RF Exposure Lab

	LTE E	312 (750MHz) / S	etup Path	Loss = 4.7 (TS	9)	
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	22.27	21.75
			1	3	22.39	21.83
				5	22.27	21.73
	23017	699.7		1	22.38	21.60
			3	2	22.40	21.61
				3	22.34	21.53
			6	0	21.33	20.54
	23095	707.5	1	1	21.59	21.70
				3	21.63	21.78
				5	21.43	21.59
1.4 MHz			3	1	21.66	21.56
				2	21.65	21.55
				3	21.62	21.52
			6	0	21.46	20.62
				1	21.23	21.15
			1	3	21.17	21.13
				5	20.90	20.85
	23172	715.3		1	21.21	20.92
			3	2	21.19	20.89
				3	21.02	20.70
			6	0	20.67	19.94

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	21.66	21.87
			1	7	21.75	22.08
				14	21.87	21.96
_	23025	700.5		1	21.53	21.42
			7	4	21.59	21.46
				8	21.46	21.35
			15	0	21.62	20.81
				1	22.55	21.79
		707.5	1	7	22.61	21.86
				14	22.57	21.77
3 MHz	23095			1	22.12	22.06
				4	22.19	22.14
				8	22.04	22.01
			15	0	21.59	20.77
				1	21.69	21.68
			1	7	21.35	21.43
				14	21.07	21.13
	23164	714.5		1	21.35	21.06
			7	4	21.42	21.11
				8	21.21	20.98
			15	0	21.03	20.24

RF Exposure Lab

	LTE E	312 (750MHz) / S	etup Path	Loss = 4.7 (TS	9)	
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	22.33	21.59
			1	12	22.56	21.83
				24	22.43	21.68
2303	23035	701.5		1	21.69	20.64
			12	7	21.71	20.79
				13	21.76	20.81
			25	0	21.69	20.76
	23095			1	21.74	21.74
		707.5	1	12	21.61	21.73
				24	21.59	21.67
5 MHz			12	1	21.51	20.51
				7	21.56	20.67
				13	21.68	20.72
			25	0	21.55	20.66
				1	22.76	22.11
			1	12	22.16	21.74
				24	21.75	21.21
	23154	713.5		1	21.69	20.77
			12	7	21.32	20.45
				13	20.90	20.03
			25	0	21.32	20.47

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	21.89	22.00
			1	24	21.72	21.90
				49	21.09	21.38
_	23060	704.0		1	21.69	20.00
			25	13	21.78	20.81
				25	21.58	20.65
			50	0	21.59	20.73
	23095			1	22.74	22.06
		707.5	1	24	22.48	21.77
				49	22.69	21.95
10 MHz			25	1	21.45	20.53
				13	21.62	20.65
				25	21.72	20.87
			50	0	21.65	20.70
				1	21.95	21.93
			1	24	21.66	21.83
				49	20.93	21.06
	23129	711.0		1	21.97	21.04
			25	13	21.89	20.98
				25	21.27	20.40
			50	0	21.52	20.79

RF Exposure Lab

	LTE E	317 (750MHz) / S	etup Path	Loss = 4.7 (TS	9)	
Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	22.33	21.59
			1	12	22.56	21.83
				24	22.43	21.68
2:	23035	701.5		1	21.69	20.64
			12	7	21.71	20.79
				13	21.76	20.81
			25	0	21.69	20.76
				1	21.74	21.74
		707.5	1	12	21.61	21.73
				24	21.59	21.67
5 MHz	23095		12	1	21.51	20.51
				7	21.56	20.67
				13	21.68	20.72
			25	0	21.55	20.66
				1	22.76	22.11
			1	12	22.16	21.74
				24	21.75	21.21
	23154	713.5		1	21.69	20.77
			12	7	21.32	20.45
				13	20.90	20.03
			25	0	21.32	20.47

Bandwidth	UL Channel	UL Freq. MHz	# RBs	Offset RBs	QPSK	16QAM
				1	21.89	22.00
			1	24	21.72	21.90
				49	21.09	21.38
-	23060	704.0		1	21.69	20.00
			25	13	21.78	20.81
				25	21.58	20.65
			50	0	21.59	20.73
	23095			1	22.74	22.06
		707.5	1	24	22.48	21.77
				49	22.69	21.95
10 MHz			25	1	21.45	20.53
				13	21.62	20.65
				25	21.72	20.87
			50	0	21.65	20.70
				1	21.95	21.93
			1	24	21.66	21.83
				49	20.93	21.06
	23129	711.0		1	21.97	21.04
			25	13	21.89	20.98
				25	21.27	20.40
			50	0	21.52	20.79

Table 10.5.2 Test Reduction Table – LTE												
Band/	Side	Required	Bondwidth	Medulation	RB	RB	Tested/					
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced					
		18700					Tested					
		18900			50	0	Tested					
		19100					Tested					
		18700					Reduced ¹					
		18900			100	0	Reduced ¹					
		19100		ODCK			Reduced ¹					
		18700		QPSK			Tested					
		18900				49	Tested					
		19100			4		Tested					
		18700			1		Reduced ²					
		18900				99	Reduced ²					
A		19100					Reduced ²					
	А	18700	20 MHz				Reduced ³					
		18900			50	25	Reduced ³					
		19100					Reduced ³					
		18700					Reduced ¹					
		18900			100	0	Reduced ¹					
		19100	-				Reduced ¹					
		18700		16QAM	1		Reduced ⁴					
		18900				49	Reduced ⁴					
		19100	-			-	Reduced ⁴					
		18700					Reduced ⁴					
		18900				99	Reduced ⁴					
		19100					Reduced ⁴					
Band 2			bandwidths (15 M	/Hz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced ⁵					
1850-1910 MHz		18700			50	25	Reduced ⁶					
		18900					Tested					
		19100					Reduced ⁶					
		18700			100	0	Reduced ¹					
		18900					Reduced ¹					
		19100					Reduced ¹					
		18700		QPSK			Reduced ²					
		18900				49	Tested					
		19100					Reduced ²					
		18700			1		Reduced ²					
		18900				99	Reduced ²					
		19100	00.041				Reduced ²					
	В	18700	20 MHz				Reduced ³					
	_	18900			50	25	Reduced ³					
		19100				-	Reduced ³					
		18700					Reduced ¹					
		18900			100	0	Reduced ¹					
		19100				°,	Reduced ¹					
		18700		16QAM			Reduced ⁴					
		18900				49	Reduced ⁴					
		19100				.0	Reduced ⁴					
		18700	<u> </u>		1		Reduced ⁴					
		18900				99	Reduced ⁴					
	1		wer bandwidths (15 MH			99						
		19100					Reduced ⁴					

Table 10.5.2 Test Reduction Table – I TE

Reduced¹ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		18700			Anobation	Chicot	Reduced ⁶
		18900			50	25	Tested
		19100			50	20	Reduced ⁶
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100			100	0	Reduced ¹
		18700		QPSK			Reduced ⁶
		18900				49	Tested
		19100					Reduced ⁶
		18700			1		Reduced ²
		18900				99	Reduced ²
		19100					Reduced ²
	С	18700	20 MHz				Reduced ³
		18900			50	25	Reduced ³
		19100				-	Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		400 414			Reduced ¹
		18700		16QAM			Reduced ⁴
		18900			1	49	Reduced ⁴
		19100					Reduced ⁴
		18700					Reduced ⁴
		18900				99	Reduced ⁴
		19100					Reduced ⁴
Band 2		All lower	Reduced ⁵				
1850-1910 MHz		18700		QPSK	50	25 0	Reduced ⁶
		18900	-				Tested
		19100					Reduced ⁶
		18700					Reduced ¹
		18900					Reduced ¹
		19100					Reduced ¹
		18700		QFSK			Reduced ⁶
		18900				49	Tested
		19100			1		Reduced ⁶
		18700			I		Reduced ²
		18900				99	Reduced ²
		19100	20 MHz				Reduced ²
	D	18700					Reduced ³
		18900			50	25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		16QAM			Reduced ¹
		18700		IUQAIN			Reduced ⁴
		18900				49	Reduced ⁴
		19100			1		Reduced ⁴
		18700			I		Reduced ⁴
		18900				99	Reduced ⁴
		19100					Reduced ⁴
		All lower	bandwidths (15 N	/Hz, 10 MHz, 5 MH W/kg, the 100% RE		z)	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Report Number: SAR.20161204

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		18700					Reduced ⁶
		18900			50	25	Tested
		19100					Reduced ⁶
		18700					Reduced ¹
		18900	20 MHz		100	0	Reduced ¹
		19100		ODCK			Reduced ¹
		18700		QPSK		49	Reduced ⁶
		18900			1		Tested
	E	19100					Reduced ⁶
		18700					Reduced ²
		18900				99	Reduced ²
Dand 2		19100					Reduced ²
Band 2 1850-1910 MHz		18700					Reduced ³
1830-1910 10112		18900			50	25	Reduced ³
		19100					Reduced ³
		18700				0	Reduced ¹
		18900			100		Reduced ¹
		19100		16QAM			Reduced ¹
		18700		IOQAIVI			Reduced ⁴
		18900				49	Reduced ⁴
		19100			1		Reduced ⁴
		18700			I		Reduced ⁴
		18900				99	Reduced ⁴
		19100					Reduced ⁴
		All lower	bandwidths (15 M	/Hz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced ⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 (4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 223.9 mW Closest Distance to Side F: 110.0 mm

[{[(3.0)/(√1.91)]*50 mm}]+[{110-50 mm}*10]=708 mW which is greater than 223.9 mW

Band/		Required	_		RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20050			Anocation	011301	Tested
		20030			50	25	Tested
		20300			50	25	Tested
		20050					Reduced ¹
		20030			100	0	Reduced ¹
		20300			100	0	Reduced ¹
		20050		QPSK			Tested
		20175	•			49	Tested
		20300	•			10	Tested
		20050	•		1		Reduced ²
		20175	•			99	Reduced ²
		20300	•			00	Reduced ²
	А	20050	20 MHz	-			Reduced ³
		20175			50	25	Reduced ³
		20300			00	20	Reduced ³
		20050					Reduced ¹
		20175			100	0	Reduced ¹
		20300				-	Reduced ¹
		20050		16QAM			Reduced ⁴
		20175			1	49	Reduced ⁴
		20300					Reduced ⁴
		20050					Reduced ⁴
		20175				99	Reduced ⁴
		20300					Reduced ⁴
Band 4		All lower	Reduced ⁵				
1710-1755 MHz		20050	-	QPSK	50	25	Reduced ⁶
		20175					Tested
		20300					Reduced ⁶
		20050			100	0	Reduced ¹
		20175					Reduced ¹
		20300					Reduced ¹
		20050					Reduced ⁶
		20175				49	Tested
		20300			4		Reduced ⁶
		20050			1		Reduced ²
		20175				99	Reduced ²
		20300	20 MHz				Reduced ²
	В	20050					Reduced ³
		20175			50	25	Reduced ³
		20300					Reduced ³
		20050					Reduced ¹
		20175			100	0	Reduced ¹
		20300		1604M			Reduced ¹
		20050	J	16QAM			Reduced ⁴
		20175	J			49	Reduced ⁴
		20300	J		1		Reduced ⁴
		20050	J		I		Reduced ⁴
		20175	\neg			99	Reduced ⁴
		20300					Reduced ⁴
		All lower	handwidths (15 M	/Hz, 10 MHz, 5 MH	7 3 MH7 1 4 MH	7)	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/		Required	_		RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20050			Anobation	Chicot	Tested
		20175			50	25	Tested
		20300			00	20	Tested
		20050	•				Reduced ¹
		20175	•		100	0	Reduced ¹
		20300			100	Ũ	Reduced ¹
		20050		QPSK			Tested
		20175				49	Tested
		20300				-	Tested
		20050			1		Reduced ²
		20175				99	Reduced ²
		20300					Reduced ²
	С	20050	20 MHz				Reduced ³
	-	20175			50	25	Reduced ³
		20300					Reduced ³
		20050					Reduced ¹
		20175			100	0	Reduced ¹
		20300		400 414		-	Reduced ¹
		20050		16QAM			Reduced ⁴
		20175			1	49	Reduced ⁴
		20300					Reduced ⁴
		20050					Reduced ⁴
		20175				99	Reduced ⁴
		20300					Reduced ⁴
Band 4		All lower	Reduced ⁵				
1710-1755 MHz		20050		QPSK	50 100	25 0	Reduced ⁶
		20175					Tested
		20300					Reduced ⁶
		20050					Reduced ¹
		20175					Reduced ¹
		20300					Reduced ¹
		20050		QFSK			Reduced ⁶
		20175				49	Tested
		20300			1		Reduced ⁶
		20050			I		Reduced ²
		20175				99	Reduced ²
		20300	20 MHz				Reduced ²
	D	20050	20 1011 12				Reduced ³
		20175			50	25	Reduced ³
		20300					Reduced ³
		20050					Reduced ¹
		20175			100	0	Reduced ¹
		20300		16QAM			Reduced ¹
		20050]	IUQAIN			Reduced ⁴
		20175]			49	Reduced ⁴
		20300			1		Reduced ⁴
		20050			I		Reduced ⁴
		20175				99	Reduced ⁴
		20300					Reduced ⁴
	1	All lower	bandwidths (15 N	//Hz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH B testing is reduce	z)	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		20050					Reduced ⁶
		20175			50	25	Tested
		20300					Reduced ⁶
		20050	20 MHz				Reduced ¹
		20175			100	0	Reduced ¹
		20300		QPSK			Reduced ¹
		20050		QFSK	1		Reduced ⁶
		20175				49	Tested
		20300					Reduced ⁶
		20050					Reduced ²
	Е	20175				99	Reduced ²
Band 4		20300					Reduced ²
1710-1755 MHz		20050			50	25	Reduced ³
1710-1755 10112		20175					Reduced ³
		20300					Reduced ³
		20050					Reduced ¹
		20175			100	0	Reduced ¹
		20300		16QAM			Reduced ¹
		20050		IUQAIVI			Reduced ⁴
		20175				49	Reduced ⁴
		20300			1		Reduced ⁴
		20050			I		Reduced ⁴
		20175				99	Reduced ⁴
		20300					Reduced ⁴
		All lower	bandwidths (15 M	/Hz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 223.9 mW Closest Distance to Side F: 110.0 mm

[{[(3.0)/(√1.755)]*50 mm}]+[{110-50 mm}*10]=685 mW which is greater than 223.9 mW

Band/		Required	_		RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20450			Anobation	Uncot	Reduced ⁶
		20525	-		25	12	Tested
		20600	-		20	12	Reduced ⁶
		20000	-				Reduced ¹
		20525	-		50	0	Reduced ¹
		20600	-		00	0	Reduced ¹
		20000	-	QPSK			Reduced ⁶
		20525	-			12	Tested
		20600	-				Reduced ⁶
		20450			1		Reduced ²
		20525				24	Reduced ²
		20600	-				Reduced ²
	А	20450	10 MHz				Reduced ³
		20525			25	12	Reduced ³
		20600			_0		Reduced ³
		20450					Reduced ¹
		20525		16QAM -	50	0	Reduced ¹
		20600				-	Reduced ¹
		20450					Reduced ⁴
		20525			1	12	Reduced ⁴
		20600					Reduced ⁴
		20450	-				Reduced ⁴
		20525				24	Reduced ⁴
		20600					Reduced ⁴
Band 5			All lower	bandwidths (5 MH	z)		Reduced⁵
824-849 MHz		20450			25 50	12 0	Reduced ⁶
		20525					Tested
		20600					Reduced ⁶
		20450					Reduced ¹
		20525					Reduced ¹
		20600					Reduced ¹
		20450		QPSK		12	Reduced ⁶
		20525					Tested
		20600			4		Reduced ⁶
		20450			1		Reduced ²
		20525				24	Reduced ²
		20600	10 MHz				Reduced ²
	В	20450					Reduced ³
		20525			25	12	Reduced ³
		20600					Reduced ³
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600		160AM			Reduced ¹
		20450		16QAM			Reduced ⁴
		20525				12	Reduced ⁴
		20600			1		Reduced ⁴
		20450			I		Reduced ⁴
		20525				24	Reduced ⁴
		20600				24	Reduced ⁴
	1			bandwidths (5 MH	7)		Reduced⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	0.1	Required	Day bat kit	Mar Inda Cara	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20450				•	Reduced ⁶
		20525			25	12	Tested
		20600			_0	.=	Reduced ⁶
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600				0	Reduced ¹
		20450		QPSK			Reduced ⁶
		20525				12	Tested
		20600					Reduced ⁶
		20450			1		Reduced ²
		20525				24	Reduced ²
		20600					Reduced ²
	С	20450	10 MHz				Reduced ³
	_	20525			25	12	Reduced ³
		20600			-		Reduced ³
		20450		-			Reduced ¹
		20525			50	0	Reduced ¹
		20600		400.004			Reduced ¹
		20450		16QAM -			Reduced ⁴
		20525			1	12	Reduced ⁴
		20600					Reduced ⁴
		20450					Reduced ⁴
		20525	-			24	Reduced ⁴
		20600					Reduced ⁴
Band 5		-	All lower	bandwidths (5 MH	z)		Reduced⁵
824-849 MHz		20450		QPSK	25	12	Reduced ⁶
		20525					Tested
		20600			50	0	Reduced ⁶
		20450					Reduced ¹
		20525					Reduced ¹
		20600					Reduced ¹
		20450		QPSK			Reduced ⁶
		20525				12	Tested
		20600			4		Reduced ⁶
		20450			1		Reduced ²
		20525				24	Reduced ²
		20600	10 MHz				Reduced ²
	D	20450					Reduced ³
		20525			25	12	Reduced ³
		20600					Reduced ³
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600		160AM			Reduced ¹
		20450		16QAM			Reduced ⁴
		20525				12	Reduced ⁴
		20600			1		Reduced ⁴
		20450			I		Reduced ⁴
		20525				24	Reduced ⁴
		20600	-				Reduced ⁴
	1			bandwidths (5 MH	2)		Reduced⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		20450					Reduced ⁶
		20525			25	12	Tested
		20600					Reduced ⁶
		20450			50	0	Reduced ¹
		20525					Reduced ¹
		20600		QPSK			Reduced ¹
		20450		QPSK			Reduced ⁶
		20525				12 24	Tested
		20600	10 MHz		1		Reduced ⁶
		20450					Reduced ²
		20525					Reduced ²
Band 5		20600					Reduced ²
824-849 MHz	E	20450					Reduced ³
024-049 10112		20525			25	12	Reduced ³
		20600					Reduced ³
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600		16QAM			Reduced ¹
		20450		IUQAIN			Reduced ⁴
		20525				12	Reduced ⁴
		20600			1		Reduced ⁴
		20450			I		Reduced ⁴
		20525				24	Reduced ⁴
		20600					Reduced ⁴
		a that 5004 DD to at in a		r bandwidths (5 MH			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 110.0 mm

[{[(3.0)/(√0.849)]*50 mm}]+[{110-50 mm}*10]=762 mW which is greater than 251.2 mW

Band/	0.1	Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20850			7	•	Tested
		21100	•		50	25	Tested
		21350					Tested
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350				· ·	Reduced ¹
		20850		QPSK			Tested
		21100				49	Tested
		21350				-	Tested
		20850			1		Reduced ¹
		21100				99	Reduced ¹
		21350	00.041				Reduced ¹
	Α	20850	20 MHz	-			Reduced ³
		21100			50	25	Reduced ³
		21350					Reduced ³
		20850		16QAM -			Reduced ¹
		21100			100	0	Reduced ¹
		21350					Reduced ¹
		20850					Reduced ⁴
		21100			1	49	Reduced ⁴
		21350	All lower bandwidt				Reduced ⁴
		20850					Reduced ⁴
		21100				99	Reduced ⁴
		21350					Reduced ⁴
Band 7			Reduced ⁵				
2500-2570 MHz		20850		QPSK -	50 100	25 0	Reduced ⁶
		21100					Tested
		21350					Reduced ⁶
		20850					Reduced ¹
		21100					Reduced ¹
		21350					Reduced ¹
		20850		QLOK			Reduced ²
		21100				49	Reduced ²
		21350			1		Reduced ²
		20850			1		Reduced ⁶
		21100				99	Tested
		21350	20 MHz				Reduced ⁶
	В	20850	20 10112				Reduced ³
		21100			50	25	Reduced ³
		21350					Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		16QAM			Reduced ¹
		20850					Reduced ⁴
		21100				49	Reduced ⁴
		21350	1		1		Reduced ⁴
		20850	1				Reduced ⁴
		21100				99	Reduced ⁴
		21350					Reduced ⁴
		n the 50% RB testing		<u>lths (15 MHz, 10 M</u>			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20850			Anocation	Onser	Reduced ⁶
		21100			50	25	Tested
		21350			50	25	Reduced ⁶
		20850					Reduced ¹
		21100	-		100	0	Reduced ¹
		21350	•		100	0	Reduced ¹
		20850	•	QPSK			Reduced ⁶
		21100				49	Tested
		21350					Reduced ⁶
		20850			1		Reduced ⁶
		21100				99	Reduced ⁶
		21350					Reduced ⁶
	С	20850	20 MHz				Reduced ³
	Ŭ	21100			50	25	Reduced ³
		21350				20	Reduced ³
		20850					Reduced ¹
		21100		16QAM -	100	0	Reduced ¹
		21350				-	Reduced ¹
		20850					Reduced ⁴
		21100			1	49	Reduced ⁴
		21350					Reduced ⁴
		20850	-				Reduced ⁴
		21100				99	Reduced ⁴
		21350					Reduced ⁴
Band 7			Reduced ⁵				
2500-2570 MHz		20850	All lower bandwid		50	25 0	Tested
		21100					Tested
		21350					Tested
		20850					Reduced ¹
		21100					Reduced ¹
		21350					Reduced ¹
		20850		QPSK			Reduced ²
		21100				49	Reduced ²
		21350			4		Reduced ²
		20850			1		Tested
		21100				99	Tested
		21350	20 MHz				Tested
	D	20850					Reduced ³
		21100			50	25	Reduced ³
		21350					Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		1604M			Reduced ¹
		20850]	16QAM			Reduced ⁴
		21100]			49	Reduced ⁴
		21350]		4		Reduced ⁴
		20850			1		Reduced ⁴
		21100	1			99	Reduced ⁴
		21350					Reduced ⁴
	1		All lower bandwid	ths (15 MHz, 10 M	Hz 5 MHz)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		20850					Reduced ⁶
		21100			50	25	Tested
		21350					Reduced ⁶
		20850	-				Reduced ¹
		21100			100	0	Reduced ¹
		21350		QPSK			Reduced ¹
		20850		QFSK			Reduced ²
		21100				49 99	Reduced ²
		21350	20 MHz		1		Reduced ²
		20850					Reduced ⁶
		21100					Tested
Band 7		21350					Reduced ⁶
2500-2570 MHz	Е	20850	20 MHZ				Reduced ³
2000-2010 10112		21100			50	25	Reduced ³
		21350					Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		16QAM			Reduced ¹
		20850		IUQAIN			Reduced ⁴
		21100				49	Reduced ⁴
		21350			1		Reduced ⁴
		20850			I		Reduced ⁴
		21100				99	Reduced ⁴
		21350					Reduced ⁴
				Iths (15 MHz, 10 M			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 223.9 mW Closest Distance to Side F: 110.0 mm

[{[(3.0)/(v2.70)]*50 mm}]+[{70-50 mm}*10]=291 mW which is greater than 223.9 mW

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23230			25	12	Tested
		23230		0001	50	0	Reduced ¹
		23230	10 MHz —	QPSK	4	12	Tested
		23230			I	24	Reduced ²
	Α	23230		16QAM	25	12	Reduced ³
		23230			50	0	Reduced ¹
		23230			1	12	Reduced ⁴
		23230			I	24	Reduced ⁴
Band 13			All lower bandwidths (5 MHz)				
777-787 MHz		23230		-	25	12	Tested
		23230			50	0	Reduced ¹
		23230		QPSK	1	12	Tested
		23230	10 MHz		I	24	Reduced ²
	В	23230	TUMHZ		25	12	Reduced ³
		23230]	16QAM	50	0	Reduced ¹
		23230]	TOQAIVI	1	12	Reduced ⁴
		23230]		I	24	Reduced ⁴
			All lower	bandwidths (5 MH	z)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23230			25	12	Tested
		23230		QPSK	50	0	Reduced ¹
		23230		QFSK	1	12	Tested
		23230	10 MHz		I	24	Reduced ²
	С	23230	All lower t	16QAM	25	12	Reduced ³
		23230			50	0	Reduced ¹
		23230			1	12	Reduced ⁴
		23230			1	24	Reduced ⁴
Band 13			Reduced ⁵				
777-787 MHz		23230		QPSK	25	12	Tested
		23230			50	0	Reduced ¹
		23230		QFSK	1	12	Tested
		23230	10 MHz		I	24	Reduced ²
	D	23230			25	12	Reduced ³
		23230		16QAM	50	0	Reduced ¹
		23230		TOQAIVI	1	12	Reduced ⁴
		23230			I	24	Reduced ⁴
			All lower	r bandwidths (5 MH	lz)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Report Number: SAR.20161204

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23230	10 MHz		25	12	Tested
		23230		QPSK	50	0	Reduced ¹
		23230			1	12	Tested
Band 13		23230			I	24	Reduced ²
777-787 MHz	E	23230			25	12	Reduced ³
777-787 10112		23230			50	0	Reduced ¹
		23230		16QAM	1	12	Reduced ⁴
		23230			I	24	Reduced ⁴
		All lower bandwidths (5 MHz)					Reduced ⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) l) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 223.9 mW Closest Distance to Side F: 110.0 mm

[{[(3.0)/(√0.787)]*50 mm}]+[{110-50 mm}*10]=769 mW which is greater than 223.9 mW

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		23060			/ mooution	Oncot	Reduced ⁶
		23095			25	12	Tested
		23129			20	12	Reduced ⁶
		23060	•				Reduced ¹
		23095			50	0	Reduced ¹
		23129				Ū	Reduced ¹
		23060		QPSK			Reduced ⁶
		23095				12	Tested
		23129					Reduced ⁶
		23060			1		Reduced ²
		23095				24	Reduced ²
		23129	10.141				Reduced ²
	А	23060	10 MHz				Reduced ³
		23095			25	12	Reduced ³
		23129					Reduced ³
		23060		16QAM			Reduced ¹
		23095			50	0	Reduced ¹
		23129					Reduced ¹
		23060					Reduced ⁴
		23095			1	12	Reduced ⁴
		23129					Reduced ⁴
		23060					Reduced ⁴
		23095				24	Reduced ⁴
		23129					Reduced ⁴
Band 12			All lower	r bandwidths (5 MH	z)		Reduced ⁵
699-716 MHz		23060		QPSK	25 50	12 0	Reduced ⁶
		23095					Tested
		23129					Reduced ⁶
		23060					Reduced ¹
		23095					Reduced ¹
		23129					Reduced ¹
		23060		QFSK			Reduced ⁶
		23095				12	Tested
		23129			1		Reduced ⁶
		23060			I		Reduced ²
		23095				24	Reduced ²
		23129	10 MHz				Reduced ²
	В	23060					Reduced ³
		23095			25	12	Reduced ³
		23129					Reduced ³
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		16QAM			Reduced ¹
		23060	ļ				Reduced ⁴
		23095	ļ			12	Reduced ⁴
		23129]		1		Reduced ⁴
		23060	ļ		I		Reduced ⁴
		23095]			24	Reduced ⁴
		23129					Reduced ⁴
	1			r bandwidths (5 MH W/kg. the 100% RE			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	Olde	Required	Densdusidat		RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
····/		23060					Reduced ⁶
		23095			25	12	Tested
		23129			-		Reduced ⁶
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		0.001/		-	Reduced ¹
		23060		QPSK			Reduced ⁶
		23095				12	Tested
		23129			4		Reduced ⁶
		23060			1		Reduced ²
		23095				24	Reduced ²
		23129					Reduced ²
	С	23060	10 MHz	-			Reduced ³
		23095			25	12	Reduced ³
		23129					Reduced ³
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		400414			Reduced ¹
		23060		16QAM			Reduced ⁴
		23095				12	Reduced ⁴
		23129			1	24	Reduced ⁴
		23060					Reduced ⁴
		23095					Reduced ⁴
		23129					Reduced ⁴
Band 12			All lower	⁻ bandwidths (5 MH	z)		Reduced ⁵
699-716 MHz		23060		QPSK	25 50	12 0	Reduced ⁶
		23095					Tested
		23129					Reduced ⁶
		23060					Reduced ¹
		23095					Reduced ¹
		23129					Reduced ¹
		23060		QFOR			Reduced ⁶
		23095				12	Tested
		23129			1		Reduced ⁶
		23060			I		Reduced ²
		23095				24	Reduced ²
		23129	10 MHz				Reduced ²
	D	23060					Reduced ³
		23095			25	12	Reduced ³
		23129					Reduced ³
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		16QAM			Reduced ¹
		23060		IUQAIVI			Reduced ⁴
		23095				12	Reduced ⁴
		23129			1		Reduced ⁴
		23060			I		Reduced ⁴
		23095				24	Reduced ⁴
		23129					Reduced ⁴
	1			bandwidths (5 MH	7)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23060					Reduced ⁶
		23095			25	12	Tested
		23129					Reduced ⁶
		23060			50		Reduced ¹
		23095				0	Reduced ¹
		23129		QPSK			Reduced ¹
		23060		QFSK			Reduced ⁶
		23095				12	Tested
		23129			1		Reduced ⁶
		23060				24	Reduced ²
		23095					Reduced ²
Band 12		23129					Reduced ²
699-716 MHz	E	23060	TUMHZ				Reduced ³
099-7 10 10112		23095			25	12	Reduced ³
		23129					Reduced ³
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		16QAM			Reduced ¹
		23060		IUQAIN			Reduced ⁴
		23095				12	Reduced ⁴
		23129			1		Reduced ⁴
		23060	1		I		Reduced ⁴
		23095				24	Reduced ⁴
		23129					Reduced ⁴
				bandwidths (5 MH			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 110.0 mm

[{[(3.0)/(√0.849)]*50 mm}]+[{110-50 mm}*10]=762 mW which is greater than 251.2 mW

Report Number: SAR.20161204

Band/	01.1	Required	Denducture	Madulatio	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
······································		23780					Reduced ⁶
		23790			25	12	Tested
		23800	-		20		Reduced ⁶
		23780					Reduced ¹
		23790			50	0	Reduced ¹
		23800				C C	Reduced ¹
		23780		QPSK			Reduced ⁶
		23790				12	Tested
		23800					Reduced ⁶
		23780			1		Reduced ²
		23790				24	Reduced ²
		23800					Reduced ²
	Α	23780	10 MHz				Reduced ³
		23790			25	12	Reduced ³
		23800					Reduced ³
		23780					Reduced ¹
		23790			50	0	Reduced ¹
		23800		400 414			Reduced ¹
		23780		16QAM			Reduced ⁴
		23790				12	Reduced ⁴
		23800			4		Reduced ⁴
		23780			1		Reduced ⁴
		23790				24	Reduced ⁴
		23800					Reduced ⁴
Band 17			All lower	r bandwidths (5 MH	z)		Reduced ⁵
704-716 MHz		23780		QPSK	25	12	Reduced ⁶
		23790					Tested
		23800					Reduced ⁶
		23780			50		Reduced ¹
		23790				0	Reduced ¹
		23800					Reduced ¹
		23780			1	12	Reduced ⁶
		23790					Tested
		23800					Reduced ⁶
		23780			I		Reduced ²
		23790				24	Reduced ²
		23800	10 MHz				Reduced ²
	В	23780	10 10112				Reduced ³
		23790			25	12	Reduced ³
		23800					Reduced ³
		23780					Reduced ¹
		23790			50	0	Reduced ¹
		23800		16QAM			Reduced ¹
		23780	1				Reduced ⁴
		23790	1			12	Reduced ⁴
		23800			1		Reduced ⁴
		23780			I		Reduced ⁴
		23790				24	Reduced ⁴
	ļ	23800					Reduced ⁴
			All lower	r bandwidths (5 MH W/kg, the 100% RE	z)		Reduced ⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/		Required	_		RB	RB	Tested/		
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced		
		23780			Anobation	Onset	Reduced ⁶		
		23790	-		25	12	Tested		
		23800	-		20	12	Reduced ⁶		
		23780	-				Reduced ¹		
		23790	-		50	0	Reduced ¹		
		23800	-		00	0	Reduced ¹		
		23780	-	QPSK			Reduced ⁶		
		23790				12	Tested		
		23800				.=	Reduced ⁶		
		23780			1		Reduced ²		
		23790				24	Reduced ²		
		23800	-				Reduced ²		
	С	23780	10 MHz				Reduced ³		
	Ũ	23790			25	12	Reduced ³		
		23800			_0	.=	Reduced ³		
		23780					Reduced ¹		
		23790			50	0	Reduced ¹		
		23800				-	Reduced ¹		
		23780		16QAM			Reduced ⁴		
		23790				12	Reduced ⁴		
		23800					Reduced ⁴		
		23780			1		Reduced ⁴		
		23790				24	Reduced ⁴		
		23800					Reduced ⁴		
Band 17			All lower	bandwidths (5 MH	z)		Reduced⁵		
704-716 MHz		23780		QPSK -	/		Reduced ⁶		
		23790	-		25	12	Tested		
		23800					Reduced ⁶		
		23780			50		Reduced ¹		
		23790				0	Reduced ¹		
		23800					Reduced ¹		
		23780			1	12	Reduced ⁶		
		23790					Tested		
		23800					Reduced ⁶		
		23780					Reduced ²		
		23790				24	Reduced ²		
		23800	10 MHz				Reduced ²		
	D	23780	TUMHZ				Reduced ³		
		23790			25	12	Reduced ³		
		23800					Reduced ³		
		23780					Reduced ¹		
		23790			50	0	Reduced ¹		
		23800		400414			Reduced ¹		
		23780		16QAM			Reduced ⁴		
		23790				12	Reduced ⁴		
		23800			4		Reduced ⁴		
		23780			1		Reduced ⁴		
		23790	1			24	Reduced ⁴		
		23800	1			27	Reduced ⁴		
	1	All lower bandwidths (5 MHz)							

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23780					Reduced ⁶
		23790			25	12	Tested
		23800					Reduced ⁶
		23780	-			0	Reduced ¹
		23790			50		Reduced ¹
		23800		QPSK			Reduced ¹
		23780		QFON			Reduced ⁶
		23790				12	Tested
		23800	10 MHz		1		Reduced ⁶
		23780			1		Reduced ²
		23790				24	Reduced ²
Band 17		23800					Reduced ²
704-716 MHz	E	23780				12	Reduced ³
70471010112		23790			25		Reduced ³
		23800					Reduced ³
		23780					Reduced ¹
		23790			50	0	Reduced ¹
		23800		16QAM			Reduced ¹
		23780		IUQAIN			Reduced ⁴
		23790				12	Reduced ⁴
		23800	-		1		Reduced ⁴
		23780			1		Reduced ⁴
		23790				24	Reduced ⁴
		23800					Reduced ⁴
				bandwidths (5 MH			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 110.0 mm

[{[(3.0)/(√0.849)]*50 mm}]+[{110-50 mm}*10]=762 mW which is greater than 251.2 mW

Without Belt Clip $\square N/A$

SAR Data Summary – 750 MHz Body – LTE Band 12

MEASUREMENT RESULTS End RB RB MPR Frequency BW/ Measured Reported Gap Plot Position Power Modulation Size Offset Target SAR (W/kg) SAR (W/kg) MHz Ch. (dBm) 24 0.71 1 707.5 23095 10 MHz/QPSK 1 0 22.48 0.558 Side A 23095 21.78 707.5 10 MHz/QPSK 25 12 0.445 0.53 1 -----707.5 23095 10 MHz/QPSK 24 0 22.48 0.171 0.22 -----1 Side B 10 MHz/QPSK 707.5 23095 -----25 12 1 21.78 0.142 0.17 707.5 10 MHz/QPSK 22.48 10 23095 24 0 0.68 1 0.537 -----Side C mm -----707.5 23095 10 MHz/QPSK 25 12 1 21.78 0.461 0.54 707.5 23095 10 MHz/QPSK 24 0 22.48 0.337 0.43 1 Side D -----23095 10 MHz/QPSK 25 21.78 0.251 707.5 12 1 0.30 707.5 23095 10 MHz/QPSK 0.0412 0.05 1 24 0 22.48 -----Side E -----707.5 23095 10 MHz/QPSK 25 12 21.78 0.0343 0.04 1 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Power Measured Conducted ERP EIRP 2. SAR Measurement Phantom Configuration Left Head \times Eli4 Right Head SAR Configuration \boxtimes Body Head 3. Test Signal Call Mode Test Code Base Station Simulator

With Belt Clip

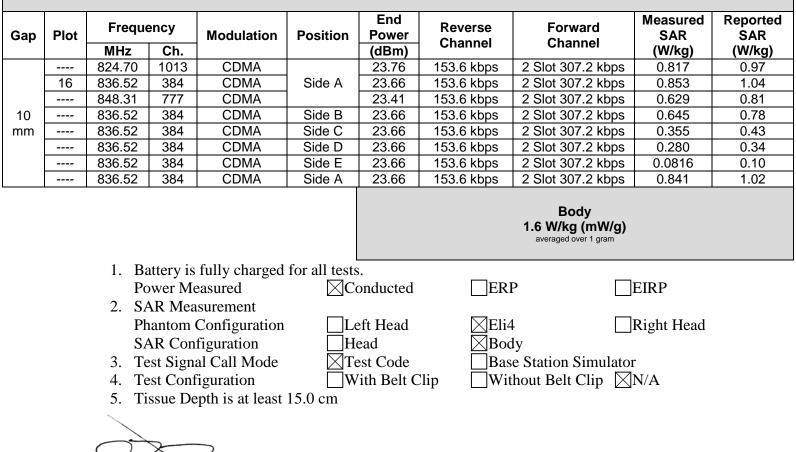
4. Test Configuration

5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 750 MHz Body – LTE Band 13

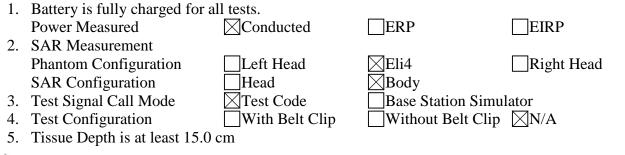
MEASUREMENT RESULTS End RB RB MPR Frequency BW/ Measured Reported Gap Plot Position Power Modulation Size Offset Target SAR (W/kg) SAR (W/kg) MHz Ch. (dBm) 24 0.62 2 782.0 23230 10 MHz/QPSK 1 0 22.56 0.497 Side A 21.73 782.0 23230 10 MHz/QPSK 25 12 0.401 0.48 1 -----782.0 23230 10 MHz/QPSK 24 0 22.56 0.164 0.20 -----1 Side B 10 MHz/QPSK 782.0 23230 -----25 12 1 21.73 0.132 0.16 10 MHz/QPSK 22.56 10 782.0 23230 24 0 0.439 0.55 1 -----Side C mm -----782.0 23230 10 MHz/QPSK 25 12 1 21.73 0.354 0.42 782.0 23230 10 MHz/QPSK 24 0 22.56 0.248 0.31 1 Side D -----25 23230 10 MHz/QPSK 21.73 782.0 12 1 0.196 0.23 782.0 23230 10 MHz/QPSK 0.0404 0.05 1 24 0 22.56 -----Side E -----782.0 23230 10 MHz/QPSK 25 12 21.73 0.0312 0.04 1 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Power Measured Conducted ERP EIRP 2. SAR Measurement Phantom Configuration Left Head \times Eli4 Right Head SAR Configuration \boxtimes Body Head 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration With Belt Clip Without Belt Clip $\square N/A$ 5. Tissue Depth is at least 15.0 cm

ZZ


SAR Data Summary – 750 MHz Body – LTE Band 17

MEASUREMENT RESULTS End RB RB MPR Frequency BW/ Measured Reported Gap Plot Position Power Modulation Size Offset Target SAR (W/kg) SAR (W/kg) MHz Ch. (dBm) 24 0.72 3 710.0 23790 10 MHz/QPSK 1 0 22.48 0.570 Side A 710.0 21.78 23790 10 MHz/QPSK 25 12 0.465 0.55 1 -----710.0 23790 10 MHz/QPSK 24 0 22.48 0.143 0.18 -----1 Side B 10 MHz/QPSK 710.0 23790 -----25 12 1 21.78 0.111 0.13 10 MHz/QPSK 22.48 10 710.0 23790 24 0 0.475 0.60 1 -----Side C mm -----710.0 23790 10 MHz/QPSK 25 12 1 21.78 0.382 0.45 710.0 23790 10 MHz/QPSK 24 0 22.48 0.312 0.40 1 Side D -----25 23790 10 MHz/QPSK 21.78 710.0 12 1 0.207 0.24 23790 10 MHz/QPSK 0.0435 710.0 1 24 0 22.48 0.06 -----Side E -----710.0 23790 10 MHz/QPSK 25 12 21.78 0.032 0.04 1 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Power Measured Conducted ERP EIRP 2. SAR Measurement Phantom Configuration Left Head \times Eli4 Right Head SAR Configuration \boxtimes Body Head 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration With Belt Clip Without Belt Clip $\square N/A$ 5. Tissue Depth is at least 15.0 cm

ZZ


SAR Data Summary – 835 MHz Body - CDMA

MEASUREMENT RESULTS

SAR Data Summary – 835 MHz Body - WCDMA

MEASUREMENT RESULTS End Measured Reported Frequency Power RMC Gap Plot Modulation Position Test Set Up SAR SAR Ch. (W/kg) MHz (dBm) (W/kg) WCDMA Side A 4 836.6 4183 23.13 12.2 kbps Test Loop 1 0.433 0.47 WCDMA Side B Test Loop 1 0.122 0.13 ----836.6 4183 23.13 12.2 kbps 10 12.2 kbps ----836.6 4183 WCDMA Side C 23.13 Test Loop 1 0.371 0.40 mm WCDMA Side D 12.2 kbps ----836.6 4183 23.13 Test Loop 1 0.160 0.17 WCDMA Side E Test Loop 1 0.0493 0.05 ----836.6 4183 23.13 12.2 kbps Body 1.6 W/kg (mW/g) averaged over 1 gram

SAR Data Summary – 835 MHz Body - GPRS

MEASUREMENT RESULTS

Gap	Gap Plot Frequency		Rev Level/ Modulation	Position	End Power	TX Level	Multislot Configuration	Measured SAR	Reported SAR	
		MHz	Ch.	Wouldtion		(dBm)	LEVEI	Configuration	(W/kg)	(W/kg)
	5	836.6	190	GMSK	Side A	32.15	5	2 Slot	0.390	0.60
10		836.6	190	GMSK	Side B	32.15	5	2 Slot	0.120	0.18
10		836.6	190	GMSK	Side C	32.15	5	2 Slot	0.332	0.51
mm		836.6	190	GMSK	Side D	32.15	5	2 Slot	0.160	0.25
		836.6	190	GMSK	Side E	32.15	5	2 Slot	0.0419	0.06

1. Battery is fully charged for all tests. Conducted Power Measured ERP EIRP 2. SAR Measurement Phantom Configuration Left Head \boxtimes Eli4 Right Head SAR Configuration Head \boxtimes Body 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration Without Belt Clip $\square N/A$ With Belt Clip 5. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

SAR Data Summary – 835 MHz Body – LTE Band 5

MEASUREMENT RESULTS

Gap	Plot	Position	Frequency		BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR	Reported SAR
-			MHz	Ch.	woulding	Size	Unset	Target	(dBm)	(W/kg)	(W/kg)
			829.0	20450	10 MHz/QPSK	1	24	0	21.72	0.521	0.88
	6	Side A	836.5	20525	10 MHz/QPSK	1	24	0	22.48	0.660	0.94
		Side A	844.0	20599	10 MHz/QPSK	1	24	0	21.66	0.509	0.87
			836.5	20525	10 MHz/QPSK	25	12	1	21.62	0.530	0.73
		Side B	836.5	20525	10 MHz/QPSK	1	24	0	22.48	0.205	0.29
10			836.5	20525	10 MHz/QPSK	25	12	1	21.62	0.163	0.22
mm		Side C	836.5	20525	10 MHz/QPSK	1	24	0	22.48	0.536	0.76
		Side C	836.5	20525	10 MHz/QPSK	25	12	1	21.62	0.433	0.60
		Side D	836.5	20525	10 MHz/QPSK	1	24	0	22.48	0.314	0.45
		Side D	836.5	20525	10 MHz/QPSK	25	12	1	21.62	0.259	0.36
		Side E	836.5	20525	10 MHz/QPSK	1	24	0	22.48	0.056	0.08
		Side E	836.5	20525	10 MHz/QPSK	25	12	1	21.62	0.0474	0.07
		Repeat	836.5	20525	10 MHz/QPSK	1	24	0	22.48	0.651	0.92

		Body N/kg (mW/g) raged over 1 gram
l tests.	ERP	EIRP
□Left Head □Head ☑Test Code □With Belt Clip	Eli4 Body Base Station Without Be	

- 1. Battery is fully charged for all Power Measured
- 2. SAR Measurement Phantom Configuration SAR Configuration

- 3. Test Signal Call Mode 4. Test Configuration
- 5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 1750 MHz Body – LTE Band 4

		Position	Frequency		BW/ RE Modulation Siz	RB	RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported SAR
			MHz	Ch.	wodulation	Size	Unset	Target	(dBm)	SAR (W/Kg)	(W/kg)
			1720.0	20050	20 MHz/QPSK	1	49	0	22.74	0.991	1.18
			1732.5	20175	20 MHz/QPSK	1	49	0	22.69	1.06	1.28
		Side A	1745.0	20300	20 MHz/QPSK	1	49	0	22.84	1.03	1.20
		Side A	1720.0	20050	20 MHz/QPSK	50	24	1	21.34	0.775	1.01
			1732.5	20175	20 MHz/QPSK	50	24	1	22.12	0.853	0.93
			1745.0	20300	20 MHz/QPSK	50	24	1	21.98	0.912	1.03
		Side B	1732.5	20175	20 MHz/QPSK	1	49	0	22.69	0.358	0.43
		Side D	1732.5	20175	20 MHz/QPSK	50	24	1	22.12	0.298	0.33
10			1720.0	20050	20 MHz/QPSK	1	49	0	22.74	0.910	1.08
			1732.5	20175	20 MHz/QPSK	1	49	0	22.69	1.01	1.22
	7	Side C	1745.0	20300	20 MHz/QPSK	1	49	0	22.84	1.11	1.29
			1720.0	20050	20 MHz/QPSK	50	24	1	21.34	0.733	0.96
			1732.5	20175	20 MHz/QPSK	50	24	1	22.12	0.869	0.95
			1745.0	20300	20 MHz/QPSK	50	24	1	21.98	0.936	1.06
		Side D	1732.5	20175	20 MHz/QPSK	1	49	0	22.69	0.360	0.43
		Side D	1732.5	20175	20 MHz/QPSK	50	24	1	22.12	0.305	0.33
		Side E	1732.5	20175	20 MHz/QPSK	1	49	0	22.69	0.249	0.30
		Side E	1732.5	20175	20 MHz/QPSK	50	24	1	22.12	0.206	0.23
		Repeat	1720.0	20050	20 MHz/QPSK	1	49	0	22.84	1.09	1.27
							Body 1.6 W/kg (mW/g) averaged over 1 gram				

Left Head

With Belt Clip

Head

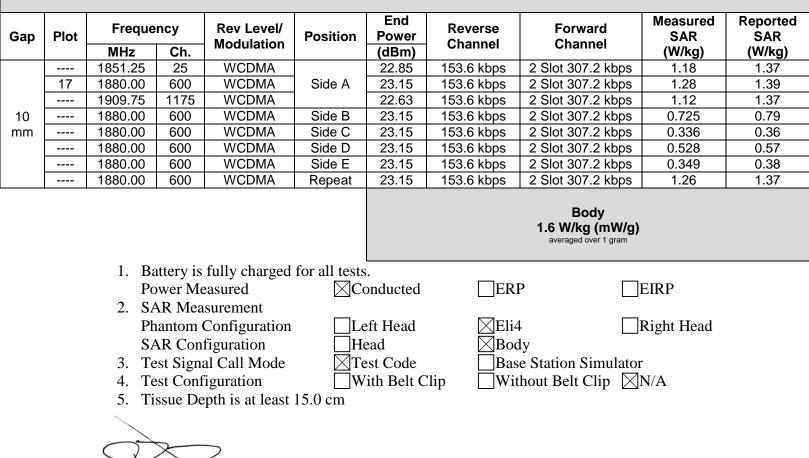
Test Code

- 2. SAR Measurement Phantom Configuration SAR Configuration
- 3. Test Signal Call Mode
- 4. Test Configuration
- 5. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

- Eli4 Right Head Body Base Station Simulator
- $Without Belt Clip \quad \boxtimes N/A$

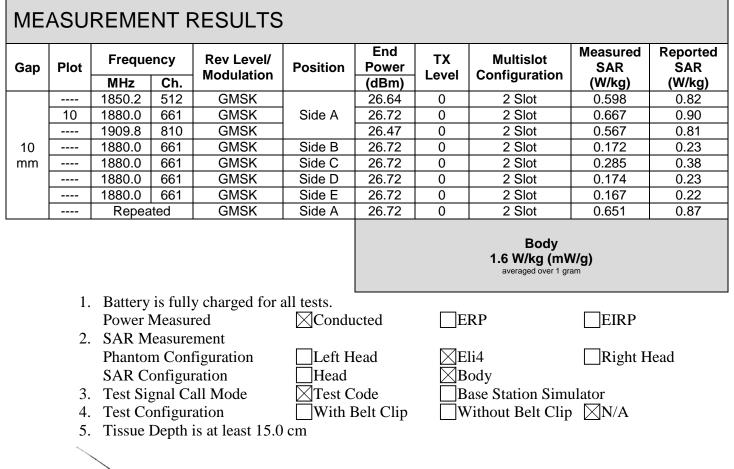
SAR Data Summary – 1750 MHz Body - WCDMA


MEASUREMENT RESULTS

Gap	Plot	Frequency		Rev Level/ Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR		
		MHz	Ch.	wouldtion		(dBm)			(W/kg)	(W/kg)		
	8	1712.4	1312	WCDMA		22.19	12.2 kbps	Test Loop 1	1.02	1.38		
		1732.6	1413	WCDMA	Side A	23.50	12.2 kbps	Test Loop 1	1.10	1.10		
		1752.6	1513	WCDMA		23.26	12.2 kbps	Test Loop 1	1.21	1.28		
10		1732.6	1413	WCDMA	Side B	23.50	12.2 kbps	Test Loop 1	0.687	0.69		
mm		1732.6	1413	WCDMA	Side C	23.50	12.2 kbps	Test Loop 1	0.328	0.33		
		1732.6	1413	WCDMA	Side D	23.50	12.2 kbps	Test Loop 1	0.406	0.41		
		1732.6	1413	WCDMA	Side E	23.50	12.2 kbps	Test Loop 1	0.156	0.16		
		1712.4	1312	WCDMA	Repeat	22.19	12.2 kbps	Test Loop 1	0.999	1.35		
		1. Batte	ry is ful	lly charged for	all tests.			averaged over 1 gr	am			
		Powe	er Meas	ured		ducted ERP EIRP						
		2. SAR	Measur	rement					_			
		SAR	Config		Head	Head Eli4 Right Head d Body						
			0	Call Mode	=	Code		e Station Simu				
	4. Test Configuration Wit						h Belt Clip \Box Without Belt Clip \boxtimes N/A					
		5. Tissu	e Deptl	n is at least 15.	.0 cm							
	_											

SAR Data Summary – 1900 MHz Body - CDMA

MEASUREMENT RESULTS


SAR Data Summary – 1900 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Frequency		Rev Level/ Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR		
-		MHz	Ch.	wodulation		(dBm)		_	(W/kg)	(W/kg)		
		1852.4	9262	WCDMA		23.05	12.2 kbps	Test Loop 1	1.07	1.19		
	9	1880.0	9400	WCDMA	Side A	23.32	12.2 kbps	Test Loop 1	1.36	1.42		
		1907.6	9538	WCDMA		23.38	12.2 kbps	Test Loop 1	1.20	1.23		
10		1852.4	9262	WCDMA	Side B	23.02	12.2 kbps	Test Loop 1	0.352	0.39		
mm		1880.0	9400	WCDMA	Side C	23.02	12.2 kbps	Test Loop 1	0.615	0.69		
		1852.4	9262	WCDMA	Side D	23.02	12.2 kbps	Test Loop 1	0.419	0.47		
		1852.4	9262	WCDMA	Side E	23.02	12.2 kbps	Test Loop 1	0.348	0.39		
		1907.6	9538	WCDMA	Repeat	23.32	12.2 kbps	Test Loop 1	1.32	1.38		
		1. Batte	ry is ful	ly charged for	all tests.			averaged over 1 gr				
		Powe	er Meas	ured	\boxtimes Cond	ducted ERP EIRP						
		2. SAR	Measur	ement								
							t Head Eli4 Right Head					
			0	Call Mode	Test			e Station Simu				
	4. Test Configuration					\square With Belt Clip \square Without Belt Clip \square N/A						
	5. Tissue Depth is at least 15.0 cm											
			-									

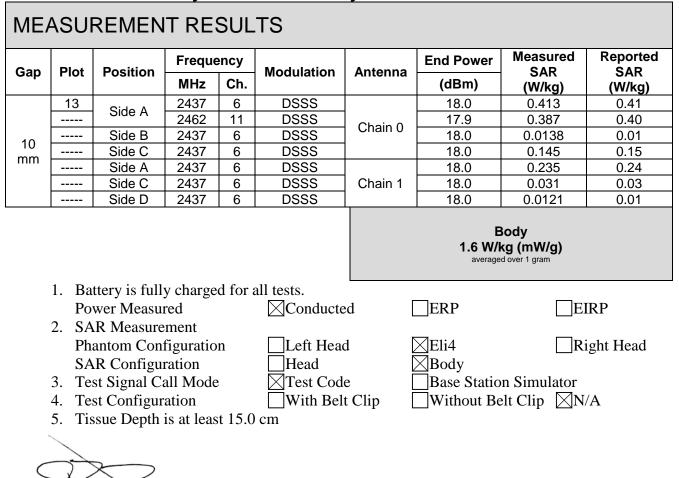
SAR Data Summary – 1900 MHz Body - GPRS

Jay M. Moulton Vice President

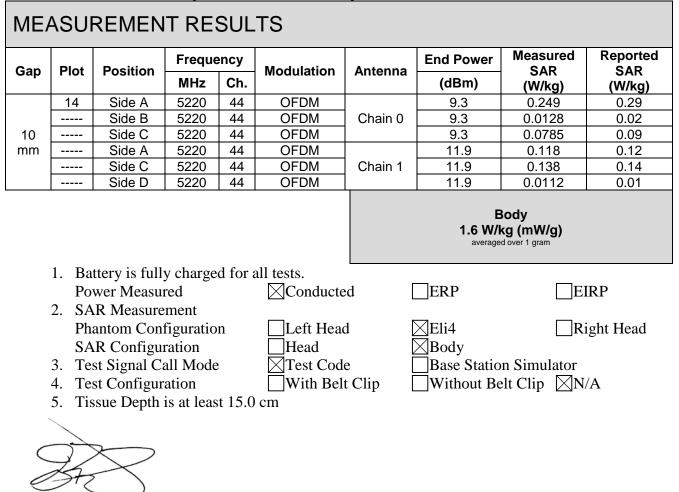
SAR Data Summary – 1900 MHz Body – LTE Band 2

MEASUREMENT RESULTS Measured Reported MPR **End Power** RB RB Frequency BW/ Plot Position Gap SAR SAR Modulation Size Offset Target MHz Ch. (dBm) (W/kg) (W/kg) 20 MHz/QPSK 49 0 11 1860.0 18700 1 22.99 1.15 1.29 1.33 1880.0 18900 20 MHz/QPSK 1 49 0 22.82 1.14 ----------1900.0 19100 20 MHz/QPSK 49 0 22.06 0.948 1.32 1 Side A 20 MHz/QPSK 24 1860.0 18700 50 1 22.38 0.986 1.28 -----1880.0 18900 20 MHz/QPSK 1 22.59 1.09 1.34 50 4 -----1900.0 19100 20 MHz/QPSK 50 24 1 22.61 1.06 1.30 20 MHz/QPSK 49 0 22.82 -----1880.0 18900 1 0.431 0.50 10 Side B 20 MHz/QPSK 1880.0 18900 50 24 1 22.59 0.349 0.43 ----mm 1880.0 18900 20 MHz/QPSK 49 0 22.82 0.626 0.73 -----1 Side C -----1880.0 18900 20 MHz/QPSK 50 24 1 22.59 0.527 0.65 20 MHz/QPSK 0.442 1880.0 18900 49 0 22.82 0.52 1 -----Side D 1880.0 18900 20 MHz/QPSK 50 24 1 22.59 0.369 0.46 0 22.82 1880.0 18900 20 MHz/QPSK 49 0.347 0.41 1 Side E 20 MHz/QPSK 24 0.272 1880.0 18900 50 1 22.59 0.34 -----Repeat 1860.0 18700 20 MHz/QPSK 49 0 22.99 1.13 1.27 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Conducted Power Measured ERP EIRP 2. SAR Measurement Phantom Configuration Left Head \boxtimes Eli4 Right Head SAR Configuration Head \boxtimes Body 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration Without Belt Clip $\square N/A$ With Belt Clip 5. Tissue Depth is at least 15.0 cm

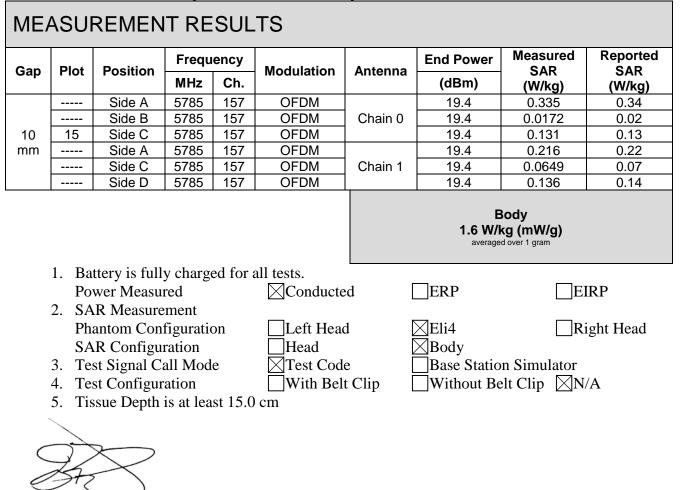
SAR Data Summary – 2550 MHz Body – LTE Band 7


		EMENT F		-	2550 10112		,				
Gap	Plot	Position	Frequ MHz	uency Ch.	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power (dBm)	Measured SAR (W/kg)	Reported SAR (W/kg)
			2507.5	20850	20 MHz/QPSK	1	49	0	23.24	1.02	1.08
Ī			2535.0	21100	20 MHz/QPSK	1	49	0	23.36	1.16	1.20
ľ		Side A	2562.5	21350	20 MHz/QPSK	1	49	0	23.33	1.26	1.31
			2507.5	20850	20 MHz/QPSK	50	24	1	22.13	0.983	1.07
			2535.0	21100	20 MHz/QPSK	50	24	1	22.17	1.03	1.11
			2562.5	21350	20 MHz/QPSK	50	24	1	22.18	1.14	1.23
		Side B	2535.0	21100	20 MHz/QPSK	1	49	0	23.36	0.0455	0.05
		Side D	2535.0	21100	20 MHz/QPSK	50	24	1	22.17	0.0365	0.04
10		Side C	2535.0	21100	20 MHz/QPSK	1	49	0	23.36	0.504	0.52
mm		Olde O	2535.0	21100	20 MHz/QPSK	50	24	1	22.17	0.416	0.45
			2507.5	20850	20 MHz/QPSK	1	49	0	23.24	1.16	1.23
	12		2535.0	21100	20 MHz/QPSK	1	49	0	23.36	1.35	1.39
-		Side D	2562.5	21350	20 MHz/QPSK	1	49	0	23.33	1.32	1.37
-			2507.5	20850	20 MHz/QPSK	50	24	1	22.13	0.991	1.08
			2535.0	21100	20 MHz/QPSK	50	24	1	22.17	1.11	1.20
			2562.5	21350	20 MHz/QPSK	50	24	1	22.18	1.22	1.31
		Side E	2535.0	21100	20 MHz/QPSK	1	49	0	23.36	0.122	0.13
			2535.0	21100	20 MHz/QPSK	50	24	1	22.17	0.100	0.11
		Repeat	2535.0	21100	20 MHz/QPSK	1	49	0	23.36	1.32	1.36
							Body 1.6 W/kg (mW/g) averaged over 1 gram				
1. Battery is fully charged for all tests.											
Power Measured Conducte					f	ERP			Р		
2. SAR Measurement											
	Phantom ConfigurationLeft HeadSAR ConfigurationHead3. Test Signal Call ModeTest Code					ft Head	d ⊠Eli4 □Right Head ⊠Body				
						ad					
						st Code		Base	e Station	Simulator	
	 Test Configuration With Belt Tissue Depth is at least 15.0 cm 						Clip	Wit	hout Belt	Clip 🖾 N/A	L

Jay M. Moulton Vice President


SAR Data Summary – 2450 MHz Body 802.11b

Jay M. Moulton Vice President


SAR Data Summary – 5200 MHz Body 802.11a

Jay M. Moulton Vice President

SAR Data Summary – 5800 MHz Body 802.11a

Jay M. Moulton Vice President

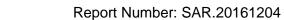
SAR Data Summary – Simultaneous Transmit (Worst Case)

MEASUREMENT RESULTS

Plot	Frequency (WLAN)		Frequency (WWAN)		WWAN Technology	SAR (W/kg)	SAR (W/kg)	Total
	MHz	Ch.	MHz	Ch.		WLAN	WWAN	SAR (W/kg)
	2437 6 1880.0		1880.0	9400	WCDMA Band 2	0.41	1.42	1.91
						Body 1.6 W/kg (m averaged over		

The worst case condition is in the 2.4 GHz band. The WWAN and WLAN antennas are a minimum of 55 mm apart. Using the highest reported SAR to calculate the simultaneous Tx using peak separation ratio, the highest ratio would be 0.04 which meets the requirements of KDB 447498 section 4.3.2 3) on page 13. The calculation is shown below.

Simultaneous Separation Ratio Calculation


 $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits

 $(0.41 + 1.42)^{1.5}/55 = 0.04$

SAR Data Summary – Simultaneous Transmit (WLAN MIMO)

MEASUREMENT RESULTS								
Plot	Frequency (WLAN)		Frequency (WLAN)		SAR (W/kg) WLAN	SAR (W/kg)	Total	
	MHz	Ch.	MHz	Ch.	(0 ,	WWAN	SAR (W/kg)	
	2437	6	2462	11	0.41	0.40	0.81	
		<u> </u>				Body 6 W/kg (mW/g) aged over 1 gram		

The sum of the two transmitters is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v06 section 4.3.2 page 11.

11. Test Equipment List

Table 1 ^r	1.1 E	auipment	t Specificatio	ns
		9999	c opoonioano	

Туре	Calibration Due Date	Calibration Done Date	Serial Number
Staubli Robot TX60L	N/A	N/A	F07/55M6A1/A/01
Measurement Controller CS8c	N/A	N/A	1012
ELI4 Flat Phantom	N/A	N/A	1251
ELI4 Flat Phantom	N/A	N/A	2037
Device Holder	N/A	N/A	N/A
Data Acquisition Electronics 4	01/14/2017	01/14/2016	1321
Data Acquisition Electronics 4	04/25/2018	04/25/2017	1321
Data Acquisition Electronics 4	01/10/2019	01/10/2018	1321
SPEAG E-Field Probe ES3DV3	02/16/2017	02/16/2016	3311
SPEAG E-Field Probe EX3DV4	01/27/2017	01/27/2016	3833
SPEAG E-Field Probe EX3DV4	01/23/2018	01/23/2017	3833
SPEAG E-Field Probe EX3DV4	04/20/2019	04/20/2018	3662
Speag Validation Dipole D750V2	08/10/2017	08/10/2016	1053
Speag Validation Dipole D835V2	08/10/2018	08/10/2016	4d131
Speag Validation Dipole D1750V2	08/13/2018	08/13/2016	1061
Speag Validation Dipole D1900V2	08/13/2018	08/13/2016	5d147
Speag Validation Dipole D2450V2	08/10/2017	08/10/2016	881
Speag Validation Dipole D2550V2	08/10/2017	08/10/2016	1003
Speag Validation Dipole D5GHzV2	08/11/2017	08/11/2016	1119
Agilent N1911A Power Meter	05/20/2017	05/20/2015	GB45100254
Agilent N1922A Power Sensor	06/25/2017	06/25/2015	MY45240464
Advantest R3261A Spectrum Analyzer	03/26/2017	03/26/2015	31720068
Agilent (HP) 8350B Signal Generator	03/26/2017	03/26/2015	2749A10226
Agilent (HP) 83525A RF Plug-In	03/26/2017	03/26/2015	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/26/2017	03/26/2015	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/26/2017	03/26/2015	2904A00595
Agilent (HP) 8960 Base Station Sim.	03/31/2017	03/31/2015	MY48360364
Anritsu MT8820C	07/28/2017	07/28/2015	6201176199
Agilent N1911A Power Meter	05/20/2019	03/20/2017	GB45100254
Agilent N1922A Power Sensor	06/21/2019	06/21/2017	MY45240464
Advantest R3261A Spectrum Analyzer	03/26/2019	03/20/2017	31720068
Agilent (HP) 8350B Signal Generator	03/26/2019	03/20/2017	2749A10226
Agilent (HP) 83525A RF Plug-In	03/26/2019	03/20/2017	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/26/2019	03/20/2017	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/26/2019	03/20/2017	2904A00595
Agilent (HP) 8960 Base Station Sim.	03/27/2019	03/27/2017	MY48360364
Anritsu MT8820C	07/28/2019	07/28/2017	6201176199
Agilent 778D Dual Directional Coupler	N/A	N/A	MY48220184
MiniCircuits BW-N20W5+ Fixed 20 dB	N/A	N/A	N/A
Attenuator			
MiniCircuits SPL-10.7+ Low Pass Filter	N/A	N/A	R8979513746
Aprel Dielectric Probe Assembly	N/A	N/A	0011
Body Equivalent Matter (750 MHz)	N/A	N/A	N/A
Body Equivalent Matter (835 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1750 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1900 MHz)	N/A	N/A	N/A
Body Equivalent Matter (2450 MHz)	N/A	N/A	N/A
Body Equivalent Matter (2550 MHz)	N/A	N/A	N/A
Body Equivalent Matter (5 Ghz)	N/A	N/A	N/A

12. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

13. References

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996

[2] ANSI/IEEE C95.1 – 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.

[3] ANSI/IEEE C95.3 – 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 2002.

[4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010.

[5] IEEE Standard 1528 – 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013.

[6] Industry Canada, RSS – 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015.

[7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

* * * * * * * * * * * * * * * * * * * *										
Test Result for UIM Dielectric Parameter Thu 01/Dec/2016										
Freq Frequer	Freq Frequency(GHz)									
FCC_eH Limits for Head Epsilon										
FCC_sH Limits for Head Sigma										
FCC_eB Limits	for Body Ep	silon								
FCC_sB Limits	for Body Si	gma								
Test_e Epsilor	n of UIM									
Test_s Sigma of UIM										
********	******	*******	* * * * * * * * * * * * * * * * * * * *							
Freq	FCC_eB FCC_s	B Test_e	e Test_s							
	55.73 0.96									
	55.714 0.96									
0.7075	55.70 0.96	55.56	0.958*							
0.7090										
	55.69 0.96									
	55.686 0.96									
	55.65 0.96									
	55.61 0.96									
	55.57 0.96									
	55.53 0.96									
	55.49 0.96									
	55.45 0.96									
	55.41 0.97									
	55.404 0.97									
	55.38 0.97									
0.8000	55.34 0.97	55.16	1.00							

***** Test Result for UIM Dielectric Parameter Fri 02/Dec/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 55.32 0.97 56.05 0.96 Freq 0.8050 55.28 0.97 56.00 0.98 0.8150 * value interpolated Test Result for UIM Dielectric Parameter Thu 01/Dec/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM Freq FCC_eB FCC_sB Test_e Test_s 1.710053.531.4753.391.471.720053.511.4753.361.481.730053.481.4853.321.491.732553.4751.4853.3131.493* 1.732553.475 1.4853.313 1.493*1.740053.46 1.4853.29 1.501.745053.445 1.48553.28 1.505*1.750053.43 1.4953.27 1.511.760053.41 1.4953.25 1.521.770053.38 1.5053.22 1.531.780053.35 1.5153.20 1 54

***** Test Result for UIM Dielectric Parameter Tue 29/Aug/2017 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ***** FCC_eB FCC_sB Test_e Test_s 53.53 1.47 53.55 1.48 Freq 1.7100 1.7124 53.525 1.47 53.543 1.482* 1.7200 53.51 1.47 53.52 1.49 1.720053.511.4753.521.491.730053.481.4853.381.501.732653.4751.4853.3751.503*1.740053.461.4853.361.511.750053.431.4953.321.521.752653.4251.4953.3151.523*1.760053.411.4953.301.531.770053.381.5053.271.551.780053.351.5153.231.55 * value interpolated Test Result for UIM Dielectric Parameter Fri 02/Dec/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test s Sigma of UIM FreqFCC_eB FCC_sB Test_e Test_s1.840053.301.5252.611.511.850053.301.5252.591.521.850253.301.5252.591.52* 1.850253.301.5252.591.52*1.852453.301.5252.5851.522*1.860053.301.5252.571.531.870053.301.5252.541.531.880053.301.5252.521.541.890053.301.5252.501.551.900053.301.5252.4651.558*1.907653.301.5252.4651.558*1.908853.301.5252.4621.559*1.910053.301.5252.431.57

***** Test Result for UIM Dielectric Parameter Sat 03/Dec/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM Freq 2.4900 52.64 2.02 52.50 2.04 2.5000 52.62 2.04 52.48 2.05 2.5100 2.5100 2.5200 2.5300 2.5350 2.5400 2.5500 2.5600 52.61 2.05 52.46 2.06 2.570052.552.1252.362.142.580052.532.1352.342.152.590052.522.1552.322.17 2.5700 * value interpolated Test Result for UIM Dielectric Parameter Sat 03/Dec/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test e Epsilon of UIM Test_s Sigma of UIM **** FreqFCC_eB FCC_sB Test_e Test_s2.410052.75 1.91 52.59 1.91 2.4120 52.748 1.912 52.586 1.912* 2.4200 52.74 1.92 52.57 1.92 2.4200 2.4300 2.4370 2.4400
 52.74
 1.92
 52.57
 1.92

 52.73
 1.93
 52.55
 1.93

 52.716
 1.937
 52.536
 1.944*
 52.71 1.94 52.53 1.95 52.70 1.95 52.51 1.96 52.69 1.96 52.49 1.97 2.4500 2.4600 2.462052.6861.96452.4861.972*2.470052.671.9852.471.982.480052.661.9952.452.00

***** Test Result for UIM Dielectric Parameter Mon 05/Dec/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 49.15 5.18 49.02 5.17 49.12 5.21 48.99 5.20 Freq 5.1000 5.1000 49.15 5.18 49.02 5.17 5.1200 49.12 5.21 48.99 5.20 5.1400 49.01 5.23 48.96 5.22 5.1600 49.07 5.25 48.93 5.24 5.2000 49.01 5.30 48.88 5.30 5.2100 49.00 5.31 48.87 5.31* 5.2200 48.99 5.32 48.86 5.32 5.2400 48.99 5.37 48.80 5.36 5.2800 48.91 5.39 48.77 5.38 5.2900 48.895 5.405 48.755 5.39* 5.3000 48.88 5.42 48.74 5.40 5.3200 48.80 5.49 48.66 5.47 5.3200 48.80 5.49 48.66 5.47 5.3600 48.80 5.49 48.66 5.47 5.3800 48.77 5.51 48.63 5.50 5.4000 48.72 5.56 48.59 5.56 5.4000 48.69 5.58 48.50 5.64 5.400 48.69 5.58 48.50 5.64 5.400 48.63 5.63 48.50 5.64 5.500 48.63 5.63 48.50 5.64 5.500 48.61 5.65 48.48 5.72 5.560 48.50 5.74 48.37 5.72 5.560 48.50 5.74 48.37 5.76 5.400 48.62 5.70 48.42 5.72 5.560 48.51 5.70 48.42 5.72 5.560 48.52 5.70 48.42 5.72 5.560 48.53 5.72 48.39 5.74 5.580 48.50 5.74 48.37 5.76 5.600 48.44 5.79 48.31 5.81 5.640 48.62 5.81 48.28 5.83 5.660 48.31 5.91 48.16 5.93 5.640 48.62 5.84 48.52 5.85 5.640 48.42 5.81 48.28 5.83 5.660 48.31 5.91 48.16 5.93 5.720 48.31 5.91 48.16 5.93 5.720 48.31 5.91 48.16 5.93 5.7400 48.25 5.93 48.13 5.95 5.7400 48.25 5.93 48.13 5.95 5.7400 48.27 5.95 48.13 5.95 5.7400 48.28 5.93 48.13 5.95 5.7400 48.28 5.93 48.13 5.95 5.7400 48.23 5.95 48.13 5.95 5.7400 48.23 5.95 48.13 5.95 5.7400 48.23 5.95 48.13 5.95 5.7400 48.23 5.95 48.13 5.95 5.7400 48.23 5.95 48.13 5.95 5.7400 48.23 5.95 48.13 5.95 5.7400 48.23 5.97 48.088 5.955* 5.7800 48.23 5.97 48.088 5.955* 5.7800 48.23 5.98 48.08 6.00 5.7850 48.23 5.97 48.088 5.955* 5.7800 48.23 5.98 48.08 6.00 5.7850 48.23 5.98 48.08 6.00 5.7850 48.23 5.98 48.08 6.00 5.7850 48.23 5.98 48.08 6.00 5.7850 48.23 5.98 48.08 6.00 5.7850 48.23 5.98 48.08 6.00 5.7850 48.23 5.98 48.08 6.00 5.7850 48.20 6.00 48.02 6.05 5.825 5.8400 48.15 6.02 48.013 6.055* 5.8400 48.15 6.02 48.013 6.055* 5.8400 48.15 6.02 48.013 6.055* 5.1200 49.10 5.23 48.96 5.22 5.1400

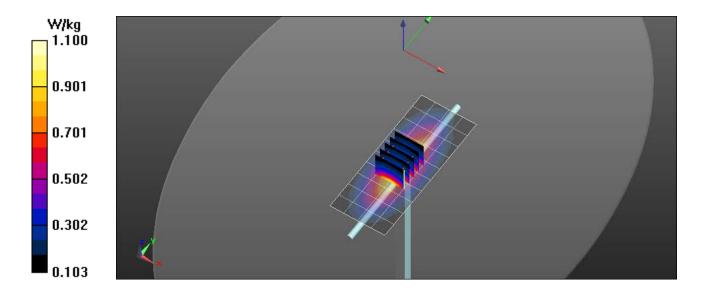
***** Test Result for UIM Dielectric Parameter Tue 01/May/2018 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 55.32 0.97 54.97 0.97 55.28 0.97 54.92 0.98 55.24 0.97 54.87 0.99 Freq 0.8050 0.8150 0.815055.280.9754.920.980.825055.240.9754.870.990.826455.2340.9754.8640.991*0.835055.200.9754.831.000.836655.1950.97254.8241.002*0.845055.170.9854.791.010.846655.1650.98254.7851.012*0.855055.140.9954.761.020.865055.111.0154.731.030.875055.081.0254.701.04 * value interpolated Test Result for UIM Dielectric Parameter Tue 01/May/2018 Freq Frequency(GHz) FCC eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

Plot 1

DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN:1053

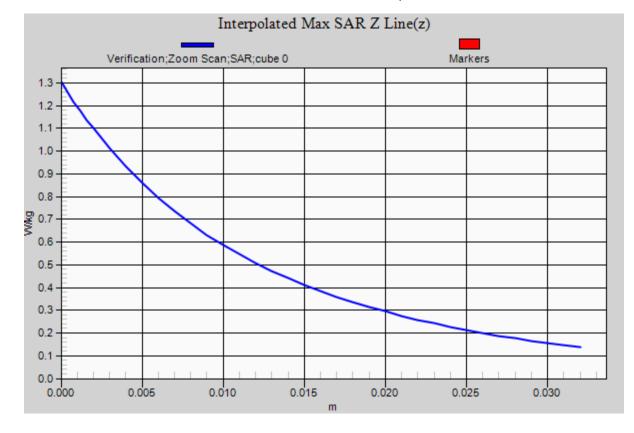
Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used: f = 750 MHz; σ = 0.98 S/m; ϵ_r = 55.38; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/4/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C


Probe: EX3DV4 - SN3833; ConvF(9.23, 9.23, 9.23); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

750 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.09 W/kg

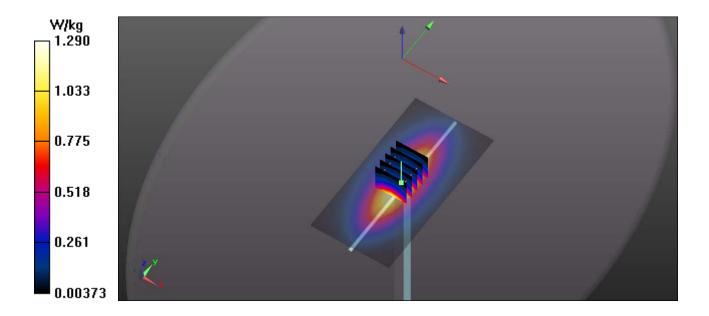

750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.143 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.31 W/kg P_{in}= 100 mW **SAR(1 g) = 0.852 W/kg; SAR(10 g) = 0.551 W/kg**

Maximum value of SAR (measured) = 1.10 W/kg

Report Number: SAR.20161204

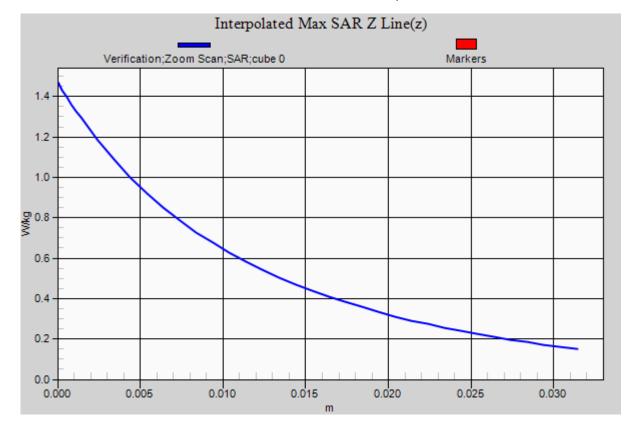
Plot 2

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d131


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used: f = 835 MHz; σ = 0.99 S/m; ϵ_r = 55.91; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:


835 MHz Body/Verification/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.27 W/kg

835 MHz Body/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.435 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.42 W/kg Pin= 100 mW SAR(1 g) = 0.947 W/kg; SAR(10 g) = 0.625 W/kg Maximum value of SAR (measured) = 1.28 W/kg

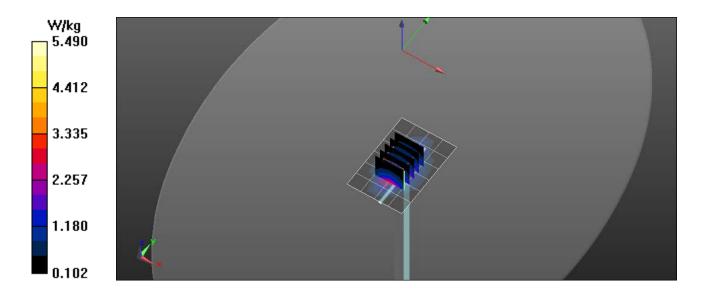
Report Number: SAR.20161204

Plot 3

DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1061

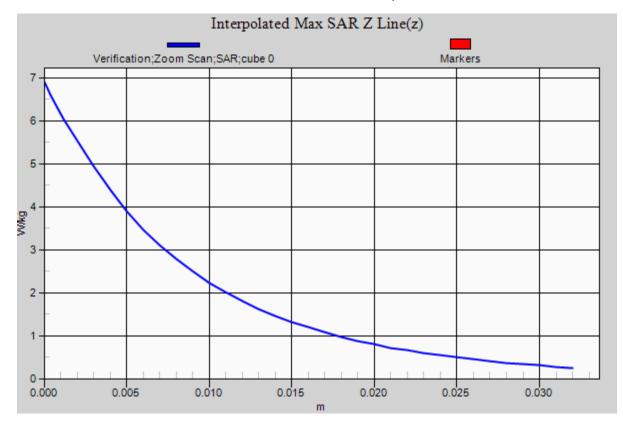
Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1750 MHz; σ = 1.51 S/m; ϵ_r = 53.27; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C


Probe: EX3DV4 - SN3833; ConvF(7.32, 7.32, 7.32); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.31 W/kg

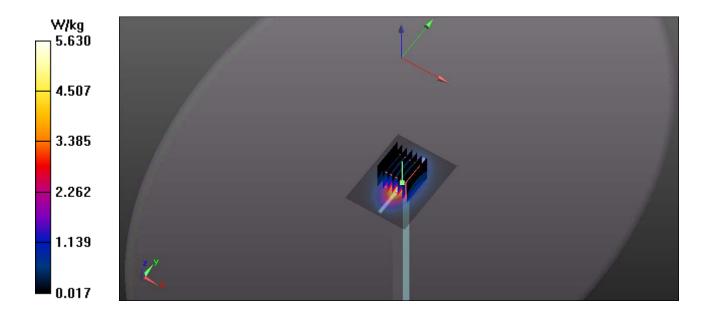

1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.489 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 6.92 W/kg P_{in}= 100 mW **SAR(1 g) = 3.81 W/kg; SAR(10 g) = 2 W/kg**

Maximum value of SAR (measured) = 5.47 W/kg

Report Number: SAR.20161204

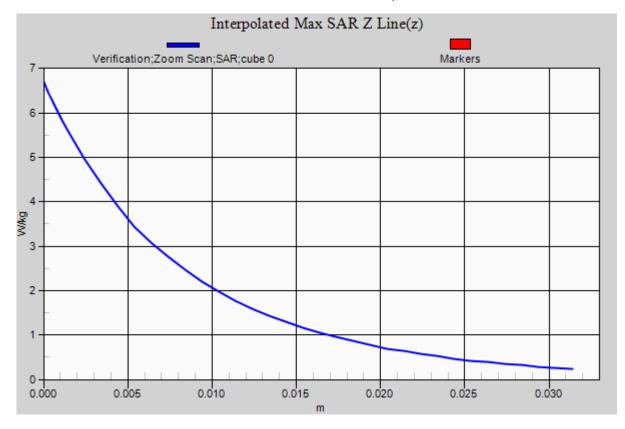
Plot 4

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d147


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1900 MHz; σ = 1.55 S/m; ϵ_r = 52.48; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

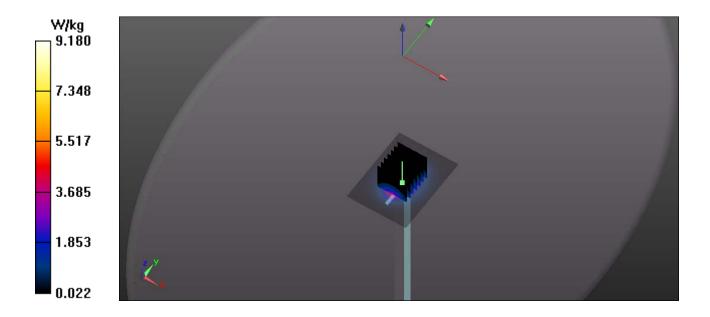

1900 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.59 W/kg

1900 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.559 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 6.67 W/kg Pin= 100 mW **SAR(1 g) = 4.01 W/kg; SAR(10 g) = 2.06 W/kg** Maximum value of SAR (measured) = 5.62 W/kg

Report Number: SAR.20161204

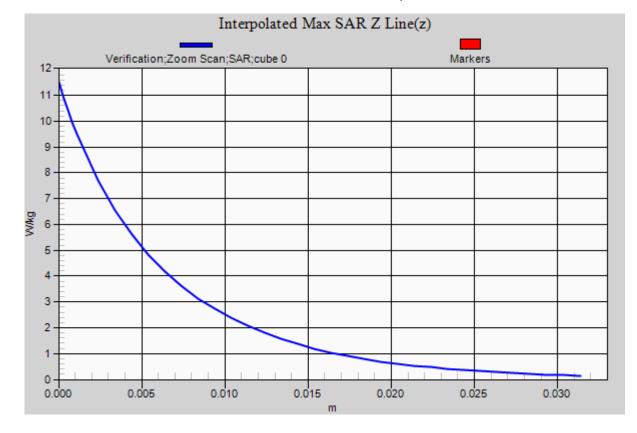
Plot 5

DUT: Dipole 2550 MHz D2550V2; Type: D2550V2; Serial: D2550V2 - SN:1003


Communication System: CW; Frequency: 2550 MHz; Duty Cycle: 1:1 Medium: MSL2600; Medium parameters used: f = 2550 MHz; σ = 2.11 S/m; ϵ_r = 52.4; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/3/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3311; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:


2550 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.17 W/kg

2550 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.222 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 11.4 W/kg Pin= 100 mW SAR(1 g) = 5.4 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 8.99 W/kg

Report Number: SAR.20161204

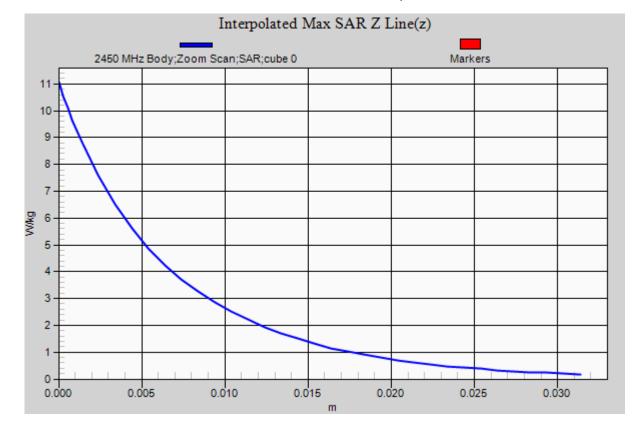
Plot 6

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 881


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used: f = 2450 MHz; σ = 1.96 S/m; ϵ_r = 52.51; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/3/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(6.87, 6.87, 6.87); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

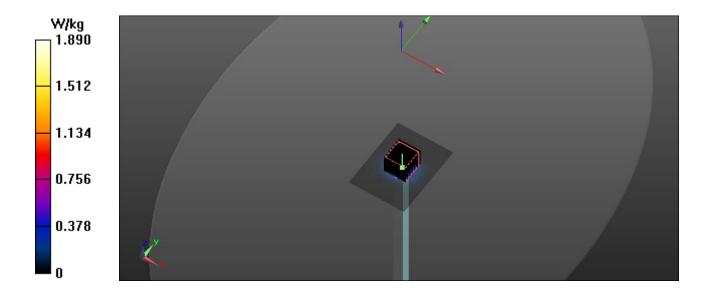

Body Verification/2450 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.87 W/kg

Body Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.517 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 11.13 W/kg Pin= 100 mW SAR(1 g) = 5.19 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 8.92 W/kg

Report Number: SAR.20161204

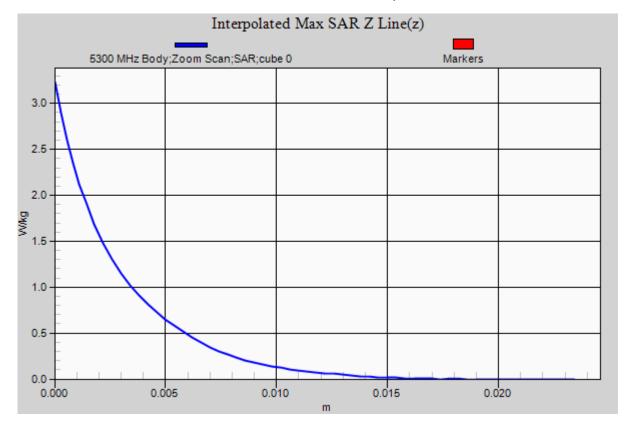
Plot 7

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119


Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5200 MHz; σ = 5.3 S/m; ϵ_r = 48.88; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/5/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(4.03, 4.03, 4.03); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:


Body Verification/5200 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.88 W/kg

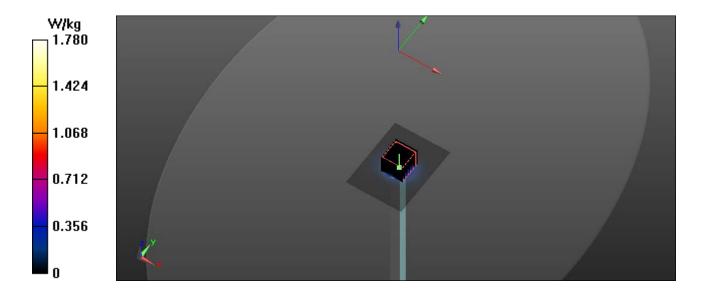
Body Verification/5200 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 12.256 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.2 W/kg Pin=10 mW SAR(1 g) = 0.78 W/kg; SAR(10 g) = 0.213 W/kg Maximum value of SAR (measured) = 1.9 W/kg

Report Number: SAR.20161204

Plot 8

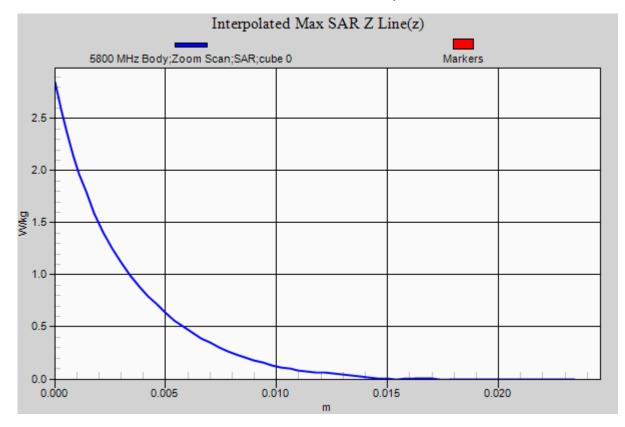
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5800 MHz; σ = 6.03 S/m; ϵ_r = 48.05; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/5/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(3.49, 3.49, 3.49); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

Body Verification/5800 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.78 W/kg


Body Verification/5800 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 12.689 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.91 W/kg Pin=10 mW SAR(1 g) = 0.791 W/kg; SAR(10 g) = 0.214 W/kg

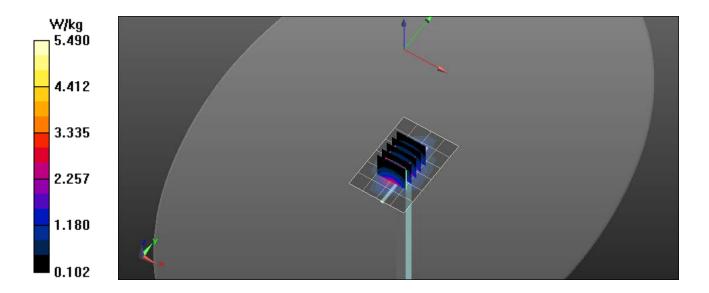
Maximum value of SAR (measured) = 1.77 W/kg

Report Number: SAR.20161204

Plot 9

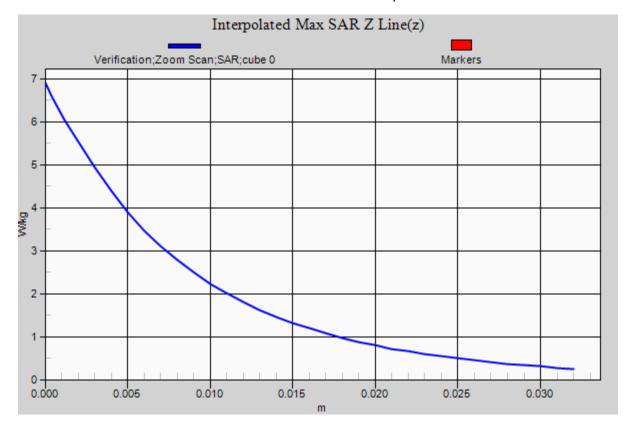
DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1061

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1750 MHz; σ = 1.52 S/m; ϵ_r = 53.32; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 8/29/2017; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.4, 7.4, 7.4); Calibrated: 1/23/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 4/25/2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

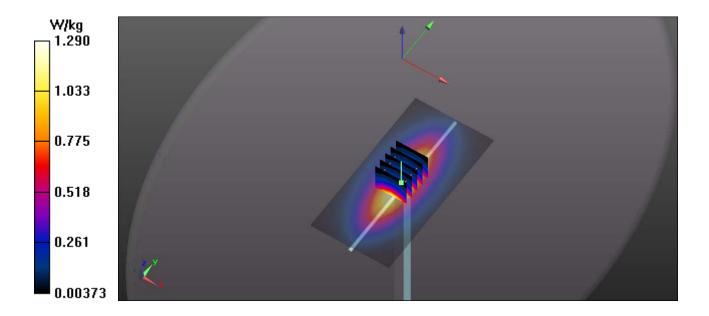

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.33 W/kg

1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 6.89 W/kg **SAR(1 g) = 3.85 W/kg; SAR(10 g) = 2.03 W/kg** Maximum value of SAR (measured) = 5.49 W/kg

Report Number: SAR.20161204

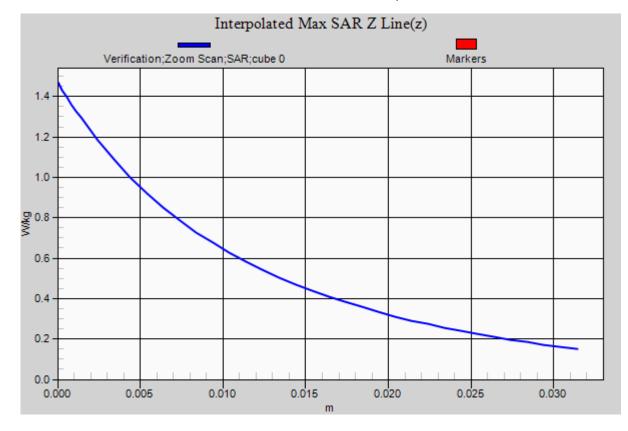
Plot 10

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d131


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used: f = 835 MHz; σ = 1 S/m; ϵ_r = 54.83; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/1/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(9.21, 9.21, 9.21); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

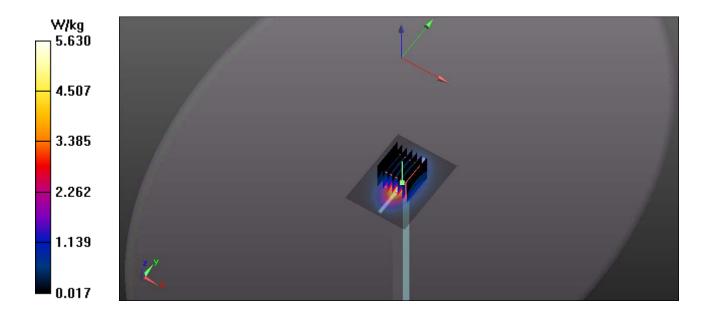

835 MHz Body/Verification/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.26 W/kg

835 MHz Body/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.796 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.44 W/kg Pin= 100 mW SAR(1 g) = 0.932 W/kg; SAR(10 g) = 0.615 W/kg Maximum value of SAR (measured) = 1.29 W/kg

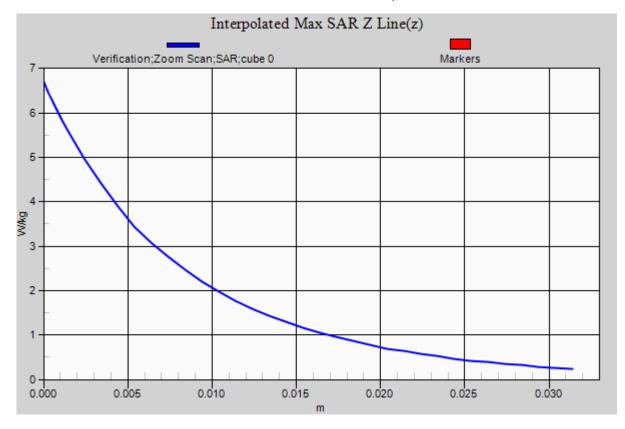
Report Number: SAR.20161204

Plot 11

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d147


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1900 MHz; σ = 1.55 S/m; ϵ_r = 52.74; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/1/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.61, 7.61, 7.61); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

1900 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.6 W/kg

1900 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.657 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 6.65 W/kg Pin= 100 mW SAR(1 g) = 4.05 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 5.61 W/kg

Appendix B – SAR Test Data Plots

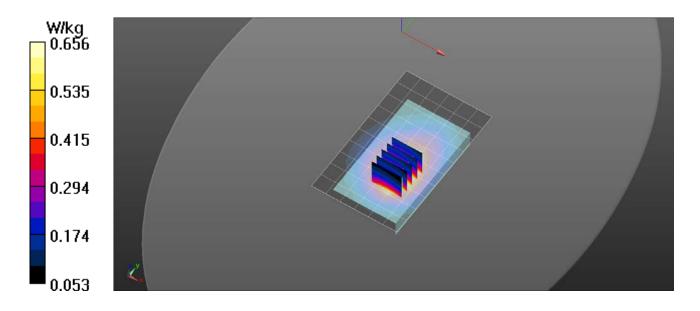
Plot 1

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 707.5 MHz; σ = 0.958 S/m; ϵ_r = 55.56; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(9.23, 9.23, 9.23); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

750 MHz B12 LTE/Front 1 RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.627 W/kg

750 MHz B12 LTE/Front 1 RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.01 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.733 W/kg **SAR(1 g) = 0.558 W/kg; SAR(10 g) = 0.406 W/kg**

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.656 W/kg

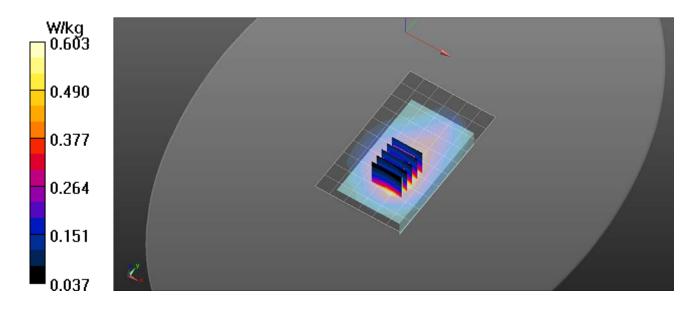
Plot 2

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 782 MHz; σ = 0.992 S/m; ϵ_r = 55.24; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(9.23, 9.23, 9.23); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

750 MHz B13 LTE/Front 1RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.574 W/kg

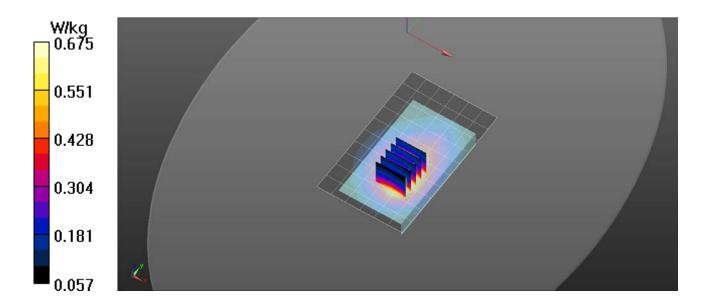
750 MHz B13 LTE/Front 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.13 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.684 W/kg **SAR(1 g) = 0.497 W/kg; SAR(10 g) = 0.346 W/kg**

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.603 W/kg

Plot 3

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 710 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used: f = 710 MHz; σ = 0.96 S/m; ϵ_r = 55.55; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(9.23, 9.23, 9.23); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

750 MHz B17 LTE/Front 1 RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.664 W/kg

750 MHz B17 LTE/Front 1 RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.57 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.753 W/kg SAR(1 g) = 0.570 W/kg; SAR(10 g) = 0.413 W/kg Maximum value of SAR (measured) = 0.675 W/kg

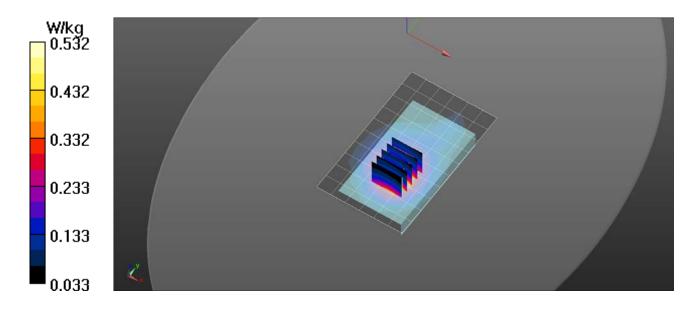
Plot 4

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.99 S/m; ϵ_r = 55.902; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/3/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

835 MHz WCDMA/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.473 W/kg

835 MHz WCDMA/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.50 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.608 W/kg SAR(1 g) = 0.433 W/kg; SAR(10 g) = 0.295 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.532 W/kg

Plot 5

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: GPRS 2-Slot (GMSK); Frequency: 836.6 MHz; Duty Cycle: 1:4.00037 Medium: MSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.99 S/m; ϵ_r = 55.902; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

835 MHz GPRS/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.445 W/kg

835 MHz GPRS/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.17 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.553 W/kg SAR(1 g) = 0.390 W/kg; SAR(10 g) = 0.268 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.478 W/kg

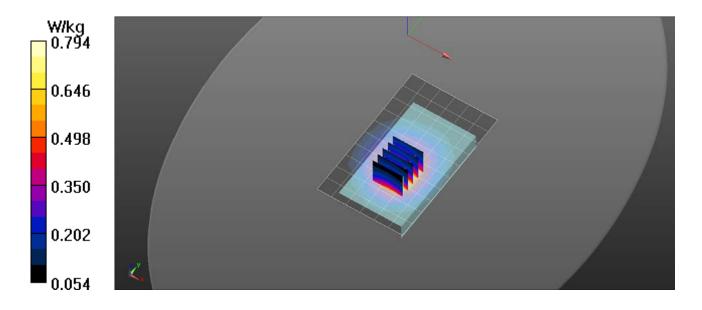
Plot 6

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.99 S/m; ϵ_r = 55.903; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/3/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

835 MHz B5 LTE/Front 1RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.768 W/kg

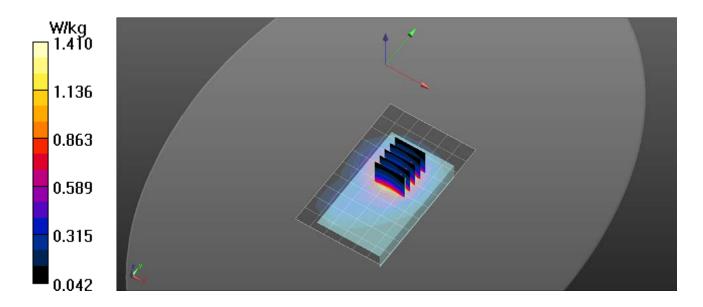
835 MHz B5 LTE/Front 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.44 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.900 W/kg SAR(1 g) = 0.660 W/kg; SAR(10 g) = 0.464 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.794 W/kg

Plot 7

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1770 MHz; σ = 1.53 S/m; ϵ_r = 53.22; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.32, 7.32, 7.32); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

1750 MHz B66 LTE/Back 1RB High/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.37 W/kg

1750 MHz B66 LTE/Back 1RB High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.98 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 1.67 W/kg SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.706 W/kg Maximum value of SAR (measured) = 1.41 W/kg

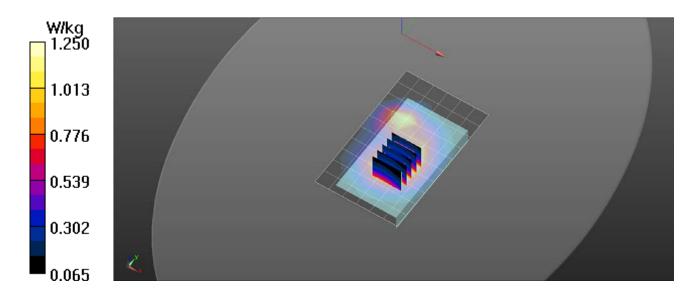
Plot 8

DUT: MIFI7000; Type: MIFI; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used (interpolated): f = 1712.4 MHz; σ = 1.482 S/m; ϵ_r = 53.543; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 8/29/2017; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.4, 7.4, 7.4); Calibrated: 1/23/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 4/25/2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

1750 MHz WCDMA/Front Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.21 W/kg

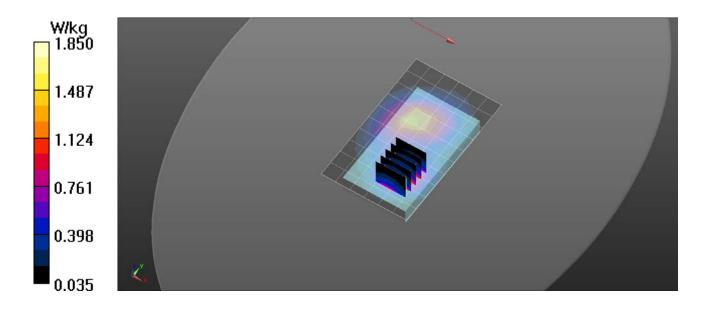
1750 MHz WCDMA/Front Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.57 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.47 W/kg SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.688 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.25 W/kg

Plot 9

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: UMTS (WCDMA); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1880 MHz; σ = 1.54 S/m; ϵ_r = 52.52; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

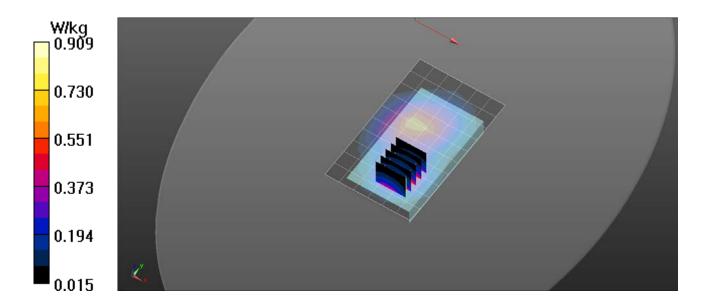
1900 MHz WCDMA/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.68 W/kg

1900 MHz WCDMA/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.57 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.29 W/kg **SAR(1 g) = 1.36 W/kg; SAR(10 g) = 0.757 W/kg** Maximum value of SAR (measured) = 1.85 W/kg

Plot 10

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: GPRS 2-Slot (GMSK); Frequency: 1880 MHz; Duty Cycle: 1:4.00037 Medium: MSL1900; Medium parameters used: f = 1880 MHz; σ = 1.54 S/m; ϵ_r = 52.52; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

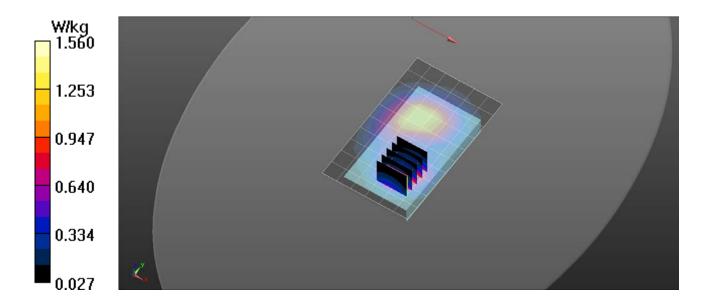
1900 MHz GPRS/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.827 W/kg

1900 MHz GPRS/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.39 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.13 W/kg **SAR(1 g) = 0.667 W/kg; SAR(10 g) = 0.372 W/kg** Maximum value of SAR (measured) = 0.909 W/kg

Plot 11

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1860 MHz; σ = 1.53 S/m; ϵ_r = 52.57; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

1900 MHz B2 LTE/Front 1RB Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.41 W/kg

1900 MHz B2 LTE/Front 1RB Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.39 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.92 W/kg **SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.641 W/kg** Maximum value of SAR (measured) = 1.56 W/kg

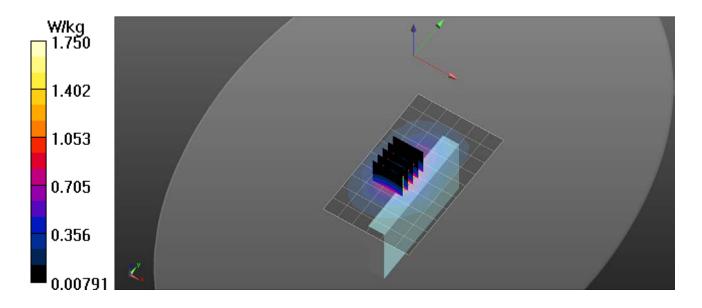
Plot 12

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: MSL2550; Medium parameters used (interpolated): f = 2535 MHz; σ = 2.09 S/m; ϵ_r = 52.43; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/3/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: ES3DV3 - SN3311; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

2600 MHz B7 LTE/Right 1RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.40 W/kg

2600 MHz B7 LTE/Right 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.34 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.78 W/kg SAR(1 g) = 1.35 W/kg; SAR(10 g) = 0.665 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.75 W/kg

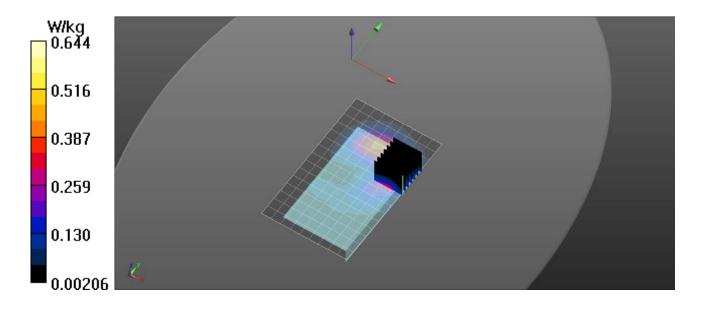
Plot 13

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: WiFi 802.11b (DSSS, 1 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used (interpolated): f = 2437 MHz; σ = 1.944 S/m; ϵ_r = 52.536; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/3/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(6.87, 6.87, 6.87); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

2450 MHz WiFi/Front Tx1 Mid/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.541 W/kg

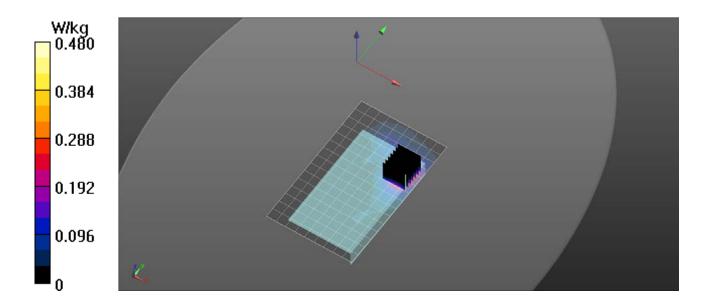
2450 MHz WiFi/Front Tx1 Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.165 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.890 W/kg SAR(1 g) = 0.413 W/kg; SAR(10 g) = 0.187 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.644 W/kg

Plot 14

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5220 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5220 MHz; σ = 5.32 S/m; ϵ_r = 48.86; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/5/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(4.03, 4.03, 4.03); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

5200 MHz WiFi/Front Tx1 44/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.410 W/kg

5200 MHz WiFi/Front Tx1 44/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.713 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.831 W/kg SAR(1 g) = 0.249 W/kg Maximum value of SAR (measured) = 0.480 W/kg

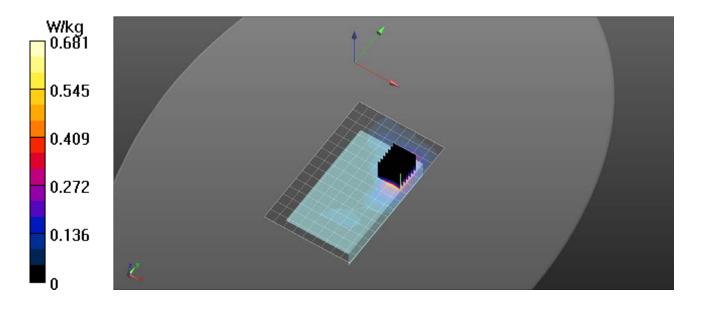
Plot 15

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5785 MHz; σ = 6.008 S/m; ϵ_r = 48.073; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/5/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(3.49, 3.49, 3.49); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

5800 MHz WiFi/Front Tx1 157/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.624 W/kg

5800 MHz WiFi/Front Tx1 157/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 1.194 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.27 W/kg SAR(1 g) = 0.335 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.681 W/kg

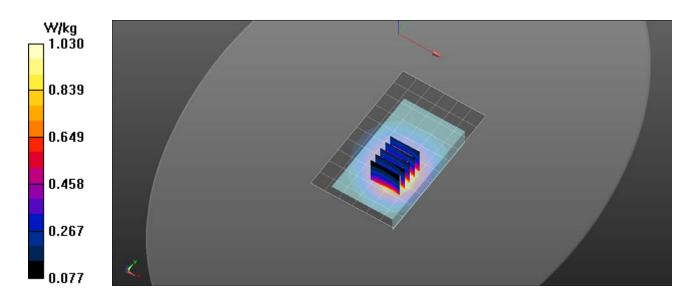
Plot 16

DUT: MIFI7000; Type: MIFI; Serial: SV150917A00717

Communication System: CDMA2000 (1xEV-DO); Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 836.52 MHz; σ = 1.002 S/m; ϵ_r = 54.824; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/1/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.21, 9.21, 9.21); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

835 MHz CDMA/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.03 W/kg

835 MHz CDMA/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.01 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.853 W/kg; SAR(10 g) = 0.599 W/kg

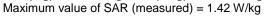
Info: Interpolated medium parameters used for SAR evaluation.

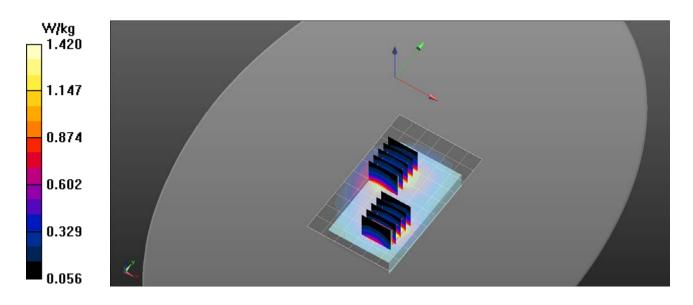
Plot 17

DUT: MIFI7000; Type: MIFI; Serial: SV150917A00717

Communication System: CDMA2000 (1xEV-DO); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1880 MHz; σ = 1.53 S/m; ϵ_r = 52.74; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/1/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C


Probe: EX3DV4 - SN3662; ConvF(7.61, 7.61, 7.61); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

1900 MHz CDMA/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.79 W/kg

1900 MHz CDMA/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement arid: dx=8mm, dv=8mm, dz=5mm Reference Value = 20.12 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.54 W/kg SAR(1 g) = 1.28 W/kg; SAR(10 g) = 0.722 W/kg Maximum value of SAR (measured) = 2.01 W/kg

1900 MHz CDMA/Front Mid/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.12 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.70 W/kg SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.699 W/kg



Appendix C – SAR Test Setup Photos

Test Position Side A 10 mm Gap

Test Position Side B 10 mm Gap

Test Position Side C 10 mm Gap

Test Position Side D 10 mm Gap

Test Position Side E 10 mm Gap

Test and Antenna Locations

Front of Device

Report Number: SAR.20161204

Back of Device

Appendix D – Probe Calibration Data Sheets

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RF Exposure Lab Client

Certificate No: ES3-3311_Feb16

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3311
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	February 16, 2016
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	Jola .
Approved by:	Katja Pokovic	Technical Manager	Job Ky
			Issued: February 18, 2016
This calibration certificate	e shall not be reproduced except in	full without written approval of the labor	ratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3311

Manufactured: July 5, 2011 Calibrated:

February 16, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3311

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.28	1.07	0.47	± 10.1 %
DCP (mV) ^B	103.8	103.5	101.2	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc [⊧]
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	220.4	±3.0 %
		Y	0.0	0.0	1.0		222.4	
		Z	0.0	0.0	1.0		211.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3311

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
300	45.3	0.87	7.52	7.52	7.52	0.15	1.71	± 13.3 %
600	42.7	0.88	6.73	6.73	6.73	0.15	1.50	± 13.3 %
835	41.5	0.90	6.43	6.43	6.43	0.40	1.75	± 12.0 %
1640	40.3	1.29	5.49	5.49	5.49	0.47	1.54	± 12.0 %
2300	39.5	1.67	4.92	4.92	4.92	0.79	1.24	± 12.0 %
2450	39.2	1.80	4.64	4.64	4.64	0.80	1.30	± 12.0 %
2600	39.0	1.96	4.44	4.44	4.44	0.80	1.35	± 12.0 %

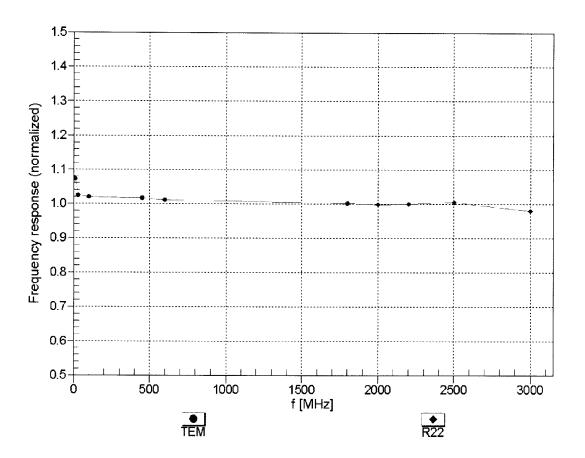
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

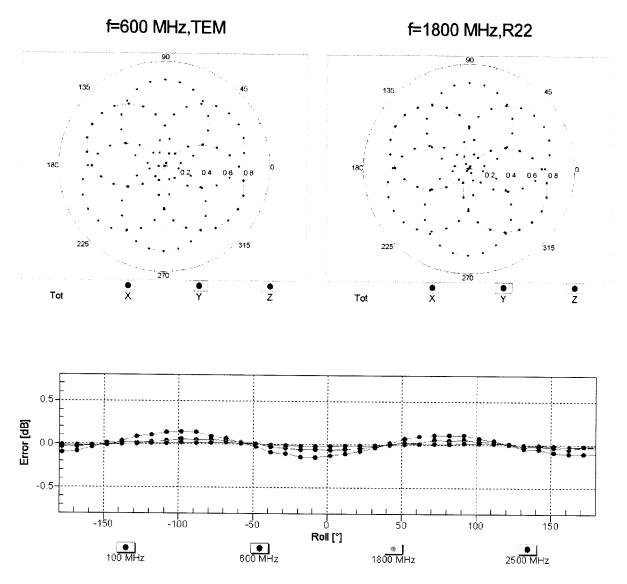
⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3311

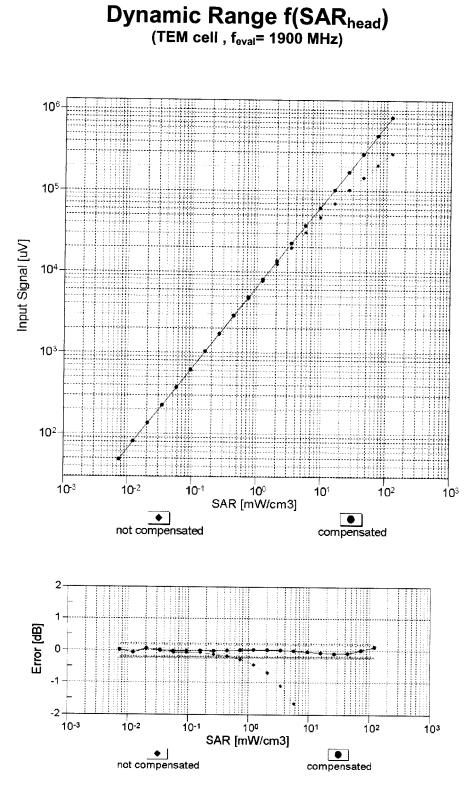

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
300	58.2	0.92	7.31	7.31	7.31	0.13	1.00	± 13.3 %
600	56.1	0.95	6.76	6.76	6.76	0.12	1.50	± 13.3 %
835	55.2	0.97	6.33	6.33	6.33	0.62	1.40	± 12.0 %
1640	53.8	1.40	5.33	5.33	5.33	0.51	1.53	± 12.0 %
2300	52.9	1.81	4.69	4.69	4.69	0.80	1.25	± 12.0 %
2450	52.7	1.95	4.43	4.43	4.43	0.80	1.20	± 12.0 %
2600	52.5	2.16	4.17	4.17	4.17	0.80	1.22	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

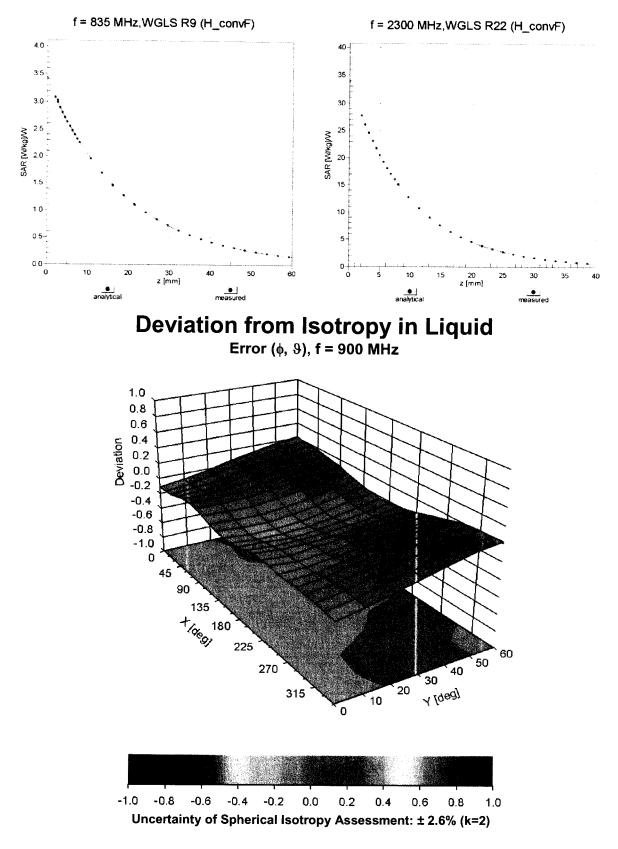
^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^o Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	61.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: EX3-3662_Apr18

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

CALIBRATION	CERTIFICATE
Object	EX3DV4 - SN:3662
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	April 20, 2018
	cuments the traceability to national standards, which realize the physical units of measurements (SI). Incertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been cor	nducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature	
Calibrated by:	Leif Klysner	Laboratory Technician	Saf They	\sim
Approved by:	Katja Pokovic	Technical Manager	All	Ļ
			Issued: April 20, 2	018
This calibration certificate	e shall not be reproduced except in	full without written approval of the labo	ratory.	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Accreditation No.: SCS 0108

Probe EX3DV4

SN:3662

Calibrated:

Manufactured: October 20, 2008 April 20, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.44	0.45	0.48	± 10.1 %
DCP (mV) ^B	102.6	97.6	96.4	

Modulation Calibration Parameters

UID	Communication System Name		A	В	С	D	VR	Unc
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	136.8	±3.3 %
		Y	0.0	0.0	1.0		132.2	
		Z	0.0	0.0	1.0		148.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

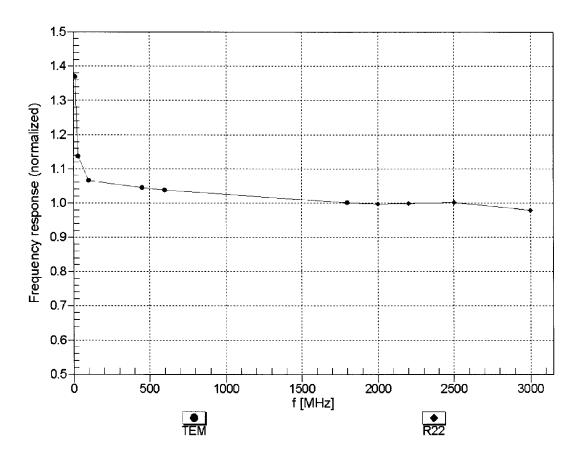
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.80	9.80	9.80	0.43	0.90	± 12.0 %
900	41.5	0.97	9.29	9.29	9.29	0.40	0.91	± 12.0 %
1750	40.1	1.37	8.29	8.29	8.29	0.29	0.84	± 12.0 %
1900	40.0	1.40	8.01	8.01	8.01	0.37	0.80	± 12.0 %
2300	39.5	1.67	7.71	7.71	7.71	0.35	0.80	± 12.0 %
2450	39.2	1.80	7.39	7.39	7.39	0.28	0.91	± 12.0 %
2600	39.0	1.96	7.14	7.14	7.14	0.36	0.85	± 12.0 %
3500	37.9	2.91	7.08	7.08	7.08	0.25	1.20	± 13.1 %
3700	37.7	3.12	6.99	6.99	6.99	0.25	1.20	<u>± 13.1 %</u>
5250	35.9	4.71	5.04	5.04	5.04	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.81	4.81	4.81	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.89	4.89	4.89	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.

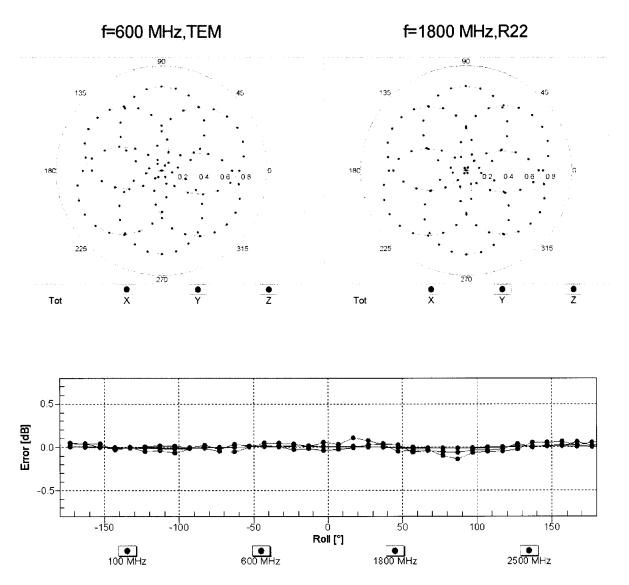
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

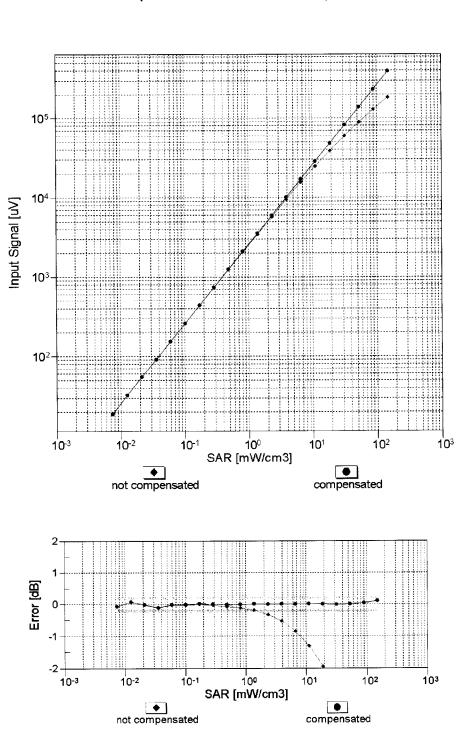

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.62	9.62	9.62	0.37	0.98	± 12.0 %
900	55.0	1.05	9.21	9.21	9.21	0.44	0.84	± 12.0 %
1750	53.4	1.49	7.96	7.96	7.96	0.45	0.80	± 12.0 %
1900	53.3	1.52	7.61	7.61	7.61	0.44	0.80	± 12.0 %
2300	52.9	1.81	7.33	7.33	7.33	0.41	0.80	± 12.0 %
2450	52.7	1.95	7.29	7.29	7.29	0.36	0.87	± 12.0 %
2600	52.5	2.16	7.15	7.15	7.15	0.26	0.99	± 12.0 %
3500	51.3	3.31	7.00	7.00	7.00	0.25	1.20	± 13.1 %
3700	51.0	3.55	6.71	6.71	6.71	0.23	1.20	± 13.1_%
5250	48.9	5.36	4.46	4.46	4.46	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.91	3.91	3.91	0.50	1.90	<u>± 13.1 %</u>
5750	48.3	5.94	4.08	4.08	4.08	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

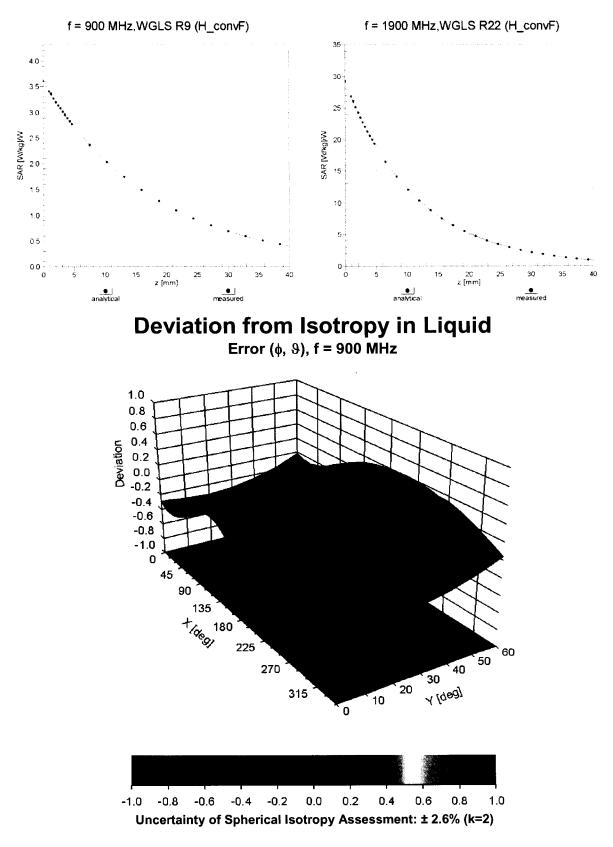
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-22.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Jan16

Accreditation No.: SCS 0108

Client	RF Exposure Lab	Certificate No: EX3-3833_
CAL	IBRATION CERTIFICATE	

Object	EX3DV4 - SN:3833
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	January 27, 2016
	ents the traceability to national standards, which realize the physical units of measurements (SI). tainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	ofe la
		an a	anna composition and a second a second a secon
Approved by:	Katja Pokovic	Technical Manager	Lett-
		9,99,999,999,99,999,999,99,99,99,99,99,	ana sa barananan sa sa sa mana perana ana ara ara ara ara ara ara ara ara
			•
This calibration certificate	e shall not be reproduced except in	full without written approval of the labo	Issued: January 28, 2016 ratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
φ rotation around probe axis
9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
i.e., $\vartheta = 0$ is normal to probe axis
information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Accreditation No.: SCS 0108

Probe EX3DV4

SN:3833

Calibrated:

Manufactured: November 7, 2011 January 27, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm $(\mu V/(V/m)^2)^A$	0.47	0.49	0.35	± 10.1 %	
DCP (mV) ^B	100.8	100.2	102.7		

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊨] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	131.4	±2.5 %
		Y	0.0	0.0	1.0		134.5	
		Z	0.0	0.0	1.0		128.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

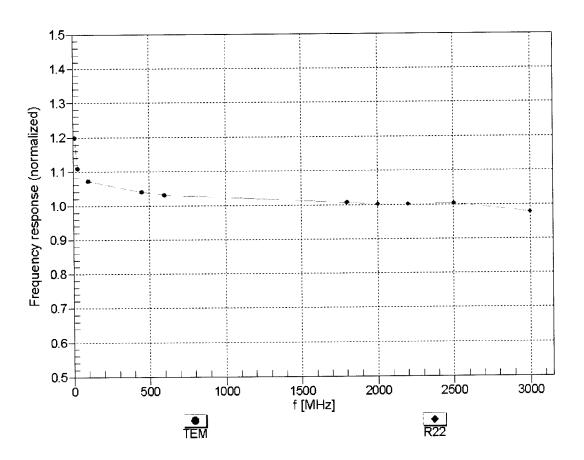
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	11.38	11.38	11.38	0.00	1.00	± 13.3 %
220	49.0	0.81	10.71	10.71	10.71	0.00	1.00	± 13.3 %
300	45.3	0.87	10.68	10.68	10.68	0.08	1.15	± 13.3 %
450	43.5	0.87	9.47	9.47	9.47	0.15	1.15	± 13.3 %
600	42.7	0.88	9.41	9.41	9.41	0.09	1.15	± 13.3 %
750	41.9	0.89	9.23	9.23	9.23	0.37	1.00	± 12.0 %
900	41.5	0.97	8.72	8.72	8.72	0.29	1.17	± 12.0 %
1640	40.3	1.29	7.85	7.85	7.85	0.41	0.88	± 12.0 %
1750	40.1	1.37	7.62	7.62	7.62	0.46	0.80	± 12.0 %
1900	40.0	1.40	7.27	7.27	7.27	0.45	0.80	± 12.0 %
2450	39.2	1.80	6.86	6.86	6.86	0.39	0.91	<u>± 12.0 %</u>
5200	36.0	4.66	4.64	4.64	4.64	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.47	4.47	4.47	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.23	4.23	4.23	0.40	1.80	± 13.1 %
5600	35.5	5.07	3.94	3.94	3.94	0.45	1.80	± 13.1 %
5800	35.3	5.27	4.11	4.11	4.11	0.45	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

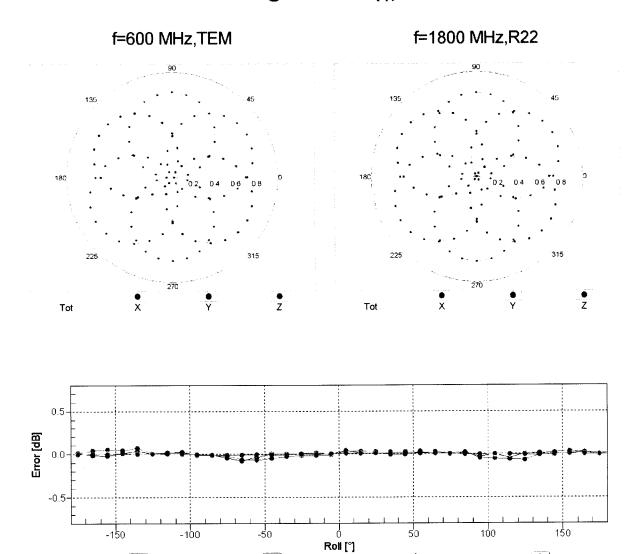
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	11.03	11.03	11.03	0.00	1.00	± 13.3 %
220	60.2	0.86	10.39	10.39	10.39	0.00	1. <u>00</u>	± 13.3 %
300	58.2	0.92	10.08	10.08	10.08	0.07	1.15	± 13.3 %
450	56.7	0.94	10.23	10.23	10.23	0.09	1.15	± 13.3 %
600	56.1	0.95	9.68	9.68	9.68	0.08	1.15	± 13.3 %
750	55.5	0.96	9.06	9.06	9.06	0.44	0.87	± 12.0 %
900	55.0	1.05	8.73	8.73	8.73	0.32	1.06	± 12.0 %
1640	53.8	1.40	7.77	7.77	7.77	0.38	0.82	± 12.0 %
1750	53.4	1.49	7.32	7.32	7.32	0.42	0.84	± 12.0 %
1900	53.3	1.52	7.13	7.13	7.13	0.38	0.80	± 12.0 %
2450	52.7	1.95	6.87	6.87	6.87	0.40	0.85	± 12.0 %
5200	49.0	5.30	4.03	4.03	4.03	0.45	1.90	± 13.1 %
5300	48.9	5.42	3.85	3.85	3.85	0.45	1.90	± 13.1 %
5500	48.6	5.65	3.56	3.56	3.56	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.25	3.25	3.25	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.49	3.49	3.49	0.60	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

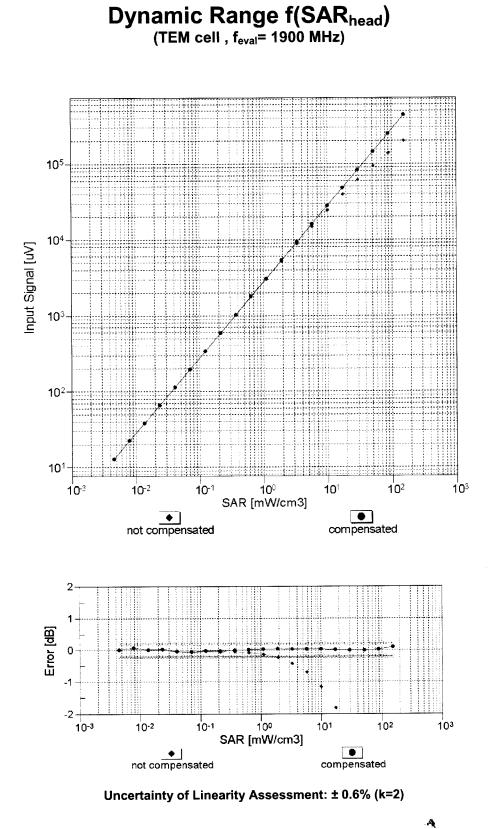
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is


⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

2500 MHz


Receiving Pattern (\phi), \vartheta = 0^{\circ}

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

1800 MHz

600 MHz

100 MHz

