

PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR COMPLIANCE EVALUATION REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)

Applicant Name:

Novatel Wireless Inc. 9645 Scranton Road, Suite 205 San Diego, CA 92121-3030 United States Date of Testing: 07/29/11 - 08/09/11 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1106221046.PKR

FCC ID:

PKRNVWMC679

IC CERTIFICATION NO.: 3229A-MC679

APPLICANT:

NOVATEL WIRELESS INC.

EUT Type: Application Type: FCC Rule Part(s): IC Specification(s):

Radio Equipment Type: Model(s): IC Model(s): Test Device Serial No.: USB Dongle Certification CFR §2.1093; FCC/OET Bulletin 65 Supplement C [June 2001] RSS-102 Issue 4; Health Canada Safety Code 6, IEC 62209-1, IEC 62209-2, IEEE 1528 Cellular Communications Apparatus MC679 MC679 Pre-Production [S/N: 485]

Band & Mode	Tx Frequency	Conducted	SAR
		Power [dBm]	1 gm Body (W/kg)
GPRS/EDGE 850	824.20 - 848.80 MHz	32.58	1.00
GPRS/EDGE 1900	1850.20 - 1909.80 MHz	30.04	0.57
WCDMA/HSPA 850	826.40 - 846.60 MHz	23.03	0.78
WCDMA/HSPA 1900	1852.4 - 1907.6 MHz	22.32	1.13
LTE Band 17	706.5 - 713.5 MHz	22.78	0.53
LTE AWS	1710 - 1754 MHz	22.90	1.13

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez President

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679			AR COMPLIANCE REPORT NADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	E	EUT Type:		Dana 4 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	ι	JSB Dongle		Page 1 of 41
© 2011 PCTEST Engineering Laboratory Inc.					REV/ 9.2M

© 2011 PCTEST Engineering Laboratory, Inc.

TABLE OF CONTENTS

1	LTE INFORMATION PER FCC KDB 941225 D05	3
2	INTRODUCTION	4
3	TEST SITE LOCATION	5
4	SAR MEASUREMENT SETUP	6
5	DASY E-FIELD PROBE SYSTEM	8
6	PROBE CALIBRATION PROCESS	9
7	PHANTOM AND EQUIVALENT TISSUES	10
8	DOSIMETRIC ASSESSMENT & PHANTOM SPECS	12
9	FCC AND HEALTH CANADA SAFETY CODE 6 RF EXPOSURE LIMITS	13
10	SAR TEST CONFIGURATIONS	14
11	POWER MEASUREMENT PROCEDURES	19
12	SYSTEM VERIFICATION	27
13	SAR DATA SUMMARY	29
14	EQUIPMENT LIST	37
15	MEASUREMENT UNCERTAINTIES	38
16	CONCLUSION	39
17	REFERENCES	40

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679			AR COMPLIANCE REPORT NADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	E	EUT Type:	Dage 2 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	U	ISB Dongle	Page 2 of 41
© 2011 PCTEST Engineering Lab	oratory, Inc.			REV 9.2M

LTE INFORMATION PER FCC KDB 941225 D05

1

Per KDB 941224 D05				Info				
FCC ID	PKRNVWMC679							
Form Factor	USB Dongle							
Frequency Range of each LTE transmission band	BAND17(704-716 MHz), BAND4(1710-1755 MHz)							
Channel Bandwidths		117: 5 and	10 MHz BW	/; Band	14: 1.4, 3, 5	i, 10, and 2	20 MHz BW	1
	Uplink:							
	LTE	B/W			annel # / Fre			
	Band Class	(MHz)	Lo		M			igh
	17	5	Channel 23755	Freq. 706.5	Channel 23790	Freq. 710.0	Channel 23825	Freq 713.5
	17		23735	708.3	23790	710.0	23823	713.5
	4	1.4	19957	1710.7	23790	1732.5	20393	1754.3
	4	1.4	19957	1710.7	20175	1732.5	20393	1754.3
	4	5	19965	1711.5	20175	1732.5	20383	1752.5
	4	10	20000	1712.3	20175	1732.5	20373	1752.5
	4	15	20000	1717.5	20175	1732.5	20325	1730.0
	4	20	20025	1720.0	20175	1732.5	20320	1745.0
Channel numbers and frequencies		20	20050	1720.0	20175	175215	20500	171010
	Downlink: LTE		Channel # / Frequency (MHz)					
	Band	B/W	Low Mid			High		
	Class	(MHz)	Channel	Freq.	Channel	Freq.	Channel	Freq
	17	5	5755	736.5	5790	740.0	5825	743.5
	17	10	5780	739.0	5790	740.0	5800	741.0
	4	1.4	1957	2110.7	2175	2132.5	2393	2154.3
	4	3	1965	2111.5	2175	2132.5	2385	2153.5
	4	5	1975	2112.5	2175	2132.5	2375	2152.5
	4	10	2000	2115.0	2175	2132.5	2350	2150.0
	4	15	2025	2117.5	2175	2132.5	2325	2147.5
	4	20	2050	2120.0	2175	2132.5	2300	2145.0
UE Category				Categor	у 3			
Modulations Supported in UL				QPSK, 16	QAM			
LTE Transmitter and Antenna Implementation	One Transmitter Path for GSM/WCDMA/LTE							
Description of LTE Tx and Ant. Implementation	1Tx/Rx, 1Rx							
LTE Voice available ?				Data or				

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 3 of 41
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 3 01 4 1
© 2011 PCTEST Engineering Labo	oratory, Inc.			REV 9.2M

2 INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1-1).

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Figure 1-1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 4 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 4 of 41
© 2011 PCTEST Engineering Laboratory, Inc.				REV 9.2M

3 TEST SITE LOCATION

3.1 INTRODUCTION

The map at the right shows the location of the PCTEST LABORATORY in Columbia, Maryland. It is in proximity to the FCC Laboratory, the Baltimore-Washington International (BWI) airport, the city of Baltimore and Washington, DC.

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49' 38" W longitude. The facility is 1.5 miles north of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV

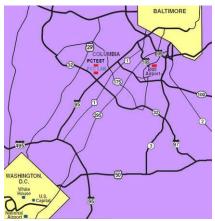


Figure 3-1 Map of the Greater Baltimore and Metropolitan Washington, D.C. area

transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on January 27, 2006 and Industry Canada. PCTEST facility is an IC registered (2451-A) test laboratory with the site description filed to Industry Canada in accordance with Radio Standards Specifications (RSS).

3.2 Test Facility / Accreditations:

Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), Battery Safety, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and all Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS and CDMA, and EvDO mobile phones.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO Data, CDMA 1xRTT Data

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dege 5 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 5 of 41
© 2011 PCTEST Engineering Laboratory, Inc.				REV 9.2M

4 SAR MEASUREMENT SETUP

4.1 Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the SAM phantom containing the head or body equivalent material. The robot is a six-axis industrial robot, performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 4-1).

4.2 System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal from the DAE and transfers data to the PC card.

4.3 System Electronics

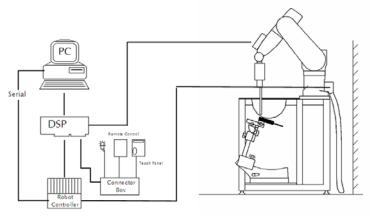


Figure 4-1 SAR Measurement System Setup

The DAE consists of a highly sensitive electrometer-grade auto-zeroing preamplifier, a channel and gainswitching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679				NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT	Т Туре:		Dage 6 of 41
0Y1106221046.PKR	07/29/11 - 08/09/11	USE	3 Dongle		Page 6 of 41
© 2011 PCTEST Engineering Laboratory, Inc.				REV 9.2M	

Automated Test System Specifications 4.4

Test Software:	SPEAG DASY4 version 4.7 Measurement Software
Robot:	Stäubli Unimation Corp. Robot RX60L
Repeatability:	0.02 mm
No. of Axes:	6

Data Acquisition Electronic System (DAE)

Data Converter

Buta Convoltor		
	Features:	Signal Amplifier, multiplexer, A/D converter & control logic
		• • • • •
	Software:	SEMCAD software
0		Optical Develials for data and status info
Conn	ecting Lines:	Optical Downlink for data and status info
	-	Optical upload for commands and clock
PC Interface Card		
	Function:	Link to DAE
		16-bit A/D converter for surface detection system
		,
		Two Serial & Ethernet link to robotics
		Direct amorgonau stan autout for robat
		Direct emergency stop output for robot

Phantom

Type:	SAM Twin Phantom (V4.0)
Shell Material:	Composite
Thickness:	2.0 ± 0.2 mm

Figure 4-2 SAR Measurement System

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679			PLIANCE REPORT ECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Typ	e:		Dago 7 of 41
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Don	gle		Page 7 of 41
2011 PCTEST Engineering Laboratory, Inc.					REV 9.2M

DASY E-FIELD PROBE SYSTEM

5.1 Probe Measurement System

5

Figure 5-1 SAR System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration (see Figure 5-3) and optimized for dosimetric evaluation [9]. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the

maximum using a 2nd order curve fitting (see Figure 6-1). The approach is stopped at reaching the maximum.

5.2 Probe Specifications

Model(s):	ES3DV2, ES3DV3, EX3DV4
Frequency	10 MHz – 6.0 GHz (EX3DV4)
Range:	10 MHz – 4 GHz (ES3DV3)
Calibration:	In head and body simulating tissue at Frequencies from 300 up to 6000MHz
Linearity:	± 0.2 dB (30 MHz to 6 GHz) for EX3DV4
	± 0.2 dB (30 MHz to 4 GHz) for ES3DV3
Dynamic Range:	10 mW/kg – 100 W/kg
Probe Length:	330 mm
Probe Tip Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9mm for ES3DV3)
Tip-Center:	1 mm (2.0 mm for ES3DV3)
Application:	SAR Dosimetry Testing
	Compliance tests of mobile phones
	Dosimetry in strong gradient fields

Figure 5-2 Near-Field Probe

Figure 5-3 Triangular Probe Configuration

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		David 0 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 8 of 41
© 2011 PCTEST Engineering Lat	REV 9 2M			

© 2011 PCTEST Engineering Laboratory, Inc.

6 PROBE CALIBRATION PROCESS

6.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

6.2 Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

6.3 Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SAR =
$$C\frac{\Delta^2}{\Delta^2}$$

where:

 Δt = exposure time (30 seconds),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

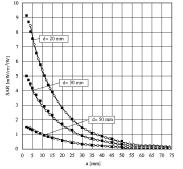
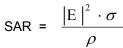



Figure 6-1 E-Field and Temperature measurements at 900MHz [9]

where:

- σ = simulated tissue conductivity,
- p = Tissue density (1.25 g/cm³ for brain tissue)

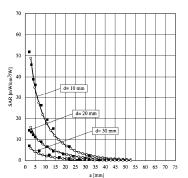


Figure 6-2 E-Field and temperature measurements at 1.9GHz [9]

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)			Reviewed by: Quality Manager
Filename:	Test Dates:	EUT	Г Туре:		Dage 0 of 41
0Y1106221046.PKR	07/29/11 - 08/09/11	USB	3 Dongle		Page 9 of 41
© 2011 PCTEST Engineering Laboratory, Inc.					REV 9.2M

PHANTOM AND EQUIVALENT TISSUES

7.1 SAM Phantoms

7

SAM Phantoms

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to represent the 90th percentile of the population [12][13]. The phantom enables the dosimetric evaluation of SAR for both left and right handed handset usage, as well as bodyworn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

7.2 Tissue Simulating Mixture Characterization

The mixture is characterized to obtain proper dielectric constant (permittivity) and conductivity of the tissue of interest. The tissue dielectric parameters recommended in IEEE 1528 and IEC 62209 have been used as targets for the compositions, and are to match within 5%, per the FCC recommendations.

Figure 6-2 SAM Phantom with Simulating Tissue

Frequency (MHz)	835	1750	1900			
Tissue	Body	Body	Body			
Ingredients (% by weight)						
Bactericide	0.1					
DGBE		31	29.44			
HEC	1					
NaCl	0.94	0.2	0.39			
Sucrose	44.9					
Water	53.06	68.8	70.17			

Table 7-1 Composition of the Tissue Equivalent Matter

See next page for 750 MHz tissue info.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 10 of 11
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 10 of 41
© 2011 PCTEST Engineering Lab	REV 9.2M			

Table 7-2
Composition of the 750MHz Body Tissue Equivalent Matter

2 Composition / In	formation on ingredients						
The Item is composed o	f the following ingredients:						
H <u>-</u> O	Water, 35 – 58%						
Sucrose	Sugar, white, refined, 40 – 60%						
NaCl	Sodium Chloride, 0 – 6%						
Hydroxyethyl-cellulose	Medium Viscosity (CAS# 9004-62-0), <0.3%						
Preventol-D7	Preservative: aqueous preparation, (CAS# 55965-84-9), containing						
5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone,							
	0.1 – 0.7%						
	Relevant for safety; Refer to the respective Safety Data Sheet*.						

Note: 750MHz Body liquid recipe is proprietary SPEAG. The composition is approximate to the actual liquids utilized. Thus the manufacturer production sheet is provided below.

Figure 6-1 750MHz Body Tissue Equivalent Matter

f [MHz]	HP-e'	HP-e"	sigma
300	61.02	35.43	0.59
350	60.21	32.13	0.63
400	59.50	29.71	0.66
450	58.79	28.00	0.70
500	58.16	26.60	0.74
550	57.57	25.54	0.78
600	56.99	24.68	0.82
650	56.43	23.97	0.87
700	55.88	23.46	0.91
750	55.35	22.91	0.96
800	55.02	22.56	1.00
850	54.50	22.31	1.06
900	54.02	22.08	1.11
950	53.55	21.89	1.16
1000	53.05	21.70	1.21

P/N:	SL AAM 075	TARGET PA	RAMETERS	5
Charge:	090224-1	f [MHz]	eps	sigma
Mea Date:	05-Mrz-09	700	55.7	0.96
Temp [°C]	22	750	55.5	0.96
romp [o]	1.478.20	800	55.3	0.97

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dago 11 of 11
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 11 of 41
© 2011 PCTEST Engineering Labo	ratory, Inc.			REV 9.2M

DOSIMETRIC ASSESSMENT & PHANTOM SPECS

8.1 Measurement Procedure

8

The evaluation was performed using the following procedure:

- 1. The SAR distribution at the exposed side of the head was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm x 15mm.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during testing the 1 gram cube. This fixed point was measured and used as a reference value.
- 3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 30mm x 30mm x 30mm (fine resolution volume scan, zoom scan) was assessed by measuring 7 x 7 x 7 points. On this basis of this

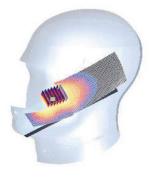


Figure 8-1 Sample SAR Area Scan

data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual for more details):

- a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
- b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete. If the value deviated by more than 5%, the evaluation was repeated.

8.2 Specific Anthropomorphic Mannequin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Figure 8-2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimize reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15 cm.

Figure 8-2 SAM Twin Phantom Shell

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 12 of 11
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 12 of 41
© 2011 PCTEST Engineering Laboratory Inc.				

FCC AND HEALTH CANADA SAFETY CODE 6 9 **RF EXPOSURE LIMITS**

9.1 **Uncontrolled Environment**

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

9.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

HUMAN EXPOSURE LIMITS						
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT <i>Occupational</i> (W/kg) or (mW/g)				
SPATIAL PEAK SAR Brain	1.6	8.0				
SPATIAL AVERAGE SAR Whole Body	0.08	0.4				
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20				

Table 9-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dama 40 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 13 of 41
© 2011 PCTEST Engineering La	REV 9 2M			

10 SAR TEST CONFIGURATIONS

10.1 SAR test procedure for USB Dongles

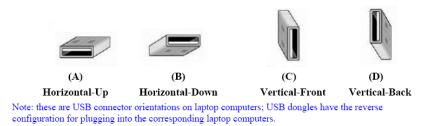
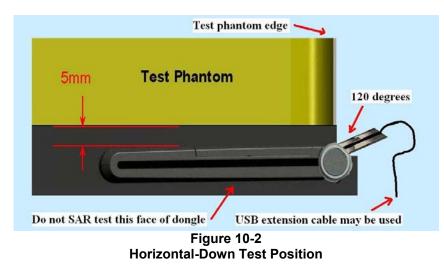



Figure 10-1 USB Dongle Test Configurations

This device was tested according to KDB Publication 447498. USB orientations (see Figure 10-1) with a device to phantom separation distance of 5 mm or less, according to KDB Publication 447498 requirements. Current generation laptop computers should be used to ensure proper measurement distances. The same test separation distance should be used for all frequency bands and modes in each USB orientation. The typical Horizontal-Up USB connection (A), found in the majority of laptop computers, must be tested using an appropriate laptop computer. A laptop with either Vertical-Front (C) or Vertical-Back (D) USB connection should be used to test one of the vertical USB orientations. If laptop computers are not available for testing the Horizontal-Down (B) or the remaining Vertical USB orientation, a short and high quality USB cable (12 inches or less) may be used for testing these other orientations. It should be ensured that the USB cable does not affect device radiating characteristics and output power of the dongle.

KDB Publication 941225 D05 was used to determine the bandwidth, resource block, and offset test configurations recommended for the LTE portion of the tests.

Per KDB Inquiry discussions, the Horizontal-Up dongle position was excluded from SAR testing due to the limitation of the antenna's range of operation with respect to the hinge angle of 110° ~ 130°. The Horizontal-Down recommended test setup is provided below.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)		NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:		EUT Type:		Dege 14 of 41
0Y1106221046.PKR	07/29/11 - 08/09/11		USB Dongle		Page 14 of 41
2011 PCTEST Engineering Laboratory, Inc.					REV 9.2M

10.2 SAR Device Functionality

The MC679 utilizes a mechanism that alters the transmit functionality of the device based on the angle of the USB connector. When the device is inserted into a horizontal USB port (reference KDB publication 447498, Horizontal Up position 'A') the modem hinge has been engineered to automatically orient the modem angle to 120°. At this angle the modem will function normally. If the modem is moved slightly either up or down (110° to 130°) there is no effect on the performance of the device. Should the MC679 move at an angle less than 110° or greater than 130°, the transmit power will turn off. There is a delay mechanism that allows the modem to continue transmitting for 5 seconds in the case of accidental movement. Once the device has been returned to the 120° position, normal operation will be restored.

The measured SAR orientations have been considered based on the possible USB positions stated in the KDB publication 447498.

In the enclosed example a live call has been established with a network operator with the MC679 modem in a Start angle of 120°. The modem is then slowly moved to the End angle, as indicated in the table. The operation of the detection system is verified by monitoring the operation using a QXDM tool. The QXDM plots are referenced in the following table. Also, the same procedure was used while output power measurements were taken with a call box in WCDMA mode-PCS band and these values are tabled below.

Start Angle (degrees)	End Angle (degrees)	Measured O/P Power (dBm) @ Start	Measured O/P Power (dBm) @ End	Call State	Comments
120	90	22.6	0	Changed to Idle	See diagram 1
120	100	22.6	0	Changed to Idle	See diagram 2
120	110	22.6	22.6	Conversation	See diagram 3
120	120	22.6	22.6	Conversation	See diagram 4
120	130	22.6	22.6	Conversation	See diagram 5
120	140	22.6	0	Changed to Idle	See diagram 6
120	180	22.6	0	Changed to Idle	See diagram 7

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)		NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:		EUT Type:		Dage 15 of 11
0Y1106221046.PKR	07/29/11 - 08/09/11	1	USB Dongle		Page 15 of 41
2011 PCTEST Engineering Laboratory, Inc.					

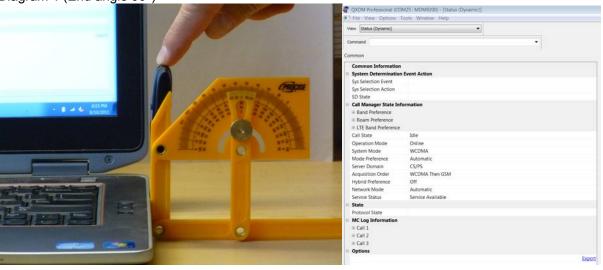
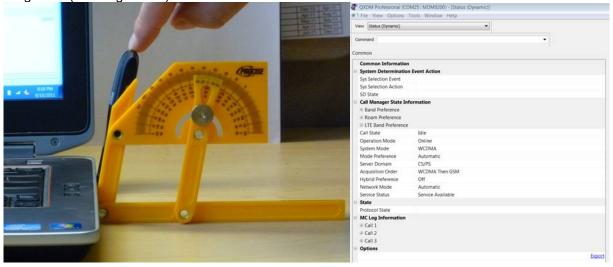
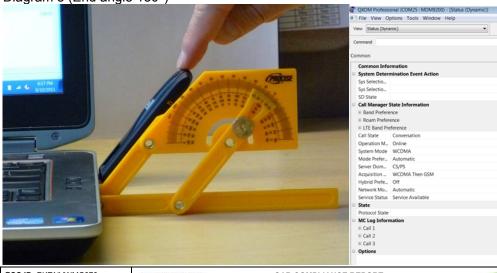



Diagram 2 (End angle 100°)

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679			SAR COMPLIANCE REPORT CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:		EUT Type:		Dago 16 of 11
0Y1106221046.PKR	07/29/11 - 08/09/11		USB Dongle		Page 16 of 41
© 2011 PCTEST Engineering Labo	2011 PCTEST Engineering Laboratory, Inc.				

Diagram 3 (End angle 110°)

• •


Diagram 4 (End angle 120°)

View Status (Dyna	mic) 🔹
Command	•
ommon	
Common Info	rmation
System Deter	nination Event Action
Sys Selectio	
Sys Selectio	
SD State	
Call Manager	State Information
Band Prefere	nce
Roam Prefer	ence
Ite Band Pre	ference
Call State	Conversation
Operation M	Online
System Mode	WCDMA
Mode Prefer	Automatic
Server Dom	CS/PS
Acquisition	WCDMA Then GSM
Hybrid Prefe	0ff
Network Mo	Automatic
Service Status	Service Available
State	
Protocol State	
MC Log Inform	nation
Call 1	
Call 2	
Call 3	
Options	

•

Diagram 5 (End angle 130°)

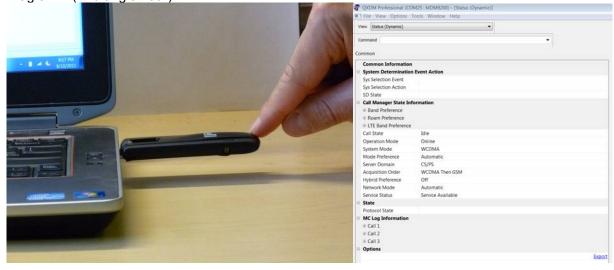

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS		Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:		Dage 17 of 11	
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 17 of 41	

Diagram 6 (End angle 140°)

View Status (Dynamic)	•	
Command		•
Common		
Common Information		
System Determination	n Event Action	
Sys Selection Event		
Sys Selection Action		
SD State		
Call Manager State In	formation	
E Band Preference		
E Roam Preference		
E LTE Band Preference		
Call State	ldie	
Operation Mode	Online	
System Mode	WCDMA	
Mode Preference	Automatic	
Server Domain	CS/PS	
Acquisition Order	WCDMA Then GSM	
Hybrid Preference	Off	
Network Mode	Automatic	
Service Status	Service Available	
State		
Protocol State		
MC Log Information		
III Call 1		
iii Call 2		
iii Call 3		
Options		
		Expor

Diagram 7 (End angle 180°)

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679			SAR COMPLIANCE REPORT CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:		EUT Type:		Dege 19 of 11
0Y1106221046.PKR	07/29/11 - 08/09/11		USB Dongle		Page 18 of 41
© 2011 PCTEST Engineering Labo	2011 PCTEST Engineering Laboratory, Inc.				

11 POWER MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

11.1 Procedures Used to Establish RF Signal for SAR

The following procedures are according to KDB 941225 D01, "SAR test for 3G Devices v02".

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. Any power drifts of greater than 5% were repeated.

11.2 SAR Measurement Conditions for LTE

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes following SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing.

11.2.1 MPR

MPR is permanently implemented for this device. With the MPR permanently implemented, this device will never operate at higher power levels. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

11.2.2 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests

11.2.3 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05:

- 1. Per KDB Publication 941225 D05 Page 4, footnote 2, Since the maximum output power variations across H, M and L channels is ≤1/2 dB and SAR is ≤0.8 W/kg, low and high channels were not required.
- 2. Per KDB Publication 941225 D05 Page 4, 3) A), QPSK with 50% RB is required.
- 3. Per KDB Publication 941225 D05 Page 4, 3) B), QPSK with 1 RB for both channel edges are required.
- 4. Per KDB Publication 941225 D05 Page 4, 4) A), 16QAM with 50% RB is required.
- 5. Per KDB Publication 941225 D05 Page 4, 4) B), 16QAM with 1RB for both channel edges are required.
- 6. Per KDB Publication 941225 D05 Page 4, A) I), 100% RB Allocation is not required to be tested since SAR is not > 1.45 W/kg.

11.2.4 Power Reduction for LTE

There is no power reduction scheme implemented for LTE operations for this model.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)		NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:		EUT Type:		Dage 10 of 11
0Y1106221046.PKR	07/29/11 - 08/09/11		USB Dongle		Page 19 of 41
2011 RCTEST Engineering Laboratory Inc.					

11.3 SAR Measurement Conditions for UMTS (WCDMA) per FCC KDB Publication 941225

11.3.1 Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s". Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH) is tabulated in the test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations is identified.

11.3.2 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

11.3.3 Procedures Used to Establish RF Signal for SAR HSDPA Data Devices

The following procedures are applicable to HSDPA data devices operating under 3GPP Release 5. Body exposure conditions are typically applicable to these devices, including handsets and data modems operating in various electronic devices. HSDPA operates in conjunction with WCDMA and requires an active DPCCH. The default test configuration is to measure SAR in WCDMA without HSDPA, with an established radio link between the DUT and a communication test set with 12.2 kbps RMC mode configured in Test Loop Mode 1; and tested with HSDPA with FRC and a 12.2 kbps RMC using the highest SAR configuration in WCDMA. SAR is selectively confirmed for other physical channel configurations according to output power, exposure conditions and device operating capabilities. Maximum output power is verified according to 3GPP TS 23.121 (Release 5) and SAR must be measured according to these maximum output conditions.

11.3.4 SAR Measurement Conditions for HSUPA Data Devices

SAR for body exposure configurations are measured according to the 'Body SAR Measurements' procedures in the 'WCDMA Handsets' section of the KDB 941225 D01 FCC 3G document. In addition, Body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least ¼ dB higher of that measured without HSPA in 12.2 kbps RMC mode or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and EDCH configurations for HSPA should be configured according to the β values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of the FCC 3G document.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)		NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:		EUT Type:		Dage 20 of 41
0Y1106221046.PKR	07/29/11 - 08/09/11		USB Dongle		Page 20 of 41
© 2011 PCTEST Engineering Laboratory Inc.					

Sub- test	βε	βa	β _d (SF)	₿¢/βa	$\beta_{hs}^{(1)}$	Bec	Bed	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15		2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$.

Note 2: CM = 1 for β_e/β_d =12/15, β_{bb}/β_c=24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g. Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

11.4 **RF Conducted Powers**

		Maximum Burst-Averaged Output Power									
		GP	RS/EDGE	Data (GM	SK)	EDGE Data (8-PSK)					
Band	Channel	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot		
	128	32.58	28.23	26.51	25.50	25.75	23.73	22.10	21.00		
Cellular	190	32.38	28.38	26.39	25.51	25.51	23.69	22.05	20.97		
	251	32.21	28.39	26.23	25.10	25.56	23.64	22.03	20.91		
	512	29.27	25.79	23.74	22.24	24.69	23.09	21.25	19.03		
PCS	661	29.45	25.65	23.69	22.26	24.72	23.12	21.30	19.94		
	810	30.04	26.23	24.36	22.20	25.15	23.14	21.64	20.33		

11.4.1 GPRS/EDGE Conducted Powers

		Calculated Maximum Frame-Averaged Output Power								
		GP	PRS/EDGE	Data (GM	SK)	EDGE Data (8-PSK)				
Band	Channel	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	23.55	22.21	22.25	22.49	16.72	17.71	17.84	17.99	
Cellular	190	23.35	22.36	22.13	22.50	16.48	17.67	17.79	17.96	
	251	23.18	22.37	21.97	22.09	16.53	17.62	17.77	17.90	
	512	20.24	19.77	19.48	19.23	15.66	17.07	16.99	16.02	
PCS	661	20.42	19.63	19.43	19.25	15.69	17.10	17.04	16.93	
	810	21.01	20.21	20.10	19.19	16.12	17.12	17.38	17.32	

- Both burst-averaged and calculated frame-averaged powers are included. The frame-averaged power was calculated from the measured burst averaged power by converting the slot powers into linear units and calculating the energy over 8 time slots. The bolded GPRS/EDGE mode was selected according to the highest frame-averaged output power table according to KDB Publication 941225 D03.
- 2. GPRS/EDGE (GMSK) conducted powers were measured with CS1 and EDGE (8-PSK) conducted powers were measured with MCS7.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679			IPLIANCE REPORT FECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Typ	e:		Dega 21 of 41
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dor	igle		Page 21 of 41
© 2011 PCTEST Engineering Labo	pratory Inc				REV 9 2M

GSM Class: C (data only) GPRS Multislot class: 12 (max 4 Tx Uplink slots) EDGE Multislot class: 12 (max 4Tx Uplink slots) DTM Multislot Class: N/A

3GPP Release	Mode	3GPP 34.121 Subtest	Cellular Band [dBm]			PCS Band [dBm]			βc	βd	MPR	
Version		oublest	4132	4183	4233	9262	9400	9538				
99	WCDMA	12.2 kbps RMC	23.00	23.03	23.05	22.30	22.32	22.17	-	-	-	
6		Subtest 1	22.94	22.90	22.91	22.36	22.31	22.19	2	15	0	
6	HSDPA	Subtest 2	23.06	22.98	23.00	22.29	22.35	22.16	11	15	0	
6	HODEA		Subtest 3	22.53	22.52	22.60	21.84	21.86	21.75	15	8	0.5
6				Subtest 4	22.59	22.45	22.56	21.81	21.89	21.70	15	4
6		Subtest 1	22.39	22.12	22.45	22.14	22.32	22.10	10	15	0	
6		Subtest 2	21.38	21.21	21.62	20.86	20.58	20.19	6	15	2	
6	HSUPA	Subtest 3	22.11	21.91	22.24	21.20	21.42	21.27	15	9	1	
6		Subtest 4	21.69	21.26	21.66	21.04	21.25	20.66	2	15	2	
6		Subtest 5	22.40	22.29	22.39	22.43	22.36	22.12	14	15	0	

11.4.2 HSPA Conducted Powers

WCDMA mode in Body SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01. HSPA SAR tests were not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

MPR for some HSUPA subtests may be more than expected (i.e. up to 2.5 dB more power reduction possible than 3GPP expected MPR, but also as low as 0 dB power reduction) according to the chipset implementation in this model. Detailed information is included in the operational description explaining how the MPR is applied for this model.

Note: This device is only capable of HSUPA in the uplink (QPSK in the uplink), but is capable of HSPA+ in the downlink. Information about the uplink and downlink capabilities are explained in further detail in the technical descriptions for this model.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT	T (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dega 22 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 22 of 41
© 2011 PCTEST Engineering La	oratory Inc			REV 9 2M

			E Danu I	Conduct				
Frequency [MHz]	Uplink Channel Number	BW [MHz]	RB Size	RB Offset	TBS Index	Mod	Maximum Average Power [dBm]	MPR Targets
710	23790	5	1	0	0	QPSK	22.97	0
710	23790	5	1	24	0	QPSK	22.89	0
710	23790	5	12	6	0	QPSK	21.89	1
710	23790	5	25	0	0	QPSK	22.01	1
710	23790	5	1	0	11	16-QAM	22.13	1
710	23790	5	1	24	11	16-QAM	22.01	1
710	23790	5	12	6	11	16-QAM	20.93	2
710	23790	5	25	0	11	16-QAM	20.98	2
710	23790	10	1	0	0	QPSK	22.78	0
710	23790	10	1	49	0	QPSK	22.59	0
710	23790	10	25	12	0	QPSK	22.06	1
710	23790	10	50	0	0	QPSK	21.92	1
710	23790	10	1	0	11	16-QAM	22.20	1
710	23790	10	1	49	11	16-QAM	22.12	1
710	23790	10	25	12	15	16-QAM	21.52	2
710	23790	10	50	0	15	16-QAM	21.05	2

11.4.3 **LTE Conducted Powers**

Table 1 - LTE Band 17 Conducted Power – Mid Channel

Notes:

1. Differences from expected MPR levels are a result of measurement uncertainty. Per the manufacturer, the measured powers are acceptable for use within the intended network infrastructure. Powers measured below the expected levels on the devices were extrapolated to ensure compliance for SAR.

2. Per KDB Publication 447498 D01, Page 7, 6) C only 1 channel is required for Band 13 LTE

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 22 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 23 of 41
© 2011 PCTEST Engineering Labo	ratory, Inc.	•		REV 9.2M

10	able $Z =$		<u>va conc</u>	Jucted	- ower	inei	
	Uplink					Maximum	
Frequency	Channel	BW	RB	RB	Mod	Average	MPR Targets
[MHz]	Number	[MHz]	Size	Offset	WIGO	Power	WIFIX Targets
						[dBm]	
1710.7	19957	1.4	1	0	QPSK	22.90	0
1710.7	19957	1.4	1	5	QPSK	22.87	0
1710.7	19957	1.4	3	2	QPSK	22.98	0
1710.7	19957	1.4	6	0	QPSK	21.94	1
1710.7	19957	1.4	1	0	16-QAM	22.24	1
1710.7	19957	1.4	1	5	16-QAM	22.39	1
1710.7	19957	1.4	3	2	16-QAM	22.18	1
1710.7	19957	1.4	6	0	16-QAM	21.41	2
1711.5	19965	3	1	0	QPSK	22.86	0
1711.5	19965	3	1	14	QPSK	23.06	0
1711.5	19965	3	8	4	QPSK	21.85	1
1711.5	19965	3	15	0	QPSK	21.69	1
1711.5	19965	3	1	0	16-QAM	21.88	1
1711.5	19965	3	1	14	16-QAM	21.87	1
1711.5	19965	3	8	4	16-QAM	20.89	2
1711.5	19965	3	15	0	16-QAM	20.96	2
1712.5	19975	5	1	0	QPSK	23.04	0
1712.5	19975	5	1	24	QPSK	23.02	0
1712.5	19975	5	12	6	QPSK	21.34	1
1712.5	19975	5	25	0	QPSK	21.78	1
1712.5	19975	5	1	0	16-QAM	22.01	1
1712.5	19975	5	1	24	16-QAM	22.13	1
1712.5	19975	5	12	6	16-QAM	20.97	2
1712.5	19975	5	25	0	16-QAM	21.06	2
1715	20000	10	1	0	QPSK	22.83	0
1715	20000	10	1	49	QPSK	22.74	0
1715	20000	10	25	12	QPSK	22.02	1
1715	20000	10	50	0	QPSK	21.84	1
1715	20000	10	1	0	16-QAM	22.30	1
1715	20000	10	1	49	16-QAM	22.20	1
1715	20000	10	25	12	16-QAM	20.86	2
1715	20000	10	50	0	16-QAM	20.93	2
1717.5	20025	15	1	0	QPSK	23.22	0
1717.5	20025	15	1	74	QPSK	22.96	0
1717.5	20025	15	36	18	QPSK	21.96	1
1717.5	20025	15	75	0	QPSK	21.98	1
1717.5	20025	15	1	0	16-QAM	22.26	1
1717.5	20025	15	1	74	16-QAM	22.01	1
1717.5	20025	15	36	18	16-QAM	21.16	2
1717.5	20025	15	75	0	16-QAM	20.98	2
1720	20050	20	1	0	QPSK	22.80	0
1720	20050	20	1	99	QPSK	22.90	0
1720	20050	20	50	25	QPSK	21.94	1
1720	20050	20	100	0	QPSK	21.85	1
1720	20050	20	100	0	16-QAM	22.12	1
1720	20050	20	1	99	16-QAM	22.12	1
1720	20050	20	50	25	16-QAM	20.97	2
1720	20050	20	100	0	16-QAM	20.97	2
1/20	20050		. 100		10-QAIVI	20.91	<u> </u>

Table 2 – LTE AWS Conducted Power – Low Channel

Note: Differences from expected MPR levels are a result of measurement uncertainty. Per the manufacturer, the measured powers are acceptable for use within the intended network infrastructure. Powers measured below the expected levels on the devices were extrapolated to ensure compliance for SAR.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT DUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Domo 24 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 24 of 41
© 2011 PCTEST Engineering Labo	raton/ Inc			DEV/0.2M

Frequency [MHz] Uplink Number BW [MHz] RB Size RB Offset TB Offset 1732.5 20175 1.4 1 0 0 1732.5 20175 1.4 1 5 0 1732.5 20175 1.4 1 5 0 1732.5 20175 1.4 1 0 1 1732.5 20175 1.4 1 0 1 1732.5 20175 1.4 1 0 1 1732.5 20175 1.4 1 0 1 1732.5 20175 1.4 1 0 1 1732.5 20175 3 1 0 0 1732.5 20175 3 1 0 0 0 1732.5 20175 3 1 14 0 1 1732.5 20175 3 1 14 1 1 1 1732.5 20175	QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	Maximum Average Power [dBm] 22.94 22.84 22.91 22.91 22.91 22.91 22.91 22.91 22.91 22.03 21.37 22.82 22.78 22.78 22.78 22.74 22.30 22.30 22.23 22.30 22.23 22.111 21.08 22.28 22.18 22.18	MPR Targets 0 0 0 1 1 1 1 1 1 2 0 0 1 1 1 1 1 1 2 0 0 1 1 1 1
Frequency [MHz] Channel Number BW [MHz] RB Size RB Offset RB Offset TE 1732.5 20175 1.4 1 0 0 0 1732.5 20175 1.4 1 5 0 0 1732.5 20175 1.4 1 5 0 0 0 1732.5 20175 1.4 1 0 1 0 1 1732.5 20175 1.4 1 0 1 1 1 0 1 1732.5 20175 1.4 1 0 1 1 1 0 1 1732.5 20175 3 1 0 0 0 0 0 0 1732.5 20175 3 1 14 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	Power [dBm] 22.94 22.84 22.91 21.94 22.15 22.27 22.03 21.37 22.82 22.78 22.78 22.14 21.93 22.30 22.23 21.11 21.08 22.28 22.18	0 0 1 1 1 1 2 0 0 0 1 1 1 1 1 2 2 2 0 0 0 0
[MHz] Number [MHz] Size Offset 1732.5 20175 1.4 1 0 0 1732.5 20175 1.4 1 5 0 1732.5 20175 1.4 1 5 0 1732.5 20175 1.4 3 2 0 1732.5 20175 1.4 1 0 1 1732.5 20175 1.4 1 0 1 1732.5 20175 1.4 1 5 1 1732.5 20175 1.4 3 2 1 1732.5 20175 3 1 0 1 1732.5 20175 3 1 0 0 0 1732.5 20175 3 15 0 0 0 0 1732.5 20175 3 15 0 1 1 1 1 1 1 1 1	QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	[dBm] 22.94 22.84 22.91 21.94 22.15 22.27 22.03 21.37 22.82 22.78 22.14 21.93 22.23 21.11 21.08 22.28 22.30 22.23 21.11 21.08 22.28 22.18	0 0 1 1 1 1 2 0 0 0 1 1 1 1 1 2 2 2 0 0 0 0
1732.5201751.41001732.5201751.41501732.5201751.41501732.5201751.41011732.5201751.41011732.5201751.41011732.5201751.41511732.5201751.41511732.5201751.41011732.52017531001732.52017531001732.52017531001732.52017531001732.520175315001732.520175311411732.520175315001732.520175315001732.52017551001732.52017551011732.52017551011732.52017551011732.52017551011732.52017551011732.52017551011732.52017551011732.5201751010<	QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	22.94 22.84 22.91 21.94 22.15 22.27 22.03 21.37 22.82 22.78 22.14 22.193 22.30 22.23 21.11 21.08 22.28 22.18	0 0 1 1 1 2 0 0 0 1 1 1 1 2 2 2 0 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	22.84 22.91 21.94 22.15 22.27 22.03 21.37 22.82 22.78 22.14 22.93 22.30 22.23 21.11 21.08 22.28 22.18	0 0 1 1 1 2 0 0 0 1 1 1 1 2 2 2 0 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	22.91 21.94 22.15 22.27 22.03 21.37 22.82 22.78 22.14 21.93 22.30 22.23 21.11 21.08 22.28 22.18	0 1 1 1 1 2 0 0 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QPSK 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	21.94 22.15 22.27 22.03 21.37 22.82 22.78 22.14 21.93 22.30 22.23 21.11 21.08 22.28 22.18	1 1 1 2 0 0 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16-QAM 16-QAM 16-QAM 16-QAM QPSK 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK	22.15 22.27 22.03 21.37 22.82 22.78 22.78 22.14 21.93 22.30 22.23 21.11 21.08 22.28 22.28 22.18	1 1 2 0 0 1 1 1 2 2 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK	22.27 22.03 21.37 22.82 22.78 22.14 21.93 22.30 22.23 21.11 21.08 22.28 22.28 22.18	1 1 2 0 1 1 1 1 2 2 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16-QAM 16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK	22.03 21.37 22.82 22.78 22.14 21.93 22.30 22.23 21.11 21.08 22.28 22.18	1 2 0 1 1 1 1 2 2 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L 16-QAM QPSK QPSK QPSK QPSK L 16-QAM L 16-QAM L 16-QAM L 16-QAM L 16-QAM L 16-QAM L 16-QAM	21.37 22.82 22.78 22.14 21.93 22.30 22.23 21.11 21.08 22.28 22.18	2 0 1 1 1 2 2 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	22.82 22.78 22.14 21.93 22.30 22.23 21.11 21.08 22.28 22.18	0 0 1 1 1 2 2 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK	22.78 22.14 21.93 22.30 22.23 21.11 21.08 22.28 22.18	0 1 1 1 2 2 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK	22.14 21.93 22.30 22.23 21.11 21.08 22.28 22.18	1 1 1 2 2 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QPSK 16-QAM 16-QAM 16-QAM 16-QAM QPSK	21.93 22.30 22.23 21.11 21.08 22.28 22.18	1 1 2 2 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L 16-QAM L 16-QAM L 16-QAM L 16-QAM QPSK	22.30 22.23 21.11 21.08 22.28 22.18	1 1 2 2 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L 16-QAM L 16-QAM L 16-QAM QPSK	22.23 21.11 21.08 22.28 22.18	1 2 2 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L 16-QAM L 16-QAM QPSK	21.11 21.08 22.28 22.18	2 2 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L <u>16-QAM</u> QPSK	21.08 22.28 22.18	2 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QPSK	22.28 22.18	0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		22.18	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OPSK	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		21.31	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QPSK		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QPSK	21.35	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l 16-QAM	21.38	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l 16-QAM	21.20	1
1732.5 20175 10 1 0 0 1732.5 20175 10 1 49 0 1732.5 20175 10 1 49 0 1732.5 20175 10 25 12 0 1732.5 20175 10 50 0 0 1732.5 20175 10 1 0 1 1732.5 20175 10 1 0 1 1732.5 20175 10 1 49 1 1732.5 20175 10 25 12 1	l 16-QAM	20.27	2
1732.5 20175 10 1 49 0 1732.5 20175 10 25 12 0 1732.5 20175 10 50 0 0 1732.5 20175 10 1 0 1 1732.5 20175 10 1 0 1 1732.5 20175 10 1 49 1 1732.5 20175 10 1 49 1 1732.5 20175 10 25 12 1	l 16-QAM	20.31	2
1732.5 20175 10 25 12 00 1732.5 20175 10 50 0 00 1732.5 20175 10 1 0 1 1732.5 20175 10 1 0 1 1732.5 20175 10 1 49 1 1732.5 20175 10 25 12 1	QPSK	22.58	0
1732.5 20175 10 50 0 0 1732.5 20175 10 1 0 1 1732.5 20175 10 1 49 1 1732.5 20175 10 25 12 1		22.75	0
1732.5 20175 10 1 0 1 1732.5 20175 10 1 49 1 1732.5 20175 10 25 12 1	QPSK	21.95	1
1732.5 20175 10 1 49 1 1732.5 20175 10 25 12 11	QPSK	21.93	1
1732.5 20175 10 25 12 1	l 16-QAM	22.24	1
	l 16-QAM	22.14	1
	5 16-QAM	20.87	2
1732.5 20175 10 50 0 1	5 16-QAM	20.97	2
1732.5 20175 15 1 0 0	QPSK	22.96	0
1732.5 20175 15 1 74 0	QPSK	22.93	0
1732.5 20175 15 36 18 0	QPSK	22.06	1
1732.5 20175 15 75 0 0	QPSK	22.00	1
1732.5 20175 15 1 0 1	l 16-QAM	22.06	1
1732.5 20175 15 1 74 1		22.03	1
1732.5 20175 15 36 18 1		21.12	2
1732.5 20175 15 75 0 1		21.02	2
1732.5 20175 20 1 0 0		22.89	0
1732.5 20175 20 1 99 0	l 16-QAM	22.79	0
1732.5 20175 20 50 25 0	l <u>16-QAM</u> QPSK	22.07	1
1732.5 20175 20 100 0 0	L <u>16-QAM</u> QPSK QPSK	22.11	1
1732.5 20175 20 1 0 1	L 16-QAM QPSK QPSK QPSK		1
1732.5 20175 20 1 99 1	L 16-QAM QPSK QPSK QPSK QPSK	22.09	1
1732.5 20175 20 50 25 1	L 16-QAM QPSK QPSK QPSK QPSK L 16-QAM	22.09 21.99	
1732.5 20175 20 100 0 1	16-QAM QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM	1	2

Table 3 – LTE AWS Conducted Power – Mid Channel

Note: Differences from expected MPR levels are a result of measurement uncertainty. Per the manufacturer, the measured powers are acceptable for use within the intended network infrastructure. Powers measured below the expected levels on the devices were extrapolated to ensure compliance for SAR.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 25 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 25 of 41
© 2011 PCTEST Engineering Labo	vratory Inc			DEV/0.2M

				Jinduct			gn Chan	
	Uplink						Maximum	
Frequency	Channel	BW	RB	RB	TBS	Mod	Average	MPR Targets
[MHz]	Number	[MHz]	Size	Offset	105	widu	Power	WIFIX Targets
	Number						[dBm]	
1754.3	20393	1.4	1	0	0	QPSK	22.81	0
1754.3	20393	1.4	1	5	0	QPSK	22.80	0
1754.3	20393	1.4	3	2	0	QPSK	22.86	0
1754.3	20393	1.4	6	0	0	QPSK	21.81	1
1754.3	20393	1.4	1	0	11	16-QAM	22.22	1
1754.3	20393	1.4	1	5	11	16-QAM	22.19	1
1754.3	20393	1.4	3	2	11	16-QAM	22.02	1
1754.3	20393	1.4	6	0	11	16-QAM	21.25	2
1753.5	20385	3	1	0	0	QPSK	22.81	0
1753.5	20385	3	1	14	0	QPSK	22.86	0
1753.5	20385	3	8	4	0	QPSK	21.81	1
1753.5	20385	3	15	0	0	QPSK	21.82	1
1753.5	20385	3	1	0	11	16-QAM	21.97	1
1753.5	20385	3	1	14	11	16-QAM	21.76	1
1753.5	20385	3	8	4	11	16-QAM	20.92	2
1753.5	20385	3	15	0	11	16-QAM	20.91	2
1752.5	20375	5	1	0	0	QPSK	22.81	0
1752.5	20375	5	1	24	0	QPSK	22.84	0
1752.5	20375	5	12	6	0	QPSK	21.98	1
1752.5	20375	5	25	0	0	QPSK	21.86	1
1752.5	20375	5	1	0	11	16-QAM	21.91	1
1752.5	20375	5	1	24	11	16-QAM	21.98	1
1752.5	20375	5	12	6	11	16-QAM	20.97	2
1752.5	20375	5	25	0	11	16-QAM	21.02	2
1750	20350	10	1	0	0	QPSK	22.70	0
1750	20350	10	1	49	0	QPSK	22.61	0
1750	20350	10	25	12	0	QPSK	21.85	1
1750	20350	10	50	0	0	QPSK	21.90	1
1750	20350	10	1	0	11	16-QAM	22.19	1
1750	20350	10	1	49	11	16-QAM	22.21	1
1750	20350	10	25	12	15	16-QAM	21.30	2
1750	20350	10	50	0	15	16-QAM	20.93	2
1747.5	20325	15	1	0	0	QPSK	23.02	0
1747.5	20325	15	1	74	0	QPSK	22.90	0
1747.5	20325	15	36	18	0	QPSK	22.19	1
1747.5	20325	15	75	0	0	QPSK	22.04	1
1747.5	20325	15	1	0	11	16-QAM	22.15	1
1747.5	20325	15	1	74	11	16-QAM	22.06	1
1747.5	20325	15	36	18	11	16-QAM	21.06	2
1747.5	20325	15	75	0	11	16-QAM	20.88	2
1745	20300	20	1	0	0	QPSK	22.73	0
1745	20300	20	1	99	0	QPSK	22.77	0
1745	20300	20	50	25	0	QPSK	22.16	1
1745	20300	20	100	0	0	QPSK	21.89	1
1745	20300	20	1	0	11	16-QAM	21.95	1
1745	20300	20	1	99	11	16-QAM	22.06	1
1745	20300	20	50	25	11	16-QAM	21.11	2
1745	20300	20	100	0	11	16-QAM	20.85	2

Table 4 – LTE AWS Conducted Power – High Channel

Note: Differences from expected MPR levels are a result of measurement uncertainty. Per the manufacturer, the measured powers are acceptable for use within the intended network infrastructure. Powers measured below the expected levels on the devices were extrapolated to ensure compliance for SAR.

Figure 11-1 Power Measurement Setup

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679			OMPLIANCE REPORT A TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT T	ype:		Dama 20 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB D	ongle		Page 26 of 41
© 2011 PCTEST Engineering Lab	oratory Inc				REV 9.2M

12 SYSTEM VERIFICATION

12.1 Tissue Verification

Measured Tissue Properties											
Calibrated for Tests Performed on:	Tissue Type	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε			
		680	0.919	56.88	0.956	56.069	-3.87%	1.45%			
		695	0.931	56.73	0.957	55.985	-2.72%	1.33%			
08/05/2011	750B	710	0.947	56.60	0.958	55.901	-1.15%	1.25%			
06/05/2011	7506	725	0.958	56.56	0.960	55.817	-0.21%	1.33%			
		740	0.981	56.42	0.961	55.733	2.08%	1.23%			
		755	0.991	56.11	0.963	55.649	2.91%	0.83%			
		820	0.980	53.91	0.969	55.284	1.14%	-2.49%			
08/02/2011	835B	835	0.980	54.19	0.970	55.200	1.03%	-1.83%			
		850	1.001	53.90	0.988	55.154	1.32%	-2.27%			
		820	0.945	54.35	0.969	55.284	-2.48%	-1.69%			
08/08/2011	835B	835	0.949	54.62	0.970	55.200	-2.16%	-1.05%			
		850	0.974	54.65	0.988	55.154	-1.42%	-0.91%			
		820	0.959	55.00	0.969	55.284	-1.03%	-0.51%			
08/09/2011	835B	835	0.970	54.93	0.970	55.200	0.00%	-0.49%			
		850	0.991	54.74	0.988	55.154	0.30%	-0.75%			
		1710	1.486	52.90	1.460	53.540	1.78%	-1.20%			
07/29/2011	1750B	1750	1.539	52.75	1.490	53.430	3.29%	-1.27%			
		1790	1.571	52.64	1.510	53.330	4.04%	-1.29%			
		1850	1.455	51.55	1.520	53.300	-4.28%	-3.28%			
08/04/2011	1900B	1880	1.476	51.41	1.520	53.300	-2.89%	-3.55%			
		1910	1.475	51.10	1.520	53.300	-2.96%	-4.13%			

Table 12-1 Measured Tissue Properties

Note: KDB Publication 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies (per IEEE 1528 6.6.1.2). The SAR test plots may slightly differ from the table above since the DASY software rounds to three significant digits.

12.2 Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity, for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency,

and $j = \sqrt{-1}$.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 07 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 27 of 41

© 2011 PCTEST Engineering Laboratory, Inc.

12.3 Test System Verification

Prior to assessment, the system is verified to $\pm 10\%$ of the manufacturer SAR measurement on the reference dipole at the time of calibration.

	System Verification TARGET & MEASURED											
Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Tissue Frequency (MHz)	Dipole SN	Tissue Type	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR1g (W/kg)	Deviation (%)		
08/05/2011	23.5	22.1	0.250	750	1003	Body	2.22	8.850	8.880	0.34%		
08/02/2011	22.8	21.7	0.250	835	4d047	Body	2.4	9.850	9.600	-2.54%		
08/08/2011	24.3	22.7	0.100	835	4d047	Body	1.01	9.850	10.100	2.54%		
08/09/2011	23.9	22.2	0.100	835	4d047	Body	0.939	9.850	9.390	-4.67%		
07/29/2011	24.3	22.6	0.040	1750	1051	Body	1.55	37.000	38.750	4.73%		
08/04/2011	24.7	23.1	0.100	1900	502	Body	4.04	41.100	40.400	-1.70%		

Table 12-2 . 14

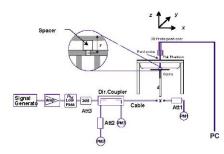


Figure 12-1 System Verification Setup Diagram

Figure 12-2 System Verification Setup Photo

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dama 00 of 11
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 28 of 41
© 2011 PCTEST Engineering Lab	ooratory, Inc.			REV 9.2M

13 SAR DATA SUMMARY

				м	EASURE	MENT R	ESULTS				
FREQUE	NCY	Mode	Service	Conducted Power [dBm]	Power Drift [dB]	Spacing	Test Config	Serial Number	# of GPRS Slots	Side	SAR (1g)
MHz	Ch.			Power [ubili]	[ub]				31015		(W/kg)
824.20	128	GSM 850	GPRS	32.58	0.00	0.5 cm	USB Cable	485	1	horizontal down	0.998
836.60	190	GSM 850	GPRS	32.38	-0.05	0.5 cm	USB Cable	485	1	horizontal down	0.944
848.80	251	GSM 850	GPRS	32.21	-0.10	0.5 cm	USB Cable	485	1	horizontal down	0.802
824.20	128	GSM 850	GPRS	28.23	0.01	0.5 cm	USB Cable	485	2	horizontal down	0.844
836.60	190	GSM 850	GPRS	28.38	0.06	0.5 cm	USB Cable	485	2	horizontal down	0.901
848.80	251	GSM 850	GPRS	28.39	-0.09	0.5 cm	USB Cable	485	2	horizontal down	0.753
836.60	190	GSM 850	GPRS	26.39	0.06	0.5 cm	USB Cable	485	3	horizontal down	0.695
836.60	190	GSM 850	GPRS	25.51	-0.05	0.5 cm	USB Cable	485	4	horizontal down	0.776
836.60	190	GSM 850	GPRS	32.58	0.03	0.5 cm	Laptop	485	1	vertical back	0.422
824.20	128	GSM 850	GPRS	32.38	0.02	0.5 cm	USB Cable	485	1	vertical front	0.948
836.60	190	GSM 850	GPRS	32.58	-0.07	0.5 cm	USB Cable	485	1	vertical front	0.842
848.80	251	GSM 850	GPRS	32.21	0.01	0.5 cm	USB Cable	485	1	vertical front	0.691
836.60	190	GSM 850	GPRS	32.38	0.08	0.5 cm	Laptop	485	1	tip	0.124
- L		IEEE C95.1 1 Spatia olled Exposu	I Peak		1				ody g (mW/g) over 1 gra	m	•

Table 13-1 GPRS/EDGE 850 Body SAR Results

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001], IEEE 1528-2003 and RSS-102.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Liquid tissue depth was at least 15.0 cm.
- 5. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
- 6. IBM ThinkPad notebooks were used as hosts for testing the modem configurations
- 7. A spacing of 0.5 cm was used for all sides of the modem per KDB Inquiry discussions and KDB Publication 447498 for USB dongles.
- 8. The Horizontal-Up position was exempt from testing per switching off mechanism per KDB Inquiry discussions.
- Justification for reduced test configurations per KDB Publication 941225 D03: The source-based time-averaged output power was evaluated for all multi-slot operations. In addition to the worstcase reported, all source-based time-averaged powers within 10% of the worst-case were additionally included in the evaluation for hotspot body SAR.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 20 of 41
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 29 of 41
© 2011 PCTEST Engineering Labo	ratory Inc			REV/ 9.2M

	MEASUREMENT RESULTS											
FREQUE	NCY	Mode Service		Conducted	Power Drift	Spacing	Test Config	Serial Number	# of GPRS	Side	SAR (1g)	
MHz	Ch.			Power [dBm]	[dB]				Slots		(W/kg)	
1909.80	810	GSM 1900	GPRS	30.04	-0.09	0.5 cm	USB Cable	485	1	horizontal down	0.568	
1909.80	810	GSM 1900	GPRS	30.04	0.01	0.5 cm	Laptop	485	1	vertical back	0.391	
1909.80	810	GSM 1900	GPRS	30.04	-0.06	0.5 cm	USB Cable	485	1	vertical front	0.574	
1909.80	810	GSM 1900	GPRS	30.04	-0.01	0.5 cm	Laptop	485	1	tip	0.253	
	ANSI /	IEEE C95.1 1	992 - SAF	ETY LIMIT		Body						
		Spatia	l Peak			1.6 W/kg (mW/g)						
ι	Jncontro	olled Exposu	re/Genera	I Population	n			averaged	over 1 gra	m		

Table 13-2 GPRS/EDGE 1900 Body SAR Results

- The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001], IEEE 1528-2003 and RSS-102.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Liquid tissue depth was at least 15.0 cm.
- 5. Per April 2010 TCB Workshop Presentation: Since the output power level across all 3 channels varied by ≥ 0.5 dB the channel with the highest output level was measured, and its SAR was compared to 0.8 W/kg to determine if the other two channels are to be tested.
- 6. IBM ThinkPad notebooks were used as hosts for testing the modem configurations
- 7. A spacing of 0.5 cm was used for all sides of the modem per KDB Inquiry discussions and KDB Publication 447498 for USB dongles.
- 8. The Horizontal-Up position was exempt from testing per switching off mechanism per KDB Inquiry discussions.
- Justification for reduced test configurations per KDB Publication 941225 D03: The source-based time-averaged output power was evaluated for all multi-slot operations. In addition to the worstcase reported, all source-based time-averaged powers within 10% of the worst-case were additionally included in the evaluation for hotspot body SAR.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 20 of 41
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 30 of 41
© 2011 PCTEST Engineering Labo	ratory, Inc.			REV 9.2M

	MEASUREMENT RESULTS											
FREQUE	INCY	Mode	Service	Conducted	Power Drift	Spacing	Test Config	Serial Number	Side	SAR (1g)		
MHz	Ch.			Power [dBm]	[dB]		,			(W/kg)		
836.60	4183	WCDMA 850	RMC	23.03	-0.01	0.5 cm	USB Cable	485	horizontal down	0.781		
836.60	4183	WCDMA 850	RMC	23.03	0.03	0.5 cm	Laptop	485	vertical back	0.358		
836.60	4183	WCDMA 850	RMC	23.03	-0.08	0.5 cm	USB Cable	485	vertical front	0.751		
836.60	4183	WCDMA 850	RMC	23.03	0.10	0.5 cm	Laptop	485	tip	0.117		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body					
	Spatial Peak							1.6 W/kg (m	W/g)			
L I	Jncontr	olled Exposu	re/Genera	I Population	n		a	veraged over	1 gram			

Table 13-3 WCDMA 850 Body SAR Results

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001], IEEE 1528-2003 and RSS-102.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Liquid tissue depth was at least 15.0 cm.
- 5. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
- 6. IBM ThinkPad notebooks were used as hosts for testing the modem configurations
- 7. A spacing of 0.5 cm was used for all sides of the modem per KDB Inquiry discussions and KDB Publication 447498 for USB dongles.
- 8. The Horizontal-Up position was exempt from testing per switching off mechanism per KDB Inquiry discussions.
- WCDMA mode in Body SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dago 21 of 41
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 31 of 41
© 2011 DCTEST Engineering Leh	oratory Inc			DEV/0.2M

	MEASUREMENT RESULTS												
FREQUE	NCY	Mode	Service	Conducted	Power Drift	Spacing	Test Config	Serial Number	Side	SAR (1g)			
MHz	Ch.			Power [dBm]	[dB]	3				(W/kg)			
1852.40	9262	WCDMA 1900	RMC	22.30	-0.04	0.5 cm	USB Cable	485	horizontal down	1.050			
1880.00	9400	WCDMA 1900	RMC	22.32	0.07	0.5 cm	USB Cable	485	horizontal down	1.130			
1907.60	9538	WCDMA 1900	RMC	22.17	-0.01	0.5 cm	USB Cable	485	horizontal down	0.971			
1880.00	9400	WCDMA 1900	RMC	22.32	0.07	0.5 cm	Laptop	485	vertical back	0.719			
1852.40	9262	WCDMA 1900	RMC	22.30	0.04	0.5 cm	USB Cable	485	vertical front	1.000			
1880.00	9400	WCDMA 1900	RMC	22.32	0.05	0.5 cm	USB Cable	485	vertical front	1.110			
1907.60	9538	WCDMA 1900	RMC	22.17	-0.04	0.5 cm	USB Cable	485	vertical front	0.963			
1880.00	9400	WCDMA 1900	RMC	22.32	0.03	0.5 cm	Laptop	485	tip	0.541			
, i	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						a	Body 1.6 W/kg (m veraged over		-			

Table 13-4 WCDMA 1900 Body SAR Results

Notes:

- The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001], IEEE 1528-2003 and RSS-102.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Liquid tissue depth was at least 15.0 cm.
- 5. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
- 6. IBM ThinkPad notebooks were used as hosts for testing the modem configurations
- 7. A spacing of 0.5 cm was used for all sides of the modem per KDB Inquiry discussions and KDB Publication 447498 for USB dongles.
- 8. The Horizontal-Up position was exempt from testing per switching off mechanism per KDB Inquiry discussions.
- WCDMA mode in Body SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT TRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dega 22 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 32 of 41
© 0044 DOTEOT Excito a size of the	nata a la a			

© 2011 PCTEST Engineering Laboratory, Inc.

FREQUE	NCY Ch. 23790	Mode			MEASUREMENT RESULTS												
	-		Service	Conducted Power [dBm]	Power Drift [dB]	Spacing	Bandwidth (MHz)	Test Config	Serial Number	Number of Resource Blocks	RB Offset	MPR Target	Side	SAR (1g) (W/kg)			
710		LTE Band 17	QPSK	22.06	0.06	0.5 cm	10	USB Cable	485	25	12	1	horizontal down	0.429			
710	23790	LTE Band 17	QPSK	22.78	-0.04	0.5 cm	10	USB Cable	485	1	0	0	horizontal down	0.529			
710	23790	LTE Band 17	QPSK	22.59	-0.09	0.5 cm	10	USB Cable	485	1	49	0	horizontal down	0.495			
710	23790	LTE Band 17	16QAM	21.52	-0.05	0.5 cm	10	USB Cable	485	25	12	2	horizontal down	0.384			
710	23790	LTE Band 17	16QAM	22.20	0.02	0.5 cm	10	USB Cable	485	1	0	1	horizontal down	0.432			
710	23790	LTE Band 17	16QAM	22.12	0.05	0.5 cm	10	USB Cable	485	1	49	1	horizontal down	0.372			
710	23790	LTE Band 17	QPSK	22.06	-0.09	0.5 cm	10	Laptop	485	25	12	1	vertical back	0.213			
710	23790	LTE Band 17	QPSK	22.78	-0.06	0.5 cm	10	Laptop	485	1	0	0	vertical back	0.256			
710	23790	LTE Band 17	QPSK	22.59	-0.09	0.5 cm	10	Laptop	485	1	49	0	vertical back	0.236			
710	23790	LTE Band 17	16QAM	21.52	-0.05	0.5 cm	10	Laptop	485	25	12	2	vertical back	0.118			
710	23790	LTE Band 17	16QAM	22.20	0.01	0.5 cm	10	Laptop	485	1	0	1	vertical back	0.217			
710	23790	LTE Band 17	16QAM	22.12	-0.06	0.5 cm	10	Laptop	485	1	49	1	vertical back	0.185			
710	23790	LTE Band 17	QPSK	22.06	-0.01	0.5 cm	10	USB Cable	485	25	12	1	vertical front	0.252			
710	23790	LTE Band 17	QPSK	22.78	-0.10	0.5 cm	10	USB Cable	485	1	0	0	vertical front	0.243			
710	23790	LTE Band 17	QPSK	22.59	0.00	0.5 cm	10	USB Cable	485	1	49	0	vertical front	0.235			
710	23790	LTE Band 17	16QAM	21.52	0.00	0.5 cm	10	USB Cable	485	25	12	2	vertical front	0.226			
710	23790	LTE Band 17	16QAM	22.20	-0.01	0.5 cm	10	USB Cable	485	1	0	1	vertical front	0.182			
710	23790	LTE Band 17	16QAM	22.12	0.05	0.5 cm	10	USB Cable	485	1	49	1	vertical front	0.178			
710	23790	LTE Band 17	QPSK	22.06	0.08	0.5 cm	10	Laptop	485	25	12	1	tip	0.040			
710	23790	LTE Band 17	QPSK	22.78	-0.02	0.5 cm	10	Laptop	485	1	0	0	tip	0.036			
710	23790	LTE Band 17	QPSK	22.59	-0.08	0.5 cm	10	Laptop	485	1	49	0	tip	0.041			
710	23790	LTE Band 17	16QAM	21.52	-0.09	0.5 cm	10	Laptop	485	25	12	2	tip	0.037			
710	23790	LTE Band 17	16QAM	22.20	-0.05	0.5 cm	10	Laptop	485	1	0	1	tip	0.027			
710	23790	LTE Band 17	16QAM	22.12	-0.04	0.5 cm	10	Laptop	485	1	49	1	tip	0.031			
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT					Body											
Spatial Peak Uncontrolled Exposure/General Population				1.6 W/kg (mW/g) averaged over 1 gram													

Table 13-5 LTE Band 17 Body SAR Results

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001], IEEE 1528-2003 and RSS-102.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Liquid tissue depth was at least 15.0 cm.
- 5. IBM ThinkPad notebooks were used as hosts for testing the modem configurations
- 6. A spacing of 0.5 cm was used for all sides of the modem per KDB Inquiry discussions and KDB Publication 447498 for USB dongles.
- 7. The Horizontal-Up position was exempt from testing per switching off mechanism per KDB Inquiry discussions.
- 8. Considerations: LTE test configurations are determined according to SAR Test Considerations for LTE handsets and Data Modems KDB 941225 D05 Publication:
 - a. Per KDB Publication 941225 D05 Page 4, 3) A), QPSK with 50% RB is required for the highest bandwidth (10 MHz).
 - b. Per KDB Publication 941225 D05 Page 4, 3) B), QPSK with 1 RB for both channel edges are required for the highest bandwidth (10 MHz).

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 22 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 33 of 41
		· · · · · · · · · · · · · · · · · · ·		DEV/ 0.014

- b. Per KDB Publication 941225 D05 Page 4, 3) B), QPSK with 1 RB for both channel edges are required for the highest bandwidth (10 MHz).
- c. Per KDB Publication 941225 D05 Page 4, 4) A), 16QAM with 50% RB is required for the highest bandwidth (10 MHz).
- d. Per KDB Publication 941225 D05 Page 4, 4) B), 16QAM with 1RB for both channel edges are required for the highest bandwidth (10 MHz).
- e. Per KDB Publication 941225 D05 Page 4, A) I), 100% RB Allocation is not required to be tested since SAR is not > 1.45 W/kg for the highest bandwidth (10 MHz).
- f. Per KDB Publication 941225 D05 Page 5, 5) B), 5 MHz bandwidth is not required to be tested for SAR since output powers are within ½ dB higher or lower of the 10 MHz BW, and also SAR is not > 1.45 W/kg
- g. Per KDB Publication 941225 D05, Low and high channel were not required for LTE Band 17 since the SAR was <0.8 W/kg and the power variation across all three channels was ≤ 0.5 dB for all configurations.
- 9. There is a permanently applied MPR implemented by the manufacturer. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1. The differences noted are not cases of implemented MPR but rather associated with measurement uncertainty and allowable tolerances per 3GPP standard and the manufacturer.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dege 24 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 34 of 41
© 2011 PCTEST Engineering Labo	ratory, Inc.	·		REV 9.2M

							-	TRESULT						
FREQUE	ENCY Ch.	Mode	Service	Conducted Power [dBm]	Power Drift [dB]	Spacing	Bandwidth (MHz)	Test Config	Serial Number	Number of Resource Blocks	RB Offset	MPR Target	Side	SAR (1g) (W/kg)
1720	20050	LTE AWS	QPSK	22.80	0.00	0.5 cm	20	USB Cable	485	1	0	0	horizontal down	0.840
1720	20050	LTE AWS	QPSK	22.90	0.09	0.5 cm	20	USB Cable	485	1	99	0	horizontal down	0.786
1720	20050	LTE AWS	16QAM	22.12	0.08	0.5 cm	20	USB Cable	485	1	0	1	horizontal down	0.714
1720	20050	LTE AWS	16QAM	22.21	0.07	0.5 cm	20	USB Cable	485	1	99	1	horizontal down	0.475
1732.50	20175	LTE AWS	QPSK	22.07	0.06	0.5 cm	20	USB Cable	485	50	25	1	horizontal down	0.721
1732.50	20175	LTE AWS	QPSK	22.89	0.10	0.5 cm	20	USB Cable	485	1	0	0	horizontal down	0.935
1732.50	20175	LTE AWS	QPSK	22.79	0.09	0.5 cm	20	USB Cable	485	1	99	0	horizontal down	1.130
1732.50	20175	LTE AWS	16QAM	21.16	0.06	0.5 cm	20	USB Cable	485	50	25	2	horizontal down	0.664
1732.50	20175	LTE AWS	16QAM	22.09	-0.09	0.5 cm	20	USB Cable	485	1	0	1	horizontal down	0.831
1732.50	20175	LTE AWS	16QAM	21.99	-0.08	0.5 cm	20	USB Cable	485	1	99	1	horizontal down	0.962
1745	20300	LTE AWS	QPSK	22.73	0.07	0.5 cm	20	USB Cable	485	1	0	0	horizontal down	0.671
1745	20300	LTE AWS	QPSK	22.77	-0.08	0.5 cm	20	USB Cable	485	1	99	0	horizontal down	0.578
1745	20300	LTE AWS	16QAM	21.95	0.09	0.5 cm	20	USB Cable	485	1	0	1	horizontal down	0.594
1745	20300	LTE AWS	16QAM	22.06	0.06	0.5 cm	20	USB Cable	485	1	99	1	horizontal down	0.483
1732.50	20175	LTE AWS	QPSK	22.07	0.08	0.5 cm	20	Laptop	485	50	25	1	vertical back	0.304
1732.50	20175	LTE AWS	QPSK	22.89	0.07	0.5 cm	20	Laptop	485	1	0	0	vertical back	0.357
1732.50	20175	LTE AWS	QPSK	22.79	0.07	0.5 cm	20	Laptop	485	1	99	0	vertical back	0.441
1732.50	20175	LTE AWS	16QAM	21.16	0.07	0.5 cm	20	Laptop	485	50	25	2	vertical back	0.257
1732.50	20175	LTE AWS	16QAM	22.09	0.07	0.5 cm	20	Laptop	485	1	0	1	vertical back	0.305
1732.50	20175	LTE AWS	16QAM	21.99	-0.09	0.5 cm	20	Laptop	485	1	99	1	vertical back	0.371
1732.50	20175	LTE AWS	QPSK	22.07	0.10	0.5 cm	20	USB Cable	485	50	25	1	vertical front	0.562
1732.50	20175	LTE AWS	QPSK	22.89	0.10	0.5 cm	20	USB Cable	485	1	Ō	0	vertical front	0.668
1732.50	20175	LTE AWS	QPSK	22.79	0.02	0.5 cm	20	USB Cable	485	1	99	0	vertical front	0.723
1732.50	20175	LTE AWS	16QAM	21.16	0.07	0.5 cm	20	USB Cable	485	50	25	2	vertical front	0.484
1732.50	20175	LTE AWS	16QAM	22.09	0.07	0.5 cm	20	USB Cable	485	1	0	1	vertical front	0.622
1732.50	20175	LTE AWS	16QAM	21.99	0.07	0.5 cm	20	USB Cable	485	1	99	1	vertical front	0.659
1732.50	20175	LTE AWS	QPSK	22.07	0.07	0.5 cm	20	Laptop	485	50	25	1	tip	0.398
1732.50	20175	LTE AWS	QPSK	22.89	0.06	0.5 cm	20	Laptop	485	1	0	0	tip	0.480
1732.50	20175	LTE AWS	QPSK	22.79	0.09	0.5 cm	20	Laptop	485	1	99	0	tip	0.528
1732.50	20175	LTE AWS	16QAM	21.16	0.06	0.5 cm	20	Laptop	485	50	25	2	tip	0.326
1732.50	20175	LTE AWS	16QAM	22.09	0.07	0.5 cm	20	Laptop	485	1	0	1	tip	0.423
1732.50	20175	LTE AWS	16QAM	21.99	0.00	0.5 cm	20	Laptop	485	1	99	1	tip	0.442
ı		IEEE C95.1 1 Spatia olled Exposu	I Peak		1	Body 1.6 W/kg (mW/g) averaged over 1 gram								

Table 13-6 LTE AWS Body SAR Results

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001], IEEE 1528-2003 and RSS-102.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Liquid tissue depth was at least 15.0 cm.
- 5. IBM ThinkPad notebooks were used as hosts for testing the modem configurations
- 6. A spacing of 0.5 cm was used for all sides of the modem per KDB Inquiry discussions and KDB Publication 447498 for USB dongles.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dago 25 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 35 of 41
© 2011 PCTEST Engineering Labo	ratory Inc			REV 9 2M

- 7. The Horizontal-Up position was exempt from testing per switching off mechanism per KDB Inquiry discussions.
- 8. AWS LTE SAR was measured with a probe calibrated at 1750 MHz and is valid for measuring SAR within 50 MHz. The 1750MHz specific liquid was verified with specific probe calibration factors as required per FCC KDB Publication 450824.
- 9. Considerations: LTE test configurations are determined according to SAR Test Considerations for LTE handsets and Data Modems KDB 941225 D05 Publication:
 - a. Per KDB Publication 941225 D05 Page 4, 3) A), QPSK with 50% RB is required for the highest bandwidth (20 MHz).
 - b. Per KDB Publication 941225 D05 Page 4, 3) B), QPSK with 1 RB for both channel edges are required for the highest bandwidth (20 MHz).
 - c. Per KDB Publication 941225 D05 Page 4, 4) A), 16QAM with 50% RB is required for the highest bandwidth (20 MHz).
 - d. Per KDB Publication 941225 D05 Page 4, 4) B), 16QAM with 1RB for both channel edges are required for the highest bandwidth (20 MHz).
 - e. Per KDB Publication 941225 D05 Page 4, A) I), 100% RB Allocation is not required to be tested since SAR is not > 1.45 W/kg for the highest bandwidth (20 MHz).
 - f. Per KDB Publication 941225 D05 Page 5, 5) B), 1.4, 3, 5, 10, and 15 MHz bandwidths are not required to be tested for SAR since output powers are within ½ dB higher or lower of the 20 MHz BW, and also SAR is not > 1.45 W/kg
- 10. For test configurations where the measured SAR was greater than 0.8 W/kg, low and high channels were additionally tested.
- 11. There is a permanently applied MPR implemented by the manufacturer. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1. The differences noted are not cases of implemented MPR but rather associated with measurement uncertainty and allowable tolerances per 3GPP standard and the manufacturer.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dago 26 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 36 of 41
© 2011 PCTEST Engineering Labo	pratory, Inc.			REV 9.2M

14 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	85070B	Dielectric Probe Kit	8/22/2010	Annual	8/22/2011	US33020316
Agilent	8648D	(9kHz-4GHz) Signal Generator	10/13/2010	Annual	10/13/2011	3613A00315
Agilent	8753E	(30kHz-6GHz) Network Analyzer	4/21/2011	Annual	4/21/2012	JP38020182
Agilent	E5515C	Wireless Communications Test Set	10/11/2010	Annual	10/11/2011	GB46110872
Agilent	E5515C	Wireless Communications Test Set	10/8/2010	Annual	10/8/2011	GB46310798
Agilent	E5515C	Wireless Communications Test Set	7/6/2011	Annual	7/6/2012	GB41450275
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/8/2011	Annual	4/8/2012	MY45470194
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/11/2010	Annual	10/11/2011	1833460
Gigatronics	8651A	Universal Power Meter	10/11/2010	Annual	10/11/2011	8650319
Rohde & Schwarz	CMU200	Base Station Simulator	11/11/2010	Annual	11/11/2011	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	6/1/2011	Annual	6/1/2012	833855/0010
Rohde & Schwarz	CMU200	Base Station Simulator	4/19/2011	Annual	4/19/2012	107826
Rohde & Schwarz	NRVD	Dual Channel Power Meter	4/8/2011	Biennial	4/8/2013	101695
SPEAG	D1765V2	1765 MHz SAR Dipole	6/16/2011	Annual	6/16/2012	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	2/17/2011	Annual	2/17/2012	502
SPEAG	D1900V2	1900 MHz SAR Dipole	8/18/2009	Biennial	8/18/2011	5d080
SPEAG	D2450V2	2450 MHz SAR Dipole	8/27/2009	Biennial	8/27/2011	719
SPEAG	D2450V2	2450 MHz SAR Dipole	2/8/2011	Annual	2/8/2012	797
SPEAG	D2600V2	2600 MHz SAR Dipole	4/15/2011	Annual	4/15/2012	1004
SPEAG	D5GHzV2	5 GHz SAR Dipole	8/19/2009	Biennial	8/19/2011	1007
SPEAG	D5GHzV2	5 GHz SAR Dipole	2/11/2011	Annual	2/11/2012	1057
SPEAG	D835V2	835 MHz SAR Dipole	2/9/2011	Annual	2/9/2012	4d047
SPEAG	D835V2	835 MHz SAR Dipole	8/24/2009	Biennial	8/24/2011	4d026
SPEAG	DAE3	Dasy Data Acquisition Electronics	11/18/2010	Annual	11/18/2011	455
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/17/2011	Annual	3/17/2012	704
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/20/2011	Annual	4/20/2012	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/21/2011	Annual	2/21/2012	649
SPEAG	ES3DV2	SAR Probe	9/21/2010	Annual	9/21/2011	3022
SPEAG	EX3DV4	SAR Probe	8/19/2010	Annual	8/19/2011	3561
SPEAG	EX3DV4	SAR Probe	2/14/2011	Annual	2/14/2012	3550
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/19/2011	Annual	5/19/2012	859
SPEAG	D750V3	750 MHz Dipole	2/14/2011	Annual	2/14/2012	1003
SPEAG	ES3DV3	SAR Probe	3/24/2011	Annual	3/24/2012	3213
SPEAG	ES3DV3	SAR Probe	4/18/2011	Annual	4/18/2012	3209
Rohde & Schwarz	SMIQ03B	Signal Generator	4/6/2011	Annual	4/6/2012	DE27259
SPEAG	D1640V2	1640 MHz Dipole	8/17/2010	Annual	8/17/2011	321
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	8/30/2010	Annual	8/30/2011	100976
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	5318
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	5442
Anritsu	ML2438A	Power Meter	2/7/2011	Annual	2/7/2012	1190013
Anritsu	ML2438A	Power Meter	2/7/2011	Annual	2/7/2012	98150041
Agilent	8648D	Signal Generator	4/5/2011	Annual	4/5/2012	3629U00687
Anritsu	ML2438A	Power Meter	2/7/2011	Annual	2/7/2012	1070030
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	5821
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	8013
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	5605
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	2400
Agilent	E5515C	Wireless Communications Test Set	7/6/2011	Annual	7/6/2012	GB43304447
Agilent	E5515C	Wireless Communications Tester	4/21/2011	Annual	4/21/2012	US41140256
Amplifier Research	5S1G4	5W, 800MHz-4.2GHz	N/A			21910
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	N/A			N/A
Agilent	E5515C	Wireless Communications Test Set	2/8/2011	Annual	2/8/2012	GB45360985
SPEAG	D3700V2	3700 MHz SAR Dipole	2/16/2011	Annual	2/16/2012	1002
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	3/11/2011	Annual	3/11/2012	103962
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331322
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331323
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331330
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331332
	61220-416	Long-Stem Thermometer	3/16/2011	Biennial	3/16/2013	111391601
Control Company		CAD Drok -	4/8/2011	Annual	4/8/2012	3258
Control Company SPEAG	ES3DV3	SAR Probe				
	ES3DV3 D1750V2	1750 MHz SAR Dipole	5/24/2011	Annual	5/24/2012	1051
SPEAG	1			1	5/24/2012	1051 R8979500903
SPEAG SPEAG	D1750V2	1750 MHz SAR Dipole	5/24/2011	1	5/24/2012	
SPEAG SPEAG MiniCircuits	D1750V2 SLP-2400+	1750 MHz SAR Dipole Low Pass Filter	5/24/2011 N/A	1	5/24/2012	R8979500903

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dago 27 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 37 of 41
© 2011 PCTEST Engineering Labo	ratory Inc			REV 9 2M

15 MEASUREMENT UNCERTAINTIES

Applicable for 700 – 3000 MHz.

а	b	с	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		Ci	C _i	1gm	10gms	
Component	1528	(± %)	Dist.	Div.	-	10 gms	•	•	
Component	Sec.	(± %)	DISL.	Div.	1gm	iu gilis	u _i (± %)	u _i (± %)	vi
Measurement System							(± /0)	(± /0)	
Probe Calibration	E.2.1	6.0	N	1	1.0	1.0	6.0	6.0	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	Ν	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS			•	12.1	11.7	299
Expanded Uncertainty			k=2				24.2	23.5	
(95% CONFIDENCE LEVEL)								<u> </u>	

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 29 of 44
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 38 of 41
© 2011 PCTEST Engineering Labo	pratory Inc.			REV 9 2M

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:		Dama 00 of 44	
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 39 of 41	
© 2011 PCTEST Engineering Laboratory, Inc.					

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-	402)	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:		Dage 40 of 41	
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle		Page 40 of 41	

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Measurement Procedures for 3G Devices KDB Publication 941225
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publication 648474
- [29] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz 3 GHz, KDB Publication 450824
- [30] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, KDB Publication 616217
- [31] FCC SAR Measurement Requirements for 3 6 GHz, KDB Publication 865664
- [32] FCC Mobile Portable RF Exposure Procedure, KDB Publication 447498
- [33] FCC SAR Procedures for Dongle Transmitters, KDB Publication 447498
- [34] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [35] FCC SAR Test Considerations for LTE Handsets and Data Modems, KDB Publication 941225.
- [36] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.
- [37] FCC D06 Hot Spot SAR v01, KDB Publication 941225.

FCC ID: PKRNVWMC679 IC Cert No.: 3229A-MC679		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	NOVATEL WIRELESS.	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:		Page 41 of 41	
0Y1106221046.PKR	07/29/11 - 08/09/11	USB Dongle			
© 2011 PCTEST Engineering Laboratory, Inc.					