

Report On

Application for Grant of Equipment Authorization of the Novatel Wireless Inc. MIFI6630 Wireless Hotspot Modem

FCC CFR 47 Part 2 and 27 October 2014 IC RSS-Gen and RSS-199 Issue 2 October 2014

Report No. 72101251C

March 2015

FCC ID PKRNVWMIFI6630 IC: 3229A-MIFI6630 Report No. 72101251C

TEST REPORT NUMBER

PREPARED FOR

CONTACT PERSON

PREPARED BY

APPROVED BY

REPORT ON

Radio Testing of the Novatel Wireless Inc. MIFI6630 Wireless Hotspot Modem

72101251C

Novatel Wireless Inc. 9645 Scranton Road, Suite 205 San Diego, CA 92121

Roman Olmos Hardware Engineer II & ISO-17025 Technical Manager (858) 812-3400 rolmos@nvtl.com

Name: Xiaoy̆ing Zhang̈́ Authorized Signatory Title: EMC/Wireless Test Engineer

Juan Manuel Gonzalez Name Authorized Signatory Title: Commercial/Wireless EMC Lab Manager

DATED

March 28, 2015

Revision History

72101251C Novatel Wireless Inc. MIFI6630 Wireless Hotspot Modem					
DATE	OLD REVISION	NEW REVISION	REASON	PAGES AFFECTED	APPROVED BY
03/30/2015	Initial Release				Juan M. Gonzalez

CONTENTS

Section

Page No

REPORT SUMMARY	. 5
Introduction	6
Brief Summary Of Results	. 7
Product Information	. 8
EUT Test Configuration	9
Deviations From The Standard	11
Modification Record	11
Test Methodology	11
Test Facility Location	11
Test Facility Registration	11
Sample Calculations	13
TEST DETAILS	14
Transmitter Conducted Power Measurements	15
Effective Isotropically Radiated Power	17
Occupied Bandwidth	19
Spurious Emission At Band Edge	25
Conducted Spurious Emissions	35
Field Strength Of Spurious Radiation	43
Iransmitter Frequency Stability	47
TEST EQUIPMENT USED	51
Test Equipment Used	52
Measurement Uncertainty	53
DIAGRAM OF TEST SETUP	54
Test Setup Diagram	55
ACCREDITATION, DISCLAIMERS AND COPYRIGHT	58
Accreditation, Disclaimers and Copyright	59
	REPORT SUMMARY Introduction Brief Summary Of Results Product Information EUT Test Configuration Deviations From The Standard Modification Record Test Methodology Test Methodology Test Facility Location Test Facility Location Sample Calculations Transmitter Conducted Power Measurements Effective Isotropically Radiated Power Occupied Bandwidth Spurious Emission At Band Edge Conducted Spurious Emissions Field Strength Of Spurious Radiation Transmitter Frequency Stability. Test Equipment Used Measurement Uncertainty DIAGRAM OF TEST SETUP Test Setup Diagram Accreditation, Disclaimers and Copyright

SECTION 1

REPORT SUMMARY

Radio Testing of the Novatel Wireless Inc. MIFI6630 Wireless Hotspot Modem

Page **5** of **59**

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the Novatel Wireless Inc. MIFI6630 Wireless Hotspot Modem to the requirements of the following:

- FCC CFR 47 Part 2 and 27 October 2014
- IC RSS-Gen and RSS-199 Issue 2 October 2014.

Objective	To perform Radio Testing to determine the Equipment Under Test's (EUT's) compliance with the Test Specification, for the series of tests carried out.	
Manufacturer	Novatel Wireless Inc.	
Model Number(s)	MIFI6630	
FCC ID Number	PKRNVWMIFI6630	
IC Number	3229A-MIFI6630	
Serial Number(s)	FID: SH181214900141	
Number of Samples Tested	1	
Test Specification/Issue/Date	 FCC CFR 47 Part 2 and 27 October 2014 (October 01, 2014). RSS-199 - Broadband Radio Services (BRS) Equipment Operating in the Frequency Bands 2500 - 2690 MHz (Issue 2, October 2014). RSS-Gen - General Requirements for Compliance of Radio Apparatus (Issue 4, November 2014). 	
Start of Test	March 24, 2015	
Finish of Test	March 27, 2015	
Name of Engineer(s)	Xiaoying Zhang	
Related Document(s)	 ANSI/TIA-603-C-2004 – Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards. KDB971168 (D01 Power Meas License Digital Systems v02r02) Measurement Guidance for Certification of Licensed Digital Transmitters, October 17, 2014. KDB412172 D01 Determining ERP and EIRP v01 (Guidelines for Determining the Effective Radiated Power (ERP) and Equivalent Isotropically Radiated Power (EIRP) of a RF Transmitting System, November 	

31, 2010.

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC CFR 47 Part 2 and 27 October 2014 with cross-reference to the corresponding IC RSS standard is shown below.

Section	FCC Part Sections(s)	RSS Section(s)	Test Description	Result
2.1	2.1046	RSS-199 (4.4)	Transmitter Conducted Output Power	Compliant
2.2	2.1046, 27.50 (h) (2)	RSS-199 (4.4)	Equivalent Isotropic Radiated Power	Compliant
-			Effective Radiated Power	N/A
2.3	2.1049 and 27.53(m) (6)	RSS-199 (4.2) RSS-Gen (6.6)	Occupied Bandwidth	Compliant
2.4	27.53(m) (4)	RSS-199 (4.6)	Band Edge	Compliant
2.5	2.1051 27.53(m) (4)	RSS-199 (4.6)	Conducted Spurious Emissions	Compliant
2.6	2.1053 27.53(m)	RSS-199 (4.6)	Field Strength Of Spurious Radiation	Compliant
2.7	2.1055 (a)(1) and (d)(1), 27.54	RSS-199 (4.3)	Frequency Stability	Compliant
2.8		RSS-Gen 7.1.2	Receiver Spurious Emissions	N/A

1.3 **PRODUCT INFORMATION**

1.3.1 EUT General Description

The Equipment Under Test (EUT) was a Novatel Wireless Inc. MIFI6630 Wireless Hotspot Modem. The EUT creates a personal Wi-Fi cloud, capable of sharing high speed 4G LTE and 3G Mobile Broadband Internet connectivity with up to 15 Wi-Fi enabled devices simultaneously.

1.3.2 Technical Description

EUT Description	Wireless Hotspot Modem
Model Number(s)	MIF16630
Rated Voltage	Nominal 3.8VDC Li-Ion Battery AC Power Adaptor Input: 100-240VAC/0.3A/50-60Hz Output: 5.0VDC/2.0A
Mode Verified	LTE Band 7
Capability	GSM850/1900, WCDMA850/1900, LTE Band 2/3/4/5/7/12/17/29, WLAN 802.11 a/b/g/n
Antenna Type	Monopole
Manufacturer	NVTL
Part Number	NVTL DA-01020345
Antenna Gain	2500MHz = 0.25dBi

1.3.3 Transmit Frequency Table

LTE Band 7					
	Modulation	Tx Frequency (MHz)	Emission Designator	EIRP	
Bandwidth				Max. Power (dBm)	Max. Power (W)
5.0 MHz	QPSK	2500 -2570	4M46G7D	29.54	0.90
5.0 MHz	16QAM	2500 -2570	4M46W7D	29.47	0.89
10.0 MHz	QPSK	2500 -2570	8M92G7D	29.54	0.90
10.0 MHz	16QAM	2500 -2570	8M92W7D	29.48	0.89
15.0 MHz	QPSK	2500 -2570	13M4G7D	29.66	0.92
15.0 MHz	16QAM	2500 -2570	13M4W7D	29.68	0.93
20.0 MHz	QPSK	2500 -2570	17M8G7D	29.80	0.95
20.0 MHz	16QAM	2500 -2570	17M8W7D	29.57	0.91

1.4 EUT TEST CONFIGURATION

1.4.1 Test Configuration Description

Test Configuration	Description
A	Conducted antenna port measurement. EUT Tx at a max power and connected to the CMW500 for communication.
В	Radiated test measurement. EUT Tx through integral antenna and connected to the CMW500 for communication.

1.4.2 EUT Exercise Software

EUT is controlled by a CMW500 Wideband Radio Communication Tester. There are no other test softwares used during verification.

1.4.3 Support Equipment and I/O cables

Manufacturer	Equipment/Cable	Description
Novatel Wireless	USB Cable	Micro USB Type B to Standard USB Type B

1.4.4 Worst Case Configuration

Worst-case configuration used in this test report as per output power measurements:

Band	Channel BW	Modulation
LTE Band 7	15.0 MHz	QPSK

For radiated measurements X, Y, and Z orientations were verified. The verification was determined "Y" as worst case configuration.

1.4.5 Simplified Test Configuration Diagram

Radiated/Conducted Emission Test Configuration via Conducted Port

Communication Tester

Conducted (Antenna Port) Test Configuration

1.5 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standards or test plan were made during testing.

1.6 MODIFICATION RECORD

Description of Modification	Modification Fitted By	Date Modification Fitted	
Serial Number FID: SH181214900141			
N/A	_	_	

The table above details modifications made to the EUT during the test programme. The modifications incorporated during each test (if relevant) are recorded on the appropriate test pages.

1.7 TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

For conducted (if applicable) and radiated emissions the equipment under test (EUT) was configured to measure its highest possible emission level. This level was based on the maximized cable configuration from exploratory testing per ANSI C63.4-2014. The test modes were adapted according to the Operating Instructions provided by the manufacturer/client.

1.8 TEST FACILITY LOCATION

1.8.1 TÜV SÜD America Inc. (Mira Mesa)

10040 Mesa Rim Road, San Diego, CA 92121-2912 (32.901268,-117.177681). Phone: 858 678 1400 FAX: 858-546 0364

1.8.2 TÜV SÜD America Inc. (Rancho Bernardo)

Sony Electronics Inc., Building #8 16530 Via Esprillo, San Diego, CA 92127-1708 (33.018644,-117.092409). Phone: 858 942 5542 FAX: 858-546 0364

1.9 TEST FACILITY REGISTRATION

1.9.1 FCC – Registration No.: US1146

TUV SUD America Inc. (San Diego), is an accredited test facility with the site description report on file and has met all the requirements specified in §2.948 of the FCC rules. The acceptance letter from the FCC is maintained in our files and the Registration is US1146.

1.9.2 Industry Canada (IC) Registration No.: 3067A

The 10m Semi-anechoic chamber of TUV SUD America Inc. (San Diego) has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No. 3067A.

1.10 SAMPLE CALCULATIONS

1.10.1 LTE Emission Designator (QPSK)

Emission Designator = 4M51G7D G = Phase modulation 7= Two or more channels containing quantized or digital information D = Data transmission, telemetry, telecommand

1.10.2 LTE Emission Designator (16QAM)

Emission Designator = 4M50W7D W = Frequency modulation 7= Two or more channels containing quantized or digital information D = Data transmission, telemetry, telecommand

1.10.3 Spurious Radiated Emission (below 1GHz)

Measuring equipment raw measure	24.4		
	Asset# 1066 (cable)	0.3	
	Asset# 1172 (cable)	0.3	
Correction Factor (dB)	Asset# 1016 (preamplifier)	-30.7	-12.6
	Asset# 1175(cable)	0.3	
	Asset# 1002 (antenna)	17.2	
Reported QuasiPeak Final Measure	11.8		

1.10.4 Spurious Radiated Emission – Substitution Method

Example = 84dBµV/m @ 1413 MHz (numerical sample only)

The field strength reading of $84dB\mu V/m @ 1413 MHz (2^{nd} Harmonic of 706.5 MHz)$ is the maximized measurement when the EUT is on the turntable measured at 3 meters. The gain of the substituted antenna is 7.8dBi while the transmit cable loss is 1.0 dB (cable between signal generator and the substituted antenna). The signal generator level is adjusted until the $84dB\mu V/m$ level at the receiving end is replicated (identical test setup, i.e. same antenna, cable/s and preamp). If the adjusted signal generator level is -18dBm, then we have the following for both EIRP and ERP as required:

 $P_{EIRP} = -18 \text{ dBm} + 7.8 \text{ dBi} - 1\text{ dB}$ = 11.2 dBm $P_{ERP} = P_{EIRP} - 2.15 \text{ dB}$ = 11.2 dBm - 2.15 dB = 9.05 dBm

SECTION 2

TEST DETAILS

Radio Testing of the Novatel Wireless Inc. MIFI6630 Wireless Hotspot Modem

2.1 TRANSMITTER CONDUCTED POWER MEASUREMENTS

2.1.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1046 (a) and (c) Industry Canada RSS-199, Clause 4.4

2.1.2 Standard Applicable

The transmitter output power shall be measured using a peak detector. For mobile subscriber equipment, the e.i.r.p. shall not exceed 2 watts.

2.1.3 Equipment Under Test and Modification State

Serial No: FID: SH181214900141 / Test Configuration A

2.1.4 Date of Test/Initial of test personnel who performed the test

March 24, 2015 / XYZ

2.1.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

Ambient Temperature	22.8 °C
Relative Humidity	40.1%
ATM Pressure	99.7 kPa

2.1.7 Additional Observations

- This is a conducted test using a peak/average power meter.
- The 18.5dB LTE Band 7 offset on the power meter was used for the power splitter, external attenuator and cable used.

2.1.8 Test Results

Modulation	Bandwidth	Channels	Frequency	Tx Average (dBm)	Tx Peak (dBm)
		20755	2502.5	22.60	29.29
	5 MHz	21100	2535.0	22.42	29.06
		21425	2567.5	22.30	28.79
		20800	2505.0	22.57	29.29
	10 MHz	21100	2535.0	22.42	29.83
		21400	2565.0	22.23	28.63
QPSK		20825	2507.5	22.71	29.41
	15 MHz	21100	2535.0	22.45	28.78
		21375	2562.5	22.20	28.73
		20850	2510.0	22.58	29.55
	20 MHz	21100	2535.0	22.43	29.01
		21350	2560.0	22.17	28.94

Modulation	Bandwidth	Channels	Frequency	Tx Average (dBm)	Tx Peak (dBm)
		20755	2502.5	21.72	29.22
	5 MHz	21100	2535.0	22.40	28.97
		21425	2567.7	21.43	28.82
		20800	2505.0	21.69	29.23
	10 MHz	21100	2535.0	21.54	29.01
		21400	2565.0	21.41	28.61
16QAM		20825	2507.5	21.78	29.43
	15 MHz	21100	2535.0	21.74	29.02
		21375	2562.5	21.28	28.54
		20850	2510.0	21.72	29.32
	20 MHz	21100	2535.0	21.55	28.92
		21350	2560.0	21.30	28.86

2.2 EFFECTIVE ISOTROPICALLY RADIATED POWER

2.2.1 Specification Reference

FCC CFR Part 2, Clause 2.1046 FCC CFR Part 27, Clause 27.50 (h) (2) Industry Canada RSS-199, Clause 4.4

2.2.2 Standard Applicable

The transmitter output power shall be measured using a peak detector. For mobile subscriber equipment, the e.i.r.p. shall not exceed 2 watts.

2.2.3 Equipment Under Test

Serial No: FID: SH181214900141, Test Configuration (N/A, calculation only)

2.2.4 Date of Verification/Initial of test personnel who performed the calculation

March 24, 2015 / XYZ

2.2.5 Additional Observations

- EIRP was calculated.
- Calculation formula in logarithmic terms:

$$EIRP=P_T + G_T - L_C$$

Where:

P_T = transmitter conducted output power dBm (Section 2.1 of this test report)

 \mathbf{G}_{T} = gain of the transmitting antenna, in dBi

 L_c = signal attenuation in the connecting cable between the transmitter and antenna, in dB (Power measurement performed directly at the primary antenna port. The loss between the LTE module and the primary antenna port is considered negligible).

2.2.6 Test Results

Modulation	Bandwidth	Channels	Frequency	EIRP (dBm)	EIRP (Watt)	Limit (Watt)
		20755	2502.5	29.54	0.90	2
	5 MHz	21100	2535.0	29.31	0.85	2
		21425	2567.7	29.04	0.80	2
		20800	2505.0	29.54	0.90	2
	10 MHz	21100	2535.0	30.08	1.02	2
		21400	2565.0	28.88	0.77	2
QPSK		20825	2507.5	29.66	0.92	2
	15 MHz	21100	2535.0	29.03	0.80	2
		21375	2562.5	28.98	0.79	2
		20850	2510.0	29.80	0.95	2
	20 MHz	21100	2535.0	29.26	0.84	2
		21350	2560.0	29.19	0.83	2

Modulation	Bandwidth	Channels	Frequency	EIRP (dBm)	EIRP (Watt)	Limit (Watt)
		20755	2502.5	29.47	0.89	2
	5 MHz	21100	2535.0	29.22	0.84	2
		21425	2567.7	29.07	0.81	2
		20800	2505.0	29.48	0.89	2
	10 MHz	21100	2535.0	29.26	0.84	2
		21400	2565.0	28.86	0.77	2
16QAM		20825	2507.5	29.68	0.93	2
	15 MHz	21100	2535.0	29.27	0.85	2
		21375	2562.5	28.79	0.76	2
		20850	2510.0	29.57	0.91	2
	20 MHz	21100	2535.0	29.17	0.83	2
		21350	2560.0	29.11	0.81	2

2.3 OCCUPIED BANDWIDTH

2.3.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1049 FCC CFR 47 Part 27, Clause 27.53 (m) (6) Industry Canada RSS-199, Clause 4.2 Industry Canada RSS-GEN , Clause 6.6

2.3.2 Standard Applicable

The transmitted signal bandwidth shall be reported as the 99% emission bandwidth, that is the frequency bandwidth suuch that, below its lower and above its upper frequency limits, the mean powers radiated are eqch equal to 0.5 percent of the total mean power radiated by a give emission.

26dB Bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated by at least 26 dB below the transmitter power.

Using the occupied bandwidth meansurement function in the spectrum analyzer, the 99% occupied bandwith was measured.

In addition, the 26dB bandwidth was measured in accorance with FCC KDB 971168 D01 V0202 Clause 4.1 using the ndB measurement function in the spectrum analyzer.

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be at least 3x RBW.

2.3.3 Equipment Under Test and Modification State

Serial No: FID: SH181214900141 / Test Configuration A

2.3.4 Date of Test/Initial of test personnel who performed the test

March 24 and 27, 2015 / XYZ

2.3.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

Ambient Temperature	22.8 - 23.5°C
Relative Humidity	38.9 - 40.1%
ATM Pressure	99.5 - 99.7 kPa

2.3.7 Additional Observations

- This is a conducted test.
- The 18.5 dB LTE Band 7 offset on the spectrum analyzer was used for the power splitter, external attenuator and cable used.
- The RBW is set to 1% of the emission bandwidth while the VBW is at least 3 x RBW.
- Only QPSK plots were listed as the representative modulation.

2.3.8 Test Results

LTE Band	Channel	Frequency (MHz)	BW (MHz)	Modulation	99% OBW (MHz)	-26dBc BW (MHz)
			F O	QPSK	4.46	4.78
			5.0	16QAM	4.46	4.80
			10.0	QPSK	8.92	9.36
57	21100	2525.0	10.0	16QAM	8.92	9.36
В7	21100	2535.0	15.0	QPSK	13.38	14.04
			15.0	16QAM	13.38	14.04
				QPSK	17.76	18.56
			20.0	16QAM	17.76	18.56

Page 22 of 59

Page 23 of 59

Page 24 of 59

2.4 SPURIOUS EMISSION AT BAND EDGE

2.4.1 Specification Reference

FCC CRF Part 27, Clasue 27.53 (m) (4) Industry Canada RSS-199, Clause 4.6

2.4.2 Standard Applicable

In the 1 MHz band immediately outside and adjacent to the channel edge, the unwanted emission power shall be measured with a resolution bandwidth of at least 2% for mobile subscriber equipment. Beyond the 1 MHz band, a resolution bandwidth of 1 MHz shall be used. A narrower resolution bandwidth is allowed to be used, provided that the measured power is integrated over the full required measurement bandwidth of 1 MHz or 1%/2% of the occupied bandwidth, as applicable.

Equipment shall comply with the following unwanted emissions limits:

According RSS-199, for mobile subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least:

- i) 40 + 10 log10 p from the channel edges to 5 MHz away,
- ii) 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and
- iii) 55 + 10 log10 p at X MHz and beyond from the channel edges.
- iv) in addition, the attenuation shall be not be less than 43 + 10 log10 p on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log10 p at or below 2490.5 MHz.

where p in (a) and (b) is the transmitter power measured in watts and X is 6 MHz or the equipment occupied bandwidth, whichever is greater.

According to FCC CFR 47 Part 27, For mobile digital stations, the attenuation factor shall be not less than $43 + 10 \log (P) dB$ at the channel edge and $55 + 10 \log (P) dB$ at 5.5 megahertz from the channel edges.

2.4.3 Equipment Under Test and Modification State

Serial No: FID: SH181214900141 / Test Configuration A

2.4.4 Date of Test/Initial of test personnel who performed the test

March 25 and 26, 2015 / AC

2.4.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.4.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

Ambient Temperature	24.5°C
Relative Humidity	39.7%
ATM Pressure	99.7 kPa

2.4.7 Additional Observations

- This is a conducted test.
- The 18.5dB LTE Band 12 offset on the spectrum analyzer was used for the power splitter, external attenuator and cable used.
- The center frequency of the spectrum is the band edge frequency (worst case 2500 MHz, and 2570 MHz).
- RBW is set to minimum 2% of OBW) and VBW is set to >3 x RBW in the 1 MHz band immediately outside and adjacent to the channel edge.
- RBW should be 1MHz for the channel edges to 5 MHz away, a narrower RBW was used and the Limit line was adjusted accordingly.
- Only QPSK plots were listed as the representative modulation.

2.4.8 Test Results

MultiView	🖽 Spectrum	2 🛛	Spectrum	×					∇
Ref Level 30	.00 dBm Offset	: 18.5 20.0 up (+0.7	0 dB = RBW 20	0 kHz Compati	ble R&S FSV				Count 100/100
1 Frequency	Sweep	20:5 µ3 (**5:7	1113) = VD17 - 2		Adtonn				• 1Pk Max
								M1[1]	-14.58 dBn 2,50000000 GH
20 dBm									
								_	
10 dBm						\sim	$\rightarrow \rightarrow \rightarrow$	-	<u> </u>
0 dBm									
-10 d9m-									
10 000	H1 -13.000 dBm				₩				
-20 dBm				$ \rightarrow \checkmark$					
~~~~	$\sim$	~~~~	$\sim$	1					
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
			2000 m						Enon 10.0 MH-
			2000 p	nca -		x10			
Date: 25 MAR 20	015 08:46:18	2 x	Spectrum	× Spe	ctrum 3	×	Measuring	196 <b>()</b>	25.03.2015
Date: 25 MAR 20 MultiView Ref Level 30	) ) ) ) ) ) ) ) ) ) ) ) ) )	2 × t 18.50 dB = F	Spectrum BW 50 kHz	X Spe Compatible Auto	ctrum 3 &S FSV	( × )	Measuring,		25.03.2015
MultiView Ref Level 30 Att 1 Frequency	015 08 46 ±18 ⇒ Spectrum 00 dBm Offse 21 dB ● SWT Sweep	2 x t 18.50 dB ● F 3 s ● V	Spectrum BW 50 kHz BW 500 kHz	X Spe Compatible R Mode Auto	ctrum 3 &S FSV Sweep	×	Moasuring		25.03.2015 ▼ ● 1Pk Clrw
MultiView Ref Level 30 Att T Frequency S	D15 08 x46 18 Spectrum .00 dBm Offse 21 dB • SWT Sweep	2 (×) tt 18.50 dB ● F 3 s ● V	Spectrum RBW 50 kHz ZBW 500 kHz	X Spe Compatible R Mode Auto	ctrum 3 &S FSV Sweep		Mensurino	M1[1]	25.03.2015 ▼ ● 1Pk Clrw -26.61 dBn 2.49873660 GH.
MultiView Ref Level 30 Att 20 dBm	015 08%618 Spectrum 100 dBm Offse 21 dB = SWT Sweep	2 (x) t 18.50 dB • F 3 s • V	Spectrum BBW 50 kHz BBW 500 kHz	X Spe Compatible R Mode Auto	ctrum 3 &s FSV Sweep		Massuring	M1[1]	● 1Pk Clrw -26.61 dBn -26.61 dBn
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	D15 08x618 Spectrum .00 dbm Offse 21 db = SWT Sweep	2 x t 18.50 dB = F 3 s = V	Spectrum BBW 50 kHz BW 500 kHz	X Spe Compatible R Mode Auto	ctrum 3 &s FSV Sweep		Nessening.	M1[1]	● 1Pk Clfw ~ 26.61 dBn -26.61 dBn 2.49873660 GH
MultiView Ref Level 30 Att 1 Frequency 10 dBm	) )))))))))))))))))))))))))))))))))))	2 x t 18.50 dB = F 3 s = V	Spectrum RBW 50 kHz BW 500 kHz	Compatible R Mode Auto	ctrum 3 86 FSV Sweep			M1[1]	25.03.2015 ▼ ● 1Pk Clrw -26.61 dBn 2,49873660 GH
MultiView Ref Level 30 Att Hrequency 10 dBm		2 x t 18.50 dB = F 3 s = V	Spectrum BW 50 kHz BW 500 kHz	Compatible R Mode Auto	ctrum 3 86 FSV Sweep			M1[1]	25.03.2015 ▼ ● 1Pk Clrw -26.61 dBn -249873660 GH
MultiView Ref Level 30 Att Hrequency 10 dBm 0 dBm		2 x t 18.50 dB = F 3 s = V	Spectrum RBW 50 kHz BW 500 kHz	Compatible R Mode Auto	ctrum 3 86 FSV Sweep			M1[1]	25.03.2015 ▼ ● 1Pk Clrw -26.61 dBn -249873660 GH
MultiView Ref Level 30 Att Hrequency 0 dBm -10 dBm -10 dBm	Spectrum     Odem Offse     21de = SWT     Sweep	2 x t 18.50 dB = F 3 s = V	Spectrum Rew 50 kHz BW 500 kHz	X Spe Compatible R Mode Auto	ctrum 3 85 FSV Sweep			M1[1]	25.03.2015 ▼ • 1Pk Clrw -26.61 dBn -2.49873660 GH
MultiView           Ref Level 30           Att           1 Frequency           20 dBm           0 dBm           -10 dBm	Spectrum 0.0 dBm Offse 21 dB = SWT Wweep	2 (x) t 18.50 dB = F 3 s = V	Spectrum BW 50 kHz BW 500 kHz	X Spe Compatible R Mode Auto	ctrum 3 86 FSV Sweep			M1[1]	25.03.2015 ▼ ■1Pk Clrw -26.61 dBn -249873660 GH
Multiview           Ref Level 30 Att           10 dBm           -10 dBm           -20 dBm	Spectrum     Spectrum     System     Sy	2 × t 18.50 dB = F 3 s = V	Spectrum BW 50 kHz BW 500 kHz	Compatible Auto	ctrum 3 es FSV Sweep			M1[1]	
Multiview           Ref Level 30 Att           10 dBm           0 dBm           -10 dBm	Spectrum     Odsm     Offse     System     System	2 x 18.50 dB = F 3 s = V	Spectrum BW 50 kHz BW 500 kHz	Compatible R Mode Auto	ctrum 3 es FSV Sweep			MI[1]	
Multiview           Ref Level 30 Att           10 dBm           -10 dBm           -20 dBm	Spectrum     Spectrum     System     System     System     Swrep     Swrep     Swrep     Swrep     Swrep     Swrep	2 × 18.50 dB = F 3 s = V	Spectrum BW 500 kHz BW 500 kHz	Compatible P Mode Auto	ctrum 3 es FSV Sweep			M1[1]	
Multiview           Multiview           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	Spectrum     Spectrum     System     Sy	2 × 18.50 dB = F 3 s = V	Spectrum BW SO KHz BW SOO KHz	Compatible P Mode Auto	ctrum 3 85 FSV Sweep			M1[1]	25.03.2015 ▼ ■ 12k Clrw -26.61 dBn -26.61 dBn -24.9873660 GH
MultiView           MultiView           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30jjjm           -40 dBm	Spectrum     Spectrum     System     Sy	2 (x) t 13.50 dB = F 3 s = V	Spectrum NBW 50 kHz BW 500 kHz	Compatible P Mode Auto	ctrum 3 Ձs FSV Sweep			M1[1]	25.03.2015
Multiview           Multiview           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	Spectrum     Spectrum     System     System     System     Swcep     H1 -23.000 dBm	2 (x) t 18.50 dB = F 3 s = V	Spectrum BW 50 kHz BW 500 kHz	x Spe Compatible P Mode Auto	ctrum 3 86 FSV Sweep			M1[1]	25.03.2015
Multiview           Multiview           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	Spectrum     Spectrum     System     System     Sweep     H1 -23.000 dbm	2 (x) tr 18.50 dB = F 3 s = V	Spectrum BW 50 kHz BW 500 kHz	x Spe Compatible P Mode Auto	ctrum 3 86 FSV Sweep			M1[1]	25.03.2015
Image: 25 MAR 20           MultiView           Ref Level 30           Att           1 Frequency:           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 jjjjm           -30 jjjm           -50 dBm	Spectrum     Spectrum     System     System     System     Sweep     H1 -23.000 dBm     H1 -23.000 dBm	2 X t 18.50 dB = F 3 s = V	Spectrum BW 50 kHz BW 500 kHz	x Spe Compatible P Mode Auto	ctrum 3 88 FSV Sweep			M1[1]	25.03.2015
MultiView           MultiView           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 JBm           -30 dBm           -50 dBm	Spectrum     Spectrum     System     System     Sweep     H1 -23.000 dBm     H1 -23.000 dBm	2 X t 18.50 dB = F 3 s = V	Spectrum RBW 50 KHz BW 500 KHz	x Spe Compatible R Mode Auto	ctrum 3 88 FSV Sweep			M1[1]	25.03.2015
MultiView           MultiView           Ref Level 30 Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 JBm           -30 dBm           -50 dBm           -50 dBm           -20 dBm	Spectrum     Spectrum     Solution	2 X t 18.50 dB = F 3 s = V	Spectrum RBW 50 KHz BW 500 KHz	x Spe Compatible R Mode Auto	ctrum 3 88 FSV Sweep	×		M1[1]	25.03 2015



# Page **30** of **59**





#### Page 32 of 59

MultiView	🖽 Spectrum	2							~
Ref Level 30 Att	.00 dBm Offset 21 dB SWT	t 18.50 dE 8.4 us (~17 ms	8 • RBW 500 ki ) • VBW 5 M	Hz Compatibl Hz Mode	e R&S FSV Auto FFT				Count 100/100
1 Frequency	Sweep		,						• 1Pk Max
								M1[1]	-19.70 dBn 2.50000000 GH
20 dBm									
10 dBm						~ ~			
0 dBm									
-10 dBm									
	H1 -13.000 dBm								
-20 dBm	_								
$\sim$			~ `						
-30 dBm									
-40 dBm	-								-
-50 dBm									
-60 dBm									
			2000 pt		·	0 MH= /			Epop 10.0 MH
or zio oriz	-		2000 pt	•				4.44	25.03.2015
Date:25MAR.20	15 09:12:22		Spectrum	X Eng	strum 2	<u></u>	Measuring		09:17.27
Date: 25 MAR 20 MultiView Ref Level 30	15 09:12:22 Spectrum 00 dBm Offse	2 ×	Spectrum 3W 50 kHz C	× Spe ompatible R	ctrum 3 85 FSV	×	Measuring		R9:12:22 ▼
Date: 25 MAR 20 MultiView Ref Level 30 Att 1 Frequency 5	15 09:12:22 <b>Spectrum</b> 00 dBm Offse 21 dB = SWT Sweep	2 × 18.50 dB • RE 3 s • VB	Spectrum 3W 50 kHz C 3W 500 kHz M	X Spe ompatible R lode Auto	c <b>trum 3</b> &S FSV Sweep	x	Measuring		• 1Pk Clrw
Date: 25 MAR 20 MultiView Ref Level 30 Att 1 Frequency	15 09:12:22 Spectrum 00 dBm Offse 21 dB = SWT Sweep	2 ×) t 18.50 dB • RE 3 s • VB	<b>Spectrum</b> SW 50 kHz C SW 500 kHz M	X Spe ompatible R lode Auto	<b>strum 3</b> SS FSV Sweep	×	Measuring	M1[1]	● 1Pk Cirw -28.24 dBr -4988234 GP
MultiView Ref Level 30 Att 1 Frequency 9	Spectrum Spectrum OO dBm Offse 21 dB = SWT Sweep	2 × ) t 18.50 dB • RE 3 s • VB	<b>Spectrum</b> 3W 50 kHz C W 500 kHz M	X Spe ompatible R lode Auto	strum 3 95 FSV Sweep	x	Measuring	M1[1]	● 1Pk Clrw -28.24 dBr 2.49882340 GH
MultiView Ref Level 30 Att 1 Frequency 20 dBm	15 09:12:22 Spectrum 000 dBm Offse 21 dB • SWT Weep	2 x) it 18.50 dB = RE 3 s = VE	Spectrum 3W 50 kHz C W 500 kHz M	X Spe ompatible R lode Auto	strum 3 85 FSV Sweep	x		M1[1]	● 1Pk Clrw -28.24 dBr 2.49882340 GH
MultiView Ref Level 30 Att 1 Frequency 20 dBm	CONTRACTOR OF SWT	2 x) it 18.50 dB = RE 3 s = VE	Spectrum 3W 50 kHz C W 500 kHz M	× Spe ompatible R lode Auto	SFSV Sweep			M1[1]	₹ 128 Clrw -28.24 dBr 2.49882340 GH
Date: 25 MAR 20 MultiView Ref Level 30 Att 1 Frequency 9 20 dBm- 10 dBm-	Spectrum OO dBm Offse 21 dB • SWT Weep	2 x) 2 t 18.50 dB = RE 3 s = VE	Spectrum 3W 50 kHz C W 500 kHz M	X Spe ornpatible R Auto	strum 3 AS FSV Sweep	×		M1[1]	▼ • 1Pk Clrw -28.24 dBr 2.49892340 GH
MultiView Ref Level 30 Att 1 Frequency 20 dBm- 10 dBm-	Spectrum Od Bm Offse 21 dB • SWT	2 x) t 18.50 dB = RE 3 s = VE	Spectrum SO kHz C WW 500 kHz M	X Spe ormpatible R Auto	Strum 3 SS FSV Sweep	×		M1[1]	
MultiView Ref Level 30 Att 1 Frequency 20 dBm 10 dBm	15         09:12:22           ISpectrum         00:0fbe           21:0B         SWT           Weep         SWT	2 x) tt 18.50 dB = Re 3 s = VB	Spectrum W 50 kHz C W 500 kHz M	× Spe ompatible R lode Auto	strum 3 35 FSV Sweep	× _		M1[1]	• 1Pk Clrw -28.24 dBr 2.49892340 GH
Date: 25 MAR 20 MultiView Ref Level 30 Att 1 Frequency 20 dBm 0 dBm -10 dBm	Spectrum (Spectrum 21 dB = SWT (Spectrum 21 dB = SWT (Spectrum 21 dB = SWT	2 x) et 18.50 dB = Re 3 s = VE	Spectrum 3W 50 kHz C W 500 kHz M	x Spe ompatible R Auto	strum 3 85 F5V Sweep			MI[1] ;	
Date: 25 MAR 20 MultiView Ref Level 30 Att I Frequency 20 dBm 0 dBm -10 dBm -10 dBm	Spectrum           001222           Spectrum           000 dBm           21 dB = SWT           Weep	2 x) et 18.50 dB = RE 3 s = VE	Spectrum 3W 50 kHz C 3W 500 kHz M	X Spe ompatible R Jode Auto	strum 3 35 FSV Sweep	×		MI[1] 2	
Date: 25 MAR 20 MultiView Ref Level 30 Att I Frequency 0 dBm 0 dBm -10 dBm -20 dBm	Interview         Spectrum           Intervi	2 x et 18.50 dB = RE 3 s = VE	Spectrum 3W 50 kHz C 3W 500 kHz M	X Spe ompatible R lode Auto	Sweep	x		M1[1] ;	• 1Pk Clrw -28,24 dBr 2,49882340 GH
Date: 25 MAR 20 MultiView Ref Level 30 Att I Frequency 20 dBm 0 dBm10 dBm20 dBm	15 09:12:22 ■ Spectrum 00 dBm Offse 21 dB ■ SWT Weep +11 -23.000 dBm	2 x) t 18.50 dB = RE 3 s = VE	Spectrum SW 500 kHz C W 500 kHz M	X Spe ornpatible R Auto	strum 3 85 FSV Sweep	×		M1[1] ;	
Date: 25 MAR 20 MultiView Ref Level 30 Att 1 Frequency 20 dBm -10 dBm -20 dBm -30 dBm	15         09:12:22           Spectrum         00:dBm           00:dBm         Offsec           21:dB         SWT           Wcep         W1           41:-23.000 dBm	2 x) t 18.50 dB = RE 3 s = VE	Spectrum W 50 kHz C W 500 kHz M	× Spe ompatible R Auto	Strum 3 SS FSV Sweep	×		M1[1] ;	
MultiView Ref Level 30 Att I Frequency 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	15         09:12:22           Spectrum         00:dBm         Offse:21:dB           00:dBm         Offse:21:dB         SWT           Wcep         Weep         Weep	2 x) t 18.50 dB = RE 3 s = VE	Spectrum W 50 kHz C W 500 kHz M	× Spe ompatible R Auto	Strum 3 SS FSV Sweep	×		M1[1] ;	
Date: 25 MAR 20           MultiView           Ref Level 30 Att           1 Frequency:           20 dBm           10 dBm           -10 dBm           -30 dBm           -30 dBm           -40 dBm	IS         091222           IS         Spectrum           IS         00 dBm           Offse         21 dB           IS         SWT           WCCD         SWT	2 x) t 18.50 dB = Re 3 s = VE	Spectrum W 50 kHz C W 500 kHz M	× Spe ompatible R Auto	strum 3 ՁՏ FSV Տweep 			MI[1]	
Date: 25 MAR 20 MultiView Ref Level 30 Att 1 Frequency 20 dBm -10 dBm -10 dBm -30 dBm -30 dBm -40 dBm	Spectrum     Solution     Solution	2 x) 18.50 dB = RB 3 s = VE	Spectrum W 50 kHz M S00 kHz M	X Spe ompatible R Auto	ctrum 3 85 FSV Sweep			M1[1]	
Date : 25 MAR 20 MultiView Ref Level 30 Att 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	IS         09:12:22           IS         Spectrum           IS         00:05m           Of Bm         Offse           21:4B         SWT           Wroep         SWT           W1         -23.000 dBm           III         -23.000 dBm	2 x 18.50 dB = RE 3 s = VE	Spectrum SW 500 kHz M S00 kHz M	X Spe ormpatible R Auto	Strum 3 SSFSV Sweep	×		M1[1]	• 1 Pk Cirw     -28,24 dBr     -28,24 dBr     -28,24 dBr
Date: 25 MAR 20           MultiView           Ref Level 30 Att           1 Frequency 9           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -30 dBm           -30 dBm	IS 09:12:22           Spectrum           00 dBm         Offse           21 dB * SWI           weep	2 x) t 18.50 dB = RE 3 s = VE	Spectrum SW 500 kHz M SOO kHz M	× Spe ornpatible R Auto	Strum 3 85 FSV Sweep	×		M1[1]	
Date: 25 MAR 20           MultiView           Ref Level 30 Att           I Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -50 dBm	15         09:12:22           Spectrum         00:dBm           00:dBm         Offse:21:dB           21:dB         SWT           WCep	2 x) t 18.50 dB = RE 3 s = VE	Spectrum W 50 kHz C W 500 kHz M	× Spe ompatible R Auto	Strum 3 Ss FSV Sweep	×		M1[1] 2	
Date: 25 MAR 20           MultiView           Ref Level 30 Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm	Is         09:12:22           Is         Spectrum           00:dBm         Offse: 21:dB = SWT           Wcep         Weep	2 x) t 18.50 dB = RE 3 s = VE	Spectrum W 50 kHz M S00 kHz M	× Spe ompatible R Auto	Strum 3 SSFSV Sweep	×		M1[1]	
Date: 25 MAR 20           MultiView           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm	Its         091222           Its         091222           Its         Spectrum           Its         Offse           Its         Offse           Its         State           Its         Offse           Its         State           Its         Offse           Its         State           It	2 x) t 18.50 dB = Re 3 s = VE	Spectrum W 50 kHz M S00 kHz M	X Spe ompatible R Auto	25 FSV Sweep			MI[1]	
Date: 25 MAR 20           MultiView           Ref Level 30 Att           1 Frequency:           20 dBm           10 dBm           -10 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           2.495 GHz	Its       0912.22         Its       Spectrum         Its       Offse         21.4B       SWT         WCep       Weep         H1       -23.000 dBm         H1       -23.000 dBm	2 x) t 18.50 dB = RE 3 s = VE	Spectrum W 50 kHz M S00 kHz M	X Spe ompatible R Auto	strum 3 as FSV Sweep	×		M1[1]	• 1 Pk Clrw     -28.24 dBr     -28.24 dBr     -28.24 dBr     -28.24 dBr     -28.24 dBr     -28.94 dBr



### 2.5 CONDUCTED SPURIOUS EMISSIONS

#### 2.5.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1051 FCC CFR 47 Part 27, Clause 2.53 (m) (4) Industry Canada RSS-199, Clause 4.6

#### 2.5.2 Standard Applicable

In the 1 MHz band immediately outside and adjacent to the channel edge, the unwanted emission power shall be measured with a resolution bandwidth of at least 2% for mobile subscriber equipment. Beyond the 1 MHz band, a resolution bandwidth of 1 MHz shall be used. A narrower resolution bandwidth is allowed to be used, provided that the measured power is integrated over the full required measurement bandwidth of 1 MHz or 1%/2% of the occupied bandwidth, as applicable.

Equipment shall comply with the following unwanted emissions limits:

According RSS-199, for mobile subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least:

- i) 40 + 10 log10 p from the channel edges to 5 MHz away,
- ii) 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and
- iii) 55 + 10 log10 p at X MHz and beyond from the channel edges.
- iv) in addition, the attenuation shall be not be less than 43 + 10 log10 p on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log10 p at or below 2490.5 MHz.

where p in (a) and (b) is the transmitter power measured in watts and X is 6 MHz or the equipment occupied bandwidth, whichever is greater.

According to FCC CFR 47 Part 27, For mobile digital stations, the attenuation factor shall be not less than  $43 + 10 \log (P) dB$  at the channel edge and  $55 + 10 \log (P) dB$  at 5.5 megahertz from the channel edges.

### 2.5.3 Equipment Under Test and Modification State

Serial No: FID: SH181214900141 / Test Configuration A

# 2.5.4 Date of Test/Initial of test personnel who performed the test

March 26, 2015 / AC

#### 2.5.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

# 2.5.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

Ambient Temperature	23.5°C
Relative Humidity	39.9%
ATM Pressure	99.6 kPa

# 2.5.7 Additional Observations

- This is a conducted test. The spectrum was searched from 9 kHz to 25.7GHz (requirement is up to the 10th harmonic (≤8GHz)).
- The 18.5 dB LTE Band 7 offset on the spectrum analyzer was used for the power splitter, external attenuator and cable used.
- Low channel, Mid channel and High channel and all channel bandwidths were verified.
- Only the worst case presented in this test report.

#### 2.5.8 Test Results













### 2.6 FIELD STRENGTH OF SPURIOUS RADIATION

# 2.6.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1053 FCC CFR 47 Part 27, Clause 2.53 (m) (4) Industry Canada RSS-199, Clause 4.6

#### 2.6.2 Standard Applicable

For the unwanted emissions beyond the 1 MHz outside the channel edge, a resolution bandwidth of 1 MHz shall be used. A narrower resolution bandwidth is allowed to be used, provided that the measured power is integrated over the full required measurement bandwidth of 1 MHz.

Equipment shall comply with the following unwanted emissions limits:

According RSS-199, for mobile subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least:

- i) 40 + 10 log10 p from the channel edges to 5 MHz away,
- ii) 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and
- iii) 55 + 10 log10 p at X MHz and beyond from the channel edges.
- iv) in addition, the attenuation shall be not be less than 43 + 10 log10 p on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log10 p at or below 2490.5 MHz.

where p in (a) and (b) is the transmitter power measured in watts and X is 6 MHz or the equipment occupied bandwidth, whichever is greater.

According to FCC CFR 47 Part 27, For mobile digital stations, the attenuation factor shall be not less than  $43 + 10 \log (P) dB$  at the channel edge and  $55 + 10 \log (P) dB$  at 5.5 megahertz from the channel edges.

### 2.6.3 Equipment Under Test and Modification State

Serial No: FID: SH181214900141 / Test Configuration B

# 2.6.4 Date of Test/Initial of test personnel who performed the test

March 28, 2015 / XYZ

#### 2.6.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

### 2.6.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

Ambient Temperature	23.7°C
Relative Humidity	40.1%
ATM Pressure	99.5 kPa

# 2.6.7 Additional Observations

 This is a radiated test using substitution method as per Unwanted Emissions: Radiated Spurious method of measurement of ANSI/TIA/EIA-603-C 2004, August 17, 2004.

Page 43 of 59

- Only the worst case configuration presented in this test report.
- The spectrum was searched from 30 MHz to 18 GHz (requirement is up to the 10th harmonic (≤8GHz)).
- Frequency range from 18 GHz to 25.7 GHz was verified and there were no emissions greater than 20dB below the limt.
- There are no emissions found that doesn't comply with -25dBm limit in the 2500 2560 MHz frequency range. This limit corresponds to 70.2 dBµV/m @ 3 meters.
- Measurement was done using EMC32 V8.53 automated software. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only.

# 2.6.8 Test Results Below 1GHz (LTE Band7_15M BW_QPSK_Channel 20825 @ Frequency 2507.5)



Continuous Rotation TUV 3m Radiated 30 to 1000MHz

#### Quasi Peak Data

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
38.455551	18.9	1000.0	120.000	256.0	Н	355.0	-15.9	51.3	70.2
60.622204	33.4	1000.0	120.000	100.0	V	116.0	-21.9	36.8	70.2
61.198317	32.8	1000.0	120.000	100.0	V	125.0	-22.0	37.4	70.2
95.708297	29.1	1000.0	120.000	100.0	V	333.0	-20.1	41.1	70.2
202.549900	27.6	1000.0	120.000	100.0	V	169.0	-16.8	42.7	70.2
960.082244	34.9	1000.0	120.000	100.0	V	51.0	1.4	35.3	70.2

# **Substitution Data**

Frequency (MHz)	Field Strength @ 3 meters (dbµV/m)	Cable Loss (dB)	Substitution Antenna Gain (dBi)	Signal Generator Level (dBm)	Substitution Data SGL+AG-CL (dBm)	Limit (dBm)	Compliance

**Test Notes:** Only worst case configuration presented for spurious emissions below 1GHz. Substitution data not needed since Peak data > 20dB in all peaks.

### 2.6.9 Test Results Above 1GHz (LTE Band7_15M BW_QPSK_Channel 20825 @ Frequency 2507.5MHz )



Continuous Rotation TUV 3m Radiated 1000 to 18000MHz

RSS 199 Spurious Emissions Limit B7 [..\EMI radiated\]
 Preview Result 1H-PK+ [Preview Result 1H.Result:2]
 Final Result 2-AVG [Final Result 2.Result:1]

Preview Result 1V-PK+ [Preview Result 1V.Resul Final Result 1-PK+ [Final Result 1.Result:1]

#### Peak Data

Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1332.100000	46.8	1000.0	1000.000	166.6	V	186.0	-5.5	23.4	70.2
1932.533333	44.9	1000.0	1000.000	381.0	Н	273.0	-2.0	25.3	70.2
4180.533333	44.9	1000.0	1000.000	403.3	V	179.0	5.0	25.3	70.2
6527.466667	55.7	1000.0	1000.000	201.5	Н	219.0	11.2	14.5	70.2
11052.666667	50.5	1000.0	1000.000	403.3	V	23.0	14.7	19.7	70.2
17731.633333	56.4	1000.0	1000.000	201.5	Н	179.0	23.1	13.8	70.2

### **Substitution Data**

Frequency (MHz)	Field Strength @ 3 meters (dbµV/m)	Cable Loss (dB)	Substitution Antenna Gain (dBi)	Signal Generator Level (dBm)	Substitution Data SGL+AG-CL (dBm)	Limit (dBm)	Compliance

**Test Notes:** Only worst case configuration presented for spurious emissions above 1GHz. Substitution data not needed since Peak data > 20dB in all peaks.

### 2.7 TRANSMITTER FREQUENCY STABILITY

### 2.7.1 Specification Reference

FCC CFR Part 2, Clause 2.1055 (a) (1) and (d)(1) FCC CRF Part 27, Clause 27.54 Industry Canada RSS-199, Clause 4.3 Industry Canada RSS-GEN, Clause 6.11

# 2.7.2 Standard Applicable

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

The transmitter frequency stability limit shall be determined as follows:

(a) The frequency offset shall be measured according to the procedure described in RSS-Gen and recorded;

(b) Using a resolution bandwidth equal to that permitted within the 1MHz band immediately outside the channel edge, reference points at the unwanted emission level which complies with the attenuation of  $43 + 10 \log 10 p$  (watts) on the emission mask of the lowest and highest channel shall be selected, and the frequency at these points shall be recorded as fL and fH respectively.

The applicant shall ensure frequency stability by showing that fL minus the frequency offset and fH plus the frequency offset shall be within the frequency range in which the equipment is designed to operate.

# 2.7.3 Equipment Under Test and Modification State

Serial No: FID: SH181214900141 / Test Configuration A

# 2.7.4 Date of Test/Initial of test personnel who performed the test

March 25, 2015 / XYZ

# 2.7.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

# 2.7.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

Ambient Temperature	24.5°C
Relative Humidity	39.7%
ATM Pressure	99.7 kPa

### 2.7.7

#### 2.7.8 Additional Observations

- This is a conducted test. The EUT was operated at 3.8VDC nominal voltage and was placed in the temperature chamber for this evaluation. The EUT was controlled by a CMW500 and the maximum frequency error was monitored through the Wideband Radio Communication Tester Frequency Error measurement function under LTE Tx Measurement.
- The Temperature was set to -30°C, 20°C and then 50°C and allowed to sit for 1 hour to allow the equipment and chamber temperature to stabilize. The measurements were then performed.
- Voltage variation was also performed at 85% and 115% of the nominal voltage at 20°C.
- Only worst case configuration presented.
- The maximum frequency deviation was verified against the frequency band edges using the OBW data. Sample calculation:

LTE Band 7 worst case frequency error:	18.67 Hz
Worst case OBW of LTE Band 7 5MHz BW:	4.46 MHz
Low Channel Sample Calculation:	
Edge of fundamental emission (2502.5-(4.46/2)):	2500.27 MHz
Max_fundamental frequency error (2500-27 - 0.00001867).	2500 26998133

 Edge of fundamental emission (2502.5-(4.46/2)):
 2500.27 MHz

 Max. fundamental frequency error (2500.27 - 0.00001867):
 2500.26998133 MHz

 EUT complies. 2500.26998133 MHz > 2500 MHZ (edge of authorized band)

#### High Channel Sample Calculation:

Edge of fundamental emission (2567.5+ (4.46/2)):	2569.73 MHz
Max. fundamental frequency error (2569.73 + 0.00001867):	2569.73001867 MHz
EUT complies. 2569.73001867 MHz < 2570 MHZ (edge of authorized)	band)

# 2.7.9 Test Results Summary

LTE Band 7 High Channel 21100 (5 MHz BW) QPSK @ 2535.0 MHz								
Voltage (VDC)	Temperature (°C)	Frequency Deviation (Hz)						
	-30	18.67						
	-20	17.4 -15.7						
	-10							
	0	-16.5						
3.8	+10	17.9						
	+20	17.57						
	+30	18.3						
	+40	-16.9						
	+50	17.25						

LTE Band 7 High Channel 21100 (5 MHz BW) QPSK @ 2535.0 MHz							
Temperature (°C)	Voltage (VDC)	Frequency Deviation (Hz)					
20	3.23	15.61					
20	4.37	-18.11					

# 2.7.10 Sample Test Plot

🚸 LTE Measurement	t - V3.2.82 - I	Base V 3.	2.71 - TX Me	easureme	nt				LTE
😑 Multi Evaluatio	n PRAC	H 🛛 💿 S	RS						Multi
FDD Freq.: 2502.5 M	Hz Ref. Level:	40.00 dE	3m Bandwidth	5.0 MHz	Cyclic Prefix	Normal	Meas Subfr.:	0	Evaluation
TX Measurement									RUN
Detected Allocation	NoRB:	25	OffsetRB:	0				<b></b>	RE
		Current		Average	6. I	Extreme	S	StdDev	Settings
EVM RMS [%] I/h	2.58	2.99	2.67	2.87	2.94	3.10	0.07	0.09	
EVM Peak [%] I/h	8.46	25.19	15.21	22.20	21.44	29.11	4.27	2.77	(
EVM DMRS [%] I/h	2.15	2.59	2.32	2.68	2.75	3.45	0.15	0.28	Trigger
MErr RMS [%] I/h	1.57	1.78	1.51	1.72	1.64	1.92	0.06	0.11	
MErr Peak [%] l/h	-8.21	-22.86	14.28	19.95	-19.46	-29.04	4.23	4.80	
MErr DMRS [%] I/h	1.62	1.93	1.66	1.92	1.95	2.39	0.10	0.20	
PhErr RMS [°] I/h	1.24	1.40	1.26	1.32	1.40	1.47	0.04	0.05	
PhErr Peak [°] I/h	4.19	-13.37	4.88	8.05	6.60	-14.71	0.54	3.08	<u>├</u>
PhErr DMRS [°] I/h	0.81	0.99	0.93	1.08	1.18	1.49	0.09	0.13	
IQ Offset	-35.23	dBc	-35.41	dBc	-35.09	dBc	0.14 di	Bc	Display
IQ Gain Imbalance	-0.08	dB	-0.07	dB	-0.09	dB	0.01 di	В	<u></u>
IQ Quadrature Error	-0.05	•	-0.07	0	-0.14	0	0.03 °		1
Freq Error	-10.84	Hz	-11.04	Hz	-17.57	Hz	2.56 H	z	
Timing Error	-2.80	Ts	-1.54	Ts	-3.13	Ts	1.17 Ts	6	L
OBW	4.43	MHz	4.43	MHz	4.44	MHz	0.01 M	Hz	
		Current		Average	Min	Max	S	StdDev 📍	Signaling
Statistic Count	Out of Toleran	nce	Detected Mod	ulation	Detected Chanr	nel Type Vie	w Filter Through	nput	Parameter
20 / 20	0.0	D %		QPSK	PI	JSCH	100.0 %		L TE
RR	ached C State: Co	onnected							Signaling ON
Repetition Sto	p S ndition C	Statistic Count	Chann Bandy	el vidth	Measuremer Subframes .	it	Assig	gn /s	Config

**SECTION 3** 

TEST EQUIPMENT USED

Page **51** of **59** 

# 3.1 TEST EQUIPMENT USED

ID Number (SDGE/SDRB)	Test Equipment	Туре	Serial Number	Manufacturer	Cal Date	Cal Due Date
Conducted Port Set	up					
7582	Signal/Spectrum Analyzer	FSW26	101614	Rhode & Schwarz	12/22/14	12/22/15
7570	50MHz-18GHz Wideband Power Sensor	N1921A	MY45240588	Agilent	04/09/14	04/09/15
7569	Series Power Meter	N1911A P-	MY45100625	Agilent	04/22/14	04/22/15
7579	Temperature Chamber	115	151617	TestQuity	07/21/14	07/21/15
7608	Vector Signal Generator	SMBB100A	259021	Rhode & Schwarz	06/06/14	06/06/15
7562	Wideband Radio Communication Tester	CMW 500	1201.0002k5 0/103829	Rhode & Schwarz	10/09/14	10/09/15
-	Power Divider/Splitter	1506A	RR003	Weinschel	Verified by 70	508 and 7569
-	10dB Attenuator	PE7010-10	-	PASTERNACK	Verified by 70	508 and 7569
Radiated Test Setup	)					
1002	Bilog Antenna	3142C	00058717	ETS-Lindgren	01/30/14	01/30/16
1040	EMI Test Receiver	ESIB40	100292	Rhode & Schwarz	08/29/14	08/29/15
1016	Pre-amplifier	PAM-0202	187	PAM	12/10/14	12/10/15
7575	Double-ridged waveguide horn antenna	3117	00155511	ЕМСО	04/08/14	04/08/15
1049	EMI Test Receiver	ESU	100133	Rhode & Schwarz	03/17/14	03/17/15
8628	Pre-amplifier	QLJ 01182835- JO	8986002	QuinStar Technologies Inc.	04/03/14	04/03/15
1150	Horn antenna	RA42-K-F-4B-C	012054-004	CMT	04/26/13	04/26/2015
1151	Pre-amplifier	TS-PR26	100026	Rhode & Schwarz	05/02/13	05/02/2015
7562	Wideband Radio Communication Tester	CMW 500	1201.0002k5 0/103829	Rhode & Schwarz	10/09/13	10/09/15
8815	Notch Filter	BRM50702	008	Micro-Tronics	N,	/A
Miscellaneous						
7560	Barometer/Temperature /Humidity Transmitter	iBTHX-W	1240476	Omega	01/30/14	01/30/15
6792	Multimeter	3478A	2911A70964	Hewlett Packard	08/12/14	08/12/15
1072	DC Power Supply	E3610A	KR51311519	Hewlett Packard	Verified	by 6792
	Test Software	EMC32	V8.52	Rhode & Schwarz	N,	/A

List of absolute measuring and other principal items of test equipment.

# 3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:

# 3.2.1 Radiated Emission Measurements (Below 1GHz)

	Contribution	Probability Distribution Type	Probability Distribution x _i	Standard Uncertainty u(x _i )	[u(x _i )] ²
1	Receiver/Spectrum Analyzer	Rectangular	0.45	0.26	0.07
2	Cables	Rectangular	0.50	0.29	0.08
3	Preamp	Rectangular	0.50	0.29	0.08
4	Antenna	Rectangular	0.75	0.43	0.19
5	Site	Rectangular	3.89	2.25	5.04
6	EUT Setup	Rectangular	1.00	0.58	0.33
			Combined	d Uncertainty (u _c ):	2.41
			Co	verage Factor (k):	2

Expanded Uncertainty: 4.82

# 3.2.2 Radiated Emission Measurements (Above 1GHz)

	Contribution	Probability Distribution Type	Probability Distribution x _i	Standard Uncertainty u(x _i )	[u(x _i )] ²
1	Receiver/Spectrum Analyzer	Rectangular	0.57	0.33	0.11
2	Cables	Rectangular	0.70	0.40	0.16
3	Preamp	Rectangular	0.50	0.29	0.08
4	Antenna	Rectangular	0.37	0.21	0.05
5	Site	Rectangular	3.89	2.25	5.04
6	EUT Setup	Rectangular	1.00	0.58	0.33
			Combined	l Uncertainty (u _c ):	2.40
			Co	verage Factor (k):	2
			Expar	nded Uncertainty:	4.81

# 3.2.3 Conducted Antenna Port Measurement

	Contribution	Probability Distribution Type	Probability Distribution x _i	Standard Uncertainty u(x _i )	[u(x _i )] ²
1	Receiver/Spectrum Analyzer	Rectangular	0.57	0.33	0.11
2	Cables	Rectangular	0.50	0.29	0.08
3	EUT Setup	Rectangular	1.00	0.58	0.33
			Combined Uncertainty (u _c ):		0.72
			Coverage Factor (k):		2
Expanded Uncertainty:				1.45	

# **SECTION 4**

# **DIAGRAM OF TEST SETUP**

# 4.1 TEST SETUP DIAGRAM



# Radiated Emission Test Setup (Below 1GHz)







**Frequency Stability Test Comfiguration** 

**SECTION 5** 

# ACCREDITATION, DISCLAIMERS AND COPYRIGHT

Page **58** of **59** 

#### 5.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

TÜV SÜD America, Inc. and its professional staff hold government and professional organization certifications for AAMI, ACIL, AEA, ANSI, IEEE, A2LA, NIST and VCCI.

