Conversion Factor Assessment

Error $(\phi, \vartheta), f=900 \mathrm{MHz}$

Uncertainty of Spherical Isotropy Assessment: $\pm \mathbf{2 . 6 \%}$ (k=2)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (${ }^{\circ}$)	14.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

$\begin{array}{ll}\text { S } & \begin{array}{l}\text { Schweizerischer Kalibrierdienst }\end{array} \\ \text { C } & \begin{array}{l}\text { Service suisse d'étalonnage } \\ \text { Servizio svizzero di taratura }\end{array} \\ \text { S } & \begin{array}{l}\text { Swiss Calibration Service }\end{array} \\ & \end{array}$

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client RF Exposure Lab

Certificate No: EX3-3833_Jan17

CALIBRATION CERTIFICATE

Object

Calibration procedure(s)

Calibration date:

EX3DV4-SN:3833

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	$06-A p r-16$ (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	$06-A p r-16$ (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	$06-A p r-16$ (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	$05-A p r-16$ (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	$04-A u g-99$ (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point
CF crest factor (1/duty_cycle) of the RF signal
A, B, C, D modulation dependent linearization parameters
Polarization φ
φ rotation around probe axis
Polarization $\vartheta \quad \vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $\mathrm{f}>1800 \mathrm{MHz}$: R22 waveguide). NORM x, y, z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- $N O R M(f) x, y, z=N O R M x, y, z^{*}$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z;Cx,y,z;Dx,y,z;VRx,y,z:A,B,C,D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3833

Manufactured: November 7, 2011
Calibrated: January 23, 2017

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Basic Calibration Parameters

	Sensor \mathbf{X}	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc $(\mathbf{k}=\mathbf{2})$
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	0.46	0.48	0.34	$\pm 10.1 \%$
$\mathrm{DCP}(\mathrm{mV})^{\mathrm{B}}$	101.7	101.5	104.7	

Modulation Calibration Parameters

UID	Communication System Name		\mathbf{A} $\mathbf{d B}$	\mathbf{B} $\mathbf{d B} \sqrt{ } \boldsymbol{\mu} \mathbf{V}$	\mathbf{C}	\mathbf{D} $\mathbf{d B}$	$\mathbf{V R}$ $\mathbf{m V}$	$\mathbf{U n c} \mathbf{U n}^{\mathbf{E}} \mathbf{(k = 2)}$
0	CW	X	0.0	0.0	1.0	0.00	151.2	$\mathbf{\pm 2 . 7 \%}$
		Y	0.0	0.0	1.0		152.7	
		Z	0.0	0.0	1.0		147.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^0]
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Calibration Parameter Determined in Head Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\text {c }}$	Relative Permittivity ${ }^{F}$	Conductivity $(\mathrm{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{G} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { Unc } \\ & (k=2) \end{aligned}$
300	45.3	0.87	10.74	10.74	10.74	0.08	1.20	$\pm 13.3 \%$
450	43.5	0.87	9.51	9.51	9.51	0.14	1.20	$\pm 13.3 \%$
600	42.7	0.88	9.38	9.38	9.38	0.10	1.20	$\pm 13.3 \%$
900	41.5	0.97	9.01	9.01	9.01	0.32	1.07	$\pm 12.0 \%$
1640	40.3	1.29	8.25	8.25	8.25	0.49	0.80	$\pm 12.0 \%$
1750	40.1	1.37	7.91	7.91	7.91	0.47	0.80	$\pm 12.0 \%$
2450	39.2	1.80	7.26	7.26	7.26	0.48	0.83	$\pm 12.0 \%$
2600	39.0	1.96	6.90	6.90	6.90	0.44	0.89	$\pm 12.0 \%$
5200	36.0	4.66	4.88	4.88	4.88	0.30	1.80	± 13.1 \%
5300	35.9	4.76	4.69	4.69	4.69	0.30	1.80	± 13.1 \%
5500	35.6	4.96	4.45	4.45	4.45	0.35	1.80	$\pm 13.1 \%$
5600	35.5	5.07	4.18	4.18	4.18	0.40	1.80	± 13.1 \%
5800	35.3	5.27	4.42	4.42	4.42	0.40	1.80	± 13.1 \%

[^1]
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Calibration Parameter Determined in Body Tissue Simulating Media

$\mathbf{f (M H z})^{\text {c }}$	Relative Permittivity $^{\mathbf{F}}$	Conductivity $(\mathbf{S} / \mathbf{m})^{F}$	ConvF X	ConvF Y	ConvF Z	Alpha $^{\text {G }}$	Dept $(\mathbf{m m})$	Unc $(\mathbf{k}=\mathbf{2})$
300	58.2	0.92	10.19	10.19	10.19	0.05	1.20	$\pm 13.3 \%$
450	56.7	0.94	10.26	10.26	10.26	0.08	1.20	$\pm 13.3 \%$
600	56.1	0.95	9.69	9.69	9.69	0.08	1.20	$\pm 13.3 \%$
900	55.0	1.05	9.19	9.19	9.19	0.51	0.80	$\pm 12.0 \%$
1640	53.8	1.40	7.84	7.84	7.84	0.42	0.82	$\pm 12.0 \%$
1750	53.4	1.49	7.40	7.40	7.40	0.38	0.80	$\pm 12.0 \%$
2450	52.7	1.95	6.99	6.99	6.99	0.29	0.80	$\pm 12.0 \%$
2600	52.5	2.16	6.73	6.73	6.73	0.24	0.80	$\pm 12.0 \%$
5200	49.0	5.30	4.32	4.32	4.32	0.35	1.90	$\pm 13.1 \%$
5300	48.9	5.42	4.17	4.17	4.17	0.35	1.90	$\pm 13.1 \%$
5500	48.6	5.65	3.85	3.85	3.85	0.40	1.90	$\pm 13.1 \%$
5600	48.5	5.77	3.52	3.52	3.52	0.50	1.90	$\pm 13.1 \%$
5800	48.2	6.00	3.74	3.74	3.74	0.50	1.90	$\pm 13.1 \%$

[^2]Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3 \%(k=2)$

Receiving Pattern (ϕ), $丹=0^{\circ}$

$\mathrm{f}=600 \mathrm{MHz}, \mathrm{TEM}$

$\mathrm{f}=1800 \mathrm{MHz}, \mathrm{R} 22$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5 \%(k=2)$

Dynamic Range f(SAR $\left.{ }_{\text {head }}\right)$
(TEM cell , $\mathrm{f}_{\text {eval }}=1900 \mathrm{MHz}$)

Uncertainty of Linearity Assessment: $\pm \mathbf{0 . 6 \%}(\mathbf{k}=2)$

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (${ }^{\circ}$)	15.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix E - Dipole Calibration Data Sheets

Calibration Laboratory of Schmid \& Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client
RF Exposure Lab

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object
D750V3 - SN: 1053

Calibration procedure(s)
QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: August 10, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: $5047.2 / 06327$	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
RF generator R\&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

	Name	Function
Calibrated by:	Michael Weber	Laboratory Technician
Approved by:	Katja Pokovic	Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

C Service suisse d'étalonnage
ervizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$750 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	41.9	$0.89 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$42.1 \pm 6 \%$	$0.91 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.04 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 . 0 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.10 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	250 mW input power	$1.33 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 . 2 5} \mathrm{~W} / \mathrm{kg} \pm 16.5 \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	55.5	$0.96 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$56.3 \pm 6 \%$	$1.00 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Body TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 9)}$ of Body TSL	Condition	
SAR measured	250 mW input power	$2.18 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{8 . 4 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%$ (k=2)

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g }) \text { of Body TSL }}$	condition	
SAR measured	250 mW input power	$1.43 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{5 . 5 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.4 \Omega-0.4 \mathrm{j} \Omega$
Return Loss	-27.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.5 \Omega-2.5 \mathrm{j} \Omega$
Return Loss	-32.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.035 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 08, 2011

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss ($<-20 \mathrm{~dB}$, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D750V3 SN: 1053 - Head						
Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance Real (Ω)	$\Delta \Omega$	Impedance Imaginary $(\mathrm{j} \Omega)$	$\Delta \Omega$
$8 / 10 / 205$	-27.5		54.4		-0.4	
$8 / 9 / 2016$	-25.9	-5.8	54.3	-0.1	-0.5	-0.1

D750V3 SN: 1053 - Body

Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance Real (Ω)	$\Delta \Omega$	Impedance Imaginary $(\mathrm{j} \Omega)$	$\Delta \Omega$
$8 / 10 / 2015$	-32.0		49.5		-2.5	
$8 / 9 / 2016$	-31.5	-1.6	51.0	1.5	-2.9	-0.4

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1053
Communication System: UID $0-\mathrm{CW}$; Frequency: 750 MHz
Medium parameters used: $\mathrm{f}=750 \mathrm{MHz} ; \sigma=0.91 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=53.03 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.00 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.06 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.04 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.33 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=2.39 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

[EH]	S11	1 HFS	1:54.371\%	$\begin{array}{rl} & 10 \text { AUg } 2015 \\ -375.00 \mathrm{~ms} & 56.88 \mathrm{pF} \end{array}$	$\begin{aligned} & 11: 47: 25 \\ & 750.600006 \mathrm{MHz} \end{aligned}$
*				- .-.	
Del				\cdots	
Cus					
$\begin{aligned} & \mathrm{A} \% \mathrm{~g} \\ & 16 \end{aligned}$					
Hld					
CH 2	S11	Log	$\mathrm{EEF}-20 \mathrm{~dB}$	1:-27.524dB	750.609000 MHz
De 1					
CA					
${ }_{16}$					
Hld					
		ART 556	MHz	STOP 9	50.000900 MHz

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 750 MHz ; Type: D750V3; Serial: D750V3 - SN: 1053
Communication System: UID 0 - CW; Frequency: 750 MHz
Medium parameters used: $\mathrm{f}=750 \mathrm{MHz} ; \sigma=1 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=56.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=52.22 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=3.19 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{2 . 1 8} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.43 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=2.55 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid \& Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S
C
S
Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
RF Exposure Lab
Certificate No: D835V2-4d131_Aug15

CALIBRATION CERTIFICATE

Object
D835V2 - SN: 4d131

Calibration procedure(s)

Calibration date:
August 10, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: $5047.2 /$ O6327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
RF generator R\&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

	Name Michael Weber	Function Laboratory Technician
Approved by:	Katja Pokovic	Technical Manager

S	Schweizerischer Kalibrierdienst C
Service suisse d'étalonnage	

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$835 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	41.5	$0.90 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$41.9 \pm 6 \%$	$0.93 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	---

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.36 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{9 . 2 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}}(\mathbf{1 0} \mathbf{g})$ of Head TSL	condition	
SAR measured	250 mW input power	$1.53 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 . 0 1} \mathrm{~W} / \mathrm{kg} \pm 16.5 \%(\mathrm{k}=2)$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	55.2	$0.97 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$56.1 \pm 6 \%$	$1.02 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Body TSL

SAR averaged over $\mathbf{1 \mathbf { c m } ^ { \mathbf { 3 } } \mathbf { (1 ~ g) } \text { of Body TSL }}$	Condition	
SAR measured	250 mW input power	$2.40 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{9 . 2 8} \mathbf{W} / \mathrm{kg} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0} \mathrm{g})$ of Body TSL	condition	
SAR measured	250 mW input power	$1.57 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{6 . 1 1} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 6 . 5} \%(\mathrm{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.3 \Omega-1.6 j \Omega$
Return Loss	-31.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.7 \Omega-3.8 \mathrm{j} \Omega$
Return Loss	-26.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.394 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss ($<-20 \mathrm{~dB}$, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D835V2 SN: 4d131 - Head						
Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance Real (Ω)	$\Delta \Omega$	Impedance Imaginary (j$)$	$\Delta \Omega$
$8 / 10 / 2015$	-31.2		52.3		-1.6	
$8 / 9 / 2016$	-29.2	-6.4	51.3	-1.0	-1.8	-0.2
$8 / 10 / 2017$	-30.4	-2.6	50.6	-1.7	-1.5	0.1

D835V2 SN: 4d131 - Body

Date of Measurement	Return Loss (dB)	$\boldsymbol{\Delta \%}$	Impedance Real (Ω)	$\boldsymbol{\Delta \Omega}$	Impedance Imaginary $(\mathrm{j} \Omega)$	$\boldsymbol{\Delta \Omega}$
$8 / 10 / 2015$	-26.8		47.7		-3.8	
$8 / 9 / 2016$	-28.5	6.3	51.2	3.5	-3.8	0.0
$8 / 10 / 2017$	-27.6	3.0	48.4	0.7	-3.6	0.2

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d131
Communication System: UID 0 - CW; Frequency: 835 MHz
Medium parameters used: $\mathrm{f}=835 \mathrm{MHz} ; \sigma=0.93 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;
- Sensor-Surface: 3 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=56.25 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.53 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(\mathbf{1} \mathrm{g})=\mathbf{2 . 3 6} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{1 . 5 3} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=2.77 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d131

Communication System: UID 0 - CW; Frequency: 835 MHz
Medium parameters used: $\mathrm{f}=835 \mathrm{MHz} ; \sigma=1.02 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=56.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;
- Sensor-Surface: 3 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 $\mathbf{m W}$, d=15mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=54.25 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.51 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{2 . 4} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.57 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=2.80 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client RF Exposure Lab

CALIBRATION CERTIFICATE

Object
D1750V2-SN:1061

Calibration procedures)
QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

Calibration date:
August 13, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
RF generator R\&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

	Name Seton Kastrati	Function Laboratory Technician

Katja Pokovic
Technical Manager

Calibration Laboratory of

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A
not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$1750 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	40.1	$1.37 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$39.8 \pm 6 \%$	$1.36 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$-\cdots$	----

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$9.18 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{3 6 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 0 \mathrm { g })}$ of Head TSL	condition	
SAR measured	250 mW input power	$4.90 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{1 9 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	53.4	$1.49 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$52.1 \pm 6 \%$	$1.48 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Body TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Body TSL }}$	Condition	
SAR measured	250 mW input power	$9.43 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{3 7 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g) ~ o f ~ B o d y ~ T S L ~}$	condition	
SAR measured	250 mW input power	$5.09 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 0 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2)}$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.5 \Omega+1.2 \mathrm{j} \Omega$
Return Loss	-37.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.3 \Omega+0.8 \mathrm{j} \Omega$
Return Loss	-30.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.220 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 15,2010

Extended Calibration
Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss ($<-20 \mathrm{~dB}$, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D1750V2 SN: 1061 - Head						
Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance Real (Ω)	$\Delta \Omega$	Impedance Imaginary $(\mathrm{j} \Omega)$	$\Delta \Omega$
$8 / 13 / 2015$	-37.8		50.5		1.2	
$8 / 12 / 2016$	-39.4	4.2	49.2	-1.3	0.7	-0.5
$8 / 13 / 2017$	-38.2	1.1	48.2	-2.3	1.1	-0.1

D1750V2 SN: 1061 - Body							
Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance Real (Ω)	$\Delta \Omega$	Impedance Imaginary ($\mathbf{~} \Omega)$	$\Delta \Omega$	
$8 / 13 / 2015$	-30.7		47.3		0.8		
$8 / 12 / 2016$	-29.4	-4.2	46.1	-1.2	0.6	-0.2	
$8 / 13 / 2017$	-30.1	-2.0	45.8	-1.5	0.7	-0.1	

DASY5 Validation Report for Head TSL

Date: 13.08.2015
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1061
Communication System: UID 0 - CW; Frequency: 1750 MHz
Medium parameters used: $\mathrm{f}=1750 \mathrm{MHz} ; \sigma=1.36 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=39.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=95.55 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=16.4 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{9 . 1 8} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=4.9 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=11.6 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL
Date: 13.08.2015
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1750 MHz ; Type: D1750V2; Serial: D1750V2 - SN:1061
Communication System: UID 0 - CW; Frequency: 1750 MHz
Medium parameters used: $\mathrm{f}=1750 \mathrm{MHz} ; \sigma=1.48 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=52.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=93.33 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.00 \mathrm{~dB}$
Peak SAR (extrapolated) $=16.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{9 . 4 3} \mathbf{~ W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.09 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=11.8 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid \& Partner
Engineering AG
zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client
Client RF Exposure Lab

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage Servizio svizzero di taratura
S Swiss Calibration Service

CALIBRATION CERTIFICATE

Object
D1900V2 - SN:5d147

Calibration procedure(s)
QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: August 13, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: $5047.2 / 06327$	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
RF generator R\&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

	Name Jeton Kastrati	Function
Laboratory Technician		
Caprated by:	Katja Pokovic	Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accreditation No.: SCS 0108
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM $\mathrm{x}, \mathrm{y}, \mathrm{z}$
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$1900 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	40.0	$1.40 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$38.9 \pm 6 \%$	$1.39 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	\cdots	----

SAR result with Head TSL

SAR averaged over $1 \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$10.4 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{4 1 . 5} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	250 mW input power	$5.47 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 1 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	53.3	$1.52 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$52.5 \pm 6 \%$	$1.51 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Body TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Body TSL }}$	Condition	
SAR measured	250 mW input power	$10.1 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{4 0 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%$ (k=2)

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g) ~ o f ~ B o d y ~ T S L ~}$	condition	
SAR measured	250 mW input power	$5.37 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 1 . 5} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.1 \Omega+6.2 \mathrm{j} \Omega$
Return Loss	-23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.9 \Omega+6.5 \mathrm{j} \Omega$
Return Loss	-23.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.193 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	
Manufactured on	SPEAG

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss ($<-20 \mathrm{~dB}$, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D1900V2 SN: 5d147 - Head						
Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance Real (Ω)	$\Delta \Omega$	Impedance Imaginary $(\mathrm{j} \Omega)$	$\Delta \Omega$
$8 / 13 / 2015$	-23.5		53.1		6.2	
$8 / 12 / 2016$	-24.9	6.0	53.9	0.8	5.4	-0.8
$8 / 13 / 2017$	-23.8	1.3	52.7	-0.4	5.9	-0.3

D1900V2 SN: 5d147-Body

D1900V2 SN: 5d147 - Body							
Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance Real (Ω)	$\Delta \Omega$	Impedance Imaginary $(\mathrm{j} \Omega)$	$\Delta \Omega$	
$8 / 13 / 2015$	-23.5		48.9		6.5		
$8 / 12 / 2016$	-22.8	-3.0	46.3	-2.6	6.9	0.4	
$8 / 13 / 2017$	-22.4	-4.7	47.5	-1.4	6.7	0.2	

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147
Communication System: UID 0 - CW; Frequency: 1900 MHz
Medium parameters used: $\mathrm{f}=1900 \mathrm{MHz} ; \sigma=1.39 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=38.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $d x=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=100.3 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=19.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=10.4 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.47 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=13.2 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147
Communication System: UID 0 - CW; Frequency: 1900 MHz
Medium parameters used: $\mathrm{f}=1900 \mathrm{MHz} ; \sigma=1.51 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=52.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- Sensor-Surface: 3 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=96.00 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=17.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=10.1 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.37 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=12.8 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage
S	Servizio svizzero di taratura
S	Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client RF Exposure Lab
Certificate No: D2450V2-881_Aug15

CALIBRATION CERTIFICATE

Object

Calibration procedures)

D2450V2 - SN: 881

QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: $5047.2 / 06327$	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
RF generator R\&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

	Name Calibrated by: Michael Weber	Function Laboratory Technician
Approved by:	Katja Pokovic	Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
ConvF
N/A

> tissue simulating liquid sensitivity in TSL / NORM x, y, z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz$)^{\prime \prime}$, March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2450 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.2	$1.80 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$38.1 \pm 6 \%$	$1.87 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Head TSL

SAR averaged over $1 \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$13.7 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 3 . 5} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2)}$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	250 mW input power	$6.43 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	52.7	$1.95 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$50.6 \pm 6 \%$	$2.03 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\cdots--$	$\cdots--$

SAR result with Body TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Body TSL }}$	Condition	
SAR measured	250 mW input power	$\mathbf{1 3 . 4} \mathbf{W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{5 2 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Body TSL	condition	
SAR measured	250 mW input power	$6.27 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 4 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%$ (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.5 \Omega+2.4 \mathrm{j} \Omega$
Return Loss	-26.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.9 \Omega+4.4 \mathrm{j} \Omega$
Return Loss	-27.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 18, 2010

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss ($<-20 \mathrm{~dB}$, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D2450V2 SN: 881 - Head						
Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance Real (Ω)	$\Delta \Omega$	Impedance Imaginary ($\mathrm{j} \Omega$)	$\Delta \Omega$
8/10/2015	-26.2		54.5		2.4	
8/9/2016	-25.4	-3.1	52.8	-1.7	2.9	0.5
D2450V2 SN: 881 - Body						
Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance Real (Ω)	$\Delta \Omega$	Impedance Imaginary ($\mathrm{j} \Omega$)	$\Delta \Omega$
8/10/2015	-27.0		50.9		4.4	
8/9/2016	-27.5	1.9	51.6	0.7	5.2	0.8

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 881
Communication System: UID 0 - CW; Frequency: 2450 MHz
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=1.87 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=38.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=101.8 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.02 \mathrm{~dB}$
Peak SAR (extrapolated) $=28.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13.7 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.43 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=18.1 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2-SN: 881
Communication System: UID 0 - CW; Frequency: 2450 MHz
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=2.03 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=50.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=96.26 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR (extrapolated) $=27.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{1 3 . 4} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.27 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=17.7 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client RF Exposure Lab
Certificate No: D2550V2-1003_Aug15
CALIBRATION CERTIFICATE

Object
Calibration procedure(s)
D2550V2 - SN: 1003

QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz

Calibration date:
August 10, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: $5047.2 / 06327$	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
RF generator R\&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

	Name	Function
Calibrated by:	Michael Weber	Laboratory Technician
Approved by:	Katja Pokovic	Technical Manager
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.	Issued: August 12, 2015	

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Service suisse d'étalonnage
Servizio svizzero di taratura
S
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A
not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2550 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.1	$1.91 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.8 \pm 6 \%$	$1.97 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$\mathbf{1 4 . 1} \mathrm{W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 6 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=2)$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	250 mW input power	$6.43 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%$ (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	52.6	$2.09 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$50.3 \pm 6 \%$	$2.14 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Body TSL

SAR averaged over $\mathbf{1 \mathbf { c m } ^ { \mathbf { 3 } } \mathbf { (1 ~ g }) \text { of Body TSL }}$	Condition	
SAR measured	250 mW input power	$14.0 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{5 4 . 8} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Body TSL	condition	
SAR measured	250 mW input power	$6.38 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 5 . 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$49.6 \Omega-1.3 \mathrm{j} \Omega$
Return Loss	-37.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$46.8 \Omega-1.2 \mathrm{j} \Omega$
Return Loss	-29.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.155 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 01, 2010

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss ($<-20 \mathrm{~dB}$, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D2550V2 SN: 1003-Head						
Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance (Ω)	$\Delta \Omega$	Impedance Imaginary ($\mathrm{j} \Omega$)	$\Delta \Omega$
8/10/2015	-37.2		49.6		-1.3	
8/9/2016	-35.9	-3.5	48.2	-1.4	-1.6	-0.3
D2550V2 SN: 1003 - Body						
Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance (Ω)	$\Delta \Omega$	Impedance Imaginary ($\mathrm{j} \Omega$)	$\Delta \Omega$
8/10/2015	-29.0		46.8		-1.2	
8/9/2016	-29.1	0.3	45.1	-1.7	-1.8	-0.6

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN: 1003
Communication System: UID $0-\mathrm{CW}$; Frequency: 2550 MHz
Medium parameters used: $\mathrm{f}=2550 \mathrm{MHz} ; \sigma=1.95 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2014;
- Sensor-Surface: 3 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 $\mathbf{m W}$, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=102.1 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=28.8 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{1 4 . 1} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.43 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=18.7 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.08.2015
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN: 1003
Communication System: UID 0 - CW; Frequency: 2550 MHz
Medium parameters used: $\mathrm{f}=2550 \mathrm{MHz} ; \sigma=2.14 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=50.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.2, 4.2, 4.2); Calibrated: 30.12.2014;
- Sensor-Surface: 3 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, $\mathbf{d = 1 0 m m / Z o o m ~ S c a n ~ (7 x 7 x 7) / C u b e ~ 0 : ~}$

Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=96.70 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=29.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=14 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.38 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=18.5 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage
S	Servizio svizzero di taratura
	Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client RF Exposure Lab

CALIBRATION CERTIFICATE

Object
D5GHzV2 - SN: 1119

Calibration procedure(s)
QA CAL-22.v2
Calibration procedure for dipole validation kits between $3-6 \mathrm{GHz}$

Calibration date:
August 11, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: $5047.2 / 06327$	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 3503	30-Dec-14 (No. EX3-3503_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
RF generator R\&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

	Name	Function Laboratory Technician
Approved by:	Israe Enaouq	

Approved by:
Katja Pokovic
Technical Manager

Issued: August 11, 2015
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
ConvF
N/A
tissue simulating liquid sensitivity in TSL / NORM x, y, z
not applicable or not measured

S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 S Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio = 1.4 (Z direction)
	$5200 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Frequency	$5300 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5500 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters at $5200 \mathbf{M H z}$

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	36.0	$4.66 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.5 \pm 6 \%$	$4.53 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	---

SAR result with Head TSL at $\mathbf{5 2 0 0} \mathbf{~ M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.11 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 0 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9 \% (k = 2)}$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.32 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%$ (k=2)

Head TSL parameters at $5300 \mathbf{M H z}$

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.9	$4.76 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.4 \pm 6 \%$	$4.63 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Head TSL at $5300 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.46 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 4 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.42 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.6	$4.96 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.1 \pm 6 \%$	$4.82 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Head TSL at $\mathbf{5 5 0 0} \mathbf{~ M H z}$

SAR averaged over $\mathbf{1 \mathbf { c m } ^ { \mathbf { 3 } } \mathbf { (1 ~ g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$\mathbf{8 . 5 0 \mathrm { W } / \mathrm { kg }}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 4 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.42 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 5600 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.5	$5.07 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.9 \pm 6 \%$	$4.93 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperaturge change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Head TSL at $5600 \mathbf{M H z}$

SAR averaged over $\mathbf{1}$	$\mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured		100 mW input power	$8.46 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head	TSL parameters	normalized to 1 W	$\mathbf{8 4 . 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%$ (k=2)

SAR averaged over $\mathbf{1 0} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured		100 mW input power
SAR for nominal Head	TSL parameters	normalized to 1 W

Head TSL parameters at 5800 MHz
The following parameters and calculations were applied.

		Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.3	$5.27 \mathrm{mho} / \mathrm{m}$	
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.7 \pm 6 \%$	$5.14 \mathrm{mho} / \mathrm{m} \pm 6 \%$	
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---	

SAR result with Head TSL at 5800 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL		Condition	
SAR measured		100 mW input power	8.10 W/kg
SAR for nominal Head	TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 \% (k=2)
SAR averaged over 10	$\mathrm{cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured		100 mW input power	2.31 W/kg
SAR for nominal Head	SL parameters	normalized to 1W	23.0 W/kg ± 19.5 \% (k=2)

Body TSL parameters at $5200 \mathbf{M H z}$

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	49.0	$5.30 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.9 \pm 6 \%$	$5.43 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Body TSL at $\mathbf{5 2 0 0} \mathbf{~ M H z}$

SAR averaged over $\mathbf{1 \mathbf { c m } ^ { \mathbf { 3 } } \mathbf { (1 ~ g }) \text { of Body TSL }}$	Condition	
SAR measured	100 mW input power	$7.77 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 7 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g) ~ o f ~ B o d y ~ T S L ~}$	condition	
SAR measured	100 mW input power	$2.17 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 1 . 6 ~ W / k g ~} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters at $5300 \mathbf{M H z}$

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.9	$5.42 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.7 \pm 6 \%$	$5.56 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Body TSL at 5300 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Body TSL	Condition	
SAR measured	100 mW input power	$7.79 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 7 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9 \% (k = 2)}$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Body TSL	condition	
SAR measured	100 mW input power	$2.17 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 1 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=2)$

Body TSL parameters at $5500 \mathbf{M H z}$

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.6	$5.65 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.3 \pm 6 \%$	$5.82 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\cdots--$	---

SAR result with Body TSL at 5500 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Body TSL	Condition	
SAR measured	100 mW input power	$8.30 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{8 2 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9 \%} \mathbf{(\mathbf { k } = \mathbf { 2 })}$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Body TSL	condition	
SAR measured	100 mW input power	$2.30 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 2 . 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters at $5600 \mathbf{M H z}$

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.5	$5.77 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.2 \pm 6 \%$	$5.95 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Body TSL at 5600 MHz

SAR averaged over $\mathbf{1 \mathbf { c m } ^ { \mathbf { 3 } } \mathbf { (1 ~ g }) \text { of Body TSL }}$	Condition	
SAR measured	100 mW input power	$\mathbf{8 . 1 0 ~ W / k g ~}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{8 0 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9 \%} \mathbf{(k = 2)}$

SAR averaged over $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Body TSL	condition	
SAR measured	100 mW input power	$2.25 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 2 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters at $5800 \mathbf{M H z}$
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.2	$6.00 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$46.9 \pm 6 \%$	$6.23 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	$\ldots--$

SAR result with Body TSL at $5800 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Body TSL }}$	Condition	
SAR measured	100 mW input power	$7.91 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 8 . 8} \mathbf{W} / \mathrm{kg} \pm \mathbf{1 9 . 9 \%} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Body TSL	condition	
SAR measured	100 mW input power	$2.19 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 1 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (<-20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D5GHzV2 SN: 1119-Head							
Date of Measurement	Frequency	$\begin{aligned} & \hline \text { Return Loss } \\ & \text { (dB) } \\ & \hline \end{aligned}$	$\Delta \%$	Impedance (Ω)	$\Delta \Omega$	Impedance Imaginary ($\mathrm{j} \Omega$)	$\Delta \Omega$
8/11/2015	5200 MHz	-21.5		51.6		-8.4	
8/10/2016		-21.3	-0.9	51.2	-0.4	-8.7	-0.3
8/11/2015	5300 MHz	-27.8		51.4		-3.9	
8/10/2016		-26.4	-5.0	49.8	-1.6	-4.8	-0.9
8/11/2015	5500 MHz	-25.8		54.2		-3.4	
8/10/2016		-24.3	-5.8	52.6	-1.6	-3.9	-0.5
8/11/2015	5600 MHz	-24.3		56.3		-1.5	
8/10/2016		-23.9	-1.6	55.0	-1.3	-2.1	-0.6
8/11/2015	5800 MHz	-23.4		56.6		-2.8	
8/10/2016		-24.3	3.8	54.9	-1.7	-4.1	-1.3
D5GHzV2 SN: 1119-Body							
Date of Measurement	Frequency	$\begin{aligned} & \hline \text { Return Loss } \\ & \text { (dB) } \\ & \hline \end{aligned}$	$\Delta \%$	Impedance Real ($\mathbf{\Omega}$)	$\Delta \Omega$	Impedance Imaginary ($\mathrm{j} \Omega$)	$\Delta \Omega$
8/11/2015	5200 MHz	-22.8		51.6		-7.2	
8/10/2016		-21.5	-5.7	51.2	-0.4	-7.9	-0.7
8/11/2015	5300 MHz	-30.8		51.1		-2.7	
8/10/2016		-29.6	-3.9	51.3	0.2	-3.2	-0.5
8/11/2015	5500 MHz	-27.4		54.3		-1.3	
8/10/2016		-26.3	-4.0	53.3	-1.0	-2.0	-0.7
8/11/2015	5600 MHz	-24.4		56.4		-0.1	
8/10/2016		-23.6	-3.3	55.9	-0.5	-0.9	-0.8
8/11/2015		-23.1		57.5		-0.9	

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	$51.6 \Omega-8.4 \mathrm{j} \Omega$
Return Loss	-21.5 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	$51.4 \Omega-3.9 \mathrm{j} \Omega$
Return Loss	-27.8 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	$54.2 \Omega-3.4 \mathrm{j} \Omega$
Return Loss	-25.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$56.3 \Omega-1.5 \mathrm{j} \Omega$
Return Loss	-24.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	$56.6 \Omega-2.8 \mathrm{j} \Omega$
Return Loss	-23.4 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	$51.6 \Omega-7.2 \mathrm{j} \Omega$
Return Loss	-22.8 dB

Antenna Parameters with Body TSL at $5300 \mathbf{M H z}$

Impedance, transformed to feed point	$51.1 \Omega-2.7 \mathrm{j} \Omega$
Return Loss	-30.8 dB

Antenna Parameters with Body TSL at $\mathbf{5 5 0 0} \mathbf{~ M H z}$

Impedance, transformed to feed point	$54.3 \Omega-1.3 \mathrm{j} \Omega$
Return Loss	-27.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$56.4 \Omega-0.1 \mathrm{j} \Omega$
Return Loss	-24.4 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	$57.5 \Omega-0.9 \mathrm{j} \Omega$
Return Loss	-23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.206 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 08, 2011

DASY5 Validation Report for Head TSL

Date: 10.08.2015
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5300 MHz , Frequency: 5500 MHz , Frequency: 5600 MHz , Frequency: 5800 MHz
Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=4.53 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5300 \mathrm{MHz} ; \sigma=4.63 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5500 \mathrm{MHz} ; \sigma=$ $4.82 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=4.93 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.9 ; \rho=$ $1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=5.14 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2014, ConvF(5.21, 5.21, 5.21); Calibrated: 30.12 .2014 , $\operatorname{ConvF}(5.12,5.12,5.12$); Calibrated: 30.12 .2014 , $\operatorname{ConvF}(4.92,4.92$, 4.92); Calibrated: 30.12.2014, ConvF(4.9, 4.9, 4.9); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist=10mm, $f=5200 \mathrm{MHz} /$ Zoom Scan,

 dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$Reference Value $=66.84 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR (extrapolated) $=29.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.11 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 3 2} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=18.6 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5300 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0 :
 dist $=1.4 \mathrm{~mm}(8 x 8 x 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$

Reference Value $=67.35 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR (extrapolated) $=32.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.46 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.42 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.8 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,
 dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$

Reference Value $=66.30 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR (extrapolated) $=33.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.5 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.42 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=20.2 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=65.73 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.00 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=33.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.46 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.41 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=20.0 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm ($\mathbf{8 x 8 \times 7) / C u b e ~ 0 : ~ M e a s u r e m e n t ~ g r i d : ~} \mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=63.40 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR (extrapolated) $=33.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.1 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.31 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.7 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.08.2015
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5300 MHz , Frequency: 5500 MHz , Frequency: 5600 MHz , Frequency: 5800 MHz
Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=5.43 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5300 \mathrm{MHz} ; \sigma=5.56 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5500 \mathrm{MHz} ; \sigma=$ $5.82 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=5.95 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47.2 ; \rho=$ $1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=6.23 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=46.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; $\operatorname{ConvF}(4.95,4.95,4.95)$; Calibrated: 30.12 .2014 , $\operatorname{ConvF}(4.78,4.78$, 4.78); Calibrated: 30.12 .2014 , $\operatorname{ConvF}(4.45,4.45,4.45)$; Calibrated: $30.12 .2014, \operatorname{ConvF}(4.35,4.35$, 4.35); Calibrated: 30.12 .2014 , ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, d z=1.4 \mathrm{~mm}$
Reference Value $=60.11 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=30.4 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 7 7} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 1 7} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=18.1 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5300 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid $\cdot d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, d z=1.4 \mathrm{~mm}$
Reference Value $=59.89 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=31.4 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 7 9 \mathrm { W } / \mathrm { kg } ; \operatorname { S A R } (1 0 \mathrm { g }) = 2 . 1 7 \mathrm { W } / \mathrm { kg } , ~}$
Maximum value of SAR (measured) $=18.3 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5500 \mathrm{MHz} /$ Zoom Scan,

dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0 : Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=60.26 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.00 \mathrm{~dB}$
Peak SAR (extrapolated) $=35.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.3 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.3 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.9 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=59.24 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=35.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.1 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.25 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin=100 mW , dist=10mm, f=5800 MHz/Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$ Reference Value $=57.15 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.02 \mathrm{~dB}$ Peak SAR (extrapolated) $=36.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 9 1} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 1 9} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.6 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Appendix F - Phantom Calibration Data Sheets

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +4144245 9700, Fax +41442459779
info@speag.com, http.//www.speag.com

Certificate of Conformity / First Article Inspection

Item	Oval Flat Phantom ELI 4.0
Type No	QD OVA 001 B
Series No	1003 and higher
Manufacturer	Untersee Composites
	Knebelstrasse 8
	$\mathrm{CH}-8268$ Mannenbach, Switzerland

Tests

Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff .

Test	Requirement	Details	Units tested
Material thickness	Compliant with the standard requirements	Bottom plate: $2.0 \mathrm{~mm}+/-0.2 \mathrm{~mm}$	all
Material parameters	Dielectric parameters for required frequencies	$<6 \mathrm{GHz}:$ Rel. permittivity $=4$ $+/-1$, Loss tangent ≤ 0.05	Material sample
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions.	DGBE based simulating liquids. Observe Technical Note for material compatibility.	Equivalent phantoms, Material sample
Shape	Thickness of bottom material, Internal dimensions, Sagging compatible with standards from minimum frequency	Bottom elliptical $600 \times 400 \mathrm{~mm}$ Depth 190 mm, Shape is within tolerance for filling height up to 155 mm, Eventual sagging is reduced or eliminated by support via DUT	Prototypes, Sample testing

Standards

[1] CENELEC EN 50361-2001, « Basic standard for the measurement of the Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones ($300 \mathrm{MHz}-3 \mathrm{GHz}$) », July 2001
[2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
[3] IEC 62209-1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005
[4] IEC 62209 - 2, Draft, "Human Exposure to Radio Frequency Fields from Handheld and BodyMounted Wireless Communication Devices - Human models, Instrumentation and Procedures Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30 MHz to 6 GHz Handheld and Body-Mounted Devices used in close proximity to the Body.", February 2005
[5] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields ${ }^{n}$, Edition January 2001

Based on the tests above, we certify that this item is in compliance with the standards [1] to [5] if operated according to the specific requirements and considering the thickness. The dimensions are fully compliant with [4] from 30 MHz to 6 GHz . For the other standards, the minimum lower frequency limit is limited due to the dimensional requirements ([1]: 450 MHz , [2]: $300 \mathrm{MHz},[3]: 800 \mathrm{MHz}$, [5]: 375 MHz) and possibly further by the dimensions of the DUT.

Date 28.4.2008 Signature / Stamp
Schmid \& Partner Engineering AG
Phone +4144.2459700 , Fax $+41,442459779$
info@speag com; hup://www.speag.com

[^0]: ${ }^{A}$ The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Pages 5 and 6).
 ${ }^{B}$ Numerical linearization parameter: uncertainty not required.
 ${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^1]: ${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ${ }^{6}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

[^2]: ${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ${ }^{G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

