

PCTEST ENGINEERING LABORATORY, INC. 6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE FCC Part 22 & 24 Certification

Applicant Name:

Novatel Wireless Inc. 9645 Scranton Road, Suite 205 San Diego, CA 92121-3030 United States Date of Testing: August 21, 2008 Test Site/Location: PCTEST Lab., Columbia, MD, USA Test Report Serial No.: 0808191138-R1.PKR

FCC ID:	PKRNVWMC1000
APPLICANT:	NOVATEL WIRELESS INC.
Application Type:	Certification
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
FCC Rule Part(s):	§2; §22(H), §24(E)
EUT Type:	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO
Model(s):	MC1000
Tx Frequency Range:	824.20 - 848.80MHz (Cell. GSM) / 1850.20 - 1909.80MHz (PCS GSM)
	826.40 - 846.60MHz (Cell. WCDMA)/ 1852.4 - 1907.6MHz (PCS WCDMA)
	824.70 - 848.31MHz (Cell. CDMA) / 1851.25 - 1908.75MHz (PCS CDMA)
Max. RF Output Power:	1.291 W ERP Cell. GSM (31.11 dBm) / 0.971 W EIRP PCS GSM (29.87 dBm)
	0.314 W ERP Cell. WCDMA (24.97 dBm) / 0.263 W EIRP PCS WCDMA (24.2 dB
	0.313 W ERP Cell. CDMA (24.95 dBm) / 0.279 W EIRP PCS CDMA (24.46 dBm)
	0.731 W ERP EDGE850 (28.64 dBm) 0.407 W EIRP EDGE1900 (26.1 dBm)
Emission Designator(s):	243KGXW (Cellular GSM), 242KGXW (PCS GSM)
	245KG7W (EDGE850), 242KG7W (EDGE1900)
	4M16F9W (Cellular WCDMA), 4M17F9W (PCS WCDMA)
	1M27F9W (Cellular CDMA), 1M27F9W (PCS CDMA)
Test Device Serial No.:	identical prototype [S/N: N/A]

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

* This revised test report (S/N: 0808191138-R1.PKR) supersedes and replaces the previously issued test report on the same subject EUT for the same type of testing as indicated. Please discard or destroy the previously issued test report (S/N: 0808191138.PKR) and dispose of it accordingly.

Grant Conditions: Power output listed is ERP for Part 22 and EIRP for Part 24.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

dy Ortane

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	1	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 1 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		i ugo i oi i i
© 2000 DOTEOT Engineering I	abaratar (Inc			

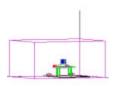
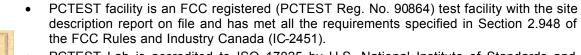


TABLE OF CONTENTS

FCC	PART 2	22 & 24 MEASUREMENT REPORT	3
1.0	INTF	RODUCTION	4
	1.1	SCOPE	4
	1.2	TESTING FACILITY	4
2.0	PRC	DUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.3	LABELING REQUIREMENTS	5
3.0	DES	CRIPTION OF TESTS	6
	3.1	MEASUREMENT PROCEDURE	6
	3.2	OCCUPIED BANDWIDTH EMISSION LIMITS	6
	3.3	CELLULAR - BASE FREQUENCY BLOCKS	6
	3.4	CELLULAR - MOBILE FREQUENCY BLOCKS	7
	3.5	PCS - BASE FREQUENCY BLOCKS	7
	3.6	PCS - MOBILE FREQUENCY BLOCKS	7
	3.7	SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	7
	3.8	RADIATED SPURIOUS AND HARMONIC EMISSIONS	8
	3.9	PEAK-AVERAGE RATIO	8
	3.10	FREQUENCY STABILITY / TEMPERATURE VARIAT ION	9
4.0	TES	T EQUIPMENT CALIB RATION DATA	10
5.0	SAM	IPLE CALCULATIONS	
6.0	TES	T RESULTS	
	6.1	SUMMARY	12
	6.2	CONDUCTED OUTPUT POWER	13
	6.3	EFFECTIVE RADIATED POWER OUTPUT DATA	14
	6.4	EQUIVALENT ISOTROPIC RADIATED POWER OUTPUT DATA	15
	6.5	CELLULAR GSM RADIATED MEASUREMENTS	16
	6.6	CELLULAR WCDMA RADIATED MEASUREMENTS	19
	6.7	CELLULAR CDMA RADIATED MEASUREMENTS	
	6.8	PCS GSM RADIATED MEASUREMENTS	25
	6.9	PCS WCDMA RADIATED MEASUREMENTS	
	6.10	PCS CDMA RADIATED ME ASUREMENTS	31
	6.11	CELLULAR GSM FREQUENCY STABILITY MEASUREMENTS	
	6.12	CELLULAR WCDMA FREQUENCY STABILITY MEASUREMENTS	35
	6.13	CELLULAR CDMA FREQUENCY STABILITY MEASUREMENTS	
	6.14	PCS GSM FREQUENCY STABILITY MEASUREMENTS	
	6.15	PCS WCDMA FREQUENCY STABILITY MEASUREMENTS	
	6.16	PCS CDMA FREQUENCY STABILITY MEASUREMENTS	
7.0	PLO	TS OF EMISSIONS	
8.0	CON	ICLUSION	74

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	No.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		. ugo <u>-</u> 0
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW


MEASUREMENT REPORT FCC Part 22 & 24

APPLICANT:	Novatel Wireless Inc.
APPLICANT ADDRESS:	9645 Scranton Road, Suite 205
	San Diego, CA 92121-3030
TEST SITE:	PCTEST ENGINEERING LABORATORY, INC.
TEST SITE ADDRESS:	6660-B Dobbin Road, Columbia, MD 21045 USA
FCC RULE PART(S):	§2; §22(H), §24(E)
BASE MODEL :	MC1000
FCC ID:	PKRNVWMC1000
FCC CLASSIFICATION:	PCS Licensed Transmitter Held to Ear (PCE)
EMISSION DESIGNATOR(S):	243KGXW (Cellular GSM), 242KGXW (PCS GSM) 245KG7W (EDGE850), 242KG7W (EDGE1900) 4M16F9W (Cellular WCDMA), 4M17F9W (PCS WCDMA) 1M27F9W (Cellular CDMA), 1M27F9W (PCS CDMA)
MODE:	GSM/EDGE/CDMA/WCDMA
FREQUENCY TOLERANCE:	±0.00025 % (2.5 ppm)
Test Device Serial No.:	N/A 🗌 Production 🛛 Pre-Production 🗌 Engineering
DATE(S) OF TEST:	August 21, 2008
TEST REPORT S/N:	0808191138-R1.PKR

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	-	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 3 of 74	
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		. ago o or r r	
© 2008 PCTEST Engineering L	© 2008 PCTEST Engineering Laboratory, Inc.				

INTRODUCTION . 0

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 **Testing Facility**

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity are, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (see Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on January 27, 2006 and Industry Canada.

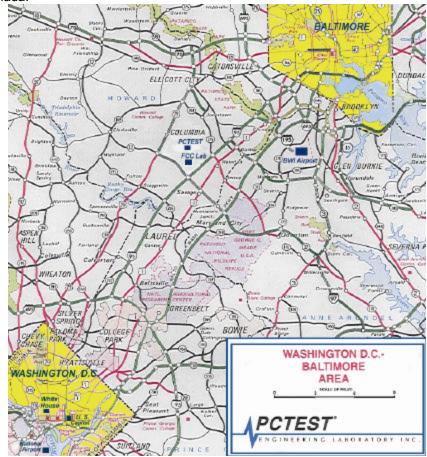


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 4 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		i ugo i oi i i
© 2008 PCTEST Engineering L	aboratory, Inc.	·		REV 1.4GCW

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Novatel 850/1900 GSM/WCDMA/EDGE/CDMA USB Modem** with EvDO FCC ID: PKRNVWMC1000. The EUT consisted of the following component(s):

Trade Name / Base Model	FCC ID	Description
Novatel / Model: MC1000	PKRNVWMC1000	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO

Table 2-1. EUT Equipment Description

2.2 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

2.3 Labeling Requirements

Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

Per 15.19; Docket 95-19

In addition to this requirement, a device subject to certification shall be labeled as follows:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	-	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 5 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		r ugo o or r r
© 2008 PCTEST Engineering L	© 2008 PCTEST Engineering Laboratory, Inc.			

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The radiated spurious measurements were made outdoors at a 3meter test range (see Figure 3-1). The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A halfwave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

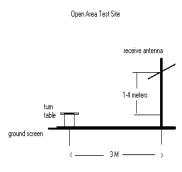
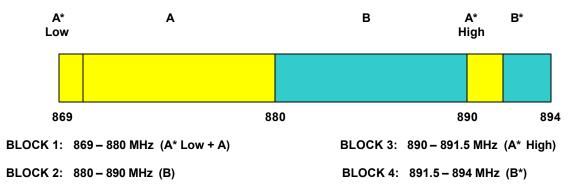
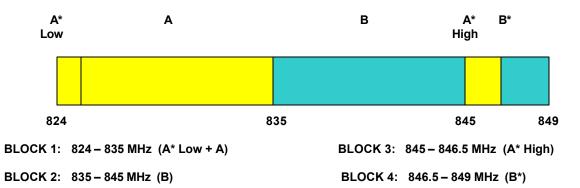



Figure 3-1. Diagram of 3-meter outdoor test range

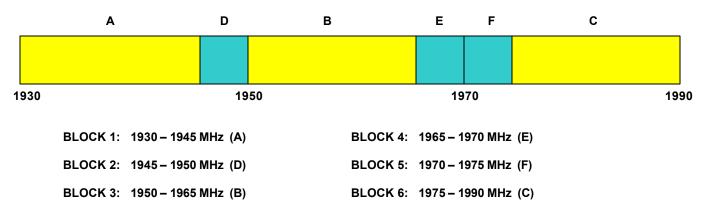
Deviation from Measurement Procedure......None

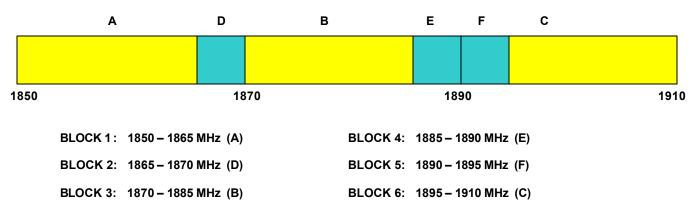
3.2 Occupied Bandwidth Emission Limits §2.1049, 22.917(a), 24.238(a)

- a. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB.
- b. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- c. When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- d. The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.


3.3 Cellular - Base Frequency Blocks

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	Na la	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 6 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		r age e er r r
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW


11/13/2008


3.4 Cellular - Mobile Frequency Blocks

3.5 PCS - Base Frequency Blocks

3.6 PCS - Mobile Frequency Blocks

3.7 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, 22.917(a), 24.238(a)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	-	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 7 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		ruge / er / i
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

3.8 Radiated Spurious and Harmonic Emissions §2.1053, 22.917(a), 24.238(a)

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz.

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

Spurious and harmonic radiated emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Active at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode and using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. In CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.

3.9 Peak-Average Ratio

<u>§24.232(d)</u>

A peak to average ratio measurement is performed at the conducted port of the EUT. For CDMA and WCDMA signals, the spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level. For GSM signals, an average and a peak trace are used on a spectrum analyzer to determine the largest deviation between the average and the peak power of the EUT in a bandwidth greater than the emission bandwidth.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		i ago o oi i i
© 2008 PCTEST Engineering L	aboratory, Inc.	•		REV 1.4GCW

3.10 Frequency Stability / Temperature Variation §2.1055, 22.355, 24.235

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

Time Period and Procedure:

1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

FCC ID: PKRNVWMC1000	<u> PCTEST</u>	FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	 Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO	r uge e er r r
© 2008 PCTEST Engineering L	aboratory, Inc.	·	REV 1.4GCW

4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	er Model Description		Cal Date	Cal Interval	Cal Due	Serial Number	
-	263-10dB	(DC-18GHz) 10 dB Attenuator	N/A		N/A	N/A	
-	No.165	(30MHz - 1000MHz) RG58 Coax Cable	N/A		N/A	N/A	
-	No.166	(1000-26500MHz) Microwave RF Cable	N/A		N/A	N/A	
-	No.167	(100kHz - 100MHz) RG58 Coax Cable	N/A		N/A	N/A	
Agilent	11713A	Attenuation/Switch Driver	12/13/2007	Annual	12/13/2008	3439A02645	
Agilent	8449B	(1-26.5GHz) Pre-Amplifier	12/13/2007	Annual	12/13/2008	3008A00985	
Aailent	8495A	(0-70dB) DC-4GHz Attenuator	N/A		N/A	N/A	
Aailent	85650A	Quasi-Peak Adapter	3/13/2008	Annual	3/13/2009	2043A00301	
Aailent	8566B	(100Hzû22GHz) Spectrum Analyzer	12/13/2007	Annual	12/13/2008	3638A08713	
Agilent	8566B	Opt. 462 Impulse Bandwidth	12/13/2007	Annual	12/13/2008	3701A22204	
Agilent	8591A	(9kHz-1.8GHz) Spectrum Analyzer	8/19/2008	Annual	8/19/2009	3144A02458	
Agilent	8648D	(9kHz-4GHz) Signal Generator	10/11/2007	Biennial	10/11/2009	3613A00315	
Agilent	8901A	Modulation Analyzer	8/18/2008	Annual	8/18/2009	2432A03467	
Agilent	8903B	Audio Analyzer	8/18/2008	Annual	8/18/2009	3011A09025	
Agilent	E4407B	ESA Spectrum Analyzer	3/13/2008	Annual	3/13/2009	US39210313	
Agilent	E4432B	ESG-D Series Signal Generator	8/18/2008	Annual	8/18/2009	US40053896	
Agilent	E4448A	(3Hz-50GHz) Spectrum Analyzer	1/24/2008	Annual	1/24/2009	US42510244	
Agilent	E5515C	Wireless Communications Test Set	6/8/2007	Biennial	6/8/2009	GB46110872	
Agilent	E5515C	Wireless Communications Test Set	6/8/2007	Biennial	6/8/2009	GB46310798	
Agilent	E5515C	Wireless Communications Test Set	9/10/2008	Biennial	9/10/2010	GB41450275	
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/8/2007	Biennial	3/8/2009	MY45470194	
Compliance Design	Roberts	Dipole Set	11/9/2007	Biennial	11/9/2009	146	
Compliance Design	Roberts	Dipole Set	11/9/2007	Biennial	11/9/2009	140	
Emco	3115	Horn Antenna (1-18GHz)	9/24/2007	Biennial	9/24/2009	9704-5182	
Emco	3115	Horn Antenna (1-18GHz)	10/4/2007	Biennial	10/4/2009	9205-3874	
Emco	3121C-DB4	Dipole Antenna	1/23/2007	Biennial	1/23/2009	23951	
Espec	ESX-2CA	Environmental Chamber	3/12/2008	Annual	3/12/2009	17620	
Gigatronics	80701A	(0.05-18GHz) Power Sensor	8/18/2008	Annual	8/18/2009	1833460	
Gigatronics	8651A	Universal Power Meter	8/18/2008	Annual	8/18/2009	1835299	
Gigatronics	8651A	Universal Power Meter	8/18/2008	Annual	8/18/2009	8650319	
K & L	11SH10	Band Pass Filter	N/A	Annual	N/A	1300/4000	
K&L	11SH10	Band Pass Filter	N/A	Annual	N/A	4000/12000	
MiniCircuits	VHF-1300+	High Pass Filter	N/A	Annual	N/A	30716	
MiniCircuits	VHF-3100+	High Pass Filter	N/A		N/A	30721	
Pasternack	PE2208-6	Bidirectional Coupler	N/A		N/A	N/A	
Rohde & Schwarz	CMU200	Base Station Simulator	5/29/2008	Annual	5/29/2009	836371/0079	
Rohde & Schwarz	CMU200	Base Station Simulator	12/6/2007	Annual	12/6/2008	107826	
Rohde & Schwarz	CMU200	Base Station Simulator	7/23/2008	Annual	7/23/2009	109892	
Rohde & Schwarz	NRVD	Dual Channel Power Meter	8/20/2008	Biennial	8/20/2010	109892	
Rohde & Schwarz	NRVD	Single Channel Power Meter	7/3/2007		7/3/2009		
				Biennial		835360/0079	
Rohde & Schwarz	NRV-Z32	Peak Power Sensor (100uW-2W)	12/21/2006	Biennial	12/21/2008	100155	
Rohde & Schwarz	NRV-Z33	Peak Power Sensor (1mW-20W)	11/28/2006	Biennial	11/28/2008	100004	
Rohde & Schwarz	NRV-Z53	Power Sensor	7/3/2007	Biennial	7/3/2009	846076/0007	
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Rx	6/19/2007	Biennial	6/18/2009	9105-2404	
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Tx	6/19/2007	Biennial	6/18/2009	9105-2403	
Solar Electronics	8012-50-R-24-BNC	LISN	11/8/2007 5/9/2007	Biennial	11/8/2009 5/9/2009	310233	

Table 4-1. Test Equipment

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	 Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO	
© 2008 PCTEST Engineering L	aboratory, Inc.		REV 1.4GCW

5.0 SAMPLE CALCULATIONS

GSM Emission Designator

Emission Designator = 250KGXW

GSM BW = 250 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M16F9W

WCDMA BW = 4.16 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

CDMA Emission Designator

Emission Designator = 1M27F9W

CDMA BW = 1.27 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

Spurious Radiated Emission - PCS Band

Example: GSM Channel 512 PCS Mode 2nd Harmonic (3700.40 MHz)

The receive analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the receive analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm – (-24.80) = 50.3 dBc.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	-	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 11 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		ruge in on ri
© 2008 PCTEST Engineering L	aboratory, Inc.	•		REV 1.4GCW

6.0 TEST RESULTS

6.1 Summary

Company Name:	Novatel Wireless Inc.
FCC ID:	PKRNVWMC1000
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	GSM/EDGE/CDMA/WCDMA

FCC Part Section(s)	Test Description	escription Test Limit		Test Result	Reference		
TRANSMITTER MODE (<u>TX)</u>						
2.1049, 22.917(a), 24.238(a)	Occupied Bandwidth	N/A		PASS	Section 7.0		
2.1051, 22.917(a), 24.238(a)	Band Edge / Conducted Spurious Emissions	< 43 + log ₁₀ (P[Watts]) at Band Edge and for all out-of-band emissions	CONDUCTED	PASS	Section 7.0		
24.232(d)	Peak-Average Ratio	< 13 dB	CONDUCTED	PASS	Section 7.0		
2.1046	GSM/WCDMA Conducted Output Power	N/A		PASS	Section 6.2		
22.913(a)(2)	Effective Radiated Power	< 7 Watts max. ERP (<6.3 Watts max. ERP (IC))		PASS	Section 6.3		
24.232(c)	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP	RADIATED	PASS	Section 6.4		
2.1053, 22.917(a), 24.238(a)	Undesirable Emissions	< 43 + log ₁₀ (P[Watts]) for all out-of- band emissions		PASS	Sections 6.5, 6.6, 6.8, 6.9		
2.1055, 22.355, 24.235	Frequency Stability	< 2.5 ppm		PASS	Sections 6.11, 6.12, 6.14, 6.15		
RECEIVER MODE (RX) /	DIGITAL EMISSIONS						
15.107	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.107 limits	LINE CONDUCTED	PASS	Pt. 15B Test Report		
15.109	General Field Strength Limits (Restricted Bands and Radiated Emissions Limits)	Bands COC 15 100 limite COMUT 100		PASS	Pt. 15B Test Report		
RF EXPOSURE (SAR)							
2.1091 / 2.1093	SARTest	1.6 W/kg (SAR Limit)	SAR	PASS	SAR Report		

Table 6-1. Summary of Test Results

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	-	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		1 490 12 01 7 1
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

6.2 Conducted Output Power §2.1046

A base station simulator (Rhode and Schwartz Model: CMU200) was used to establish communication with the Novatel 850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO FCC ID: PKRNVWMC1000. The base station simulator parameters were set to produce the maximum power from the EUT. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Active at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode and using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. In CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits. The GSM and WCDMA conducted powers are reported below, respectively.

		RF Conducted	d Power Table	
Band	Band Channel		EDGE [dBm] 1 Tx Slot	
	128	32.20	27.60	
Cellular	190	32.20	27.93	
	251	32.10	27.75	
	512	29.10	26.84	
PCS	661	29.00	26.91	
	810	29.00	26.73	

 Table 6-2. GPRS/EDGE Conducted Output Powers

UMTS RF Conducted Power Table					
		HSDPA Inactive	HSDPA Active		
Band	Channel	12.2 kbps RMC [dBm]	12.2 kbps RMC [dBm]		
	4132	24.43	24.38		
Cellular	4183	24.56	24.60		
	4233	24.37	24.44		
PCS	9262	23.24	23.35		
	9400 23.42		23.08		
	9538	24.38	23.42		

Table 6-3. WCDMA Conducted Output Powers

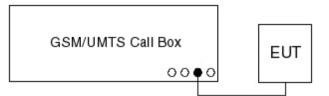


Figure 6-1. GSM/WCDMA Conducted Power Test Setup Diagram

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 13 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		ruge to of th
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

6.3 Effe §22.913(a)(2) **Effective Radiated Power Output Data**

POWER: PCL "5" (Cellular GSM Mode)

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]	Battery Type
824.20	GSM850	-9.080	30.86	0.00	Н	30.86	1.219	Standard
836.60	GSM850	-9.070	30.87	0.00	Н	30.87	1.222	Standard
848.80	GSM850	-8.830	31.11	0.00	Н	31.11	1.291	Standard
848.80	EDGE850	-11.300	28.64	0.00	Н	28.64	0.731	Standard

Table 6-4. Effective Radiated Power Output Data (GSM)

POWER: All "1" bits (Cellular WCDMA Mode)

Frequency [MHz]	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]	Battery Type
826.40	-15.510	24.43	0.00	Н	24.43	0.277	Standard
836.60	-15.600	24.34	0.00	Н	24.34	0.272	Standard
846.60	-14.970	24.97	0.00	Н	24.97	0.314	Standard

Table 6-5. Effective Radiated Power Output Data (WCDMA)

POWER: All "1" bits (Cellular CDMA Mode)

Frequency [MHz]	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]	Battery Type
824.70	-14.990	24.95	0.00	Н	24.95	0.313	Standard
836.52	-15.610	24.33	0.00	Н	24.33	0.271	Standard
848.31	-15.480	24.46	0.00	Н	24.46	0.279	Standard

Table 6-6. Effective Radiated Power Output Data (CDMA)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	N	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		. ago o
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

6.4 E Equivalent Isotropic Radiated Power Output Data

POWER: PCL "0" (PCS GSM Mode)

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	Battery Type
1850.20	GSM1900	-13.430	21.87	8.00	Н	29.87	0.971	Standard
1880.00	GSM1900	-14.720	20.58	8.00	Н	28.58	0.721	Standard
1909.80	GSM1900	-14.650	20.65	8.00	Н	28.65	0.733	Standard
1850.20	EDGE1900	-17.200	18.10	8.00	Н	26.10	0.407	Standard

Table 6-7. Equivalent Isotropic Radiated Power Output Data (GSM)

POWER: All "1" bits (PCS WCDMA Mode)

Frequency [MHz]	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	Battery Type
1852.40	-19.100	16.20	8.00	Н	24.20	0.263	Standard
1880.00	-19.210	16.09	8.00	Н	24.09	0.256	Standard
1907.60	-19.400	15.90	8.00	Н	23.90	0.245	Standard

Table 6-8. Equivalent Isotropic Radiated Power Output Data (WCDMA)

POWER: All "1" bits (PCS CDMA Mode)

Frequency [MHz]	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	Battery Type
1851.25	-19.020	16.28	8.00	Н	24.28	0.268	Standard
1880.00	-18.840	16.46	8.00	Н	24.46	0.279	Standard
1908.75	-19.200	16.10	8.00	Н	24.10	0.257	Standard

Table 6-9. Equivalent Isotropic Radiated Power Output Data (CDMA)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	N	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 15 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		r ago ro or r r
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

6.5 Cellular GSM Radiated Measurements §2.1053, 22.917(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	824	MHz	
CHANNEL:	1	_	
MEASURED OUTPUT POWER:	31.110	dBm =	<u>1.291</u> W
MODULATION SIGNAL:	GSM (Internal)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	44.11	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1648.40	-46.26	6.08	-40.17	Н	71.3
2472.60	-45.49	6.53	-38.96	Н	70.1
3296.80	-94.73	6.87	-87.86	Н	119.0
4121.00	-92.62	7.21	-85.42	Н	116.5
4945.20	-91.87	8.37	-83.50	Н	114.6

Table 6-10. Radiated Spurious Data (Cellular GSM Mode – Ch. 128)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	No.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 16 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		
© 2008 PCTEST Engineering L	aboratory Inc	•		REV 14GCW

Cellular GSM Radiated Measurements (Cont'd) §2.1053, 22.917(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	83	MHz	
CHANNEL:		_	
MEASURED OUTPUT POWER:	31.110	dBm =	<u>1.291</u> W
MODULATION SIGNAL:	GSM (Internal)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) 44.11	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1673.20	-46.13	6.09	-40.04	Н	71.1
2509.80	-46.91	6.55	-40.35	Н	71.5
3346.40	-94.61	6.89	-87.71	Н	118.8
4183.00	-92.84	7.43	-85.40	Н	116.5
5019.60	-91.55	8.35	-83.20	Н	114.3

Table 6-11. Radiated Spurious Data (Cellular GSM Mode – Ch. 190)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A halfwave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	IN I	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 74	
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		. ago o	
© 2008 PCTEST Engineering L	© 2008 PCTEST Engineering Laboratory, Inc.				

Cellular GSM Radiated Measurements (Cont'd) §2.1053, 22.917(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	84	18.80	MHz
CHANNEL:		251	_
MEASURED OUTPUT POWER:	31.110	dBm =	<u>1.291</u> W
MODULATION SIGNAL:	GSM (Internal)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) 44.11	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1697.60	-45.50	6.09	-39.41	Н	70.5
2546.40	-45.36	6.57	-38.79	Н	69.9
3395.20	-94.48	6.91	-87.57	Н	118.7
4244.00	-93.04	7.65	-85.39	Н	116.5
5092.80	-91.22	8.33	-82.89	Н	114.0

 Table 6-12. Radiated Spurious Data (Cellular GSM Mode – Ch. 251)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Active at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode and using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. In CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits. This unit was tested with its standard battery.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	IN I	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		
© 2000 DOTECT Engineering I	abaratan (Inc			

6.6 Cellular WCDMA Radiated Measurements §2.1053, 22.917(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	826	.40	MHz
CHANNEL:	41	32	_
MEASURED OUTPUT POWER:	24.970	dBm =	<u>0.314</u> W
MODULATION SIGNAL:	WCDMA (Internal))	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	37.97	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1652.80	-57.83	6.08	-51.75	Н	76.7
2479.20	-52.85	6.54	-46.32	Н	71.3
3305.60	-94.71	6.88	-87.83	Н	112.8
4132.00	-92.66	7.25	-85.41	Н	110.4
4958.40	-91.82	8.37	-83.45	Н	108.4

 Table 6-13. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4132)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	N	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 19 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		r ago to or r r
© 2008 PCTEST Engineering L	© 2008 PCTEST Engineering Laboratory, Inc.			

Cellular WCDMA Radiated Measurements (Cont'd) §2.1053, 22.917(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:836.60MHzCHANNEL:4183MEASURED OUTPUT POWER:24.970dBm =0.314WMODULATION SIGNAL:WCDMA (Internal)DISTANCE:3metersLIMIT:43 + 10 log10 (W)37.97dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1673.20	-59.24	6.09	-53.16	Н	78.1
2509.80	-53.63	6.55	-47.07	Н	72.0
3346.40	-94.62	6.89	-87.73	Н	112.7
4183.00	-92.81	7.40	-85.40	Н	110.4
5019.60	-91.59	8.35	-83.24	Н	108.2

Table 6-14. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4183)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 20 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		. ugo _0 0
© 2008 PCTEST Engineering L	© 2008 PCTEST Engineering Laboratory, Inc.			

Cellular WCDMA Radiated Measurements (Cont'd) §2.1053, 22.917(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:846.60MHzCHANNEL:4233MEASURED OUTPUT POWER:24.970dBm =0.314WMODULATION SIGNAL:WCDMA (Internal)DISTANCE:3metersLIMIT:43 + 10 log10 (W)37.97dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1693.20	-58.32	6.09	-52.23	Н	77.2
2539.80	-53.99	6.57	-47.42	Н	72.4
3386.40	-94.50	6.91	-87.60	Н	112.6
4233.00	-93.01	7.62	-85.39	Н	110.4
5079.60	-91.28	8.33	-82.94	Н	107.9

Table 6-15. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4233)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 21 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		. ugo
© 2008 PCTEST Engineering L	© 2008 PCTEST Engineering Laboratory, Inc.			

6.7 Cellular CDMA Radiated Measurements §2.1053, 22.917(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	824	1.70	MHz
CHANNEL:	10	13	_
MEASURED OUTPUT POWER:	24.950	dBm =	<u>0.313</u> W
MODULATION SIGNAL:	CDMA (Internal)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	37.95	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1649.40	-45.95	6.08	-39.87	Н	64.8
2474.10	-49.68	6.53	-43.15	Н	68.1
3298.80	-94.73	6.87	-87.85	Н	112.8
4123.50	-92.63	7.21	-85.42	Н	110.4
4948.20	-91.86	8.37	-83.49	Н	108.4

 Table 6-16. Radiated Spurious Data (Cellular CDMA Mode – Ch. 1013)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	N	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		. ago == 0
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

Cellular CDMA Radiated Measurements (Cont'd) §2.1053, 22.917(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:836.52MHzCHANNEL:384MEASURED OUTPUT POWER:24.950dBm =0.313WMODULATION SIGNAL:CDMA (Internal)DISTANCE:3metersLIMIT:43 + 10 log₁₀ (W)37.95dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1673.04	-50.63	6.09	-44.54	Н	69.5
2509.56	-47.91	6.55	-41.35	Н	66.3
3346.08	-94.61	6.89	-87.71	Н	112.7
4182.60	-92.83	7.43	-85.40	Н	110.4
5019.12	-91.55	8.35	-83.20	Н	108.2

Table 6-17. Radiated Spurious Data (Cellular CDMA Mode – Ch. 384)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 23 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		1 dgo 20 01 7 1
© 2008 PCTEST Engineering I	aboratory Inc	•		REV 14GCW

Cellular CDMA Radiated Measurements (Cont'd) §2.1053, 22.917(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:848.31MHzCHANNEL:777MEASURED OUTPUT POWER:24.950dBm =0.313WMODULATION SIGNAL:CDMA (Internal)DISTANCE:3metersLIMIT:43 + 10 log10 (W)37.95dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1696.62	-45.61	6.09	-39.51	Н	64.5
2544.93	-53.46	6.57	-46.89	Н	71.8
3393.24	-94.49	6.91	-87.58	Н	112.5
4241.55	-93.03	7.65	-85.39	Н	110.3
5089.86	-91.23	8.33	-82.90	Н	107.8

Table 6-18. Radiated Spurious Data (Cellular CDMA Mode – Ch. 777)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		rugo z rorri
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

6.8 PCS GSM Radiated Measurements §2.1053, 24.238(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	185	0.20	MHz
CHANNEL:	5	12	_
MEASURED OUTPUT POWER:	29.870	dBm =	<u>0.971</u> W
MODULATION SIGNAL:	GSM (Internal)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	42.87	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3700.40	-50.82	9.02	-41.81	Н	71.7
5550.60	-49.29	10.40	-38.89	Н	68.8
7400.80	-87.21	10.50	-76.71	Н	106.6
9251.00	-86.52	11.85	-74.67	Н	104.5
11101.20	-84.07	12.76	-71.31	Н	101.2

Table 6-19. Radiated Spurious Data (PCS GSM Mode - Ch. 512)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A halfwave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Active at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode and using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. In CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits. This unit was tested with its standard battery.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	and a second	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 25 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		. ago <u>_</u> o o
© 2000 DOTECT Engineering I	abaratar (Inc			

PCS GSM Radiated Measurements (Cont'd) §2.1053, 24.238(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	188	30.00	MHz
CHANNEL:	6	61	_
MEASURED OUTPUT POWER:	29.870	_dBm =	<u>0.971</u> W
MODULATION SIGNAL:	GSM (Internal)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	42.87	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3760.00	-50.26	8.99	-41.27	Н	71.1
5640.00	-48.46	10.40	-38.06	Н	67.9
7520.00	-87.22	10.62	-76.60	Н	106.5
9400.00	-86.30	11.70	-74.60	Н	104.5
11280.00	-83.32	12.69	-70.63	Н	100.5

Table 6-20. Radiated Spurious Data (PCS GSM Mode - Ch. 661)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A halfwave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Active at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode and using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. In CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits. This unit was tested with its standard battery.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	and a second	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 26 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		. ago <u>_</u> o o
© 2000 DOTECT Engineering I	abaratar (Inc			

PCS GSM Radiated Measurements (Cont'd) §2.1053, 24.238(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	190	09.80	MHz
CHANNEL:		10	_
MEASURED OUTPUT POWER:	29.870	_dBm =	<u>0.971</u> W
MODULATION SIGNAL:	GSM (Internal)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	42.87	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3819.60	-50.71	8.97	-41.74	Н	71.6
5729.40	-48.25	10.40	-37.85	Н	67.7
7639.20	-87.13	10.71	-76.42	Н	106.3
9549.00	-86.10	11.64	-74.46	Н	104.3
11458.80	-82.58	12.62	-69.96	Н	99.8

Table 6-21. Radiated Spurious Data (PCS GSM Mode – Ch. 810)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A halfwave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Active at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode and using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. In CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits. This unit was tested with its standard battery.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)		Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 27 of 74		
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO				
© 2000 DOTECT Engineering						

6.9 PCS WCDMA Radiated Measurements §2.1053, 24.238(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	1852	2.40	MHz
CHANNEL:	92	62	_
MEASURED OUTPUT POWER:	24.200	dBm =	<u>0.263</u> W
MODULATION SIGNAL:	WCDMA (Internal))	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	37.20	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3704.80	-42.60	9.01	-33.59	Н	57.8
5557.20	-49.76	10.40	-39.36	Н	63.6
7409.60	-87.22	10.51	-76.70	Н	100.9
9262.00	-86.50	11.83	-74.67	Н	98.9
11114.40	-84.01	12.75	-71.26	Н	95.5

Table 6-22. Radiated Spurious Data (PCS WCDMA Mode – Ch. 9262)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 28 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		1 ugo 20 01 7 1
© 2008 PCTEST Engineering L	© 2008 PCTEST Engineering Laboratory, Inc.			

PCS WCDMA Radiated Measurements (Cont'd) §2.1053, 24.238(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:1880.00MHzCHANNEL:9400MEASURED OUTPUT POWER:24.200dBm =0.263MODULATION SIGNAL:WCDMA (Internal)DISTANCE:3metersLIMIT:43 + 10 log10 (W)37.20dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3760.00	-35.56	8.99	-26.57	Н	50.8
5640.00	-45.96	10.40	-35.56	Н	59.8
7520.00	-87.22	10.62	-76.60	Н	100.8
9400.00	-86.30	11.70	-74.60	Н	98.8
11280.00	-83.32	12.69	-70.63	Н	94.8

Table 6-23. Radiated Spurious Data (PCS WCDMA Mode – Ch. 9400)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dpole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Active at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode and using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. In CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits. This unit was tested with its standard battery.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 29 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		1 dgo 20 01 7 1
© 2008 PCTEST Engineering I	aboratory Inc	·		REV 14GCW

W

PCS WCDMA Radiated Measurements (Cont'd) §2.1053, 24.238(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	190	7.60	MHz
CHANNEL:	95	38	_
MEASURED OUTPUT POWER:	24.200	dBm =	<u>0.263</u> W
MODULATION SIGNAL:	WCDMA (Internal)	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	37.20	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3815.20	-25.73	8.97	-16.76	Н	41.0
5722.80	-46.57	10.40	-36.17	Н	60.4
7630.40	-87.14	10.71	-76.43	Н	100.6
9538.00	-86.11	11.63	-74.48	Н	98.7
11445.60	-82.63	12.62	-70.01	Н	94.2

Table 6-24. Radiated Spurious Data (PCS WCDMA Mode – Ch. 9538)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000	PCTEST	FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	-	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 30 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		i ago oo oi i i
© 2008 PCTEST Engineering L	© 2008 PCTEST Engineering Laboratory, Inc.			

6.10 PCS CDMA Radiated Measurements §2.1053, 24.238(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	185	1.25	MHz
CHANNEL:	2	5	_
MEASURED OUTPUT POWER:	24.460	dBm =	<u>0.279</u> W
MODULATION SIGNAL:	CDMA (Internal)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	37.46	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3702.50	-43.31	9.02	-34.30	Н	58.8
5553.75	-47.48	10.40	-37.08	Н	61.5
7405.00	-87.21	10.51	-76.71	Н	101.2
9256.25	-86.51	11.84	-74.67	Н	99.1
11107.50	-84.04	12.76	-71.29	Н	95.7

Table 6-25. Radiated Spurious Data (PCS CDMA Mode – Ch. 25)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 31 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		r ugo or or r
© 2008 PCTEST Engineering I	aboratory Inc	•		REV 14GCW

PCS CDMA Radiated Measurements (Cont'd) §2.1053, 24.238(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	188	MHz	
CHANNEL:	60	_	
MEASURED OUTPUT POWER:	24.460	dBm =	<u>0.279</u> W
MODULATION SIGNAL:	CDMA (Internal)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	37.46	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3760.00	-40.26	8.99	-31.27	Н	55.7
5640.00	-45.26	10.40	-34.86	Н	59.3
7520.00	-87.22	10.62	-76.60	Н	101.1
9400.00	-86.30	11.70	-74.60	Н	99.1
11280.00	-83.32	12.69	-70.63	Н	95.1

Table 6-26. Radiated Spurious Data (PCS CDMA Mode – Ch. 600)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	 Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO	. ugo o <u>2</u> o
© 2008 PCTEST Engineering L	REV 1.4GCW		

PCS CDMA Radiated Measurements (Cont'd) §2.1053, 24.238(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	190	MHz	
CHANNEL:	11	_	
MEASURED OUTPUT POWER:	24.460	dBm =	<u>0.279</u> W
MODULATION SIGNAL:	CDMA (Internal)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	37.46	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3817.50	-25.72	8.97	-16.75	Н	41.2
5726.25	-46.56	10.40	-36.16	Н	60.6
7635.00	-87.13	10.71	-76.42	Н	100.9
9543.75	-86.10	11.64	-74.47	Н	98.9
11452.50	-82.61	12.62	-69.99	Н	94.4

Table 6-27. Radiated Spurious Data (PCS CDMA Mode – Ch. 1175)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 33 of 74		
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		i ugo co ci i i		
© 2008 PCTEST Engineering L	© 2008 PCTEST Engineering Laboratory, Inc.					

6.11 Cellular GSM Frequency Stability Measurements §2.1055, 22.355

Operating Frequency:	836,600,000	Hz
Channel:	PDTCH = 190	
Reference Voltage:	5	Vdc
Deviation Limit:	+/- 0.00025/2.5	%/ppm

١	/oltage	Temp	F	requency	/ Error	Offset	Frequency	De	viation	
(%)	(Vdc)	(C)	Minimum	Maximun	Average over 100 readings	(Hz)	(Hz)	(ppm)	(%)	
	25 (Ref)	-0.40	19.63	10.90	10.90	836,600,010.90	0.00000000	0.000000000		
		-20	-8.81	12.43	3.86	3.86	836,600,003.86	-0.00841501	-0.00000842	
		-10	-3.66	15.09	8.97	8.97	836,600,008.97	-0.00230696	-0.000000231	
		0	-14.77	10.15	-0.15	-0.15	836,599,999.85	-0.01320822	-0.000001321	
90%	4.50	10	-13.28	11.97	-1.04	-1.04	836,599,998.96	-0.01427205	-0.000001427	
90%	4.50	25	-26.79	-8.11	-15.67	-15.67	836,599,984.33	-0.03175950	-0.000003176	
		30	-28.25	-7.81	-17.84	-17.84	836,599,982.16	-0.03435333	-0.000003435	
		40	-40.14	-17.89	-25.78	-25.78	836,599,974.22	-0.04384413	-0.000004384	
		50	-42.61	-19.96	-29.70	-29.70	836,599,970.30	-0.04852976	-0.000004853	
		60	-44.39	-24.34	-34.10	-34.10	836,599,965.90	-0.05378915	-0.000005379	
			25 (Ref)	1.48	21.36	13.48	13.48	836,600,013.48	0.0000000	0.00000000
		-20	-9.48	13.72	3.06	3.06	836,600,003.06	-0.01245518	-0.00000125	
		-10	-3.26	12.15	6.68	6.68	836,600,006.68	-0.00812814	-0.00000081	
		0	-17.59	17.15	-3.63	-3.63	836,599,996.37	-0.02045183	-0.00000205	
100%	5.00	10	-11.20	13.46	-0.73	-0.73	836,599,999.27	-0.01698542	-0.00000170	
100%	5.00	25	-26.62	-6.09	-18.24	-18.24	836,599,981.76	-0.03791537	-0.00000379	
		30	-22.77	-5.99	-13.30	-13.30	836,599,986.70	-0.03201052	-0.00000320	
		40	-45.09	-22.69	-33.35	-33.35	836,599,966.65	-0.05597657	-0.00000560	
		50	-39.92	-19.59	-27.84	-27.84	836,599,972.16	-0.04939039	-0.00000494	
		60	-42.58	-21.76	-32.60	-32.60	836,599,967.40	-0.05508009	-0.00000551	
		25 (Ref)	8.37	28.85	21.19	21.19	836600021.19	0.00000000	0.000000	
		-20	-10.4	10.71	2.65	2.65	836600002.65	-0.02216113	-0.0000022	
		-10	-7.23	17.27	8.86	8.86	836600008.86	-0.01473823	-0.0000015	
		0	-9.76	18.78	5.01	5.01	836600005.01	-0.01934019	-0.0000019	
105%	5.25	10	-11.24	12.69	0.22	0.22	836600000.22	-0.02506574	-0.0000025	
105%	5.25	25	-29.19	-7.99	-16.81	-16.81	836599983.19	-0.04542194	-0.0000045	
		30	-30.87	-10.08	-17.89	-17.89	836599982.11	-0.04671288	-0.0000047	
		40	-40.27	-19.16	-29.23	-29.23	836599970.77	-0.06026775	-0.0000060	
		50	-41.83	-16.3	-25.79	-25.79	836599974.21	-0.05615587	-0.0000056	
		60	-43.93	-22.65	-32.11	-32.11	836599967.89	-0.06371025	-0.0000064	

 Table 6-28. Frequency Stability Data (Cellular GSM Mode – Ch. 190)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	-	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 34 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		r ago or or r r
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

6.12 Cellular WCDMA Frequency Stability Measurements §2.1055, 22.355

Opera	ating Freq	uency:	836,400,000 Hz		z				
	Cha	annel:		DLCH=4407 ULCH=4182					
Re	ference Vo	oltage:		5	V	dc			
	Deviation	Limit:	+/- 0	.0002	5/2.5 %/	ppm			
1	Voltage	Temp		Frequency	/ Error	Offset	Frequency	De	viation
(%)	(Vdc)	(C)	Minimum	Maximum	Average over 100 readings	(Hz)	(Hz)	(ppm)	(%)
		25 (Ref)	-13.61	14.03	-1.02	-1.02	836,399,998.98	0.00000000	0.00000000
		-20	-15.27	12.29	-1.14	-1.14	836,399,998.86	-0.00014347	-0.00000014
		-10	-17.83	12.30	-2.09	-2.09	836,399,997.91	-0.00127929	-0.000000128
		0	-14.65	9.32	-0.94	-0.94	836,399,999.06	0.00009565	0.00000010
90%	4.50	10	-17.90	16.30	-2.15	-2.15	836,399,997.85	-0.00135103	-0.000000135
50 /0	1.50	25	-17.94	15.52	-1.53	-1.53	836,399,998.47	-0.00060976	-0.00000061
		30	-12.97	15.74	-2.22	-2.22	836,399,997.78	-0.00143472	-0.00000143
		40	-15.73	19.70	2.87	2.87	836,400,002.87	0.00465088	0.00000465
		50	-13.44	14.12	-0.44	-0.44	836,399,999.56	0.00069345	0.00000069
		60	-17.02	14.50	0.06	0.06	836,400,000.06	0.00129125	0.00000129
		25 (Ref)	-16.81	12.86	1.98	1.98	836,400,001.98	0.00000000	0.0000000
		-20	-16.28	18.50	-1.10	-1.10	836,399,998.90	-0.00368245	-0.0000037
		-10	-16.28	11.44	-1.25	-1.25	836,399,998.75	-0.00386179	-0.0000039
		0	-16.25	13.33	-1.24	-1.24	836,399,998.76	-0.00384983	-0.0000038
100%	5.00	10	-16.24	11.89	-1.65	-1.65	836,399,998.35	-0.00434003	-0.00000043
100 %	5.00	25	-18.37	14.11	-2.14	-2.14	836,399,997.86	-0.00492587	-0.00000049
		30	-12.67	21.07	0.53	0.53	836,400,000.53	-0.00173362	-0.00000017
		40	-18.76	22.78	0.14	0.14	836,400,000.14	-0.00219990	-0.00000022
		50	-15.98	10.66	-1.97	-1.97	836,399,998.03	-0.00472262	-0.0000047
		60	-19.96	17.15	-1.07	-1.07	836,399,998.93	-0.00364658	-0.0000036
]	25 (Ref)	-16.75	10.01	-2.3	-2.3	836399997.70	0.00000000	0.0000000
		-20	-17.81	14.12	-1.17	-1.17	836399998.83	0.00135103	0.0000001
		-10	-16.72	14.94	-1.85	-1.85	836399998.15	0.00053802	0.000001
		0	-18.66	15.14	-1.8	-1.8	836399998.20	0.00059780	0.0000001
1000		10	-19.11	10.6	-1.7	-1.7	836399998.30	0.00071736	0.0000001
105%	5.25	25	-16.31	13.49	-1.73	-1.73	836399998.27	0.00068149	0.000001
		30	-21.13	11.04	-1.46	-1.46	836399998.54	0.00100430	0.000001
		40	-20.3	14.83	-1.78	-1.78	836399998.22	0.00062171	0.0000001
		50	-17.95	16.69	-1.5	-1.5	836399998.50	0.00095648	0.0000001
		60	-18.32	12.73	0.8	0.8	836400000.80	0.00370636	0.000004

 Table 6-29. Frequency Stability Data (Cellular WCDMA Mode – Ch. 4183)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 35 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		ruge ee er r
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

6.13 Cellular CDMA Frequency Stability Measurements §2.1055, 22.355

Operating Frequency:		836,520,000		Hz					
Channel:		384							
Reference Voltage:				Vdc					
Deviation Limit:		+/- 0.00025/2.5		%/pp	m				
Voltage		Temp	Temp Frequency Erro			Offset	Frequency	Deviation	
(%)	(Vdc)	(C)	Minimum	Maximum	over 100	(Hz)	(Hz)	(ppm)	(%)
		25 (Ref)	-1.32	3.77	0.66	0.66	836,520,000.66	0.00000000	0.000000000
		-20	-1.60	4.36	1.46	1.46	836,520,001.46	0.00095634	0.00000096
		-10	-1.53	5.45	1.60	1.60	836,520,001.60	0.00112370	0.00000112
		0	-3.37	5.28	1.68	1.68	836,520,001.68	0.00121934	0.00000122
90 %	4.50	10	-1.55	7.09	3.04	3.04	836,520,003.04	0.00284512	0.00000285
		25	-4.50	4.22	1.40	1.40	836,520,001.40	0.00088462	0.00000088
		30	-3.70	3.53	1.53	1.53	836,520,001.53	0.00104002	0.00000104
		40	-1.39	3.52	0.60	0.60	836,520,000.60	-0.00007173	-0.00000007
		50	-1.18	3.28	0.63	0.63	836,520,000.63	-0.00003586	-0.00000004
		60	-7.63	5.59	-0.26	-0.26	836,519,999.74	-0.00109979	-0.000000110

Voltage		Temp	Frequency Error			Offset	Frequency	Deviation	
(%)	(Vdc)	(C)	Minimum	Maximum	Average over 100 readings	(Hz)	(Hz)	(ppm)	(%)
	5.00	25 (Ref)	-4.76	4.30	0.62	0.62	836,520,000.62	0.00000000	0.00000000
I		-20	0.09	5.46	2.03	2.03	836,520,002.03	0.00168555	0.0000017
I		-10	3.06	3.84	1.87	1.87	836,520,001.87	0.00149429	0.0000015
I		0	-3.33	6.52	2.17	2.17	836,520,002.17	0.00185291	0.0000019
100%		10	-2.22	6.91	2.82	2.82	836,520,002.82	0.00262994	0.0000026
100%		25	-3.90	4.40	0.95	0.95	836,520,000.95	0.00039449	0.0000004
I		30	-0.49	2.79	1.33	1.33	836,520,001.33	0.00084875	0.0000008
		40	-1.20	2.27	0.70	0.70	836,520,000.70	0.00009563	0.0000001
		50	-1.08	4.04	0.42	0.42	836,520,000.42	-0.00023909	-0.0000002
		60	-7.39	3.89	-0.53	-0.53	836,519,999.47	-0.00137474	-0.00000014

Voltage		Temp	Frequency Error			Offset	Frequency	Deviation	
(%)	(Vdc)	(C)	Minimum	Maximum	Average over 100 reading	(Hz.)	(Hz)	(ppm)	(%)
	5.25	25 (Ref)	-0.66	2.71	0.73	0.73	836520000.73	0.00000000	0.0000000
		-20	2.1	4.38	2.05	2.05	836520002.05	0.00157797	0.000002
		-10	0.1	5.34	1.88	1.88	836520001.88	0.00137474	0.000001
		0	-3.42	6.16	2.13	2.13	836520002.13	0.00167360	0.000002
105%		10	-2.86	6.29	2.11	2.11	836520002.11	0.00164969	0.000002
105%		25	-3.74	5.8	2.02	2.02	836520002.02	0.00154210	0.000002
		30	-0.12	5.72	1.97	1.97	836520001.97	0.00148233	0.0000001
		40	-1.22	3.58	0.59	0.59	836520000.59	-0.00016736	0.0000000
		50	-1.39	3.48	-0.04	-0.04	836519999.96	-0.00092048	-0.0000001
		60	-7.89	3.4	-1.2	-1.2	836519998.80	-0.00230718	-0.0000002

Table 6-30. Frequency Stability Data (Cellular CDMA Mode – Ch. 384)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 36 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		r ago oo or 7 r
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

6.14 PCS GSM Frequency Stability Measurements §2.1055, 24.235

Operating Frequency:	1,880,000,000	Hz
Channel:	PDTCH = 661	
Reference Voltage:	5	Vdc
Deviation Limit:	+/- 0.00025/2.5	%/ppm

١	/oltage	Temp	F	requency	/ Error	Offset	Frequency	De	viation
(%)	(Vdc)	(C)	Minimum	Maximun	Average over 100 readings	(Hz)	(Hz)	(ppm)	(%)
		25 (Ref)	-47.46	-7.35	-20.98	-20.98	1,879,999,979.02	0.00000000	0.000000000
		-20	-71.22	-25.01	-39.48	-39.48	1,879,999,960.52	-0.00984043	-0.00000984
		-10	-13.02	30.72	12.08	12.08	1,880,000,012.08	0.01758511	0.000001759
		0	-10.73	31.35	10.19	10.19	1,880,000,010.19	0.01657979	0.000001658
90%	4.50	10	-3.39	40.83	24.51	24.51	1,880,000,024.51	0.02419681	0.000002420
90%	4.50	25	-20.57	31.29	12.03	12.03	1,880,000,012.03	0.01755851	0.000001756
		30	-22.45	19.11	3.55	3.55	1,880,000,003.55	0.01304787	0.000001305
		40	-56.03	-13.80	-29.01	-29.01	1,879,999,970.99	-0.00427128	-0.000000427
		50	-41.07	-3.97	-24.34	-24.34	1,879,999,975.66	-0.00178723	-0.000000179
		60	-96.23	-49.80	-78.08	-78.08	1,879,999,921.92	-0.03037234	-0.000003037
		25 (Ref)	-53.00	-16.99	-30.02	-30.02	1,879,999,969.98	0.00000000	0.00000000
		-20	-68.61	-16.71	-38.41	-38.41	1,879,999,961.59	-0.00446277	-0.00000045
		-10	-14.16	24.71	3.51	3.51	1,880,000,003.51	0.01783511	0.00000178
		0	3.60	42.00	25.24	25.24	1,880,000,025.24	0.02939362	0.00000294
100%	5.00	10	-6.92	47.99	21.38	21.38	1,880,000,021.38	0.02734043	0.00000273
100%	5.00	25	-4.53	42.77	23.42	23.42	1,880,000,023.42	0.02842553	0.00000284
		30	-5.83	35.87	23.36	23.36	1,880,000,023.36	0.02839362	0.00000284
		40	-57.96	-11.29	-32.38	-32.38	1,879,999,967.62	-0.00125532	-0.00000013
		50	-43.54	-7.33	-22.97	-22.97	1,879,999,977.03	0.00375000	0.0000038
		60	-93.11	-50.68	-72.20	-72.20	1,879,999,927.80	-0.02243617	-0.00000224
		25 (Ref)	-64.55	-24.37	-37.83	-37.83	1879999962.17	0.00000000	0.000000
		-20	-67.18	-25.22	-43.85	-43.85	1879999956.15	-0.00320213	-0.000003
		-10	-26.29	17.11	-2.26	-2.26	1879999997.74	0.01892021	0.0000019
		0	-3.54	42.07	25.03	25.03	1880000025.03	0.03343617	0.000033
1050	F 2F	10	1.47	44.17	28.96	28.96	1880000028.96	0.03552660	0.000036
105%	5.25	25	-5.57	38.57	21.02	21.02	1880000021.02	0.03130319	0.000031
		30	-8.74	42.24	20.93	20.93	1880000020.93	0.03125532	0.000031
		40	-61.88	-10.5	-32.94	-32.94	1879999967.06	0.00260106	0.000003
		50	-50.63	-10.14	-24.39	-24.39	1879999975.61	0.00714894	0.000007
		60	-65.81	-37.79	-58.47	-58.47	1879999941.53	-0.01097872	-0.0000011

Table 6-31. Frequency Stability Data (PCS GSM Mode – Ch. 661)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 37 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		. ago or or r
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

6.15 PCS WCDMA Frequency Stability Measurements §2.1055, 24.235

Operating Frequency:	1,880,000,000	Hz
Channel:	DLCH=9800 ULCH=9400	
Reference Voltage:	5	Vdc
Deviation Limit:	+/- 0.00025/2.5	%/ppm

١	/oltage	Temp	F	requency	/ Error	Offset	Frequency	De	viation
(%)	(Vdc)	(C)	Minimum	Maximun	Average over 100 readings	(Hz)	(Hz)	(ppm)	(%)
		25 (Ref)	-29.56	18.81	-1.57	-1.57	1,879,999,998.43	0.00000000	0.000000000
		-20	-26.88	19.13	1.37	1.37	1,880,000,001.37	0.00156383	0.00000156
		-10	-27.47	21.07	0.62	0.62	1,880,000,000.62	0.00116489	0.00000116
		0	-24.75	27.13	0.76	0.76	1,880,000,000.76	0.00123936	0.00000124
000/	4 50	10	-31.39	25.21	-2.52	-2.52	1,879,999,997.48	-0.00050532	-0.00000051
90%	4.50	25	-24.93	21.92	-0.15	-0.15	1,879,999,999.85	0.00075532	0.00000076
		30	-25.88	20.08	-1.45	-1.45	1,879,999,998.55	0.00006383	0.00000006
		40	-23.11	23.63	0.77	0.77	1,880,000,000.77	0.00124468	0.00000124
		50	-33.59	27.71	-0.13	-0.13	1,879,999,999.87	0.00076596	0.00000077
		60	-20.79	23.26	-0.26	-0.26	1,879,999,999.74	0.00069681	0.00000070
		25 (Ref)	-27.58	16.60	-0.73	-0.73	1,879,999,999.27	0.00000000	0.00000000
		-20	-27.07	23.36	0.66	0.66	1,880,000,000.66	0.00073936	0.0000007
		-10	-20.85	26.94	2.14	2.14	1,880,000,002.14	0.00152660	0.0000015
		0	-20.73	22.74	-1.37	-1.37	1,879,999,998.63	-0.00034043	-0.0000003
100%	5.00	10	-30.72	25.24	-1.21	-1.21	1,879,999,998.79	-0.00025532	-0.0000003
100%	5.00	25	-21.12	21.06	0.03	0.03	1,880,000,000.03	0.00040426	0.0000004
		30	-21.48	23.61	1.64	1.64	1,880,000,001.64	0.00126064	0.0000013
		40	-22.86	24.90	1.02	1.02	1,880,000,001.02	0.00093085	0.0000009
		50	-26.52	24.58	-0.87	-0.87	1,879,999,999.13	-0.00007447	-0.00000001
		60	-25.51	19.65	-1.21	-1.21	1,879,999,998.79	-0.00025532	-0.0000003
		25 (Ref)	-24.47	25.58	-0.59	-0.59	1879999999.41	0.00000000	0.0000000
		-20	-26.65	24.66	0.27	0.27	188000000.27	0.00045745	0.0000000
		-10	-20.54	33.9	1.63	1.63	1880000001.63	0.00118085	0.000001
		0	-28.93	15.95	-0.14	-0.14	1879999999.86	0.00023936	0.000000
105%	E 2E	10	-24.93	26.11	-2.62	-2.62	1879999997.38	-0.00107979	-0.0000001
105%	5.25	25	-21.95	25.98	-1.69	-1.69	1879999998.31	-0.00058511	-0.0000001
		30	-23.66	23.82	-1.88	-1.88	1879999998.12	-0.00068617	-0.0000001
		40	-22.64	19.29	-1.29	-1.29	1879999998.71	-0.00037234	0.0000000
		50	-42.17	37.8	1.9	1.9	1880000001.90	0.00132447	0.0000001
		60	-25.87	21.52	-1.43	-1.43	1879999998.57	-0.00044681	0.000000

Table 6-32. Frequency Stability Data (PCS WCDMA Mode – Ch. 9400)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	 Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO	r uge ee er r r
© 2008 PCTEST Engineering L	aboratory, Inc.		REV 1.4GCW

6.16 PCS CDMA Frequency Stability Measurements §2.1055, 24.235

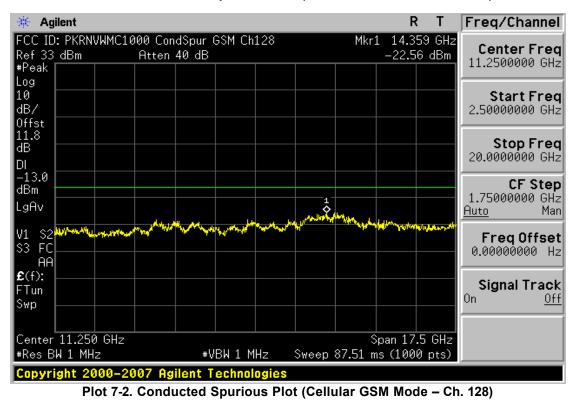
Operating Frequency:	1,880,000,000	Hz
Channel:	600	
Reference Voltage:		Vdc
Deviation Limit:	+/- 0.00025/2.5	%/ppm

1	Voltage Temp Frequency Err		y Error	Offset Frequency		Deviation			
(%)	(Vdc)	(C)	Minimum	Maximun	Average over 100 readings	(Hz)	(Hz)	(ppm)	(%)
		25 (Ref)	-3.02	3.12	0.19	0.19	1,880,000,000.19	0.00000000	0.000000000
		-20	-5.03	4.14	-0.76	-0.76	1,879,999,999.24	-0.00050532	-0.000000051
		-10	-2.13	8.08	3.74	3.74	1,880,000,003.74	0.00188830	0.00000189
		0	5.33	17.00	10.29	10.29	1,880,000,010.29	0.00537234	0.00000537
90%	4.50	10	3.96	13.33	8.46	8.46	1,880,000,008.46	0.00439894	0.000000440
90%	4.50	25	0.51	14.62	6.29	6.29	1,880,000,006.29	0.00324468	0.00000324
		30	-3.54	5.29	0.18	0.18	1,880,000,000.18	-0.00000532	-0.000000001
		40	-5.35	6.95	-0.45	-0.45	1,879,999,999.55	-0.00034043	-0.00000034
		50	-4.10	1.96	-1.00	-1.00	1,879,999,999.00	-0.00063298	-0.00000063
		60	-5.65	5.07	-1.12	-1.12	1,879,999,998.88	-0.00069681	-0.000000070

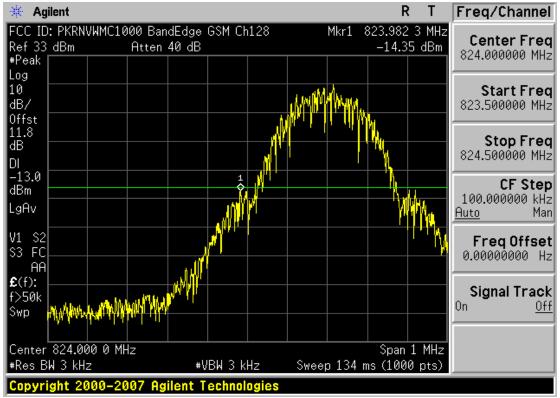
١	Voltage Temp		Frequency Error			Offset	Frequency	Deviation		
(%)	(Vdc)	(C)	Minimum	Maximun	Average over 100 readings	(Hz) (Hz)		(ppm)	(%)	
		25 (Ref)	-2.20	9.84	1.46	1.46	1,880,000,001.46	0.00000000	0.00000000	
		-20	-6.93	3.27	-1.77	-1.77	1,879,999,998.23	-0.00171809	-0.00000017	
		-10	-1.17	7.37	2.94	2.94	1,880,000,002.94	0.00078723	0.0000008	
		0	3.91	15.98	10.06	10.06	1,880,000,010.06	0.00457447	0.00000046	
100%	5.00	10	1.94	10.05	6.75	6.75	1,880,000,006.75	0.00281383	0.0000028	
100%	5.00	25	1.21	13.71	6.73	6.73	1,880,000,006.73	0.00280319	0.0000028	
		30	-5.17	4.73	-0.06	-0.06	1,879,999,999.94	-0.00080851	-0.0000008	
		40	-7.58	3.98	-2.83	-2.83	1,879,999,997.17	-0.00228191	-0.0000023	
		50	-4.52	1.25	-1.33	-1.33	1,879,999,998.67	-0.00148404	-0.00000015	
		60	-5.24	5.70	-0.03	-0.03	1,879,999,999.97	-0.00079255	-0.0000008	

۱ ۱	Voltage Temp		Frequency Error			Offset	Frequency	De	viation
(%)	(Vdc)	(C)	MinimumMaximun		Average over 100 reading	(Hz.)	(Hz)	(ppm)	(%)
		25 (Ref)	-1.03	9.95	2.25	2.25	1880000002.25	0.00000000	0.0000000
		-20	-7.23	1.26	-2.92	-2.92	1879999997.08	-0.00275000	-0.000003
		-10	-2.62	7.26	2.27	2.27	188000002.27	0.00001064	0.0000000
		0	6.02	17.84	11.12	11.12	1880000011.12	0.00471809	0.0000005
105%	5.25	10	1.31	12.15	5.65	5.65	1880000005.65	0.00180851	0.000002
105%	5.25	25	1.73	10.56	6	6	188000006.00	0.00199468	0.000002
		30	-5.69	3.87	0.13	0.13	188000000.13	-0.00112766	-0.0000001
		40	-4.39	4.74	-0.32	-0.32	1879999999.68	-0.00136702	-0.0000001
		50	-7.89	5.58	-1.1	-1.1	1879999998.90	-0.00178191	-0.000002
		60	-4.28	7.36	1.95	1.95	1880000001.95	-0.00015957	0.0000000

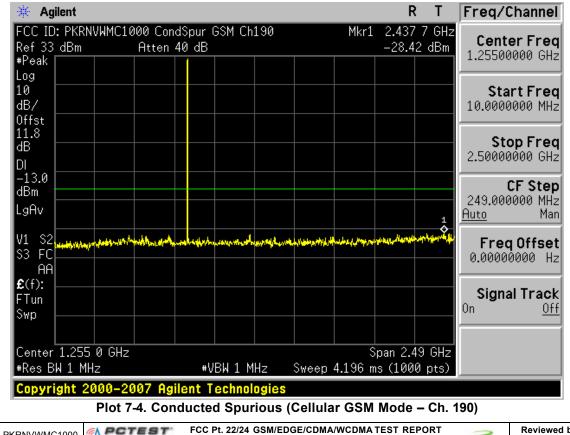
Table 6-33. Frequency Stability Data (PCS CDMA Mode – Ch. 600)


FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 39 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO	r age ee er r r
© 2008 PCTEST Engineering I	aboratory Inc	·	REV 14GCW

7.0 PLOTS OF EMISSIONS

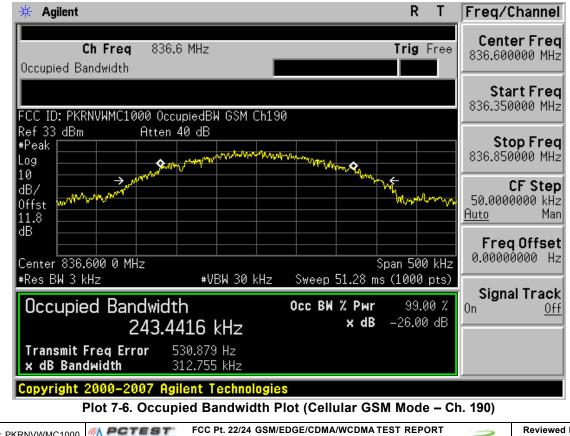

🔆 Agilent							R	Т	Freq/Channel
FCC ID: PKRNVWM Ref 33 dBm		idSpur (40 dB	GSM Ch	128		Mkr1		2 GHz 5 dBm	Center Freq
#Peak		40 UD					-27.0		1.25500000 GHz
Log									
10 dB/									Start Freq 10.0000000 MHz
Offst 11.8									
dB DI									Stop Freq 2.50000000 GHz
-13.0									CF Step
dBm									249.000000 MHz
LgAv								1	<u>Auto</u> Man
\$3 FC	halles and a state of the second state of the	جالمه بسبه	a di gi ya di ga di g Ga di ga di	antah su		****	or Institution (14)	NYN AL HANA	FreqOffset 0.00000000 Hz
AA £(f):									
FTun									Signal Track
Swp									On <u>Off</u>
Center 1.255 0 G	Hz						pan 2.4		
#Res BW 1 MHz		#V	BW 1 M	Hz	Sweep	4.196 m	ns (100	0 pts)	
Copyright 2000	-2007 Ag	ilent T	echnol	ogies					

Plot 7-1. Conducted Spurious Plot (Cellular GSM Mode - Ch. 128)



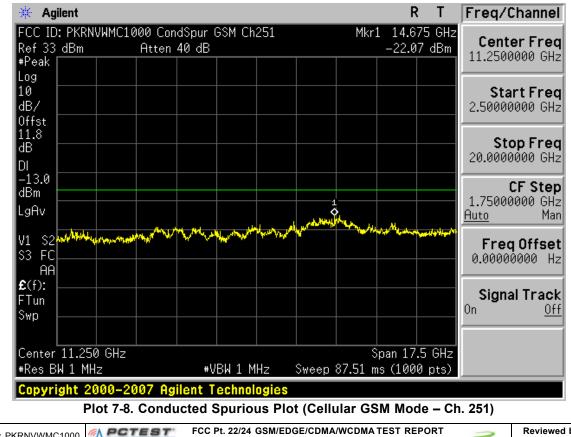
FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	10	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 40 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		-
© 2008 PCTEST Engineering I	aboratory Inc			

Plot 7-3. Band Edge Plot (Cellular GSM Mode - Ch. 128)

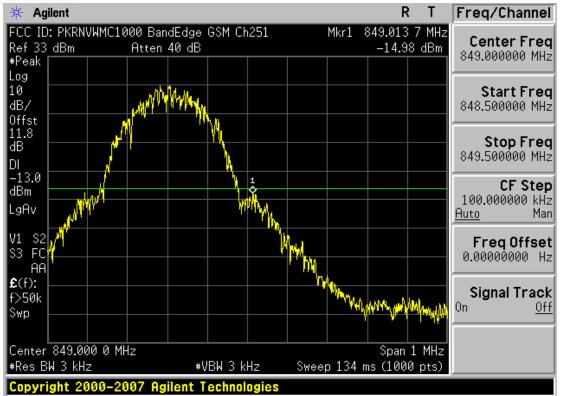

FCC ID: PKRNVWMC1000	<u>PCTEST</u>	FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	2	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 41 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		i ago i i oi i i
© 2008 PCTEST Engineering I	aboratory Inc	·		REV 1 4GCW

2008 PCTEST Engineering Laboratory, Ir

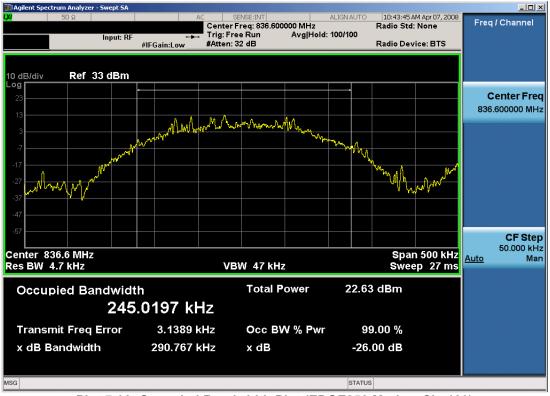
Plot 7-5. Conducted Spurious Plot (Cellular GSM Mode – Ch. 190)



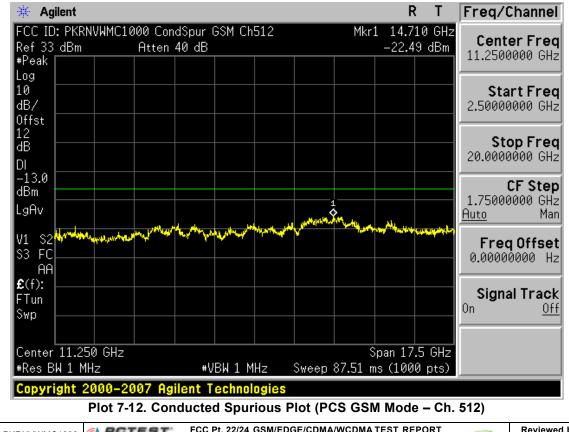
FCC ID: PKRNVWMC1000	<u>PCTEST</u>	(CERTIFICATION)	-	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 42 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		
© 2008 PCTEST Engineering	aboratory Inc			REV 14GCV


🔆 Agilent				RT	Freq/Channel
FCC ID: PKRNVWMC1		SSM Ch251		97 5 GHz	Center Freq
Ref 33 dBm	Atten 40 dB		-28	.43 dBm	1.25500000 GHz
#Peak Log					
10					Start Freq
dB/					10.0000000 MHz
Offst					
11.8					Stop Fred
dB					2.50000000 GHz
-13.0 dBm					CF Step
					249.000000 MHz
LgAv				1	<u>Auto</u> Mar
J1 S2	المار فالعنادة مسر والمعالية	والمصادرات بالمعادية والمان والمان والمستعمل والمحالي المجالي المجالي الم	In a shown we dotto	aborton the second	Erog Offeet
S3 FC					Freq Offset 0.00000000 Hz
AA					0.00000000 112
£ (f):					Cinnal Tread
FTun					Signal Track
Swp					
Center 1.255 0 GHz			Span 2	2.49 GHz	
ŧRes BW 1 MHz	#V	BW 1 MHz – Sweep	4.196 ms (10		
Copyright 2000-2	007 Adilont T	ochaologios			

Plot 7-7. Conducted Spurious Plot (Cellular GSM Mode – Ch. 251)



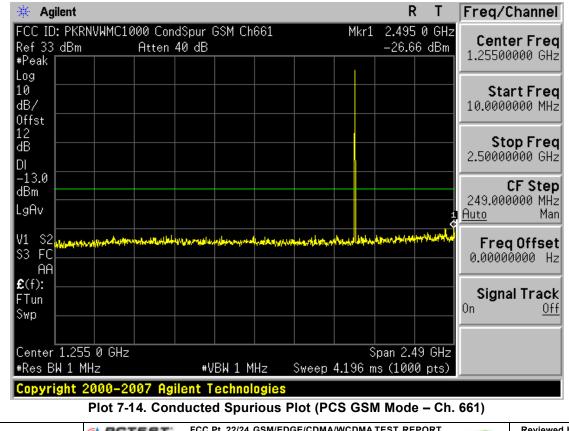
FCC ID: PKRNVWMC1000	<u>PCTEST</u>	FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	2	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 43 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		r ugo to ot r t
© 2008 PCTEST Engineering I	aboratory Inc	•		REV 14GCW


Plot 7-10. Occupied Bandwidth Plot (EDGE850 Mode - Ch. 190)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	 Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO	i ago i i oi i i
© 2008 PCTEST Engineering L	aboratory, Inc.	·	REV 1.4GCW


🔆 Agilent			R	T Freq/Channel
FCC ID: PKRNVWMC1 Ref 33_dBm	.000 CondSpur GS Atten 40 dB	M Ch512	Mkr1 2.437 7 –27.35	Contor From
#Peak Log 10				Start Freq
dB/ Offst				10.0000000 MHz
12 dB DI				Stop Freq 2.50000000 GHz
-13.0 dBm LgAv				249.000000 MHz <u>4 Auto</u> Man
V1 S2 S3 FC AA	^{nal} ulyushisushisulashisulashisula	เม _{ี่มรูลส์ส่องใน (ระบริกามีเหล่ามรูปที่สมส_{ามสาม}าร์มาร่}	.)	Freq Offset
£(f): FTun Swp				Signal Track On <u>Off</u>
Center 1.255 0 GHz #Res BW 1 MHz		↓1 MHz Sweep	Span 2.49 4.196 ms (1000	
Copyright 2000-2				

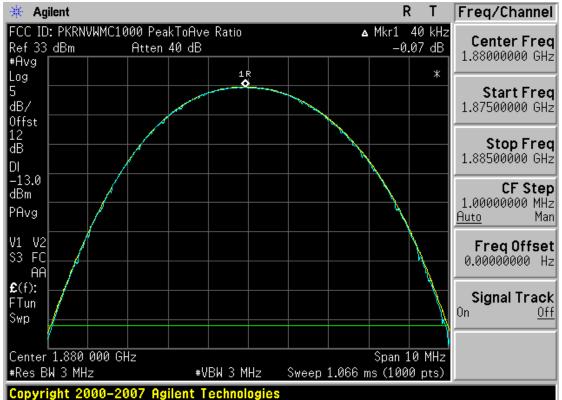
Plot 7-11. Conducted Spurious Plot (PCS GSM Mode - Ch. 512)

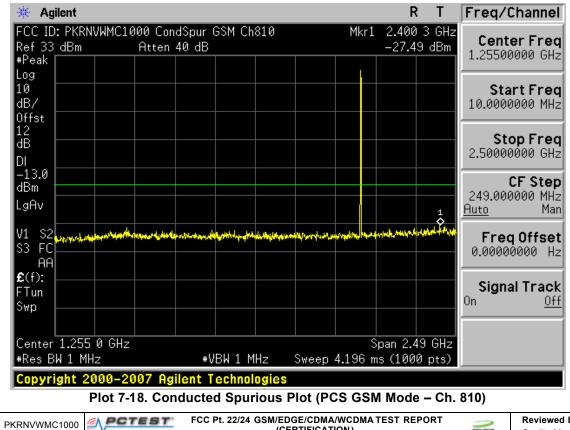


FCC ID: PKRNVWMC1000	<u> PCTEST</u>	FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	-	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 45 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		- 5
© 2008 PCTEST Engineering L	_aboratory, Inc.			REV 1.4GCW

Plot 7-13. Band Edge Plot (PCS GSM Mode - Ch. 512)

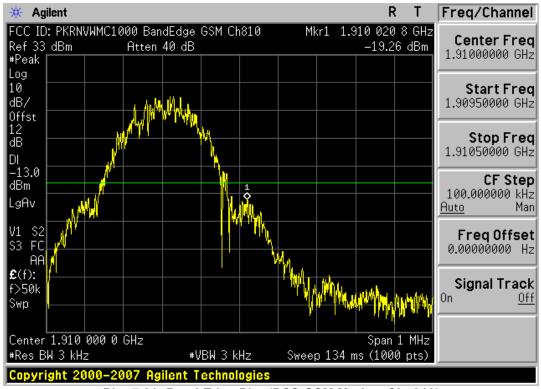
FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	IN I	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 46 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		•
© 2000 DOTEST Engineering	abaratan (Inc			


Plot 7-15. Conducted Spurious Plot (PCS GSM Mode - Ch. 661)

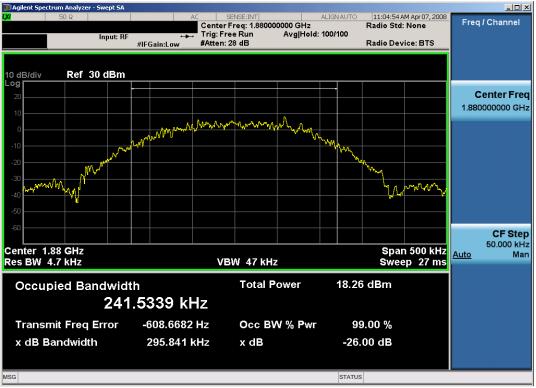

Plot 7-16. Occupied Bandwidth Plot (PCS GSM Mode - Ch. 661)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	 Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 47 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO	ruge ir er r
© 2008 PCTEST Engineering L	aboratory. Inc.		REV 1.4GCW

Plot 7-17. Peak-Average Ratio Plot (PCS GSM Mode - Ch. 661)

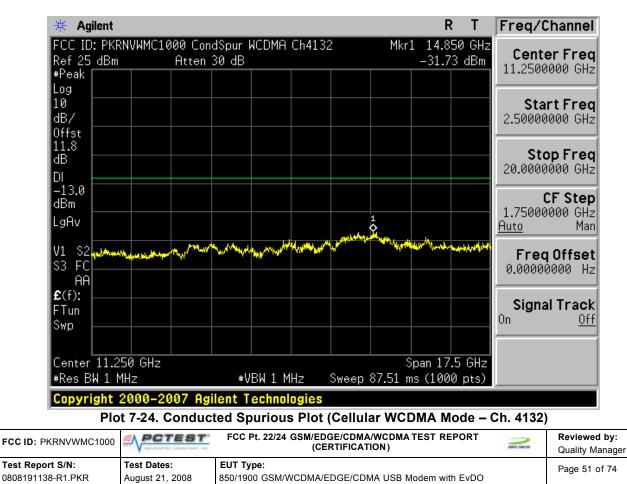


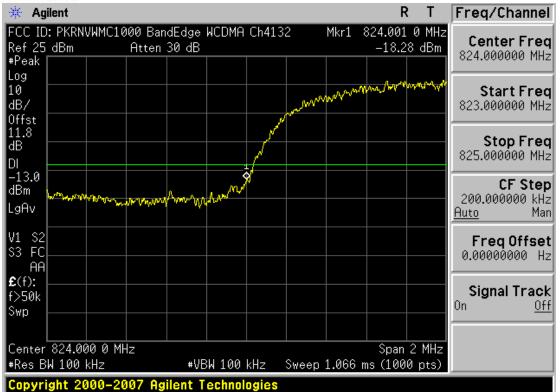
FCC ID: PKRNVWMC1000	PCTEST	FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	2	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 48 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		i ugo io oi i i
© 2009 DCTEST Engineering	abaratan/ Ina	•		DEV 1 4CCW



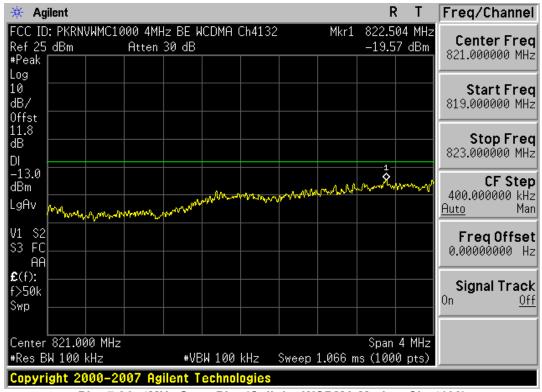
Plot 7-20. Band Edge Plot (PCS GSM Mode – Ch. 810)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	 Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 49 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO	ruge to or ri
© 2008 PCTEST Engineering L	aboratory, Inc.	•	REV 1.4GCW

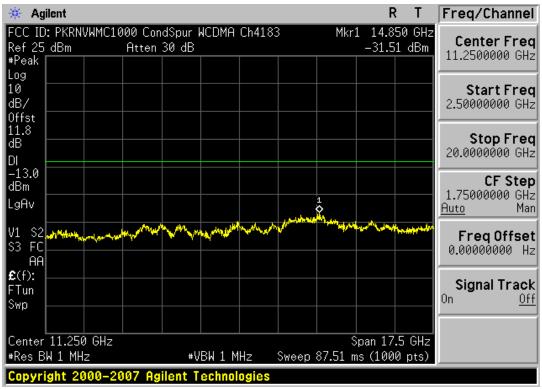

Plot 7-21. Occupied Bandwidth Plot (EDGE1900 Mode - Ch. 661)



🔆 Agilent				R	Т	Freq/Channel
FCC ID: PKRNVWMC1 Ref 25 dBm #Peak	000 CondSpur Atten 30 dE		32 Mkr1	2.430 2 -37.82		Center Freq 1.25500000 GHz
Log 10 dB/						Start Freq 10.0000000 MHz
Offst 11.8 dB DI					,	Stop Freq 2.5000000 GHz
–13.0 dBm LgAv						CF Step 249.000000 MHz <u>Auto</u> Man
V1 S2 S3 FC	without the second s	han an a		ndar dal fit a fitta a fitta da fitta d	t. M. M. M.	FreqOffset 0.00000000 Hz
€(f): FTun Swp						Signal Track On <u>Off</u>
Center 1.255 0 GHz #Res BW 1 MHz		VBW 1 MHz	Sweep 4.196 r) Span 2.49 ns (1000		
Copyright 2000-2	007 Agilent	Technologies				


Plot 7-23. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4132)

Plot 7-25. Band Edge Plot (Cellular WCDMA Mode - Ch. 4132)


Plot 7-26. 4MHz Span Plot (Cellular WCDMA Mode - Ch. 4132)

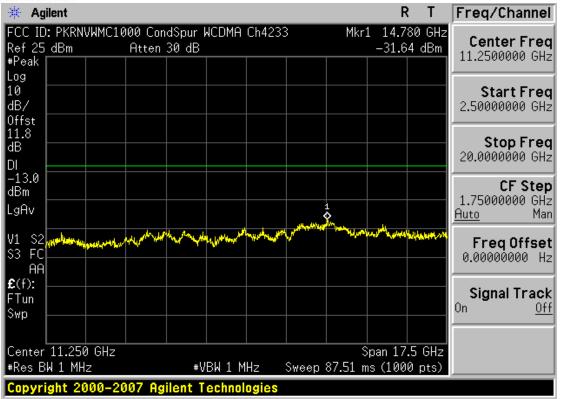
FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 52 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		ruge of or ri
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

🔆 Agilent					R	Т	Freq/Channel
FCC ID: PKRNVWMC Ref 25 dBm #Peak	1000 Cond Atten 3		A Ch4183	Mkr1	2.430 -38.17		Center Fred 1.25500000 GHz
Log 10 dB/							Start Free 10.0000000 MH
Dffst L1.8 JB							Stop Fred 2.5000000 GH;
DI -13.0 JBm _gAv							CF Step 249.000000 MH
V1 S2 S3 FC	ander anglestander tarteler) huughatiodenidad	ungdath-balgetagetheljonstanden	nelin an seizy mitter provide	n, 1, 113-441, - ¹ 14		<u>Auto</u> Ma Freq Offse 0.00000000 Hi
AA £(f): FTun Swp							Signal Tracl On <u>Of</u>
Center 1.255 0 GH #Res BW 1 MHz	lz	#VBW 1	MH-7 Supp	S p 4.196 m	pan 2.49 s (1000		

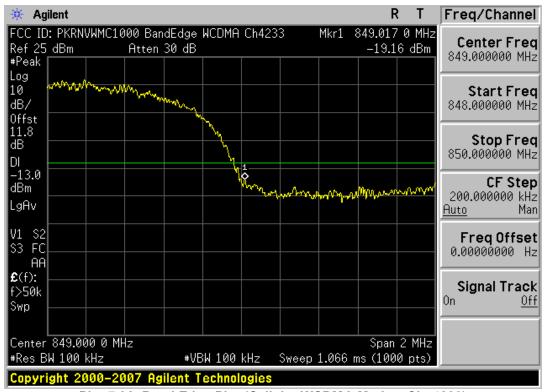
Plot 7-27. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4183)

Plot 7-28. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4183)

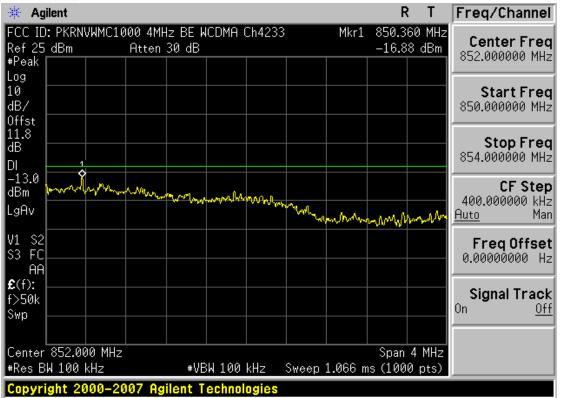
FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	1	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 53 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		r ago oo or r r
© 2008 PCTEST Engineering L	aboratory, Inc.	•		REV 1.4GCW

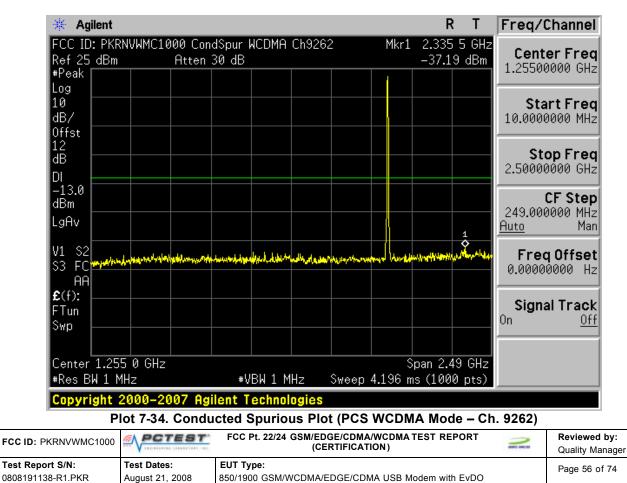

* Agilent R T	Freq/Channel
Ch Freq 836.6 MHz Trig Free Occupied Bandwidth	Center Freq 836.600000 MHz
FCC ID: PKRNVWMC1000 OccupiedBW WCDMA Ch4183	Start Freq 831.600000 MHz
Ref 25 dBm Atten 30 dB #Peak Log 10 Atten 30 dB	Stop Freq 841.600000 MHz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CF Step 1.0000000 MHz <u>Auto</u> Man
Center 836.600 MHz ^ Span 10 MHz #Res BW 3 kHz #VBW 30 kHz Sweep 1.026 s (1000 pts)	Freq Offset 0.00000000 Hz
Occupied Bandwidth Осс ВМ % Рыг 99.00 % 4.1601 MHz × dB -26.00 dB	Signal Track On <u>Off</u>
Transmit Freq Error -8.502 kHz × dB Bandwidth 4.595 MHz Copyright 2000-2007 Agilent Technologies	

Plot 7-29. Occupied Bandwidth Plot (Cellular WCDMA Mode – Ch. 4183)

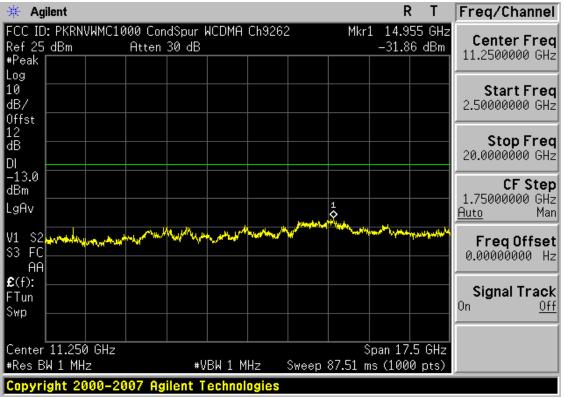

🔆 Agilent								F	₹ T	Freq/0	hannel
FCC ID: PK Ref 25 dBm #Peak		000 Con Atten (NCDMA	Ch4233	3	Mkr1		51 GHz 8 dBm	Cente	er Freq 000 GHz
Log 10 dB/ Offst											rtFreq 000 MHz
11.8 dB DI										Stc 2.50000	pFreq 000 GHz
-13.0 dBm LgAv											F Step 000 MHz Man
V1 S2 S3 FC	na sid fiqlet for desid	www.	when	ar a daⁿestin t	temperatur	ndhadherna	₩ _{₩₽} ₽₩₩₩₩₩		1 (*)//		I Offset 1000 Hz
€(f): FTun Swp										Signa ^{On}	l Track <u>Off</u>
Center 1.25 #Res BW 1			#\/	BW 1 M	 Hz	Sween	S 4.196 m		49 GHz 10 nts)		
						011000	4.100 11	5 (100	o pt3/		
Copyright						A . III . I				Ch. 4233)	

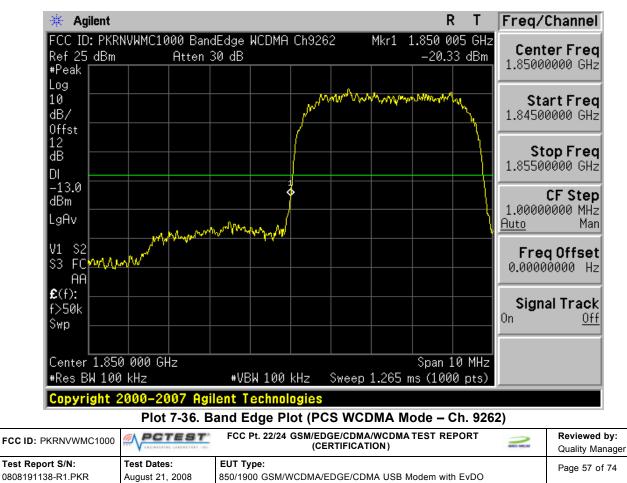
FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	2	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 54 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		r ugo or or r r
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCV

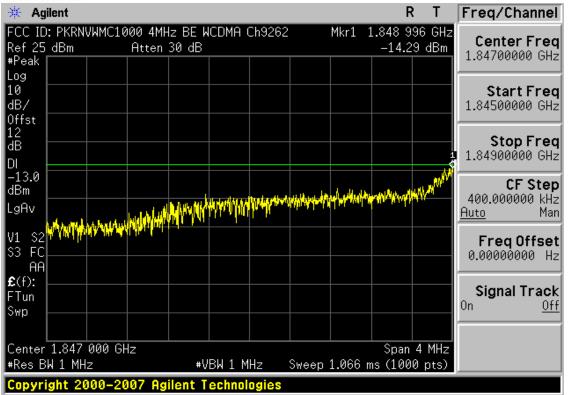

Plot 7-31. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4233)

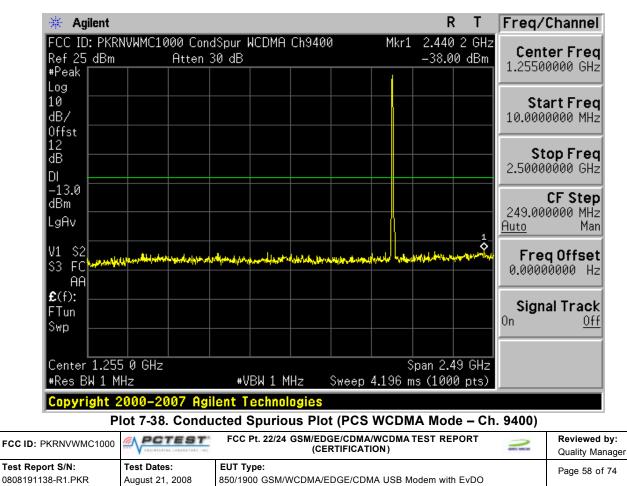

Plot 7-32. Band Edge Plot (Cellular WCDMA Mode - Ch. 4233)

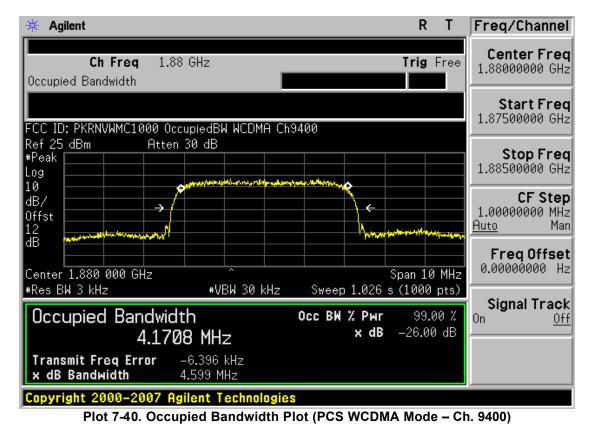
FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 55 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		r uge ee er r r
© 2008 PCTEST Engineering L	aboratory. Inc.			REV 1.4GCW

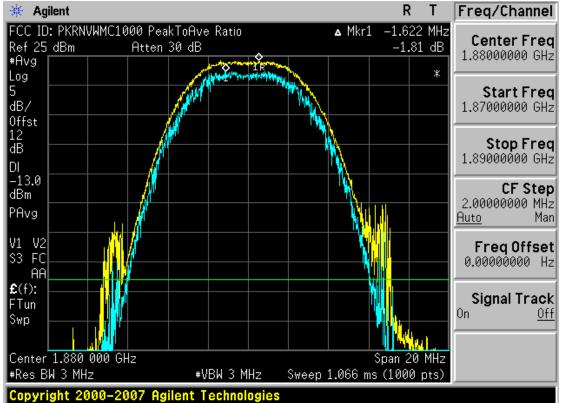


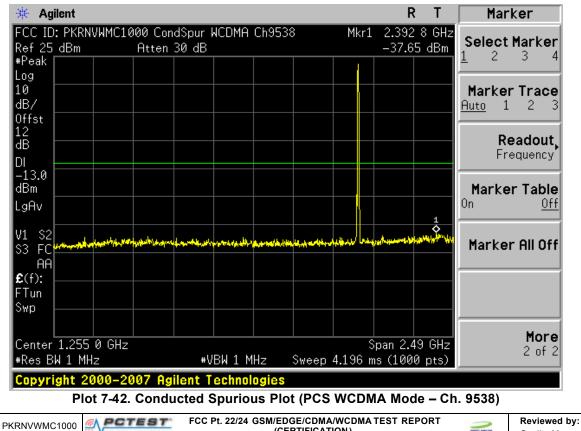

Plot 7-33. 4MHz Span Plot (Cellular WCDMA Mode - Ch. 4233)




Plot 7-35. Conducted Spurious Plot (PCS WCDMA Mode - Ch. 9262)


Plot 7-37. 4MHz Span Plot (PCS WCDMA Mode – Ch. 9262)



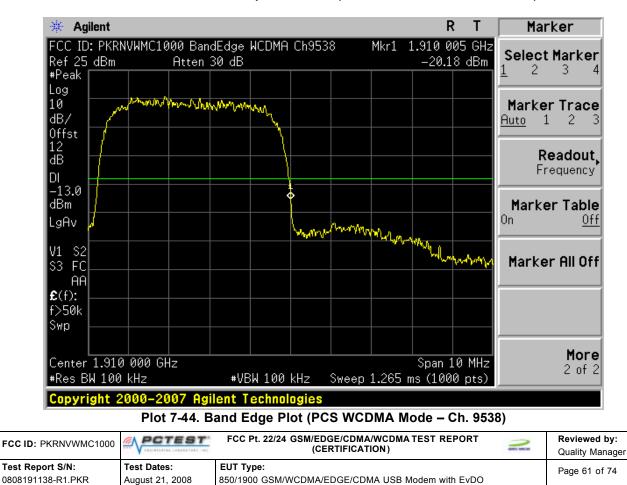


	(CERTIFICATION)	-	Quality Manager
Test Report S/N: Test Dates:	EUT Type:		Page 59 of 74
0808191138-R1.PKR August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		PEV 1 4CCM

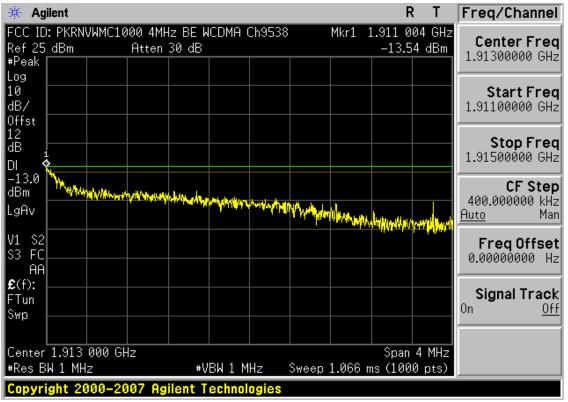
Plot 7-41. Peak-Average Ratio Plot (PCS WCDMA Mode – Ch. 9400)



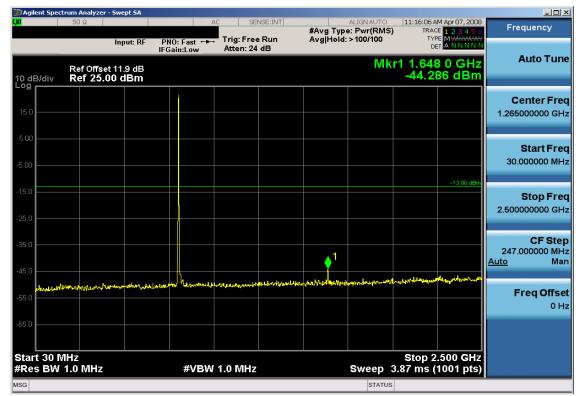
 FCC ID: PKRNVWMC1000
 PCC PL 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)
 Reviewed by: Quality Manager


 Test Report S/N: 0808191138-R1.PKR
 Test Dates: August 21, 2008
 EUT Type: 850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO
 Page 60 of 74

© 2008 PCTEST Engineering Laboratory, Inc.

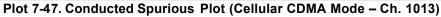


Plot 7-43. Conducted Spurious Plot (PCS WCDMA Mode - Ch. 9538)



REV 1.4GCW 11/13/2008

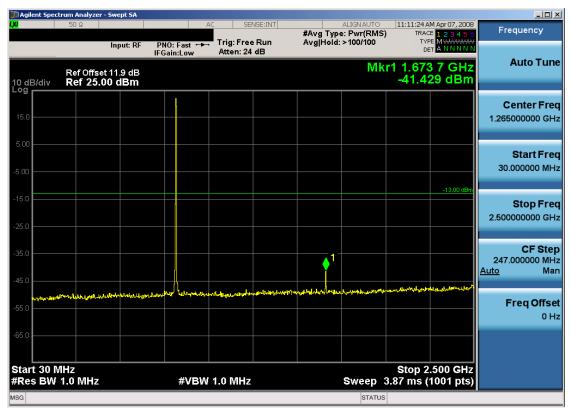
Plot 7-45. 4MHz Span Plot (PCS WCDMA Mode – Ch. 9538)



Plot 7-46. Conducted Spurious Plot (Cellular CDMA Mode – Ch. 1013)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 62 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		1 490 02 01 7 1
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

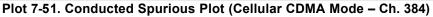
2 50 Ω Input Ref Offset 11.9 Ref 25.00 dB 15.0 5.00 5	: RF PNO: Fast →→ Trig: Fr IFGain:Low Atten: dB	sense:int 24 dB	ALIGNAU #Avg Type: Pwr(R Avg Hold: > 100/10	Image: Mise and the second	3 4 5 6 Frec NN NN N GHZ JBm Ce 6.2500 2.5000 3.00 dBm	uto Tune enter Free 00000 GH: Start Free 00000 GH: Stop Free
o dB/div Ref 25.00 dB 5.0	dB			-48.987 c	Ce 6.2500 3.00 dBm	enter Fred 00000 GH Start Fred 00000 GH
5.0					3.00 dBm	00000 GH Start Free 00000 GH
5.0				-11	3.00 dBm	00000 GH
5.0				11		Stop Ero
						00000 GH
5.0					750.0 <u>Auto</u>	CF Ste 00000 M⊢ Ma
5.0	under the state of	الاستارية رومياية فيوا ^{ية مع} مي	and the second	مر المعرب والمراجع المعام والمراجع المعام والمراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم	Fr	r eq Offs o 0 ⊦
tart 2.500 GHz Res BW 1.0 MHz	#VBW 1.0 MF		Swee	Stop 10.000 p 12.5 ms (100 ⁷) GHz 1 pts)	

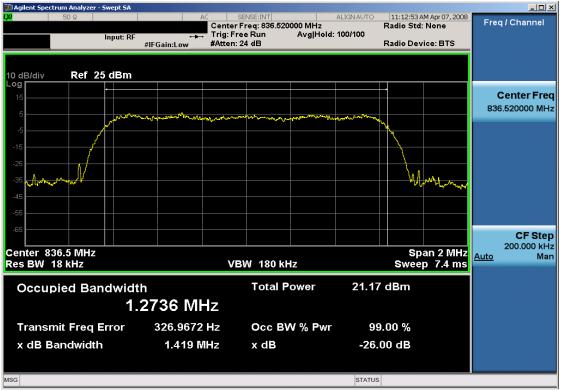

Plot 7-48. Band Edge Plot (Cellular CDMA Mode - Ch. 1013)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	 Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 63 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO	r ugo oo or 7 r
© 2008 PCTEST Engineering I	aboratory, Inc.	•	REV 1.4GCW

🗊 Agilent Spec	trum Analyzer - Swep	ot SA								
L <mark>X</mark> U	50 Ω		AC		VSE:INT		ALIGNAUTO e: Pwr(RMS)	TRAG	M Apr 07, 2008	Frequency
	Inpu		NO: >30k ↔↔ Gain:Low	Trig: Free Atten: 24		Avg Hold	: >10/10	TY D	PE MWWWWWW ET A N N N N N	
	Ref Offset 11.9	e dB					Mkr	1 822.9	88 MHz	Auto Tune
10 dB/div Log	Ref 25.00 d							-30.3	72 dBm	
										Center Freq
15.0										821.000000 MHz
5.00										
5.00										Start Freq
-5.00										819.000000 MHz
									-13.00 dBm	
-15.0										Stop Freq
-25.0									1	823.000000 MHz
-35.0								مسجع معاليه والمساسح محر	and a start of the	CF Step 400.000 kHz
-45.0						window	a film when a fact			<u>Auto</u> Man
-43.0						- Alexandread and				
-55.0		مىلىرى مەركىلى		and the second s					<u> </u>	Freq Offset
المراميل	مورود المارية مطواسة سلحل المرا									0 Hz
-65.0										
Start 819. #Res BW			#VBW [/]	100 kHz			#Sween	2.00 s.0	.000 MHz 1001 pts)	
MSG			<i>"</i> • DA				STATUS	2100 3 (ree (pt3)	

Plot 7-49. 4MHz Span Plot (Cellular CDMA Mode - Ch. 1013)

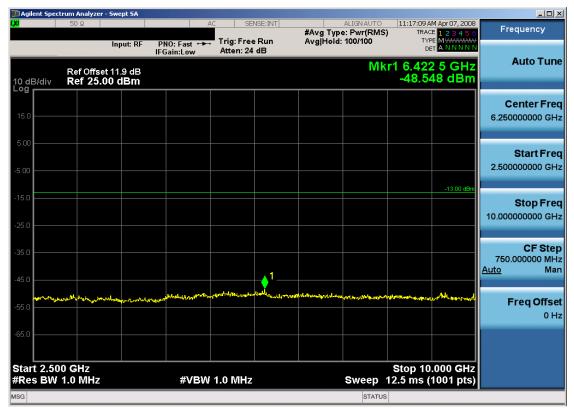



Plot 7-50. Conducted Spurious Plot (Cellular CDMA Mode - Ch. 384)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	1	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 64 of 74
0808191138-R1.PKR August 21, 2008		850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		ruge er er r
© 2008 PCTEST Engineering I	aboratory. Inc.	•		REV 1.4GCW

Agilent Spect	trum Analyzer - Swept !	5A	AC SENSE:INT	ALIGN AUTO	11,11,52,1M (m, 07, 2000)	
	50 Ω Input:	RF PNO: Fast ↔ IFGain:Low		#Avg Type: Pwr(RMS) Avg Hold: 100/100	11:11:53 AM Apr 07, 2008 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET A N N N N N	Frequency
) dB/div	Ref Offset 11.9 o Ref 25.00 dB	dB m		Mkr	1 6.190 0 GHz -49.276 dBm	Auto Tun
5.0						Center Fre 6.250000000 GH
						Start Fre 2.500000000 G⊦
5.0					-13.00 dBm	Stop Fre 10.000000000 G⊢
5.0			1			CF Ste 750.000000 M⊦ <u>Auto</u> Ma
5.0	And a state of the	and the for the state of the st	en anser of the marker	alun and and a strange and	vanannahdi afafaada ilaannahaa	Freq Offs 0 ⊦
tart 2.50	0 GHz 1.0 MHz	#VB1	N 1.0 MHz	Sweep 1	Stop 10.000 GHz 2.5 ms (1001 pts)	
3				STATUS		

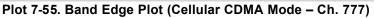
Plot 7-52. Occupied Bandwidth Plot (Cellular CDMA Mode - Ch. 1013)


FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	-	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 65 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		l ago co ci i i
© 2008 PCTEST Engineering L	aboratory, Inc.	•		REV 1.4GCW

11/13/2008

Agilent Speci	trum Analyzer -	Swept SA								×
a	50 Ω				NSE:INT	#Avg Typ	ALIGNAUTO e: Pwr(RMS) TRA	AM Apr 07, 2008 CE 1 2 3 4 5 6	Frequency
10 dB/div	Ref Offset Ref 25.0	Input: RF 11.9 dB 0 dBm	PNO: Fast ↔ IFGain:Low	- Trig: Free Atten: 24		Avg Hold		₀ (r1 1.69)	7 3 GHz 98 dBm	Auto Tune
. og										Center Free 1.265000000 GH
5.00									-13,00 dBm	Start Free 30.000000 MH
25.0										Stop Fre 2.500000000 GH
45.0						• 1				CF Ste 247.000000 MH <u>Auto</u> Ma
55.0	nder anter later later	n de la calendaria de la c	www.	ag the signature of the street	alahay maliha	wildowenser. And the	arninian fastferan	and the second second	ĸĸŧŊ _{ĹĸŢĬ} ġţġŶĂŀţġġţġ ^ĸ ſĸċ	Freq Offse 0 H
start 30 M			#\/B\A	/ 1.0 MHz			Sweep	Stop 2	2.500 GHz (1001 pts)	
	1.0 101112		#VDV				SWEEP		roor pis)	

Plot 7-53. Conducted Spurious Plot (Cellular CDMA Mode – Ch. 777)



Plot 7-54. Conducted Spurious Plot (Cellular CDMA Mode – Ch. 777)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	1	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 66 of 74	
0808191138-R1.PKR August 21, 2008		850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		l ago oo ol i l	
© 2008 PCTEST Engineering I	aboratory. Inc.	•		REV 1.4GCW	

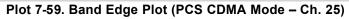
📰 Agilent Spectrum Ana	lyzer - Swept SA					-		
ιχι 50 Ω		AC SE	NSE:INT	#Avg Type	ALIGNAUTO E: Pwr(RMS)	TRAC	M Apr 07, 2008	Frequency
		NO: >30k +++ Trig: Free Gain:Low Atten: 24		Avg Hold:		DE	E MWWWWW T A N N N N N	Auto Tune
	0ffset 11.9 dB 25.00 dBm				Mkr	-13.99	00 MHz 95 dBm	Auto Tune
								Center Freq
15.0								849.000000 MHz
5.00 Mither and the	Warding and a little and a second sec	When your art and make a grade of a grade of						Start Freq
-5.00		V	1					848.000000 MHz
-15.0							-13.00 dBm	Oton Enur
-25.0								Stop Freq 850.000000 MHz
								CF Step
-35.0			hand have a	N. M. W.	and look and when when	Mutilentur	LP-2- Land and a contract	200.000 kHz Auto Man
-45.0								
-55.0								Freq Offset 0 Hz
-65.0								
Center 849.000 #Res BW 13 kH		#VBW 13 kHz			#Sweep	Span 2. 2.00 s (.000 MHz 1001 pts)	
MSG					STATUS			

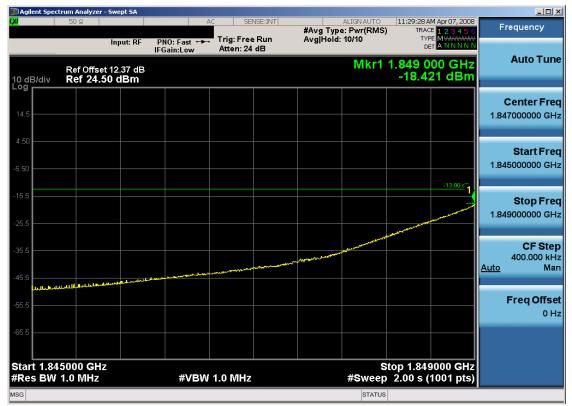
Plot 7-56. 4MHz Span Plot (Cellular CDMA Mode – Ch. 777)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	-	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 67 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		i ago or or r
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

الله	11:26:44 AM Apr 07, 2008	ALISN MJTO'	AC SENEE(INT)	trum Analyzer - Swept SA	Agilent Spec	
Frequency	THATE 12345 A	#Avg Type: Pwr(RMS) Avg[Hold: >100/100	Fast ++- Trig: Free Run	Input: RF		
Auto Tun	2.423 4 GHz -46.149 dBm	Mkr		Ref Offset 12.37 dB 0 dB/div Ref 24.50 dBm		
Center Fre 1.265000000 GF					14.5	
Start Fre 30.000000 MH					50	
Stop Fre 2.50000000 GH	-13.00 dBm				55	
CF Ste 247.000000 MH Auto Ma					55	
Freq Offs 0 H	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ananan ing panang talang pang talang pang pang pang pang pang pang pang p	an de ser la segund des anné segund segund segund segund des segund des segund des segund segund segund segund	مىيەر. «البار اليونيان بىزىر الياللە	5.5	
	Stop 2.500 GHz 87 ms (1001 pts)	Sweep 3.	#VBW 1.0 MHz	AHz 1.0 MHz	tart 30 M Res BW	
		STATUS			a	

Plot 7-57. Conducted Spurious Plot (PCS CDMA Mode - Ch. 25)




Plot 7-58. Conducted Spurious Plot (PCS CDMA Mode - Ch. 25)

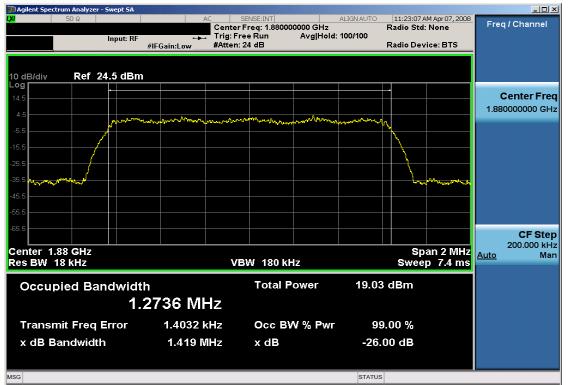
FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 68 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		
© 2008 PCTEST Engineering L	aboratory Inc	·		REV 14GCW

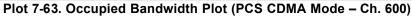
Agilent Spect	trum Analyzer - Swej 50 Ω	pt SA		AC SE	NSE:INT		ALIGNAUTO	11,00,07 (M Apr 07, 2008	<u> </u>
W						#Avg Type Avg Hold:	e: Pwr(RMS)	TRAG	CE 1 2 3 4 5 6 PE MWWWWW	Frequency
10 dB/div	Ref Offset 12. Ref 24.50 d	IFC 37 dB	NO:>30k ↔ Gain:Low	Atten: 24		Avginoid.		₀ 1.849 9	88 GHz 71 dBm	Auto Tune
14.5										Center Freq 1.85000000 GHz
4.50							/	a contraction of the second	And and a second se	Start Freq 1.849000000 GHz
-15.5					1 International	Jet Marrier Marrier	and the second s		-13.00 dBm	Stop Freq 1.851000000 GHz
-35.5 	ann all and a second	aline all and the second	and the second							CF Step 200.000 kHz <u>Auto</u> Man
-55.5										Freq Offset 0 Hz
	850000 GHz 13 kHz		#VBW	13 kHz			#Sweep	Span 2 2.00 s (2.000 MHz 1001 pts)	
MSG							STATUS			

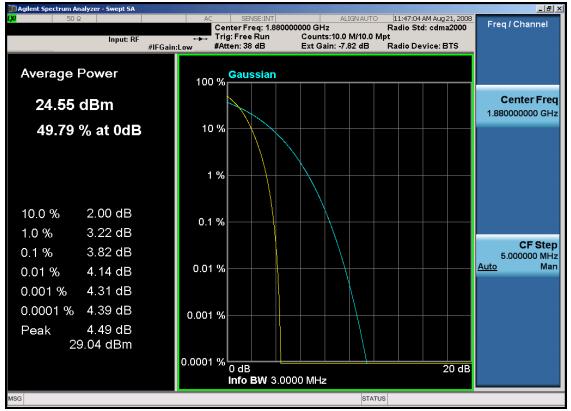

Plot 7-60. 4MHz Span Plot (PCS CDMA Mode - Ch. 25)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	 Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 69 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO	. ago co c
© 2008 PCTEST Engineering L	aboratory Inc	·	REV 14GCW

	trum Analyzer - S	wept SA		-	1	1				
L <mark>XI</mark>	50 Ω		1	AC SEI	NSE:INT	#Avg Typ	ALIGN AUTO e: Pwr(RM	IS) TRA	AM Apr 07, 2008	Frequency
10 dB/div	Ref Offset 1 Ref 24.50	IF 2.37 dB	PNO: Fast 🔸	Trig: Free Atten: 24		Avg Hold:	>100/100	kr1 2.45		Auto Tune
14.5										Center Freq 1.265000000 GHz
4.50									-13.00 dBm	Start Freq 30.000000 MHz
-15.5										Stop Freq 2.500000000 GHz
45.5										CF Step 247.000000 MHz <u>Auto</u> Man
55.5	unnahayaan marat	nglannelsenselsennel	all vilaga maryanay	ykenelleriellerieren et	anangahan,amhay	nganaranah Amaran	unuunute bireu	Ngorgenord, Weisenberger	Mrd. Anatal Madala Harri	Freq Offsel 0 Hz
-65.5 Start 30 M #Res BW	MHz 1.0 MHz		#VBW	1.0 MHz			Sweep	Stop 2 3.87 ms	2.500 GHz (1001 pts)	
ISG							STAT			


Plot 7-61. Conducted Spurious Plot (PCS CDMA Mode - Ch. 600)



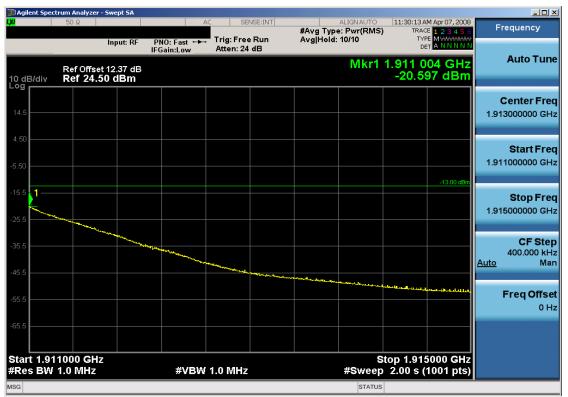

Plot 7-62. Conducted Spurious Plot (PCS CDMA Mode - Ch. 600)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 70 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		. ago . o o
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

Plot 7-64. Peak-Average Ratio Plot (PCS CDMA Mode - Ch. 600)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	 Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 71 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO	. ago o
© 2008 PCTEST Engineering L	aboratory, Inc.		REV 1.4GCW

Apilent Spec	trum Analyzer - Swep	it SA			1.1		1	
	50 R	it RF	PNO: Fast	Trig: Free Run Atten: 24 dB	#Avg T	ALIGNAUTO (pe: Pwr(RMS) Id: >100/100	11:31:55 AM Apr 07, 2008 TRACE 2 2 4 5 n TYPE Muddaaaaa DET A NINININ	Frequency
0 dB/div	Ref Offset 12.3 Ref 24.50 di					Mki	1 2.409 0 GHz -46.418 dBm	Auto Tuni
4.5								Center Free 1.265000000 GH
.50								Start Fre 30.000000 MH
55							-13.00 dBm	Stop Fre 2.500000000 GH
55							● 1	CF Ste 247.000000 MH <u>Auto</u> Ma
	hadd an	turi Lafatina	والبيلة مسماسين و	رومین م درستان ا	n dar dags of state for the second	anan yaan bury	المريحة المريحة المريحة المريحة المريحة	Freq Offse 0 H
tart 30 M	AHz 1.0 MHz		#VBW			Sween	Stop 2.500 GHz .87 ms (1001 pts)	
a BW	no winz		# V D VV	No Winz		sweep a	.or ms (1001 pts)	



Plot 7-66. Conducted Spurious Plot (PCS CDMA Mode - Ch. 1175)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	0	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 72 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		. ugo / 2 0. / .
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

🚺 Agilent Spectr	-	Swept SA								_ 🗆 ×
XI	50 Ω	Input: RF	PNO: >30k ↔ IFGain:Low			#Avg Typ Avg Hold:	ALIGNAUTO e: Pwr(RMS) : 10/10	TRAC	M Apr 07, 2008 CE 123456 PE M WWWWW ET A N N N N N	Frequency
10 dB/div	Ref Offset Ref 24.5		FGame	Atten. 24			Mkr1	1.910 0	10 GHz 10 dBm	Auto Tune
- og										Center Fred 1.910000000 GHz
4.50 - 1949 - 194	What have the star	ma l							-13.00 dBm	Start Fred 1.909000000 GH
25.5			phillips		1					Stop Fred 1.911000000 GH:
45.5			prilling algorithmit	hallen in start	- Wind Stratig	newerstation and the set	and a state of the	All and the second	-happy-	CF Step 200.000 kH <u>Auto</u> Mar
55.5										Freq Offse 0 H
65.5 Center 1.9		Hz						Span 2	2.000 MHz	
Res BW '	13 kHz		#VBW	13 kHz			#Sweep	2.00 s (1001 pts)	

Plot 7-67. Band Edge Plot (PCS CDMA Mode - Ch. 1175)

Plot 7-68. 4MHz Span Plot (PCS CDMA Mode - Ch. 1175)

FCC ID: PKRNVWMC1000		FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMATEST REPORT (CERTIFICATION)	IN I	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 73 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		ruge re er r
© 2008 PCTEST Engineering L	aboratory, Inc.			REV 1.4GCW

8.0 CONCLUSION

The data collected show that the **Novatel 850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO FCC ID: PKRNVWMC1000** complies with all the requirements of Parts 2, 22, and 24 of the FCC rules.

FCC ID: PKRNVWMC1000	<u>«APCTEST</u>	FCC Pt. 22/24 GSM/EDGE/CDMA/WCDMA TEST REPORT (CERTIFICATION)	-	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 74 of 74
0808191138-R1.PKR	August 21, 2008	850/1900 GSM/WCDMA/EDGE/CDMA USB Modem with EvDO		- 3
© 2008 PCTEST Engineering I	aboratory, Inc.			REV 1.4GCW