.03	21.04
			25	13	21.95	20.94
				25	21.87	20.84
			50	0	21.93	20.92

© 2016 RF Exposure Lab, LLC Page 52 of 226 This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.

Report Number: SAR.20160808

	LTE E	34 (1700MHz) / S	etup Path	Loss = 5.4 (TS	9)	
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
-				1	22.65	21.95
			1	37	22.21	21.51
			74	22.31	21.48	
	20025	1717.5		1	21.68	21.32
			37	19	21.72	21.21
				38	21.44	21.06
			75	0	21.32	20.52
			1	22.72	22.08	
		1732.5	1	37	22.70	22.11
				74	22.68	22.05
15 MHz	20175		37	1	22.1	21.89
				19	22.16	21.73
				38	22.03	21.66
			75	0	21.98	21.20
				1	23.84	23.17
			1	37	23.36	22.23
				74	23.54	22.68
	20325	1747.5		1	22.39	21.98
			37	19	22.68	22.04
				38	22.43	22.11
			75	0	22.18	21.13

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
- 1			-	1	22.69	22.26
			1	49	22.04	21.66
				99	21.27	21.03
	20050	1720.0	3	1	21.32	20.62
			50	24	21.34	20.49
				50	21.54	20.63
			100	0	21.50	20.55
		1732.5		1	23.01	22.28
			1	49	22.69	21.97
				99	23.06	22.30
20 MHz	20175		50	1	21.80	20.97
				24	22.12	21.26
				50	22.15	21.13
			100	0	21.98	21.12
				1	22.18	21.83
			1	49	22.84	22.31
				99	21.87	21.40
	20300	1745.0		1	22.29	21.35
			50	24	21.98	20.89
		-		50	21.93	20.93
			100	0	22.17	20.96

© 2016 RF Exposure Lab, LLC Page 53 of 226 *This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.*

Report Number: SAR.20160808

	LTE B	66 (1700MHz) / S	Setup Path	Loss = 5.4 (TS	59)	
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	21.78	20.95
			1	12	21.90	21.11
			24	21.89	21.08	
	13199 7	1712.5		1	21.13	20.08
			12	7	21.15	20.11
				13	20.99	20.02
			25	0	20.96	20.02
			1	21.27	21.50	
		1755.0	1	12	21.43	21.54
				24	21.42	21.49
5 MHz	132422		12	1	21.51	20.49
				7	21.49	20.47
				13	21.26	20.36
			25	0	21.35	20.37
				1	21.77	21.03
			1	12	21.77	21.08
				24	21.54	20.81
	132646	1777.4		1	22.21	20.18
			12	7	22.10	20.14
				13	21.84	19.89
			25	0	21.99	20.04

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	21.25	20.55
			1	24	21.62	20.93
				49	21.52	20.87
	132033	1716.1		1	20.86	19.88
			25	13	20.79	19.78
			£	25	20.63	19.69
			50	0	20.69	19.80
		2 1755.0		1	22.16	21.27
			1	24	22.37	21.50
			6	49	22.27	21.25
10 MHz	132422		25	1	22.45	20.48
				13	22.32	20.34
				25	22.10	20.16
			50	0	22.26	20.36
				1	21.95	21.28
			1	24	22.06	21.44
				49	21.56	21.03
	132621	1774.9		1	21.41	20.52
			25	13	21.25	20.31
				25	20.88	19.99
			50	0	21.10	20.26

© 2016 RF Exposure Lab, LLC Page 54 of 226 *This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.*

Report Number: SAR.20160808

LTE B66 (1700MHz) / Setup Path Loss = 5.4 (TS9)									
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM			
				1	21.53	20.67			
			1	37	21.62	20.80			
				75	21.43	20.75			
	132047	1717.5		1	21.03	20.46			
			37	19	21.08	20.59			
				38	21.00	20.43			
			75	0	20.58	19.60			
			1	22.26	21.59				
		1755.0	1	37	22.10	21.40			
				75	22.13	21.36			
15 MHz	132422		37	1	21.59	20.89			
				19	21.41	20.97			
				38	21.37	20.92			
			75	0	21.09	20.38			
				1	22.50	22.03			
			1	37	21.88	21.40			
				75	21.94	21.46			
	132596	1772.4		1	21.85	20.99			
			37	19	21.93	22.05			
				38	21.46	22.01			
			75	0	21.16	20.32			

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	21.05	20.75
			1	49	21.24	20.97
				99	21.90	21.53
	132072	1720.0		1	20.69	19.83
			50	24	20.64	19.74
				50	20.81	19.82
			100	0	20.73	19.70
		1755.0		1	22.27	21.65
			1 50	49	21.95	21.42
				99	22.06	21.46
20 MHz	132422			1	21.42	20.65
				24	21.27	20.41
				50	21.11	20.20
			100	0	21.27	20.31
				1	22.71	21.81
			1	49	22.08	21.22
				99	21.66	20.79
	132571	1769.9		1	22.33	20.45
			50	24	22.47	20.59
				50	22.13	20.27
			100	0	22.22	20.33

© 2016 RF Exposure Lab, LLC Page 55 of 226 This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.

Report Number: SAR.20160808

	LTE B2 (1900MHz) / Setup Path Loss = 5.5 (TS9)									
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM				
				1	22.05	21.41				
			1	3	22.04	21.45				
				5	21.94	21.29				
	18607	1850.7		1	22.06	21.22				
			3	2	22.07	21.20				
			3	22.02	21.14					
			6	0	21.01	20.38				
		1880.0	1	1	22.11	21.33				
				3	22.08	21.26				
				5	21.84	21.10				
1.4 MHz	18900		3	1	22.09	21.08				
				2	22.11	20.14				
				3	22.04	20.07				
			6	0	22.10	19.97				
				1	21.86	21.18				
			1	3	21.82	21.13				
				5	21.64	20.96				
	19193	1909.3		1	21.86	20.95				
			3	2	21.85	20.96				
				3	21.76	20.85				
			6	0	20.85	20.10				

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	22.46	21.74
			1	7	22.44	21.71
			_	14	22.14	21.44
	18615	1851.5		1	21.56	20.79
			7	4	21.69	20.86
				8	21.44	20.91
			15	0	21.26	20.44
		1880.0		1	22.27	21.58
			1	7	22.23	21.54
				14	21.94	21.28
3 MHz	18900		7	1	21.48	20.88
				4	21.43	20.83
				8	21.29	20.71
			15	0	21.25	20.4
				1	21.97	21.11
			1	7	21.96	21.12
				14	21.66	20.86
	19185	1908.5		1	21.16	20.68
			7	4	21.18	20.72
				8	21.02	20.59
			15	0	20.93	20.12

© 2016 RF Exposure Lab, LLC Page 56 of 226 *This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.*

Report Number: SAR.20160808

	LTE E	32 (1900MHz) / S	etup Path	Loss = 5.5 (TS	9)					
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM				
				1	21.91	21.25				
			1	12	22.03	21.34				
				24	21.68	20.98				
	18625	1852.5		1	21.31	20.13				
-			12	7	21.33	20.32				
				13	21.19	20.22				
			25	0	21.17	20.19				
		1880.0		1	22.16	21.51				
			1	12	22.14	21.53				
				24	21.74	21.07				
5 MHz	18900		12	1	21.35	20.33				
				7	21.38	20.37				
				13	21.34	20.28				
			25	0	21.25	20.19 21.51 21.53 21.07 20.33 20.37 20.28 20.25 21.12 21.09 20.71 19.98				
				1	21.87	21.12				
			1	12	21.86	21.09				
			y	24	21.50	20.71				
	19175	1907.5		1	21.00	19.98				
			12	7	21.06	19.93				
				13	20.83	19.89				
			25	0	20.90	19.95				

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	22.06	21.18
			1	24	21.97	21.17
				49	21.91	21.08
	18650	1855.0		1	21.10	20.10
			25	13	21.20	20.17
				25		20.33
			50	0	21.13	20.25
				1	22.51	21.73
			1	24	22.16	21.38
				49	21.63	20.89
10 MHz	18900	1880.0	25	1	21.32	20.32
				13	21.27	20.25
				25	21.14	20.24
			50	0	21.21	20.32
				1	22.32	21.36
			1	24	21.96	21.09
				49	21.43	20.55
	19150	1905.0		1	21.15	20.33 20.25 21.73 21.38 20.89 20.32 20.25 20.25 20.24 20.32 21.36 21.09
			25	13	21.05	20.05
				25	20.83	19.92
			50	0	20.96	20.06

© 2016 RF Exposure Lab, LLC Page 57 of 226 *This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.*

Report Number: SAR.20160808

	LTE E	32 (1900MHz) / S	etup Path	Loss = 5.5 (TS	9)					
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM				
				1	22.11	21.57				
			1	37	21.77	21.25				
				75	21.86	21.42				
	18675	1857.5		1	21.46	20.98				
			37	19	21.15	20.73				
				38	21.36	20.81				
-			75	0	21.07	20.17				
		1880.0		1	22.78	22.02				
			1	37	21.97	21.46				
				75	22.43	21.97				
15 MHz	18900		37	1	21.85	21.16				
				19	21.26	20.73				
				38	21.68	20.95				
			75	0	22.78 22.02 21.97 21.46 22.43 21.97 21.85 21.16 21.26 20.73 21.68 20.95 21.07 20.22 22.64 22.09 21.82 21.17 22.64 22.09 21.82 21.17					
				1	22.64	22.09				
			1	37	21.82	21.17				
			38 21.36 75 0 21.07 1 22.78 1 1 37 21.97 75 22.43 75 0.0 37 1 21.85 37 19 21.26 38 21.68 75 0 21.07 75 0 21.07 38 21.68 75 0 21.07 38 21.68 75 0 21.07 22.64 37 21.82 1 37 21.82 75 22.15	22.15	21.84					
	19125	1902.5		1	21.93	21.29				
			37	19	21.04	20.88				
				38	21.63	21.03				
			75	0	21.04	20.14				

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	22.23	21.46
			1	49	21.99	21.26
				99	23.04	22.17
-	18700	1860.0		1	21.05	20.23
			50	24	21.38	20.50
				50	21.60	20.74
			100	0	21.33	20.41
			1 1 1 49 99 99	1	23.15	22.21
				49	22.12	21.18
				21.96	21.04	
20 MHz	18900	1880.0	50	1	22.25	20.49
				24	22.19	20.28
				50	22.09	20.20
			100	0	22.16	21.18 21.04 20.49 20.28
				1	22.10	21.41
			1	49	22.06	21.35
				99	21.35	20.65
	19100	1900.0		1	21.13	21.26 22.17 20.23 20.50 20.74 20.41 22.21 21.18 21.04 20.49 20.28 20.20 20.31 21.41 21.35
			50	24	21.21	20.28
				50	20.96	20.17
			100	0	20.96	20.10

© 2016 RF Exposure Lab, LLC Page 58 of 226 *This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.*

Report Number: SAR.20160808

	LTE B7	(2600MHz) / Set	up Path Lo	oss = 6.2 (Mura	ata)	
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	22.79	22.12
			1	12	22.87	22.17
				24	22.74	21.99
	20775	2502.5		1	21.88	20.92
_			12	7	21.93	20.98
				13	21.80	20.84
			25	0	21.91	20.93
			1	1	22.96	22.31
				12	22.97	22.31
				24	22.95	22.19
5 MHz	21100	2535.0	12	1	22.08	21.12
				7	22.12	21.16
				13	22.10	21.13
			25	0	22.08	21.12
				1	22.13	21.36
			1	12	21.94	21.20
				24	21.56	22.12 22.17 21.99 20.92 20.98 20.84 20.93 22.31 22.31 22.31 22.19 21.12 21.16 21.13 21.12 21.36
	21425	2567.5		1	1 22.10	21.14
			12	7 22.01 2	21.08	
				13	21.84	20.89
			25	0	21.97	21.02

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	23.00	22.29
			1	24	22.89	22.16
			(49	22.36	21.68
	20800	2505.0		1	22.02	21.04
			25	13	21.97	20.97
				25	22.01	21.04
-	<i></i>		50	0	21.98	20.97
			1	1	23.21	22.49
				24	23.03	23.39
				49 22.91	22.91	22.30
10 MHz	21100	2535.0	25	1	22.24	21.25
				13	22.16	21.17
				25	22.18	21.18
			50	0	22.13	21.17 21.18 21.16
				1	22.55	21.80
			1	24	22.19	21.47
				49	21.36	20.00
	21400	2565.0		1	22.42	22.29 22.16 21.68 21.04 20.97 21.04 20.97 22.49 23.39 22.30 21.25 21.17 21.18 21.16 21.80 21.47
			25	13	22.22 21.2	21.28
				25	21.88	20.93
			50	0	22.13	21.19

© 2016 RF Exposure Lab, LLC Page 59 of 226 This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.

Report Number: SAR.20160808

	LTE B7	(2600MHz) / Set	up Path Lo	oss = 6.2 (Mur	ata)				
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM			
				1	23.20	22.43			
			1	37	22.85	22.19			
				75	22.92	22.31			
	20825	2507.5		1	22.30	21.73			
			37	19	22.13	21.61			
				38	22.26	21.77			
			75	0	22.07	21.03 22.59			
				1	23.35	22.59			
			1	37	23.23	22.25			
				75	23.15	22.16			
15 MHz	21100	2535.0	37	1	22.42	21.87			
				19	22.36	21.75			
				38	22.03	21.79			
			75	0	38 22.03 21.7 0 22.20 21.1				
				1	23.14	22.63			
			1	37	22.87	22.28			
				75	23.04	22.43 22.19 22.31 21.73 21.61 21.77 21.03 22.59 22.25 22.16 21.87 21.75 21.75 21.79 21.17 22.63			
	21424	2562.5	1 22.58	22.58	22.04				
			37	19	22.37	21.85			
				38	22.31	21.79			
			75	0	22.01	21.54			

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM		
				1	23.37	22.54		
			1	49	22.95	22.19		
				99	22.99	22.19		
	20850	2510.0		1	22.10	21.13		
			50 24	24	22.13	21.18		
		100	50	22.09	21.09			
			100	0	22.16	21.15		
			1 1 99 1	1	23.43	22.78		
				49	23.00	22.35		
				99	23.10	22.45		
20 MHz	21100	2535.0	2535.0 50	1	22.29	21.35		
				24	22.17	21.21		
				50	22.27	21.28		
			100	0	22.24	21.18 21.09 21.15 22.78 22.35 22.45 21.35 21.21		
				1	23.44	22.76		
			1	49	23.03	22.39		
				99	23.13	22.52		
	21349	2560.0		1	22.29	22.54 22.19 21.13 21.18 21.09 21.15 22.78 22.35 22.45 21.35 21.21 21.28 21.23 22.76 22.39 22.52 21.35 21.21		
			50	24	22.18	21.21		
				50	22.27	21.27		
			100	0	22.23	21.26		

© 2016 RF Exposure Lab, LLC Page 60 of 226 *This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.*

Table 10.5.2 Test Reduction Table – LTE										
Band/	Cide	Required	Denskyrighte	Medulation	RB	RB	Tested/			
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced			
		18700					Tested			
		18900			50	0	Tested			
		19100					Tested			
		18700					Reduced ¹			
		18900			100	0	Reduced ¹			
		19100		0001/			Reduced ¹			
		18700		QPSK			Tested			
		18900				49	Tested			
		19100					Tested			
		18700			1		Reduced ²			
		18900	-			99	Reduced ²			
		19100					Reduced ²			
	А	18700	20 MHz				Reduced ³			
		18900			50	25	Reduced ³			
		19100				20	Reduced ³			
		18700	-				Reduced ¹			
		18900			100	0	Reduced ¹			
		19100		16QAM		-	Reduced ¹			
		18700					Reduced ⁴			
		18900			1	49	Reduced ⁴			
		19100					Reduced ⁴			
		18700				99	Reduced ⁴			
		18900					Reduced ⁴			
		19100					Reduced ⁴			
Band 2			bandwidths (15 N	//Hz, 10 MHz, 5 MF	z. 3 MHz. 1.4 MH	z)	Reduced ⁵			
1850-1910 MHz		18700			50	25	Reduced ⁶			
		18900					Tested			
		19100					Reduced ⁶			
		18700			100	0	Reduced ¹			
		18900					Reduced ¹			
		19100					Reduced ¹			
		18700		QPSK			Reduced ²			
		18900				49	Tested			
		19100				-	Reduced ²			
		18700			1		Reduced ²			
		18900				99	Reduced ²			
		19100					Reduced ²			
	В	18700	20 MHz				Reduced ³			
	5	18900			50	25	Reduced ³			
		19100				20	Reduced ³			
		18700	•				Reduced ¹			
		18900			100	0	Reduced ¹			
		19100	-		100	0	Reduced ¹			
		18700	1	16QAM			Reduced ⁴			
		18900	1			49	Reduced ⁴			
		19100	1			49	Reduced Reduced ⁴			
					1					
		18700 18900				00	Reduced ⁴			
						99	Reduced ⁴			
		19100	 			_\	Reduced ⁴			
Poducod ¹ If the S		All lower		/Hz, 10 MHz, 5 MH			Reduced ⁵			

Table 10.5.2 Test Reduction Table – LTE

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) l) page 5.

Band/		Required	_		RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		18700			7 moouton	Chicot	Reduced ⁶
		18900	-		50	25	Tested
		19100			00	20	Reduced ⁶
		18700	-				Reduced ¹
		18900			100	0	Reduced ¹
		19100				°,	Reduced ¹
		18700		QPSK			Reduced ⁶
		18900				49	Tested
		19100					Reduced ⁶
		18700			1		Reduced ²
		18900				99	Reduced ²
		19100	00.041				Reduced ²
	С	18700	20 MHz				Reduced ³
	_	18900			50	25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		400 414			Reduced ¹
		18700		16QAM			Reduced ⁴
		18900			1	49 99	Reduced ⁴
		19100					Reduced ⁴
		18700					Reduced ⁴
		18900					Reduced ⁴
		19100					Reduced ⁴
Band 2		All lower	bandwidths (15 N	MHz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced⁵
1850-1910 MHz		18700		QPSK	50 100	25 0	Reduced ⁶
		18900					Tested
		19100					Reduced ⁶
		18700					Reduced ¹
		18900					Reduced ¹
		19100					Reduced ¹
		18700					Reduced ⁶
		18900				49	Tested
		19100			1		Reduced ⁶
		18700			I		Reduced ²
		18900				99	Reduced ²
		19100	20 MHz				Reduced ²
	D	18700	20 1011 12				Reduced ³
		18900			50	25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		16QAM			Reduced ¹
		18700		10.00/101			Reduced ⁴
		18900				49	Reduced ⁴
		19100			1		Reduced ⁴
		18700				99	Reduced ⁴
		18900					Reduced ⁴
		19100					Reduced ⁴
		All lower n the 50% RB testing	bandwidths (15 N	MHz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) l) page 5.

Report Number: SAR.20160808

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		18700					Reduced ⁶
		18900			50	25	Tested
		19100					Reduced ⁶
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		0.001/			Reduced ¹
		18700		QPSK			Reduced ⁶
		18900				49	Tested
		19100			1		Reduced ⁶
	E	18700	20 MHz				Reduced ²
		18900				99	Reduced ²
Band 2		19100					Reduced ²
1850-1910 MHz		18700				25	Reduced ³
1850-1910 MHz		18900			50		Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		16QAM			Reduced ¹
		18700		IOQAIVI			Reduced ⁴
		18900				49	Reduced ⁴
		19100			4		Reduced ⁴
		18700			1		Reduced ⁴
		18900				99	Reduced ⁴
		19100					Reduced ⁴
		All lower	bandwidths (15 M	MHz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced ⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 223.9 mW Closest Distance to Side F: 110.0 mm

[{[(3.0)/(v1.91)]*50 mm}]+[{110-50 mm}*10]=708 mW which is greater than 223.9 mW

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		18700			Anobation	Chicot	Tested
		18900			50	25	Tested
		19100			00	20	Tested
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		0.001/		-	Reduced ¹
		18700		QPSK			Reduced ⁶
		18900				49	Tested
		19100			1		Reduced ⁶
		18700			1		Reduced ²
		18900				99	Reduced ²
		19100	20 MHz				Reduced ²
	А	18700	20 MHZ				Reduced ³
		18900			50	25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900	-		100	0	Reduced ¹
		19100		160AM			Reduced ¹
		18700		16QAM			Reduced ⁴
		18900			1	49	Reduced ⁴
		19100					Reduced ⁴
		18700				99	Reduced ⁴
		18900					Reduced ⁴
		19100					Reduced ⁴
Band 4			bandwidths (15 M	/Hz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced ⁵
1710-1755 MHz		18700		QPSK -	50		Reduced ⁶
		18900				25	Tested
		19100			100	0	Reduced ⁶
		18700					Reduced ¹
		18900					Reduced ¹
		19100					Reduced ¹
		18700					Reduced ⁶
		18900				49	Tested
		19100			1		Reduced ⁶
		18700				00	Reduced ²
		18900				99	Reduced ²
	D	19100	20 MHz				Reduced ²
	В	18700			50	05	Reduced ³
		18900			50	25	Reduced ³
		19100					Reduced ³
		18700			100	0	Reduced ¹
		18900			100	0	Reduced ¹
		19100 18700		16QAM			Reduced ¹
		18700				49	Reduced ⁴ Reduced ⁴
		19100				49	Reduced ⁴
		18700			1		Reduced ⁴
		18700			Hz, 3 MHz, 1.4 MHz	99 MH-7)	Reduced ⁴
		19100					Reduced ⁴
			handwidths (15 M	ᅟᅟᅟᅟᅟᅟᅟᅟᅟᅟᅟ			Reduced ⁵
Poducod ¹ If the S	AP voluo i	n the 50% RB testing	is loss than 1 15	W//ka the 100% PE	R testing is reduce	<u><pre> 4 per KDB0/11 </pre></u>	225 D05 3)

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) l) page 5.

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		18700			/ mooanon	Chicot	Reduced ⁶
		18900			50	25	Tested
		19100	•		00	20	Reduced ⁶
		18700	•		-		Reduced ¹
		18900			100	0	Reduced ¹
		19100				°,	Reduced ¹
		18700		QPSK			Reduced ⁶
		18900				49	Tested
		19100				_	Reduced ⁶
		18700			1		Reduced ²
		18900				99	Reduced ²
		19100					Reduced ²
	С	18700	20 MHz				Reduced ³
	_	18900			50	25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100 160	400 414			Reduced ¹	
		18700		16QAM		49	Reduced ⁴
		18900			1		Reduced ⁴
		19100					Reduced ⁴
		18700			1		Reduced ⁴
		18900				99	Reduced ⁴
		19100					Reduced ⁴
Band 4		All lower	bandwidths (15 M	MHz, 10 MHz, 5 MH	z, 3 MHz, 1.4 MH	z)	Reduced ⁵
1710-1755 MHz		18700	-		50	25	Reduced ⁶
		18900					Tested
		19100			100	0	Reduced ⁶
		18700					Reduced ¹
		18900					Reduced ¹
		19100		QPSK			Reduced ¹
		18700		QFSK			Reduced ⁶
		18900				49	Tested
		19100			1		Reduced ⁶
		18700			1		Reduced ²
		18900				99	Reduced ²
		19100	20 MHz				Reduced ²
	D	18700	20 1011 12				Reduced ³
		18900			50	25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		16QAM			Reduced ¹
		18700]				Reduced ⁴
		18900]			49	Reduced ⁴
		19100			1		Reduced ⁴
		18700]		1		Reduced ⁴
		18900]			99	Reduced ⁴
		19100					Reduced ⁴
		All lower n the 50% RB testing	bandwidths (15 M	//Hz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		18700					Reduced ⁶
		18900			50	25	Tested
		19100					Reduced ⁶
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		QPSK			Reduced ¹
		18700		QFSK			Reduced ⁶
		18900	20 MHz -			49	Tested
		19100			1		Reduced ⁶
		18700			I		Reduced ²
		18900				99	Reduced ²
Dand 4		19100					Reduced ²
Band 4 1710-1755 MHz	E	18700					Reduced ³
1710-1755 10112		18900			50	25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		16QAM			Reduced ¹
		18700		IOQAIVI			Reduced ⁴
		18900				49	Reduced ⁴
		19100			1		Reduced ⁴
		18700			I		Reduced ⁴
		18900				99	Reduced ⁴
		19100					Reduced ⁴
		All lower	bandwidths (15 M	//Hz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 223.9 mW Closest Distance to Side F: 110.0 mm

[{[(3.0)/(√1.755)]*50 mm}]+[{110-50 mm}*10]=685 mW which is greater than 223.9 mW

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20450			Anooation	Onser	Reduced ⁶
		20525	-		25	12	Tested
		20600	-		20	12	Reduced ⁶
		20450	-				Reduced ¹
		20525	-		50	0	Reduced ¹
		20600	-		00	Ũ	Reduced ¹
		20450		QPSK			Reduced ⁶
		20525				12	Tested
		20600					Reduced ⁶
		20450			1		Reduced ²
		20525				24	Reduced ²
		20600					Reduced ²
	А	20450	10 MHz	-			Reduced ³
		20525			25	12	Reduced ³
		20600					Reduced ³
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600				-	Reduced ¹
		20450		16QAM -		12	Reduced ⁴
		20525			1		Reduced ⁴
		20600					Reduced ⁴
		20450	-		1		Reduced ⁴
		20525				24	Reduced ⁴
		20600					Reduced ⁴
Band 5			All lower	bandwidths (5 MH	z)		Reduced ⁵
824-849 MHz		20450			/		Reduced ⁶
		20525			25 50	12 0	Tested
		20600					Reduced ⁶
		20450					Reduced ¹
		20525					Reduced ¹
		20600					Reduced ¹
		20450		QPSK		12	Reduced ⁶
		20525					Tested
		20600			1		Reduced ⁶
		20450			I		Reduced ²
		20525				24	Reduced ²
		20600	10 MHz				Reduced ²
	В	20450					Reduced ³
		20525			25	12	Reduced ³
		20600					Reduced ³
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600		16QAM			Reduced ¹
		20450					Reduced ⁴
		20525				12	Reduced ⁴
		20600			1		Reduced ⁴
		20450			1		Reduced ⁴
		20525	—			24	Reduced ⁴
		20600					Reduced ⁴
				[·] bandwidths (5 MH W/kg, the 100% RE			Reduced⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	O: de	Required	Danskuidth	Madulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
,		20450					Tested
		20525			25	12	Tested
		20600			-		Tested
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600		0.001/			Reduced ¹
		20450		QPSK			Reduced ⁶
		20525				12	Tested
		20600			1		Reduced ⁶
		20450			1		Reduced ²
		20525				24	Reduced ²
		20600					Reduced ²
	С	20450	10 MHz	-			Reduced ³
		20525			25	12	Reduced ³
		20600					Reduced ³
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600		400414			Reduced ¹
		20450		16QAM -	1	12	Reduced ⁴
		20525					Reduced ⁴
		20600					Reduced ⁴
		20450			I		Reduced ⁴
		20525				24	Reduced ⁴
		20600					Reduced ⁴
Band 5			All lower	bandwidths (5 MH	z)		Reduced ^₅
824-849 MHz		20450		QPSK -	25 50	12 0	Reduced ⁶
		20525					Tested
		20600					Reduced ⁶
		20450					Reduced ¹
		20525					Reduced ¹
		20600					Reduced ¹
		20450				12	Reduced ⁶
		20525					Tested
		20600			1		Reduced ⁶
		20450			I		Reduced ²
		20525				24	Reduced ²
		20600	10 MHz				Reduced ²
	D	20450					Reduced ³
		20525			25	12	Reduced ³
		20600					Reduced ³
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600		16QAM			Reduced ¹
		20450					Reduced ⁴
		20525				12	Reduced ⁴
		20600			1		Reduced ⁴
		20450			1		Reduced ⁴
		20525	<u> </u>			24	Reduced ⁴
		20600					Reduced ⁴
	1		All lower	bandwidths (5 MH	z)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		20450					Reduced ⁶
		20525			25	12	Tested
		20600					Reduced ⁶
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600		QPSK			Reduced ¹
		20450		QUON		12	Reduced ⁶
		20525					Tested
		20600			1		Reduced ⁶
		20450			1	24	Reduced ²
		20525	10 MHz			24	Reduced ²
Band 5		20600					Reduced ²
824-849 MHz	E	20450	10 10112				Reduced ³
024 045 10112		20525			25	12	Reduced ³
		20600					Reduced ³
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600		16QAM			Reduced ¹
		20450		TOQAIN			Reduced ⁴
		20525				12	Reduced ⁴
		20600			1		Reduced ⁴
		20450					Reduced ⁴
		20525				24	Reduced ⁴
		20600					Reduced ⁴
		the 50% DD testing		r bandwidths (5 MH			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 110.0 mm

[{[(3.0)/(v0.849)]*50 mm}]+[{110-50 mm}*10]=762 mW which is greater than 251.2 mW

Band/	0.1	Required	Development	Markeladar	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20850					Tested
		21100			50	25	Tested
		21350					Tested
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		0.001/		-	Reduced ¹
		20850		QPSK			Tested
		21100				49	Tested
		21350			4	99	Tested
		20850			1		Reduced ¹
		21100					Reduced ¹
		21350					Reduced ¹
	А	20850	20 MHz				Reduced ³
		21100			50	25	Reduced ³
		21350					Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		16QAM -			Reduced ¹
		20850					Reduced ⁴
		21100			1	49	Reduced ⁴
		21350					Reduced ⁴
		20850			I		Reduced ⁴
		21100				99	Reduced ⁴
		21350					Reduced ⁴
Band 7			All lower bandwid	ths (15 MHz, 10 M	Hz, 5 MHz)		Reduced ⁵
2500-2570 MHz		20850		QPSK -	50 100	25 0	Reduced ⁶
		21100					Tested
		21350					Reduced ⁶
		20850					Reduced ¹
		21100					Reduced ¹
		21350					Reduced ¹
		20850		QFON		49	Reduced ²
		21100					Reduced ²
		21350			1		Reduced ²
		20850			I		Reduced ⁶
		21100				99	Tested
		21350	20 MHz				Reduced ⁶
	В	20850	20 1011 12				Reduced ³
		21100			50	25	Reduced ³
		21350					Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		16QAM			Reduced ¹
		20850	ļ				Reduced ⁴
		21100				49	Reduced ⁴
		21350			1		Reduced ⁴
		20850]				Reduced ⁴
		21100]			99	Reduced ⁴
		21350					Reduced ⁴
	1		All lower bandwid	ths (15 MHz, 10 M	Hz, 5 MHz)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) l) page 5.

Band/	Olda	Required	Deve also i al fa	Madulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20850					Tested
		21100			50	25	Tested
		21350					Tested
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		0.001/		-	Reduced ¹
		20850		QPSK			Tested
		21100				49	Tested
		21350			1		Tested
		20850			1		Reduced ⁶
		21100				99	Reduced ⁶
		21350					Reduced ⁶
	С	20850	20 MHz				Reduced ³
		21100			50	25	Reduced ³
		21350					Reduced ³
		20850)))				Reduced ¹
		21100			100	0	Reduced ¹
		21350		1604M			Reduced ¹
		20850		16QAM			Reduced ⁴
		21100			1	49	Reduced ⁴
		21350					Reduced ⁴
		20850			I		Reduced ⁴
		21100				99	Reduced ⁴
		21350					Reduced ⁴
Band 7			All lower bandwid	ths (15 MHz, 10 M	Hz, 5 MHz)		Reduced ⁵
2500-2570 MHz		20850		QPSK -	50 100	25 0	Reduced ⁶
		21100					Tested
		21350					Reduced ⁶
		20850					Reduced ¹
		21100					Reduced ¹
		21350					Reduced ¹
		20850		QFON		49	Reduced ²
		21100					Reduced ²
		21350			1		Reduced ²
		20850			I		Reduced ⁶
		21100				99	Tested
		21350	20 MHz				Reduced ⁶
	D	20850	20 1011 12				Reduced ³
		21100			50	25	Reduced ³
		21350					Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		16QAM			Reduced ¹
		20850	ļ				Reduced ⁴
		21100				49	Reduced ⁴
		21350			1		Reduced ⁴
		20850]				Reduced ⁴
		21100]			99	Reduced ⁴
		21350					Reduced ⁴
	1		All lower bandwid	ths (15 MHz, 10 M	Hz, 5 MHz)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) l) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		20850					Reduced ⁶
		21100			50	25	Tested
		21350					Reduced ⁶
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		QPSK			Reduced ¹
		20850		QFOR			Reduced ²
		21100	20 MHz			49	Reduced ²
		21350			1		Reduced ²
		20850			I		Reduced ⁶
		21100				99	Tested
Band 7		21350					Reduced ⁶
2500-2570 MHz	E	20850	20 1011 12				Reduced ³
2300-2370 10112		21100			50	25	Reduced ³
		21350					Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		16QAM			Reduced ¹
		20850		IUQAIN			Reduced ⁴
		21100				49	Reduced ⁴
		21350			1		Reduced ⁴
		20850			I		Reduced ⁴
		21100				99	Reduced ⁴
		21350					Reduced ⁴
				Iths (15 MHz, 10 M			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 223.9 mW Closest Distance to Side F: 110.0 mm

[{[(3.0)/(v2.70)]*50 mm}]+[{70-50 mm}*10]=291 mW which is greater than 223.9 mW

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23230			25	12	Tested
		23230		QPSK	50	0	Reduced ¹
		23230		10 MHz 1	1	12	Tested
		23230	10 MH-		Ι	24	Reduced ²
	Α	23230		16 MH2	25	12	Reduced ³
		23230			50	0	Reduced ¹
		23230			1	12	Reduced ⁴
		23230			I	24	Reduced ⁴
Band 13		All lower bandwidths (5 MHz)					Reduced ⁵
777-787 MHz		23230	-	0001/	25	12	Tested
		23230			50	0	Reduced ¹
		23230		QPSK	4	12	Tested
		23230			I	24	Reduced ²
	В	23230	10 MHz		25	12	Reduced ³
		23230	1	16QAM	50	0	Reduced ¹
		23230	1	INAVOI	4	12	Reduced ⁴
		23230	1		I	24	Reduced ⁴
			All lower	bandwidths (5 MH	z)	•	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23230			25	12	Tested
		23230		QPSK	50	0	Reduced ¹
		23230		QPSK	1	12	Tested
		23230	10 MHz		I	24	Reduced ²
	С	23230	16QAM		25	12	Reduced ³
		23230		160.00	50	0	Reduced ¹
		23230		TOQAIN	1	12	Reduced ⁴
		23230		I	24	Reduced ⁴	
Band 13		All lower bandwidths (5 MHz)					Reduced ⁵
777-787 MHz		23230	-	0001/	25	12	Tested
		23230			50	0	Reduced ¹
		23230		QPSK	1	12	Tested
		23230			I	24	Reduced ²
	D	23230	10 MHz		25	12	Reduced ³
		23230	1	16QAM	50	0	Reduced ¹
		23230	1	INAU	1	12	Reduced ⁴
		23230	1		I	24	Reduced ⁴
			All lower	bandwidths (5 MH	z)	•	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Report Number: SAR.20160808

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23230			25	12	Tested
		23230		QPSK	50	0	Reduced ¹
		23230		QPSK	1	12	Tested
Band 13		23230			Ĩ	24	Reduced ²
777-787 MHz	E	23230	10 MHz		25	12	Reduced ³
777-787 WIFIZ		23230		16QAM	50	0	Reduced ¹
		23230		IOQAIVI	1	12	Reduced ^₄
		23230			I	24	Reduced ⁴
			All lower	bandwidths (5 MH	z)		Reduced ⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 223.9 mW Closest Distance to Side F: 110.0 mm

[{[(3.0)/(v0.787)]*50 mm}]+[{110-50 mm}*10]=769 mW which is greater than 223.9 mW

Without Belt Clip N/A

SAR Data Summary – 750 MHz Body – LTE Band 13

MEASUREMENT RESULTS End RB Frequency BW/ RB MPR Measured Reported Gap Plot Position Power Modulation Size Offset Target SAR (W/kg) SAR (W/kg) MHz Ch. (dBm) 0.81 -----782.0 23230 10 MHz/QPSK 1 12 0 22.56 0.649 Side A 23230 10 MHz/QPSK 7 21.73 0.525 0.63 -----782.0 12 1 10 MHz/QPSK 12 -----782.0 23230 1 0 22.56 0.386 0.48 Side B 21.73 23230 10 MHz/QPSK 12 0.285 ____ 782.0 7 1 0.34 10 MHz/QPSK 0.988 782.0 23230 12 0 22.56 1.23 1 1 10 Side C 782.0 23230 10 MHz/QPSK 12 7 1 21.73 0.612 0.73 mm 782.0 23230 10 MHz/QPSK 1 12 0 22.56 0.221 0.27 -----Side D 23230 10 MHz/QPSK 21.73 782.0 12 7 1 0.178 0.21 -----10 MHz/QPSK 12 782.0 23230 1 0 22.56 0.0677 0.08 -----Side E -----782.0 23230 10 MHz/QPSK 12 7 21.73 0.0467 0.06 1 Repeat 23230 10 MHz/QPSK 12 0 22.56 782.0 1 0.975 1.21 -----Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Conducted Power Measured ERP EIRP 2. SAR Measurement \boxtimes Eli4 Right Head Phantom Configuration Left Head SAR Configuration \boxtimes Body Head 3. Test Signal Call Mode Test Code Base Station Simulator

With Belt Clip

- 4. Test Configuration
- 5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 835 MHz Body - CDMA

MEASUREMENT RESULTS

Gap	Plot	Frequ	iency	Modulation	Position	End Power	Reverse	Forward	Measured SAR	Reported SAR
-		MHz	Ch.			(dBm)	Channel	Channel	(W/kg)	(W/kg)
		824.7	1013	CDMA		23.75	153.6 kbps	2 Slot 307.2 kbps	1.05	1.11
	2	836.5	384	CDMA	Side A	23.73	153.6 kbps	2 Slot 307.2 kbps	1.31	1.39
		848.3	777	CDMA		23.22	153.6 kbps	2 Slot 307.2 kbps	1.08	1.29
		824.7	1013	CDMA		23.75	153.6 kbps	2 Slot 307.2 kbps	0.832	0.88
		836.5	384	CDMA	Side B	23.73	153.6 kbps	2 Slot 307.2 kbps	1.06	1.13
10		848.3	777	CDMA		23.22	153.6 kbps	2 Slot 307.2 kbps	0.636	0.76
mm		824.7	1013	CDMA		23.75	153.6 kbps	2 Slot 307.2 kbps	1.11	1.18
		836.5	384	CDMA	Side C	23.73	153.6 kbps	2 Slot 307.2 kbps	1.29	1.37
		848.3	777	CDMA		23.22	153.6 kbps	2 Slot 307.2 kbps	0.938	1.12
		836.5	384	CDMA	Side D	23.73	153.6 kbps	2 Slot 307.2 kbps	0.459	0.49
		836.5	384	CDMA	Side E	23.73	153.6 kbps	2 Slot 307.2 kbps	0.0912	0.10
		836.5	384	CDMA	Repeat	23.73	153.6 kbps	2 Slot 307.2 kbps	1.29	1.37
								Body 1.6 W/kg (mW/g)		

averaged over 1 gram

- 1. Battery is fully charged for all tests. Power Measured Conducted
- 2. SAR Measurement Phantom Configuration SAR Configuration

Left Hea	ıd
Head	

With Belt Clip

- ☐Head ⊠Test Code
- 3. Test Signal Call Mode
- 4. Test Configuration
- 5. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

ERP EIRP Eli4 Right Head \boxtimes Body Base Station Simulator

Without Belt Clip $\square N/A$

SAR Data Summary – 835 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Frequ	uency	Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR		
_		MHz	Ch.			(dBm)		_	(W/kg)	(W/kg)		
		826.4	4132	WCDMA		23.42	12.2 kbps	Test Loop 1	0.909	0.93		
		836.6	4183	WCDMA	Side A	23.13	12.2 kbps	Test Loop 1	1.17	1.27		
		846.6	4233	WCDMA		23.16	12.2 kbps	Test Loop 1	1.11	1.20		
		836.6	4183	WCDMA	Side B	23.13	12.2 kbps	Test Loop 1	0.471	0.51		
10		826.4	4132	WCDMA		23.42	12.2 kbps	Test Loop 1	1.05	1.07		
mm		836.6	4183	WCDMA	Side C	23.13	12.2 kbps	Test Loop 1	1.23	1.34		
	3	846.6	4233	WCDMA		23.16	12.2 kbps	Test Loop 1	1.28	1.38		
		836.6	4183	WCDMA	Side D	23.13	12.2 kbps	Test Loop 1	0.279	0.30		
		836.6	4183	WCDMA	Side E	23.13	12.2 kbps	Test Loop 1	0.083	0.09		
		846.6	4233	WCDMA	Repeat	23.16	12.2 kbps	Test Loop 1	1.25	1.35		
						Body 1.6 W/kg (mW/g) averaged over 1 gram						
	1	. Batte	ry is fu	lly charged for	r all tests.							
		Powe	er Meas	ured	Conc	lucted	ERI	D	EIRP			
	2	. SAR	Measur	rement								
		Phan	tom Co	nfiguration	Left	Head Eli4 Right Head						
				uration	Head		Bod					
	3		U	Call Mode	Test							
	4		Configu		=	Belt Clip		hout Belt Clip				
			U			Den Ch		nout ben Clip				
	5	. 11ssu	ie Depti	h is at least 15.	.0 CIII							

SAR Data Summary – 835 MHz Body - GPRS

MEASUREMENT RESULTS

Gap	Plot	Frequ	ency	Rev Level/ Modulation	Position	End Power	TX Level	Multislot	Measured SAR	Reported SAR
		MHz	Ch.	Modulation		(dBm)	Level	Configuration	(W/kg)	(W/kg)
	4	824.2	128	GMSK		32.17	5	1 Slot	1.12	1.22
		836.6	190	GMSK	Side A	32.15	5	1 Slot	0.861	0.94
		848.8	251	GMSK		32.27	5	1 Slot	0.892	0.95
		836.6	190	GMSK	Side B	32.15	5	1 Slot	0.492	0.54
10		824.2	128	GMSK		32.17	5	1 Slot	0.741	0.81
mm		836.6	190	GMSK	Side C	32.15	5	1 Slot	0.828	0.90
		848.8	251	GMSK		32.27	5	1 Slot	0.844	0.90
		836.6	190	GMSK	Side D	32.15	5	1 Slot	0.274	0.30
		836.6	190	GMSK	Side E	32.15	5	1 Slot	0.0806	0.09
		824.2	128	GMSK	Repeat	32.17	5	1 Slot	1.09	1.18
	1	. Batte	rv is fi	ally charged for	or all tests			1.6 W/kg (mV averaged over 1 gr		
	1		er Mea	• •		ducted		ERP	EIRP	
						uucicu				
	<u> </u>	CAD	Magan	manaant						
	2 3 4	SAR . Test	tom Co Config Signal	rement onfiguration guration Call Mode guration	☐Hea ⊠Test			Eli4 Body Base Station Sin Without Belt Cli		Iead

SAR Data Summary – 835 MHz Body – LTE Band 5

MEASUREMENT RESULTS Measured Reported MPR **End Power** BW/ RB RB Frequency Plot Position Gap SAR SAR Modulation Size Offset Target MHz Ch. (dBm) (W/kg) (W/kg) 10 MHz/QPSK 24 0 -----836.5 20525 1 22.48 0.703 0.89 Side A 10 MHz/QPSK 25 12 21.62 0.270 0.33 -----836.5 20525 1 -----836.5 20525 10 MHz/QPSK 24 0 22.48 0.598 0.76 1 Side B 25 20525 10 MHz/QPSK 12 0.625 0.77 836.5 1 21.62 -----10 MHz/QPSK 829.0 20450 24 0 21.72 0.723 1.09 1 ----5 836.5 20525 10 MHz/QPSK 1 24 0 22.48 0.982 1.24 10 Side C 10 MHz/QPSK 1 24 0 1.30 844.0 20599 21.09 0.747 ----mm 10 MHz/QPSK 0.94 836.5 20525 25 12 1 21.62 0.767 ----------836.5 20525 10 MHz/QPSK 1 24 0 22.48 0.294 0.37 Side D 836.5 20525 10 MHz/QPSK 25 12 1 21.62 0.283 0.35 -----836.5 20525 10 MHz/QPSK 24 0 22.48 0.045 0.06 1 -----Side E 836.5 20525 10 MHz/QPSK 12 21.62 0.0488 0.06 25 1 836.5 20525 10 MHz/QPSK 24 0 22.48 0.976 1.22 ----Repeat 1 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Conducted Power Measured ERP EIRP 2. SAR Measurement \boxtimes Eli4 Right Head Phantom Configuration Left Head SAR Configuration \boxtimes Body Head 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration With Belt Clip Without Belt Clip N/A 5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 1750 MHz Body – LTE Band 4

Gap	Plot	Position	Frequ	•	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported SAF (W/kg)	
			MHz	Ch.				•	(dBm)	,		
	6		1720.0	20050	20 MHz/QPSK	1	49	0	22.04	0.765	1.07	
		Side A	1732.5	20175	20 MHz/QPSK	1	49	0	22.69	0.798	0.76	
			1745.0	20300	20 MHz/QPSK	1	49	0	22.84	0.774	0.90	
			1732.5	20175	20 MHz/QPSK	50	24	1	22.12	0.646	0.71	
		Side B	1732.5	20175	20 MHz/QPSK	1	49	0	22.69	0.266	0.32	
10			1732.5	20175	20 MHz/QPSK	50	24	1	22.12	0.204	0.28	
mm		Side C	1732.5	20175	20 MHz/QPSK	1	49	0	22.69	0.646	0.78	
			1732.5	20175	20 MHz/QPSK	50	24	1	22.12	0.620	0.68	
		Side D	1732.5	20175	20 MHz/QPSK	1	49	0	22.69	0.363	0.44	
			1732.5	20175	20 MHz/QPSK	50	24	1	22.12	0.229	0.25	
		Side E	1732.5	20175	20 MHz/QPSK	1	49	0	22.69	0.294	0.35	
		Repeat	1732.5 1720.0	20175 20050	20 MHz/QPSK 20 MHz/QPSK	50 1	24 49	1	22.12 22.04	0.273	0.30	
	1		11		C 11		1.6 W/kg (mW/g) averaged over 1 gram					
	1.	Battery Power N	•	0	for all tests. $\square Con$							
						Jucted		ERP EIRP				
	2.	SAR Me	easurem	ent						_		
		Phanton	1 Config	guration	Left	Head		Eli4 Right Head				
		SAR Co	nfigurat	tion	Head	1		Body				
	3.	Test Sig	nal Call	Mode	⊠Test	Code		Bas	e Station	Simulator		
	4. Test Configuration With Bel							Wit	hout Bel	t Clip 🛛 N/2	A	
	5.	Tissue I	0				1			I —		
			· r · 10									

SAR Data Summary – 1900 MHz Body - CDMA

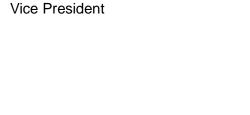
MEASUREMENT RESULTS

Gap	Plot	Freque	ncy	Rev Level/	Position	End Power	Reverse	Forward	Measured SAR	Reported SAR	
-		MHz	Ch.	Modulation		(dBm)	Channel	Channel	(W/kg)	(W/kg)	
		1851.25	25	CDMA		22.86	153.6 kbps	2 Slot 307.2 kbps	1.15	1.33	
	7	1880.00	600	CDMA	Side A	23.04	153.6 kbps	2 Slot 307.2 kbps	1.29	1.43	
		1908.75	1175	CDMA		22.88	153.6 kbps	2 Slot 307.2 kbps	1.01	1.17	
10		1880.00	600	CDMA	Side B	23.04	153.6 kbps	2 Slot 307.2 kbps	0.388	0.43	
mm		1880.00	600	CDMA	Side C	23.04	153.6 kbps	2 Slot 307.2 kbps	0.755	0.84	
		1880.00	600	CDMA	Side D	23.04	153.6 kbps	2 Slot 307.2 kbps	0.470	0.52	
		1880.00	600	CDMA	Side E	23.04	153.6 kbps	2 Slot 307.2 kbps	0.334	0.37	
		1880.00	600	CDMA	Repeat	23.04	153.6 kbps	2 Slot 307.2 kbps	1.27	1.41	
		1 Batt	erv is fi	illy charged fo	or all tests						
		1. Batt	erv is fi	ally charged for	or all tests.						
		Pow	ver Mea	sured	Con	ducted	ERI		EIRP		
		2. SAF	R Meast	irement							
				onfiguration	□I.eft	Left Head					
				guration							
				Call Mode	Test						
			0								
			0	uration		n Belt Cli		hout Belt Clip	N/A		
		5. Tiss	ue Dep	th is at least 15	5.0 cm						

SAR Data Summary – 1900 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot			Rev Level/ Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR		
		MHz	Ch.	wouldtion		(dBm)			(W/kg)	(W/kg)		
		1852.4	9262	WCDMA		23.05	12.2 kbps	Test Loop 1	1.29	1.43		
		1880.0	9400	WCDMA	Side A	23.02	12.2 kbps	Test Loop 1	1.32	1.47		
	8	1907.6	9538	WCDMA		23.38	12.2 kbps	Test Loop 1	1.35	1.39		
10		1852.4	9262	WCDMA	Side B	23.02	12.2 kbps	Test Loop 1	0.504	0.56		
mm		1880.0	9400	WCDMA	Side C	23.02	12.2 kbps	Test Loop 1	0.599	0.67		
		1852.4	9262	WCDMA	Side D	23.02	12.2 kbps	Test Loop 1	0.476	0.53		
		1852.4	9262	WCDMA	Side E	23.02	12.2 kbps	Test Loop 1	0.353	0.39		
		1907.6	9538	WCDMA	Repeat	23.38	12.2 kbps	Test Loop 1	1.33	1.37		
		1. Batte	ry is ful	lly charged for	r all tests.			averaged over 1 gr	am			
		Powe	er Meas	ured		nducted ERP EIRP						
		2. SAR	Measur	rement								
	Phantom Configuration						ft Head 🛛 Eli4 🔄 Right Head ad 🔄 Body					
			0	Call Mode		Code		e Station Simu				
		4. Test	Configu	iration	With	Belt Clip	• Witl	hout Belt Clip	⊠N/A			
		5. Tissu	e Depth	n is at least 15.	.0 cm	-		-				


SAR Data Summary – 1900 MHz Body - GPRS

ME	MEASUREMENT RESULTS										
Gap	Plot Frequency MHz CI		ency Ch.	Rev Level/ Modulation	Position	End Power (dBm)	TX Level	Multislot Configuration	Measured SAR (W/kg)	Reported SAR (W/kg)	
	9	1880.0	661	GMSK	Side A	29.52	0	1 Slot	0.560	0.80	
		1880.0	661	GMSK	Side B	29.52	0	1 Slot	0.203	0.29	
10		1880.0	661	GMSK	Side C	29.52	0	1 Slot	0.371	0.53	
mm		1880.0	661	GMSK	Side D	29.52	0	1 Slot	0.252	0.36	
		1880.0	661	GMSK	Side E	29.52	0	1 Slot	0.133	0.19	
						1.6 W/kg (mW/g) averaged over 1 gram					
	1. 2.	Power	Measu		all tests. ⊠Condu	acted ERP EIRP					
		Phanton SAR Co	m Con onfigu	figuration ration	□Left H □Head	Body				lead	
	3. 4. 5.	Test Co	onfigur	all Mode ation is at least 15.0		Code Base Station Simulator Belt Clip Without Belt Clip					

SAR Data Summary – 1900 MHz Body – LTE Band 2

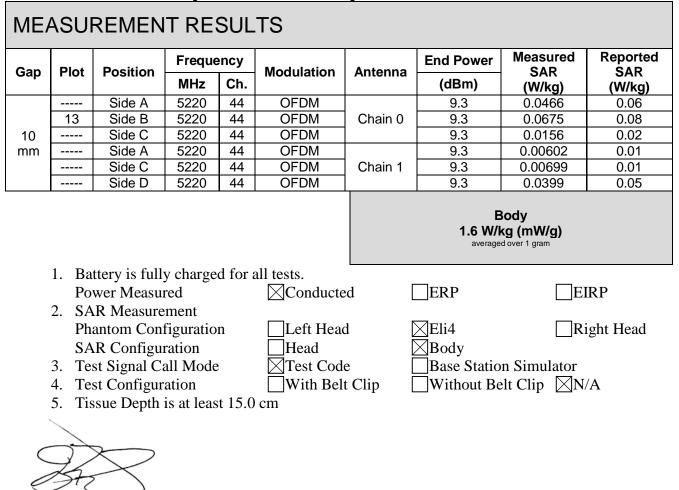
MEASUREMENT RESULTS Measured Reported MPR **End Power** BW/ RB RB Frequency Plot Position Gap SAR SAR Modulation Size Offset Target MHz Ch. (dBm) (W/kg) (W/kg) 20 MHz/QPSK 49 0 10 1860.0 18700 1 21.99 1.18 1.33 20 MHz/QPSK 49 22.12 1.15 1.26 1880.0 18900 1 0 ----------1900.0 19100 20 MHz/QPSK 1 49 0 22.06 1.17 1.30 Side A 1860.0 20 MHz/QPSK 50 24 1.09 18700 1 21.38 1.12 -----20 MHz/QPSK 1880.0 18900 50 1 22.19 1.08 0.92 4 ----------1900.0 19100 20 MHz/QPSK 50 24 1 21.21 0.738 0.79 20 MHz/QPSK 0 0.254 18900 49 22.12 0.28 -----1880.0 1 Side B 10 20 MHz/QPSK 22.19 1880.0 18900 50 24 1 0.213 0.18 ----mm -----1880.0 18900 20 MHz/QPSK 1 49 0 22.12 0.598 0.65 Side C -----1880.0 18900 20 MHz/QPSK 50 24 1 22.19 0.482 0.41 20 MHz/QPSK 1880.0 18900 49 0 22.12 0.419 0.46 1 -----Side D 1880.0 18900 20 MHz/QPSK 50 24 1 22.19 0.354 0.30 20 MHz/QPSK 49 0 22.12 1880.0 18900 1 0.246 0.27 Side E -----1880.0 18900 20 MHz/QPSK 50 24 1 22.19 0.235 0.20 -----Repeat 1860.0 18700 20 MHz/QPSK 49 0 21.99 1.15 1.30 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Conducted Power Measured ERP EIRP 2. SAR Measurement Phantom Configuration Left Head \boxtimes Eli4 Right Head SAR Configuration Head \boxtimes Body 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration Without Belt Clip N/A With Belt Clip 5. Tissue Depth is at least 15.0 cm

Jay M. Moulton

SAR Data Summary – 2550 MHz Body – LTE Band 7

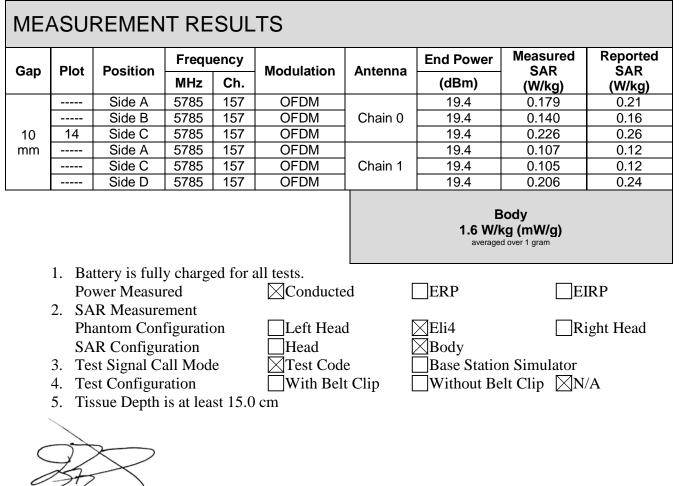
Sap	Plot	Position			BW/ RB Modulation Size		RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported SAR (W/kg)
			MHz	Ch.				•	(dBm)		
			2507.5	20850	20 MHz/QPSK	1	49	0	22.95	0.691	0.78
	11		2535.0	21100	20 MHz/QPSK	1	49	0	23.00	1.30	1.42
		Side A	2562.5	21350	20 MHz/QPSK	1	49	0	23.03	1.28	1.40
			2507.5	20850	20 MHz/QPSK	50	24	1	22.13	0.707	0.77
			2535.0	21100	20 MHz/QPSK	50	24	1	22.17	0.891	0.96
			2562.5	21350	20 MHz/QPSK	50	24	1	22.18	0.803	0.86
		Side B	2535.0	21100	20 MHz/QPSK	1	49	0	23.00	0.742	0.83
		Cido B	2535.0	21100	20 MHz/QPSK	50	24	1	22.17	0.597	0.64
10 mm			2507.5	20850	20 MHz/QPSK	1	49	0	22.95	0.841	0.95
			2535.0	21100	20 MHz/QPSK	1	49	0	23.00	0.918	1.03
		Side C	2562.5	21350	20 MHz/QPSK	1	49	0	23.03	0.671	0.75
			2507.5	20850	20 MHz/QPSK	50	24	1	22.13	0.936	1.02
			2535.0	21100	20 MHz/QPSK	50	24	1	22.17	0.675	0.73
			2562.5	21350	20 MHz/QPSK	50	24	1	22.18	0.606	0.65
		Side D	2535.0	21100	20 MHz/QPSK	1	49	0	23.00	0.0875	0.10
		Cide D	2535.0	21100	20 MHz/QPSK	50	24	1	22.17	0.0727	0.08
		Side E	2535.0	21100	20 MHz/QPSK	1	49	0	23.00	0.641	0.72
			2535.0	21100	20 MHz/QPSK	50	24	1	22.17	0.482	0.52
		Repeat	2535.0	21100	20 MHz/QPSK	1	49	0	23.00	1.27	1.39
	_	-							1.6 W/kg	dy j (mW/g) wer 1 gram	
	1.	Battery Power M	•	0	d for all tests.	nducted	d 🗌 ERP			EIRP	
	2.	SAR M	easuren	nent							
Phantom Configuration Left He SAR Configuration Head								⊠Eli4 ⊠Bod		Righ	nt Head
	•	Toot Sie	mal Cal	l Mode	⊠Tes	st Code					
	3.	-	-								
	3. 4.	Test Sig	-			th Belt				Clip 🖾N/A	

ZZ


SAR Data Summary – 2450 MHz Body 802.11b/g

MEASUREMENT RESULTS									
0		_	Frequency				End Power	Measured	Reported
Gap	Plot	Position	MHz	Ch.	Modulation	Antenna	(dBm)	SAR (W/kg)	SAR (W/kg)
		Side A	2437	6	DSSS		18.0	0.149	0.15
		Side B	2437	6	DSSS	Chain 0	18.0	0.164	0.16
10		Side C	2437	6	DSSS		18.0	0.153	0.15
mm	12	Side A	2437	6	OFDM		18.0	0.174	0.17
		Side C	2437	6	OFDM	Chain 1	18.0	0.134	0.13
		Side D	2437	6	OFDM	•	18.0	0.128	0.13
	Body 1.6 W/kg (mW/g) averaged over 1 gram								
 Battery is fully charged for all tests. Power Measured Conducted ERP EIRP SAR Measurement 								IRP	
Phantom Configuration Left Head ZEli4 Right He								ight Head	
SAR ConfigurationHeadBody3. Test Signal Call ModeTest CodeBase Station Simulator4. Test ConfigurationWith Belt ClipWithout Belt Clip5. Tissue Depth is at least 15.0 cmWithout Belt Clip								/A	

Jay M. Moulton Vice President


SAR Data Summary – 5200 MHz Body 802.11a

Jay M. Moulton Vice President

SAR Data Summary – 5800 MHz Body 802.11a

Jay M. Moulton Vice President

SAR Data Summary – Simultaneous Transmit (Worst Case)

MEASUREMENT RESULTS

Plot	Frequency (WLAN)		Frequency (WWAN)		WWAN Technology	SAR (W/kg)	SAR (W/kg)		
	MHz	Ch.	MHz	Ch.		WLAN	WWAN	SAR (W/kg)	
	5825	157	1907.6	9538	WCDMA Band 2	0.26	1.47	1.73	
					Body 1.6 W/kg (mW/g) averaged over 1 gram				

The worst case condition is in the 5.8 GHz band. The WWAN and WLAN antennas are a minimum of 52 mm apart. Using the highest reported SAR to calculate the simultaneous Tx using peak separation ratio, the highest ratio would be 0.04 which meets the requirements of KDB 447498 section 4.3.2 3) on page 13. The calculation is shown below.

Simultaneous Separation Ratio Calculation

 $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits

 $(0.26 + 1.47)^{1.5}/52 = 0.04$

SAR Data Summary – Simultaneous Transmit (WLAN MIMO)

MEASUREMENT RESULTS									
Plot	Frequency Plot (WLAN)		Frequency (WWAN)		WWAN Technology	SAR (W/kg) WLAN	SAR (W/kg) WWAN		
	MHz	Ch.	MHz	Ch.		WLAN	VVVAN	SAR (W/kg)	
	5825	157	1907.6	9538	WCDMA Band 2	0.26 + 0.24	1.47	1.97	
					Body 1.6 W/kg (mW/g) averaged over 1 gram				

The worst case condition is in the 5.8 GHz band. The WWAN and WLAN antennas are a minimum of 52 mm apart and the WLAN antennas are a minimum of 55 mm apart. Using the highest reported SAR to calculate the simultaneous Tx using peak separation ratio, the highest ratio would be 0.04 which meets the requirements of KDB 447498 section 4.3.2 3) on page 13. The calculation is shown below.

Simultaneous Separation Ratio Calculation

 $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits

 $(0.26 + 1.47)^{1.5}/52 = 0.04$ $(0.24 + 1.47)^{1.5}/52 = 0.04$ $(0.26 + 0.24)^{1.5}/55 = 0.01$

11. Test Equipment List

Table 11.1 Equipment Specifications

Staubil Robot TX60L N/A N/A N/A F07/55M6A1/A/01 Measurement Controller CS8c N/A N/A 1012 112 ELI4 Fial Phantom N/A N/A 1251 Device Holder N/A N/A N/A Data Acquisition Electronics 4 01/14/2017 01/14/2016 1321 SPEAG E-Field Probe EX3DV4 08/20/2016 08/20/2015 3693 Speag Validation Dipole D750V2 08/10/2016 08/10/2015 1053 Speag Validation Dipole D750V2 08/10/2016 08/10/2015 41131 Speag Validation Dipole D750V2 08/13/2016 08/13/2015 1061 Speag Validation Dipole D1750V2 08/13/2016 08/13/2015 5d147 Speag Validation Dipole D2450V2 08/10/2016 08/10/2015 881 Speag Validation Dipole D5GHzV2 08/11/2016 08/11/2015 1119 Agilent N1911A Power Meter 05/20/2017 03/26/2015 31720068 Agilent (HP) 8352 CApe trum Analyzer 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 83625 AR P Hug-I	Туре	Calibration Due Date	Calibration Done Date	Serial Number
ELI4 Flat Phantom N/A N/A N/A N/A Device Holder N/A N/A N/A N/A Data Acquisition Electronics 4 01/14/2017 01/14/2016 1321 SPEAG E-Field Probe EX3DV4 08/20/2016 08/20/2015 3693 SPEAG E-Field Probe EX3DV4 01/27/2017 01/27/2016 3833 Speag Validation Dipole D750V2 08/10/2016 08/10/2015 1053 Speag Validation Dipole D1750V2 08/10/2016 08/13/2015 56147 Speag Validation Dipole D1750V2 08/13/2016 08/13/2015 56147 Speag Validation Dipole D1900V2 08/13/2016 08/13/2015 51417 Speag Validation Dipole D5GH2V2 08/10/2016 08/10/2015 1109 Speag Validation Dipole D5GH2V2 08/10/2016 08/10/2015 1119 Agilent N1911A Power Meter 05/20/2017 05/20/2015 GB45100254 Agilent (H19 8350B Signal Generator 03/26/2017 03/26/2015 31720068 Agilent (HP) 8350C Vector Network Analyzer 03/26/2017 03/26/2015 2135A01724	Staubli Robot TX60L	N/A	N/A	F07/55M6A1/A/01
Device Holder N/A N/A N/A Data Acquisition Electronics 4 01/14/2017 01/14/2016 1321 SPEAG E-Field Probe EX3DV4 08/20/2016 08/20/2015 3693 SPEAG E-Field Probe EX3DV4 01/27/2017 01/27/2016 3833 Speag Validation Dipole D750V2 08/10/2016 08/10/2015 1063 Speag Validation Dipole D1750V2 08/13/2016 08/13/2015 1061 Speag Validation Dipole D1750V2 08/13/2016 08/13/2015 50147 Speag Validation Dipole D2450V2 08/10/2016 08/10/2015 881 Speag Validation Dipole D2550V2 08/10/2016 08/10/2015 1003 Speag Validation Dipole D2550V2 08/10/2016 08/10/2015 1003 Speag Validation Dipole D560HzV2 08/10/2016 08/10/2015 1119 Agilent N1922A Power Sensor 06/25/2017 05/20/2015 31720068 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 214400256 Agilent (HP) 85047 AS-Parameter Test Set 03/26/2017 03/26/2015 213400256	Measurement Controller CS8c	N/A	N/A	1012
Data Acquisition Electronics 4 01/14/2017 01/14/2016 1321 SPEAG E-Field Probe EX3DV4 08/20/2016 08/20/2015 3693 SPEAG E-Field Probe EX3DV4 01/27/2017 01/27/2016 3833 Speag Validation Dipole D750V2 08/10/2016 08/10/2015 1053 Speag Validation Dipole D1750V2 08/10/2016 08/10/2015 4d131 Speag Validation Dipole D1750V2 08/13/2016 08/13/2015 5d147 Speag Validation Dipole D2450V2 08/10/2016 08/10/2015 1061 Speag Validation Dipole D250V2 08/10/2016 08/10/2015 1003 Speag Validation Dipole D250V2 08/11/2016 08/11/2015 1119 Agilent N1911A Power Meter 05/20/2017 05/20/2015 31720068 Agilent N192A Power Sensor 06/25/2017 03/26/2015 31720068 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 3135A01724 Agilent (HP) 8530C Vector Network Analyzer 03/26/2017 03/26/2015 3135A01724 Agilent (HP) 85047 A S-Parameter Test Set 03/26/2017 03/26/2015 <	ELI4 Flat Phantom	N/A	N/A	1251
SPEAG E-Field Probe EX3DV4 08/20/2016 08/20/2015 3693 SPEAG E-Field Probe EX3DV4 01/27/2017 01/27/2016 3833 Speag Validation Dipole D150V2 08/10/2016 08/10/2015 1053 Speag Validation Dipole D150V2 08/10/2016 08/10/2015 4d131 Speag Validation Dipole D150V2 08/13/2016 08/13/2015 5d147 Speag Validation Dipole D1250V2 08/10/2016 08/10/2015 881 Speag Validation Dipole D2550V2 08/10/2016 08/10/2015 1003 Speag Validation Dipole D2550V2 08/10/2016 08/10/2015 1119 Agilent N1911A Power Meter 05/20/2017 05/20/2015 GB45100254 Agilent (HP) 18350B Signal Generator 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 8530B Spear Validation Signal Generator 03/26/2017 03/26/2015 2447A01172 Agilent (HP) 8530B Spear Validation Signal Generator 03/26/2017 <td>Device Holder</td> <td>N/A</td> <td>N/A</td> <td>N/A</td>	Device Holder	N/A	N/A	N/A
SPEAG E-Field Probe EX3DV4 01/27/2017 01/27/2016 3833 Speag Validation Dipole D750V2 08/10/2016 08/10/2015 1053 Speag Validation Dipole D1750V2 08/10/2016 08/10/2015 4d131 Speag Validation Dipole D1750V2 08/13/2016 08/13/2015 1061 Speag Validation Dipole D1750V2 08/13/2016 08/13/2015 51147 Speag Validation Dipole D2450V2 08/10/2016 08/10/2015 881 Speag Validation Dipole D2550V2 08/10/2016 08/10/2015 1003 Speag Validation Dipole D5GHzV2 08/11/2016 08/10/2015 1119 Agilent N1911A Power Meter 05/20/2017 05/20/2015 GB45100254 Agilent N1911A Power Meter 03/26/2017 03/26/2015 31720068 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 8350C Vector Network Analyzer 03/26/2017 03/26/2015 3135A01724 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 85060 Base Station Sim. 03/26/2017 03/26/	Data Acquisition Electronics 4	01/14/2017	01/14/2016	1321
Speag Validation Dipole D750V2 08/10/2016 08/10/2015 1053 Speag Validation Dipole D35V2 08/10/2016 08/10/2015 4d131 Speag Validation Dipole D1750V2 08/13/2016 08/13/2015 1061 Speag Validation Dipole D1900V2 08/13/2016 08/13/2015 5d147 Speag Validation Dipole D2450V2 08/10/2016 08/10/2015 881 Speag Validation Dipole D56HzV2 08/10/2016 08/10/2015 1003 Speag Validation Dipole D56HzV2 08/10/2016 08/11/2015 1119 Agilent N1911A Power Meter 05/20/2017 05/20/2015 GB45100254 Agilent N1912A Power Sensor 06/25/2017 03/26/2015 31720068 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 8350Z Vector Network Analyzer 03/26/2017 03/26/2015 247A01172 Agilent (HP) 8750Z Vector Network Analyzer 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8750Z Vector Network Analyzer 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8750Z Vector Network Analyzer 03/26/	SPEAG E-Field Probe EX3DV4	08/20/2016	08/20/2015	3693
Speag Validation Dipole D835V2 08/10/2016 08/13/2015 4d131 Speag Validation Dipole D1750V2 08/13/2016 08/13/2015 1061 Speag Validation Dipole D1750V2 08/13/2016 08/13/2015 5d147 Speag Validation Dipole D2450V2 08/10/2016 08/10/2015 881 Speag Validation Dipole D2550V2 08/10/2016 08/10/2015 1003 Speag Validation Dipole D5GHzV2 08/10/2016 08/10/2015 1119 Agilent N1911A Power Meter 05/20/2017 05/20/2015 GB45100254 Agilent N1922A Power Sensor 06/25/2017 03/26/2015 31720068 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 8350X Signal Generator 03/26/2017 03/26/2015 2647A0172 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 85047A S-Parameter Test Set 03/31/2017 03/31/2015 MY48360364 Anritsu MT8820C 07/28/2017 03/31/2015 6201176199 Agilent T78D Dual Directional Coupler N/A N/A	SPEAG E-Field Probe EX3DV4	01/27/2017	01/27/2016	3833
Speag Validation Dipole D1750V2 08/13/2016 08/13/2015 1061 Speag Validation Dipole D1900V2 08/13/2016 08/13/2015 5d147 Speag Validation Dipole D2450V2 08/10/2016 08/10/2015 881 Speag Validation Dipole D2550V2 08/10/2016 08/10/2015 1003 Speag Validation Dipole D55GHzV2 08/11/2016 08/11/2015 1119 Agilent N1911A Power Meter 05/20/2017 05/20/2015 GB45100254 Agilent N1922A Power Sensor 06/25/2017 03/26/2015 31720068 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 83525A RF Plug-In 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8960 Base Station Sim. 03/21/2017 03/26/2015 2904A00595 Agilent TRB Dual Directional Coupler N/A N/A MY48220184 MiniCircuits SPL-10.7+ Low Pass Filter N/A N/A N/A MiniCircuits SPL-10.7+ Low Pass Filter N/A N/A	Speag Validation Dipole D750V2	08/10/2016	08/10/2015	1053
Speag Validation Dipole D1900V2 08/13/2016 08/13/2015 5d147 Speag Validation Dipole D2450V2 08/10/2016 08/10/2015 881 Speag Validation Dipole D250V2 08/10/2016 08/10/2015 1003 Speag Validation Dipole D26HzV2 08/11/2016 08/11/2015 1119 Agilent N1911A Power Meter 05/20/2017 05/20/2015 GB45100254 Agilent N1912A Power Sensor 06/25/2017 03/26/2015 31720068 Advantest R3261A Spectrum Analyzer 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 8350Z Vector Network Analyzer 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8960 Base Station Sim. 03/31/2017 03/31/2015 MY48360364 Anritsu MT8820C 07/28/2017 07/28/2015 6201176199 Agilent T78D Dual Directional Coupler N/A N/A N/A MiniCircuits BW-N20W5+ Fixed 20 dB N/A N/A	Speag Validation Dipole D835V2	08/10/2016	08/10/2015	4d131
Speag Validation Dipole D2450V2 08/10/2016 08/10/2015 881 Speag Validation Dipole D2550V2 08/10/2016 08/10/2015 1003 Speag Validation Dipole D5GHzV2 08/11/2016 08/11/2015 1119 Agilent N1911A Power Meter 05/20/2017 05/20/2015 GB45100254 Agilent N1922A Power Sensor 06/25/2017 06/25/2015 MY45240464 Advantest R3261A Spectrum Analyzer 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 83525A RF Plug-In 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8960 Base Station Sim. 03/21/2017 03/26/2015 2904A00595 Agilent (HP) 8960 Base Station Sim. 03/21/2017 03/26/2015 6201176199 Agilent T78b Dual Directional Coupler N/A N/A MY48220184 MiniCircuits SPL-10.7+ Low Pass Filter N/A N/A N/A Aprel Dielectric Probe Assembly N/A N/A<	Speag Validation Dipole D1750V2	08/13/2016	08/13/2015	1061
Speag Validation Dipole D2550V2 08/10/2016 08/10/2015 1003 Speag Validation Dipole D5GHzV2 08/11/2016 08/11/2015 1119 Agilent N1911A Power Meter 05/20/2017 05/20/2015 GB45100254 Agilent N1922A Power Sensor 06/25/2017 06/25/2015 MY45240464 Advantest R3261A Spectrum Analyzer 03/26/2017 03/26/2015 31720068 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 83525A RF Plug-In 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 8505C Vector Network Analyzer 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8960 Base Station Sim. 03/31/2017 03/31/2015 MY48200844 Anritsu MT8820C 07/28/2017 07/28/2015 6201176199 Agilent 778D Dual Directional Coupler N/A N/A MY48220184 MiniCircuits SPL-10.7+ Low Pass Filter N/A N/A N/A MiniCircuits SPL-10.7+ Low Pass Filter N/A N	Speag Validation Dipole D1900V2	08/13/2016	08/13/2015	5d147
Speag Validation Dipole D2550V2 08/10/2016 08/10/2015 1003 Speag Validation Dipole D5GHzV2 08/11/2016 08/11/2015 1119 Agilent N1911A Power Meter 05/20/2017 05/20/2015 GB45100254 Agilent N1922A Power Sensor 06/25/2017 06/25/2015 MY45240464 Advantest R3261A Spectrum Analyzer 03/26/2017 03/26/2015 31720068 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 83525A RF Plug-In 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 8505C Vector Network Analyzer 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8960 Base Station Sim. 03/31/2017 03/31/2015 MY48200844 Anritsu MT8820C 07/28/2017 07/28/2015 6201176199 Agilent 778D Dual Directional Coupler N/A N/A MY48220184 MiniCircuits SPL-10.7+ Low Pass Filter N/A N/A N/A MiniCircuits SPL-10.7+ Low Pass Filter N/A N	Speag Validation Dipole D2450V2	08/10/2016	08/10/2015	881
Agilent N1911A Power Meter 05/20/2017 05/20/2015 GB45100254 Agilent N1922A Power Sensor 06/25/2017 06/25/2015 MY45240464 Advantest R3261A Spectrum Analyzer 03/26/2017 03/26/2015 31720068 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 83525A RF Plug-In 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 8753C Vector Network Analyzer 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 860 Base Station Sim. 03/31/2017 03/31/2015 MY48360364 Anritsu MT8820C 07/28/2017 07/28/2015 6201176199 Agilent 778D Dual Directional Coupler N/A N/A MY48220184 MiniCircuits BW-N20W5+ Fixed 20 dB N/A N/A MY48220184 MiniCircuits SPL-10.7+ Low Pass Filter N/A N/A N/A MiniCircuits SPL-10.7+ Low Pass Filter N/A N/A N/A Aprel Dielectric Probe Assembly N/A N/A N		08/10/2016	08/10/2015	1003
Agilent N1922A Power Sensor 06/25/2017 06/25/2015 MY45240464 Advantest R3261A Spectrum Analyzer 03/26/2017 03/26/2015 31720068 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 83525A RF Plug-In 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 8753C Vector Network Analyzer 03/26/2017 03/26/2015 3135A01724 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8960 Base Station Sim. 03/31/2017 03/31/2015 MY48360364 Anritsu MT8820C 07/28/2017 07/28/2015 6201176199 Agilent 778D Dual Directional Coupler N/A N/A MY48220184 MiniCircuits BW-N20W5+ Fixed 20 dB N/A N/A N/A Aprel Dielectric Probe Assembly N/A N/A 0011 Body Equivalent Matter (750 MHz) N/A N/A N/A Body Equivalent Matter (1750 MHz) N/A N/A N/A Body Equivalent Matter (1750 MHz) N/A N/A N/A	Speag Validation Dipole D5GHzV2	08/11/2016	08/11/2015	1119
Advantest R3261A Spectrum Analyzer 03/26/2017 03/26/2015 31720068 Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 83525A RF Plug-In 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 83525A RF Plug-In 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8960 Base Station Sim. 03/31/2017 03/31/2015 MY48360364 Anritsu MT8820C 07/28/2017 07/28/2015 6201176199 Agilent 778D Dual Directional Coupler N/A N/A MY48220184 MiniCircuits BW-N20W5+ Fixed 20 dB N/A N/A N/A MiniCircuits SPL-10.7+ Low Pass Filter N/A N/A 0011 Body Equivalent Matter (750 MHz) N/A N/A N/A Body Equivalent Matter (1750 MHz) N/A N/A N/A Body Equivalent Matter (1750 MHz) N/A N/A N/A Body Equivalent Matter (1750 MHz) N/A N/A N/A Body Equiva	Agilent N1911A Power Meter	05/20/2017	05/20/2015	GB45100254
Agilent (HP) 8350B Signal Generator 03/26/2017 03/26/2015 2749A10226 Agilent (HP) 83525A RF Plug-In 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 8753C Vector Network Analyzer 03/26/2017 03/26/2015 3135A01724 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8960 Base Station Sim. 03/31/2017 03/31/2015 MY48360364 Anritsu MT8820C 07/28/2017 07/28/2015 6201176199 Agilent 778D Dual Directional Coupler N/A N/A MY48220184 MiniCircuits BW-N20W5+ Fixed 20 dB N/A N/A N/A Attenuator N/A N/A N/A Body Equivalent Matter (750 MHz) N/A N/A N/A Body Equivalent Matter (1750 MHz) N/A N/A N/A Body Equivalent Matter (1900 MHz) N/A N/A N/A Body Equivalent Matter (2450 MHz) N/A N/A N/A	Agilent N1922A Power Sensor	06/25/2017	06/25/2015	MY45240464
Agilent (HP) 83525A RF Plug-In 03/26/2017 03/26/2015 2647A01172 Agilent (HP) 8753C Vector Network Analyzer 03/26/2017 03/26/2015 3135A01724 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8960 Base Station Sim. 03/31/2017 03/31/2015 MY48360364 Anritsu MT8820C 07/28/2017 07/28/2015 6201176199 Agilent 778D Dual Directional Coupler N/A N/A MY48220184 MiniCircuits BW-N20W5+ Fixed 20 dB N/A N/A N/A Aprel Dielectric Probe Assembly N/A N/A 0011 Body Equivalent Matter (750 MHz) N/A N/A N/A Body Equivalent Matter (1750 MHz) N/A N/A N/A Body Equivalent Matter (1900 MHz) N/A N/A N/A Body Equivalent Matter (2450 MHz) N/A N/A N/A	Advantest R3261A Spectrum Analyzer	03/26/2017	03/26/2015	31720068
Agilent (HP) 8753C Vector Network Analyzer 03/26/2017 03/26/2015 3135A01724 Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8960 Base Station Sim. 03/31/2017 03/31/2015 MY48360364 Anritsu MT8820C 07/28/2017 07/28/2015 6201176199 Agilent 778D Dual Directional Coupler N/A N/A MY48220184 MiniCircuits BW-N20W5+ Fixed 20 dB N/A N/A N/A Attenuator N/A N/A N/A MiniCircuits SPL-10.7+ Low Pass Filter N/A N/A 0011 Body Equivalent Matter (750 MHz) N/A N/A N/A Body Equivalent Matter (1750 MHz) N/A N/A N/A Body Equivalent Matter (1900 MHz) N/A N/A N/A Body Equivalent Matter (2450 MHz) N/A N/A N/A	Agilent (HP) 8350B Signal Generator	03/26/2017	03/26/2015	2749A10226
Agilent (HP) 85047A S-Parameter Test Set 03/26/2017 03/26/2015 2904A00595 Agilent (HP) 8960 Base Station Sim. 03/31/2017 03/31/2015 MY48360364 Anritsu MT8820C 07/28/2017 07/28/2015 6201176199 Agilent 778D Dual Directional Coupler N/A N/A MY48220184 MiniCircuits BW-N20W5+ Fixed 20 dB N/A N/A N/A Attenuator N/A N/A N/A MiniCircuits SPL-10.7+ Low Pass Filter N/A N/A 0011 Body Equivalent Matter (750 MHz) N/A N/A N/A Body Equivalent Matter (1750 MHz) N/A N/A N/A Body Equivalent Matter (1750 MHz) N/A N/A N/A Body Equivalent Matter (1750 MHz) N/A N/A N/A Body Equivalent Matter (1900 MHz) N/A N/A N/A Body Equivalent Matter (2450 MHz) N/A N/A N/A	Agilent (HP) 83525A RF Plug-In	03/26/2017	03/26/2015	2647A01172
Agilent (HP) 8960 Base Station Sim.03/31/201703/31/2015MY48360364Anritsu MT8820C07/28/201707/28/20156201176199Agilent 778D Dual Directional CouplerN/AN/AMY48220184MiniCircuits BW-N20W5+ Fixed 20 dBN/AN/AN/AAttenuatorN/AN/AN/AMiniCircuits SPL-10.7+ Low Pass FilterN/AN/AAprel Dielectric Probe AssemblyN/AN/ABody Equivalent Matter (750 MHz)N/AN/ABody Equivalent Matter (1750 MHz)N/AN/ABody Equivalent Matter (1750 MHz)N/AN/ABody Equivalent Matter (1900 MHz)N/AN/ABody Equivalent Matter (2450 MHz)N/AN/AN/AN/AN/ABody Equivalent Matter (2450 MHz)N/AN/AN/AN/AN/AN/AN/AN/ABody Equivalent Matter (2450 MHz)N/AN/AN/AN/AN/AN/AN/AN/A	Agilent (HP) 8753C Vector Network Analyzer	03/26/2017	03/26/2015	3135A01724
Anritsu MT8820C07/28/201707/28/20156201176199Agilent 778D Dual Directional CouplerN/AN/AMY48220184MiniCircuits BW-N20W5+ Fixed 20 dB AttenuatorN/AN/AN/AMiniCircuits SPL-10.7+ Low Pass FilterN/AN/AR8979513746Aprel Dielectric Probe AssemblyN/AN/A0011Body Equivalent Matter (750 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1900 MHz)N/AN/AN/ABody Equivalent Matter (2450 MHz)N/AN/AN/A	Agilent (HP) 85047A S-Parameter Test Set	03/26/2017	03/26/2015	2904A00595
Agilent 778D Dual Directional CouplerN/AN/AMY48220184MiniCircuits BW-N20W5+ Fixed 20 dB AttenuatorN/AN/AN/AMiniCircuits SPL-10.7+ Low Pass FilterN/AN/AR8979513746Aprel Dielectric Probe AssemblyN/AN/A0011Body Equivalent Matter (750 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1900 MHz)N/AN/AN/ABody Equivalent Matter (2450 MHz)N/AN/AN/A	Agilent (HP) 8960 Base Station Sim.	03/31/2017	03/31/2015	MY48360364
MiniCircuits BW-N20W5+ Fixed 20 dB AttenuatorN/AN/AN/AMiniCircuits SPL-10.7+ Low Pass FilterN/AN/AR8979513746Aprel Dielectric Probe AssemblyN/AN/A0011Body Equivalent Matter (750 MHz)N/AN/AN/ABody Equivalent Matter (835 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1900 MHz)N/AN/AN/ABody Equivalent Matter (2450 MHz)N/AN/AN/A	Anritsu MT8820C	07/28/2017	07/28/2015	6201176199
AttenuatorImage: Constraint of the systemAttenuator <td>Agilent 778D Dual Directional Coupler</td> <td>N/A</td> <td>N/A</td> <td>MY48220184</td>	Agilent 778D Dual Directional Coupler	N/A	N/A	MY48220184
MiniCircuits SPL-10.7+ Low Pass FilterN/AN/AR8979513746Aprel Dielectric Probe AssemblyN/AN/A0011Body Equivalent Matter (750 MHz)N/AN/AN/ABody Equivalent Matter (835 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1900 MHz)N/AN/AN/ABody Equivalent Matter (2450 MHz)N/AN/AN/A		N/A	N/A	N/A
Aprel Dielectric Probe AssemblyN/AN/A0011Body Equivalent Matter (750 MHz)N/AN/AN/ABody Equivalent Matter (835 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1900 MHz)N/AN/AN/ABody Equivalent Matter (2450 MHz)N/AN/AN/A		Ν/Δ	Ν/Δ	R80705137/6
Body Equivalent Matter (750 MHz)N/AN/AN/ABody Equivalent Matter (835 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1900 MHz)N/AN/AN/ABody Equivalent Matter (2450 MHz)N/AN/AN/A				
Body Equivalent Matter (835 MHz)N/AN/AN/ABody Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1900 MHz)N/AN/AN/ABody Equivalent Matter (2450 MHz)N/AN/AN/A				
Body Equivalent Matter (1750 MHz)N/AN/AN/ABody Equivalent Matter (1900 MHz)N/AN/AN/ABody Equivalent Matter (2450 MHz)N/AN/AN/A				
Body Equivalent Matter (1900 MHz) N/A N/A N/A Body Equivalent Matter (2450 MHz) N/A N/A N/A				
Body Equivalent Matter (2450 MHz) N/A N/A N/A				
Body Equivalent Matter (5 Ghz) N/A N/A N/A				

12. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

13. References

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996

[2] ANSI/IEEE C95.1 – 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.

[3] ANSI/IEEE C95.3 – 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 2002.

[4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010.

[5] IEEE Standard 1528 – 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013.

[6] Industry Canada, RSS – 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015.

[7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

***** Test Result for UIM Dielectric Parameter Thu 21/Jul/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FreqFCC_eB FCC_sB Test_e Test_s0.700055.730.9655.720.970.704055.7140.9655.7080.974*0.707555.700.9655.6980.978*0.710055.690.9655.690.980.711055.6860.9655.6870.98*0.720055.650.9655.660.980.730055.610.9655.630.980.740055.570.9655.600.990.750055.530.9655.570.990.760055.490.9655.540.990.770055.450.9655.501.000780055.410.9755.461.00 Freq FCC_eB FCC_sB Test_e Test_s 0.770055.450.9655.501.000.780055.410.9755.461.000.782055.4040.9755.4521.00*0.790055.380.9755.421.00 * value interpolated Test Result for UIM Dielectric Parameter Tue 19/Jul/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM
 Freq
 FCC_eB FCC_sB Test_e Test_s

 0.8050
 55.32
 0.97
 56.05
 0.96

 0.8150
 55.28
 0.97
 56.00
 0.98

 0.8190
 55.264
 0.97
 55.954
 0.98*

 0.8242
 55.243
 0.97
 55.954
 0.98*
 0.819055.264 0.9755.98 0.98*0.824255.243 0.9755.954 0.98*0.825055.24 0.9755.95 0.980.826455.234 0.9755.944 0.981*0.831555.214 0.9755.924 0.987*0.835055.20 0.9755.91 0.990.836655.195 0.97255.902 0.99*0.844055.173 0.97955.865 0.99*0.845055.165 0.98255.857 0.992*0.848855.159 0.98455.852 0.994*0.845055.11 0.9855.84 1.000.865055.11 1.0155.80 1.01

***** Test Result for UIM Dielectric Parameter Thu 21/Jul/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 53.53 1.47 53.55 1.48 Freq 1.7100 1.7124 53.525 1.47 53.543 1.482* 1.712453.5251.4753.5431.482*1.720053.511.4753.521.491.730053.481.4853.381.501.732553.4751.4853.3751.503*1.732653.4751.4853.3751.503*1.740053.461.4853.361.511.745053.4451.48553.341.515*1.750053.431.4953.321.521.752653.4251.4953.3151.523*1.760053.411.4953.301.531.770053.381.5053.271.551.780053.351.5153.231.55 * value interpolated Test Result for UIM Dielectric Parameter Mon 18/Jul/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test s Sigma of UIM FreqFCC_eB FCC_sB Test_e Test_s1.840053.301.5252.041.431.850053.301.5252.031.441.850253.301.5252.031.44*1.852453.301.5252.031.44*1.860053.301.5252.031.44*1.860053.301.5252.031.44*1.860053.301.5252.031.44*1.880053.301.5252.141.451.880053.301.5252.101.451.882553.301.5252.171.461.900053.301.5252.071.471.907653.301.5252.0951.485*1.908853.301.5252.1191.499*1.910053.301.5252.121.501.920053.301.5252.001.50

Test Result for UIM Dielectric Parameter Wed 27/Jul/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 52.75 1.91 52.76 1.93 Freq 2.4100 2.4120 52.748 1.912 52.756 1.932*

 2.4120
 52.748 1.912
 52.756 1.932*

 2.4200
 52.74 1.92
 52.74 1.94

 2.4300
 52.73 1.93
 52.72 1.95

 2.4370
 52.716 1.937
 52.706 1.957*

 2.4400
 52.71 1.94
 52.70 1.96

 2.4500
 52.70 1.95
 52.69 1.97

 2.4600
 52.69 1.96
 52.67 1.98

 2.4620
 52.686 1.964
 52.666 1.982*

 2.4700
 52.67 1.98
 52.65 1.99

 2.470052.671.9852.651.992.480052.661.9952.632.01 * value interpolated Test Result for UIM Dielectric Parameter Thu 21/Jul/2016 Freq Frequency(GHz) FCC eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM Test_s Sigma of UIMFreqFCC_eB FCC_sB Test_e Test_s2.490052.652.0152.602.022.500052.642.0252.582.032.506052.622.0452.552.052.510052.622.0452.552.052.520052.612.0552.522.072.530052.602.0652.502.092.535052.592.0752.4952.10*2.540052.592.0852.492.112.550052.572.0952.472.122.560052.562.1152.452.142.550052.522.1252.432.162.580052.532.1352.422.172.560052.512.1552.392.192.593052.5172.15352.3872.196*2.600052.512.1652.382.212.610052.502.1852.322.272.620052.442.1952.332.252.630052.472.2152.322.272.640052.442.2552.302.292.650052.432.2552.272.322.670052.442.2852.292.302.660052.442.2852.252.342.680052.412.2852.232.352.690052.392.2952.302.372.700052.38 *****

Test Result for UIM Dielectric Parameter Thu 28/Jul/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 49.15 5.18 49.19 5.14 49.12 5.21 49.16 5.17 Freq

 5.1000
 49.15
 5.18
 49.19
 5.14

 5.1200
 49.12
 5.21
 49.16
 5.17

 5.1400
 49.01
 5.23
 49.10
 5.23

 5.1600
 49.07
 5.28
 49.07
 5.23

 5.1800
 49.04
 5.29
 5.2100
 49.01
 5.30
 49.04
 5.29

 5.2100
 49.00
 5.31
 49.03
 5.31
 5.220
 48.99
 5.32
 49.03
 5.31

 5.2200
 48.99
 5.32
 49.03
 5.31
 5.2600
 48.93
 5.37
 48.98
 5.37

 5.2800
 48.91
 5.39
 48.95
 5.405
 48.935
 5.405*

 5.3000
 48.89
 5.42
 48.92
 5.42

 5.3200
 48.85
 5.44
 48.90
 5.45

 5.400
 48.67
 5.53
 48.75
 5.55

 5.400
 48.67
 5.68
 48.75
 5.55

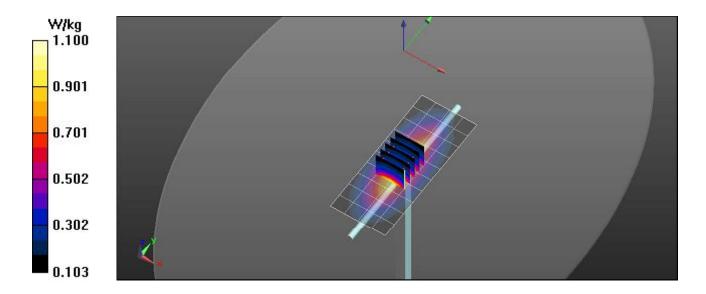
 5.400
 48.63
 5.63
 48.64
 5.60

 5.500
 48.53
 5.72
 48.55
 5.71
 5 5.1000 5.1200 49.10 5.23 49.13 5.20

Plot 1

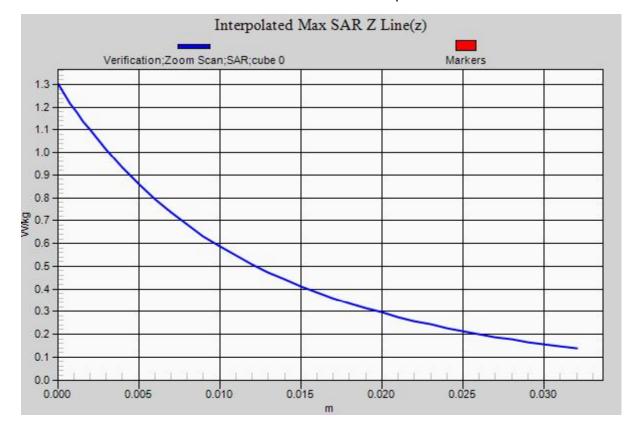
DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN:1053

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used: f = 750 MHz; σ = 0.99 S/m; ϵ_r = 55.57; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 7/21/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(9.23, 9.23, 9.23); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

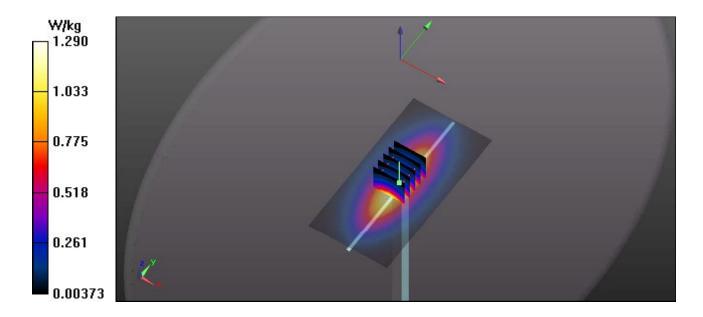

750 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.08 W/kg

750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.30 W/kg **SAR(1 g) = 0.865 W/kg; SAR(10 g) = 0.569 W/kg** Maximum value of SAR (measured) = 1.10 W/kg

Report Number: SAR.20160808

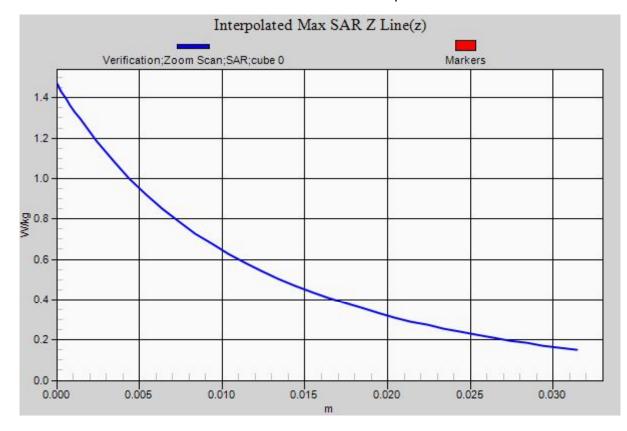
Plot 2

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d131


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used: f = 835 MHz; σ = 0.99 S/m; ϵ r = 55.91; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/19/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:


835 MHz Body/Verification/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.29 W/kg

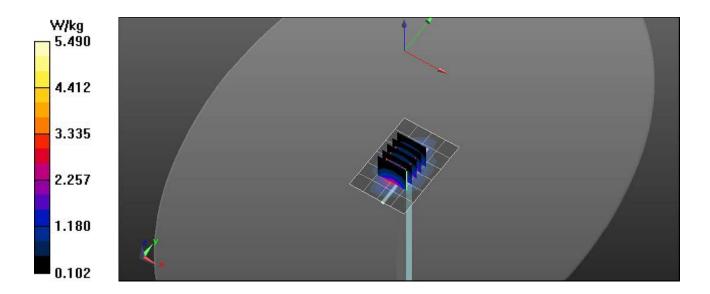
835 MHz Body/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.612 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.47 W/kg SAR(1 g) = 0.953 W/kg; SAR(10 g) = 0.632 W/kg Maximum value of SAR (measured) = 1.29 W/kg

Report Number: SAR.20160808

Plot 3

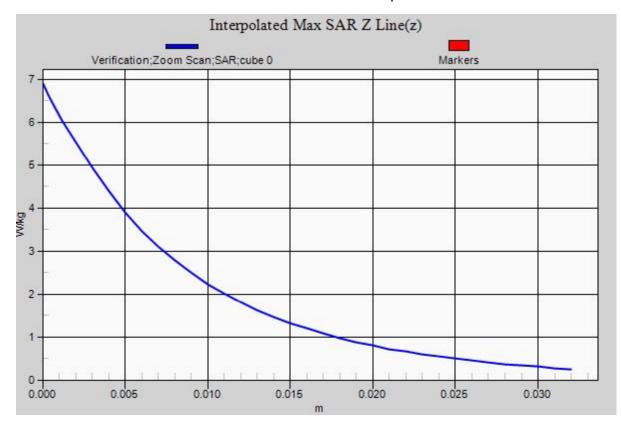
DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1061

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1750 MHz; σ = 1.52 S/m; ϵ_r = 53.32; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 7/21/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.32, 7.32, 7.32); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

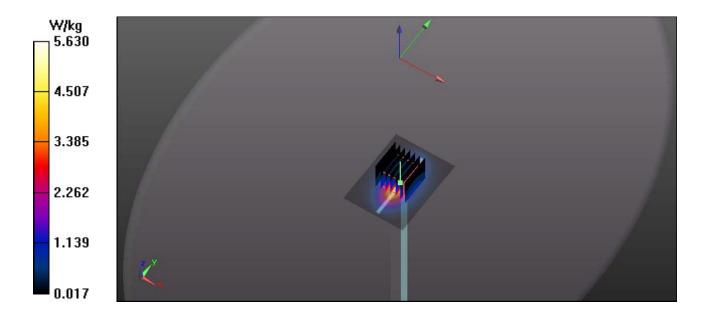

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.33 W/kg

1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 6.89 W/kg **SAR(1 g) = 3.85 W/kg; SAR(10 g) = 2.03 W/kg** Maximum value of SAR (measured) = 5.49 W/kg

Report Number: SAR.20160808

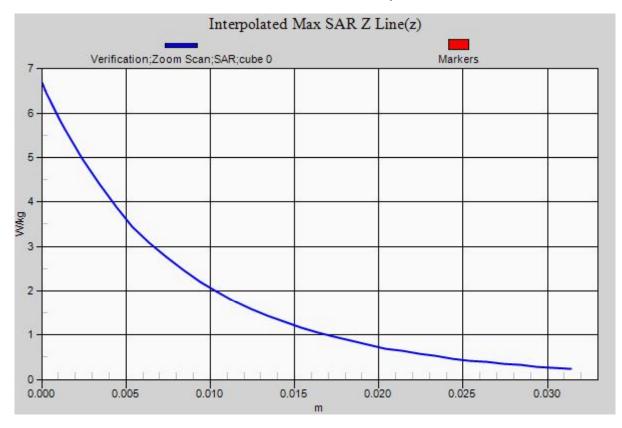
Plot 4

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d147


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 52.07; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/18/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

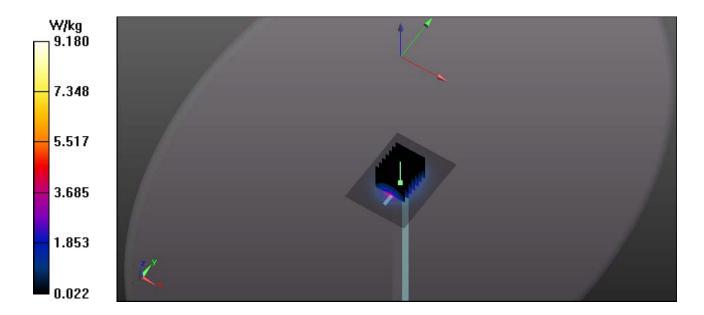

1900 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.63 W/kg

1900 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.612 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 6.68 W/kg **SAR(1 g) = 3.98 W/kg; SAR(10 g) = 1.92 W/kg** Maximum value of SAR (measured) = 5.63 W/kg

Report Number: SAR.20160808

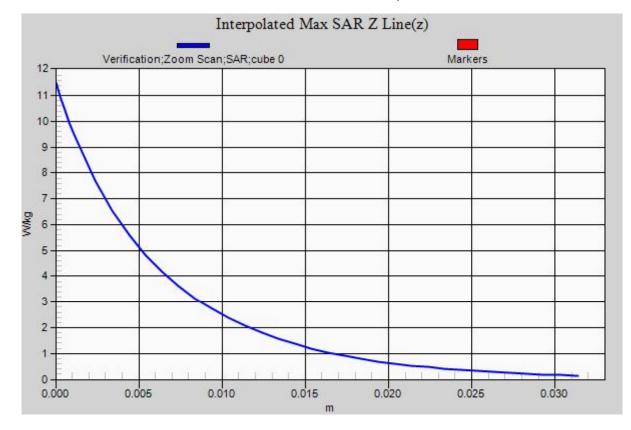
Plot 5

DUT: Dipole 2550 MHz D2550V2; Type: D2550V2; Serial: D2550V2 - SN:1003


Communication System: CW; Frequency: 2550 MHz; Duty Cycle: 1:1 Medium: MSL2600; Medium parameters used: f = 2550 MHz; σ = 2.12 S/m; ϵ_r = 52.47; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/21/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(6.67, 6.67, 6.67); Calibrated: 8/20/2015; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

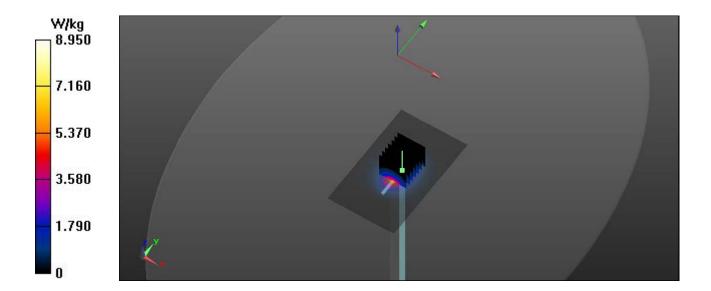

2550 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.18 W/kg

2550 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.541 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.5 W/kg SAR(1 g) = 5.41 W/kg; SAR(10 g) = 2.42 W/kg Maximum value of SAR (measured) = 8.98 W/kg

Report Number: SAR.20160808

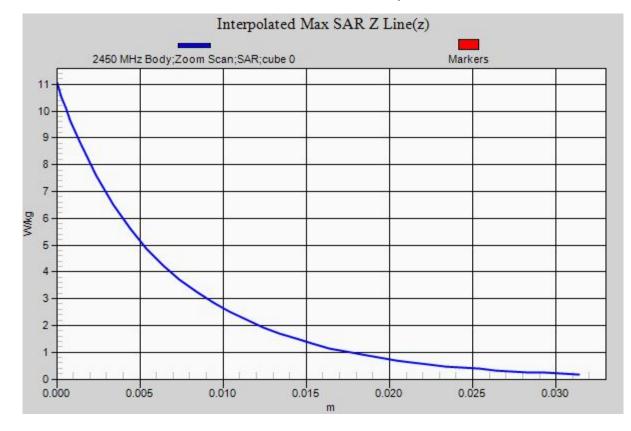
Plot 6

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 881


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used: f = 2450 MHz; σ = 1.97 S/m; ϵ_r = 52.69; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/27/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(6.87, 6.87, 6.87); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:


Body Verification/2450 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.93 W/kg

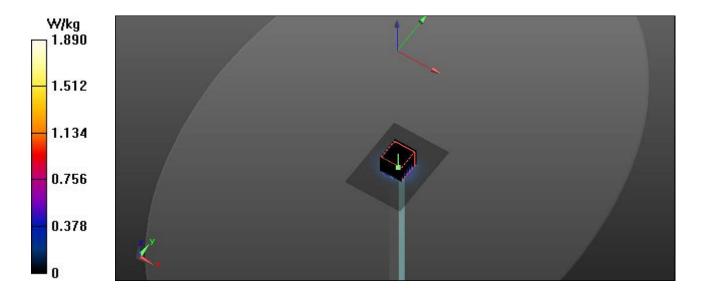
Body Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.517 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.09 W/kg Pin= 100 mW SAR(1 g) = 5.18 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 8.84 W/kg

Report Number: SAR.20160808

Plot 7

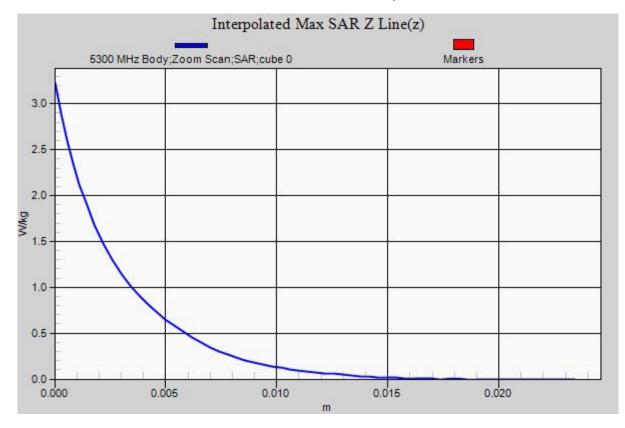
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5200 MHz; σ = 5.29 S/m; ϵ_r = 49.04; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 7/28/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(4.03, 4.03, 4.03); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

Body Verification/5200 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.89 W/kg


Body Verification/5200 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 12.708 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.21 W/kg Pin=10 mW SAR(1 g) = 0.782 W/kg; SAR(10 g) = 0.214 W/kg

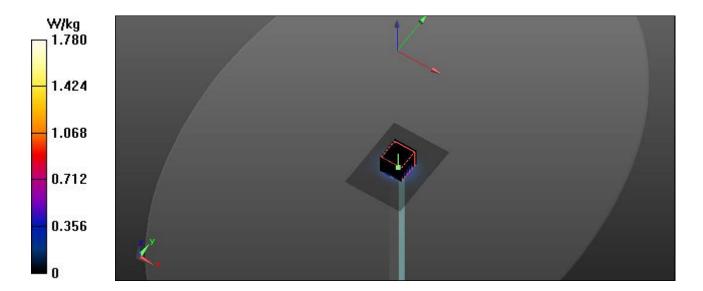
Maximum value of SAR (measured) = 1.89 W/kg

Report Number: SAR.20160808

Plot 8

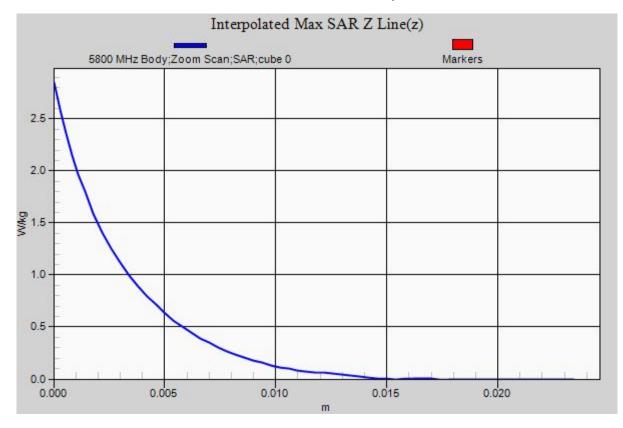
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5800 MHz; σ = 6 S/m; ϵ _r = 48.19; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 7/28/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(3.49, 3.49, 3.49); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

Body Verification/5800 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.76 W/kg


Body Verification/5800 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 12.402 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.88 W/kg Pin=10 mW SAR(1 g) = 0.795 W/kg; SAR(10 g) = 0.212 W/kg

Maximum value of SAR (measured) = 1.78 W/kg

Report Number: SAR.20160808

Appendix B – SAR Test Data Plots

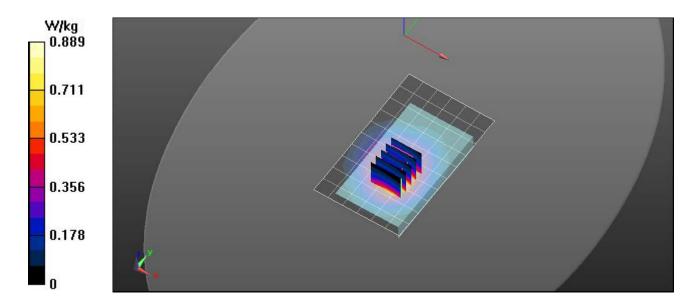
Plot 1

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 782 MHz; σ = 1 S/m; ϵ_r = 55.452; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/21/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(9.23, 9.23, 9.23); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

750 MHz B13 LTE/Back 1RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.866 W/kg

750 MHz B13 LTE/Back 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.46 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.02 W/kg **SAR(1 g) = 0.988 W/kg; SAR(10 g) = 0.427 W/kg**

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.889 W/kg

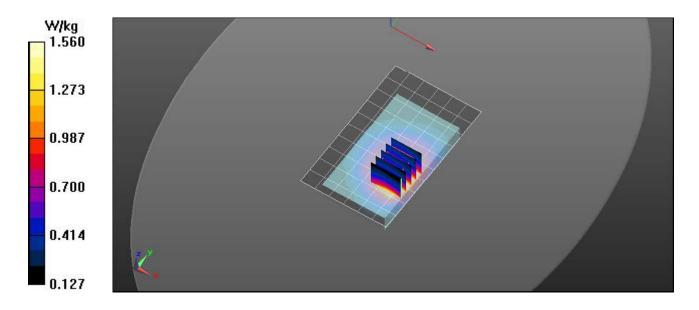
Plot 2

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: CDMA2000 (1xEV-DO); Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 836.52 MHz; σ = 0.99 S/m; ϵ_r = 55.902; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/20/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

835 MHz CDMA/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.44 W/kg

835 MHz CDMA/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.8570 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.75 W/kg SAR(1 g) = 1.31 W/kg; SAR(10 g) = 0.941 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.56 W/kg

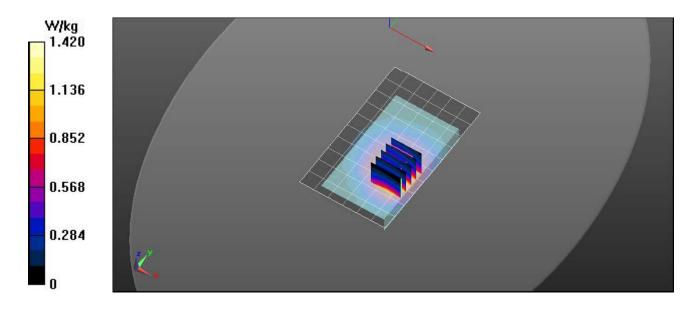
Plot 3

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 846.6 MHz; σ = 0.992 S/m; ϵ_r = 55.857; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/20/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

835 MHz WCDMA/Back High/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.31 W/kg

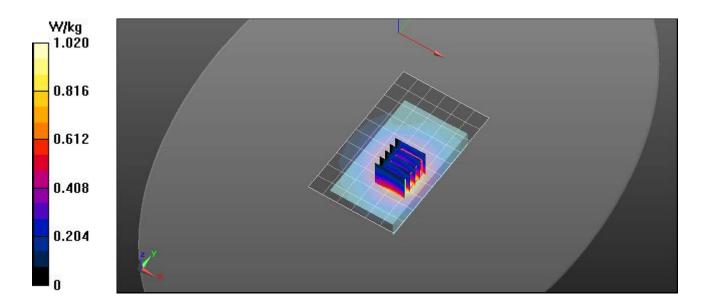
835 MHz WCDMA/Back High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.00 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.89 W/kg SAR(1 g) = 1.28 W/kg; SAR(10 g) = 0.739 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.42 W/kg

Plot 4

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: GPRS 2-Slot (GMSK); Frequency: 824.2 MHz; Duty Cycle: 1:4.00037 Medium: MSL835; Medium parameters used: f = 824.2 MHz; σ = 0.994 S/m; ϵ_r = 55.852; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 7/20/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

835 MHz GPRS/Front Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.987 W/kg

835 MHz GPRS/Front Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.74 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.06 W/kg SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.653 W/kg Maximum value of SAR (measured) = 1.02 W/kg

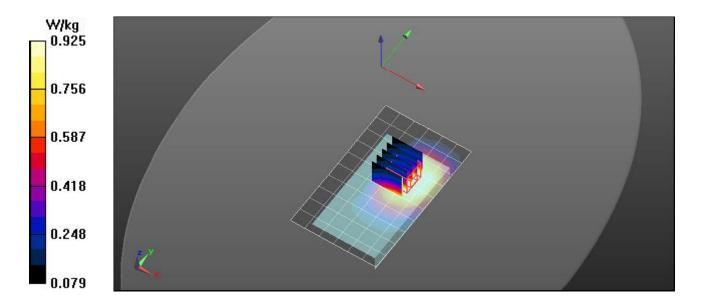
Plot 5

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.99 S/m; ϵ_r = 55.902; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/19/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

835 MHz B5 LTE/Back 1RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.03 W/kg

835 MHz B5 LTE/Back 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.63 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.34 W/kg SAR(1 g) = 0.982 W/kg; SAR(10 g) = 0.329 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.925 W/kg

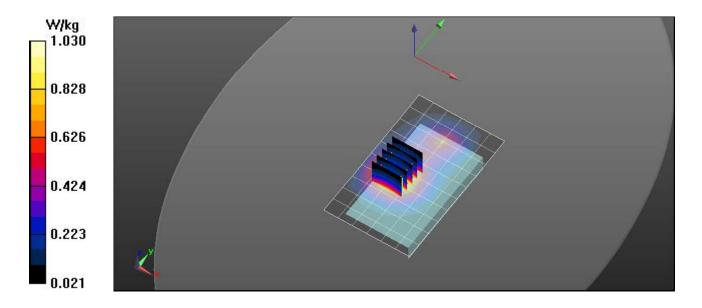
Plot 6

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used (interpolated): f = 1745 MHz; σ = 1.515 S/m; ϵ_r = 53.34; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/21/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.32, 7.32, 7.32); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

1750 MHz B66 LTE/Front 1RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.912 W/kg

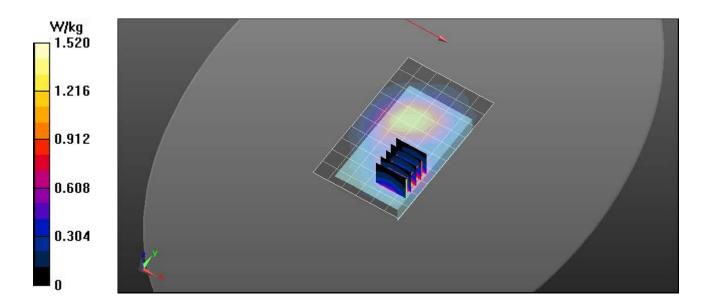
1750 MHz B66 LTE/Front 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.46 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 1.22 W/kg SAR(1 g) = 0.798 W/kg; SAR(10 g) = 0.462 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.03 W/kg

Plot 7

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: CDMA2000 (1xEV-DO); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1880 MHz; σ = 1.45 S/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 7/18/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

1900 MHz CDMA/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.24 W/kg

1900 MHz CDMA/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.53 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 2.42 W/kg **SAR(1 g) = 1.29 W/kg; SAR(10 g) = 0.691 W/kg** Maximum value of SAR (measured) = 1.52 W/kg

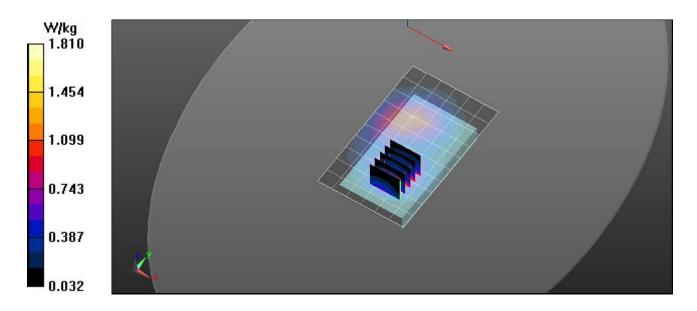
Plot 8

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used (interpolated): f = 1907.6 MHz; σ = 1.493 S/m; ϵ_r = 52.108; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/18/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

1900 MHz WCDMA/Front High/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.63 W/kg

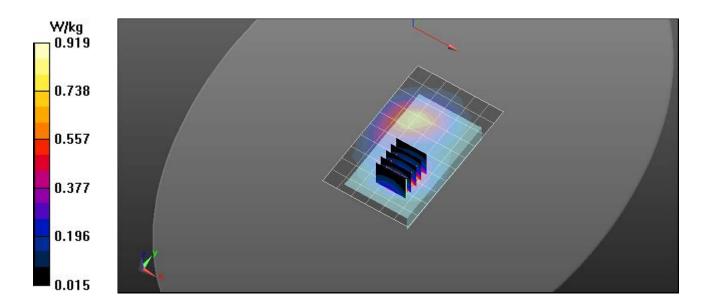
1900 MHz WCDMA/Front High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.01 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.24 W/kg **SAR(1 g) = 1.35 W/kg; SAR(10 g) = 0.770 W/kg**

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.81 W/kg

Plot 9

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: GPRS 2-Slot (GMSK); Frequency: 1880 MHz; Duty Cycle: 1:4.00037 Medium: MSL1900; Medium parameters used: f = 1880 MHz; σ = 1.45 S/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 7/18/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

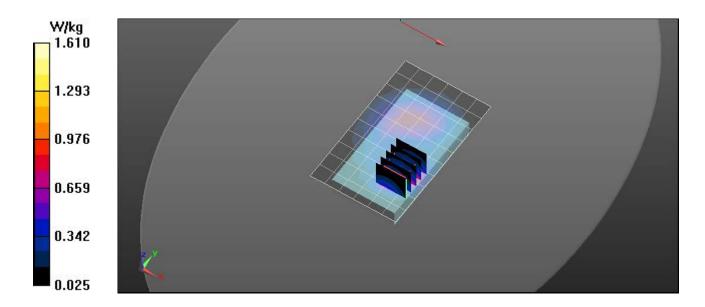
1900 MHz GPRS/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.928 W/kg

1900 MHz GPRS/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.78 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.16 W/kg **SAR(1 g) = 0.560 W/kg; SAR(10 g) = 0.320 W/kg** Maximum value of SAR (measured) = 0.919 W/kg

Plot 10

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1860 MHz; σ = 1.44 S/m; ϵ r = 52.03; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 7/19/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

1900 MHz B2 LTE/Front 1RB Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.26 W/kg

1900 MHz B2 LTE/Front 1RB Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.29 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.99 W/kg SAR(1 g) = 1.18 W/kg; SAR(10 g) = 0.643 W/kg Maximum value of SAR (measured) = 1.61 W/kg

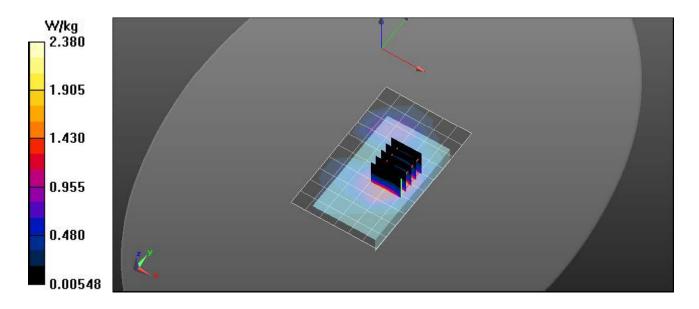
Plot 11

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: MSL2550; Medium parameters used (interpolated): f = 2535 MHz; σ = 2.1 S/m; ϵ_r = 52.495; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/21/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(6.67, 6.67, 6.67); Calibrated: 8/20/2015; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

2600 MHz B7 LTE/Front 1RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.09 W/kg

2600 MHz B7 LTE/Front 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.33 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.25 W/kg SAR(1 g) = 1.30 W/kg; SAR(10 g) = 0.596 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.38 W/kg

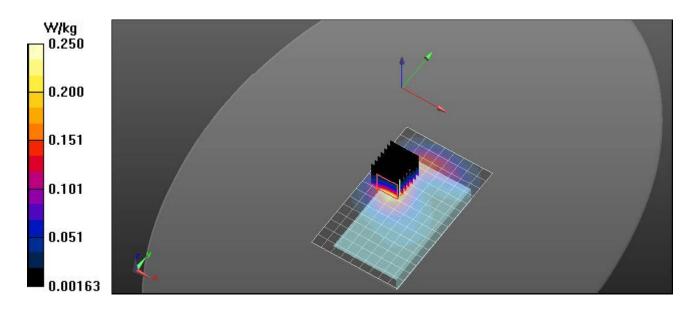
Plot 12

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: WiFi 802.11b (DSSS, 1 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used (interpolated): f = 2437 MHz; σ = 1.957 S/m; ϵ_r = 52.706; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/27/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(6.87, 6.87, 6.87); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

2450 MHz WiFi/Front Tx2 High/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.243 W/kg

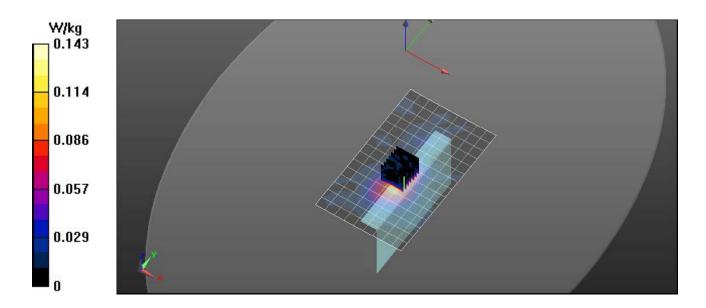
2450 MHz WiFi/Front Tx2 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.695 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.330 W/kg SAR(1 g) = 0.174 W/kg; SAR(10 g) = 0.094 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.250 W/kg

Plot 13

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5220 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5220 MHz; σ = 5.31 S/m; ϵ_r = 49.03; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 7/29/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(4.03, 4.03, 4.03); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

5200 MHz WiFi/Left Tx1 44/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.120 W/kg

5200 MHz WiFi/Left Tx1 44/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 3.650 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.510 W/kg SAR(1 g) = 0.067 W/kg Maximum value of SAR (measured) = 0.143 W/kg

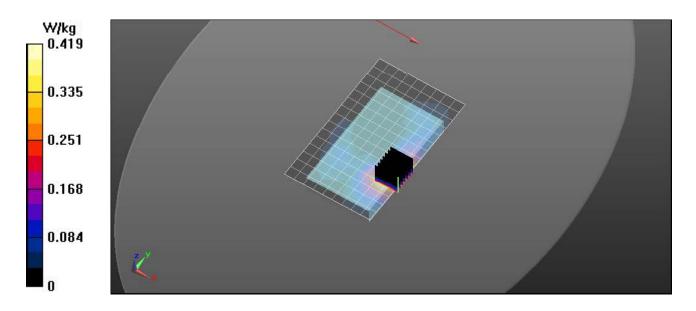
Plot 14

DUT: MIFI7730L; Type: MIFI; Serial: Test

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5785 MHz; σ = 5.978 S/m; ϵ_r = 48.213; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 8/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(3.49, 3.49, 3.49); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

5800 MHz WiFi/Back Tx1 157/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.402 W/kg

5800 MHz WiFi/Back Tx1 157/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 2.053 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.820 W/kg SAR(1 g) = 0.226 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.419 W/kg

Appendix C – SAR Test Setup Photos

Test Position Side A 10 mm Gap

Test Position Side B 10 mm Gap

Test Position Side C 10 mm Gap

Test Position Side D 10 mm Gap

Test Position Side E 10 mm Gap

Test and Antenna Locations

Front of Device

Report Number: SAR.20160808

Back of Device

Appendix D – Probe Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

 Client
 RF Exposure Lab
 Certificate No: EX3-3693_Aug15

 CALIBRATION CERTIFICATE

 Object
 EX3DV4 - SN:3693

 Calibration procedure(s)
 QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

 Calibration date:
 August 20, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

	Name	Function	Signature		
Calibrated by:	Jeton Kastrati	Laboratory Technician			
			=		
Approved by:	Katja Pokovic	Technical Manager	22101		
			156 llf		
This self-			Issued: August 24, 2015		
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.					