

Band/		Required			RB	RB	Tested/		
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced		
		20850			Anobation	Onset	Tested		
		21100			50	25	Tested		
		21350			00	20	Tested		
		20850					Reduced ¹		
		21100			100	0	Tested		
		21350			100	Ũ	Reduced ¹		
		20850		QPSK			Tested		
		21100				49	Tested		
		21350				-	Tested		
		20850			1		Reduced ¹		
		21100				99	Reduced ¹		
		21350	00.041				Reduced ¹		
	А	20850	20 MHz				Reduced ³		
		21100			50	25	Reduced ³		
		21350					Reduced ³		
		20850					Reduced ¹		
		21100			100	0	Reduced ¹		
		21350		400414			Reduced ¹		
		20850		16QAM			Reduced ⁴		
		21100				49 99	Reduced ⁴		
		21350			1		Reduced ⁴		
		20850	-				Reduced ⁴		
		21100					Reduced ⁴		
		21350					Reduced ⁴		
Band 7			All lower bandwidths (15 MHz, 10 MHz, 5 MHz)						
2500-2570 MHz		20850		QPSK -	50 100	25 0	Reduced ⁶		
		21100					Tested		
		21350					Reduced ⁶		
		20850					Reduced ¹		
		21100					Reduced ¹		
		21350					Reduced ¹		
		20850				49	Reduced ²		
		21100					Reduced ²		
		21350			1		Reduced ²		
		20850					Reduced ⁶		
		21100				99	Tested		
	_	21350	20 MHz				Reduced ⁶		
	С	20850					Reduced ³		
		21100			50	25	Reduced ³		
		21350					Reduced ³		
		20850				_	Reduced ¹		
		21100			100	0	Reduced ¹		
		21350		16QAM			Reduced ¹		
		20850	4			6	Reduced ⁴		
		21100	4			49	Reduced ⁴		
		21350	4		1		Reduced ⁴		
		20850]				Reduced ⁴		
		21100	4			99	Reduced ⁴		
		21350					Reduced ⁴		
		n the 50% RB testing	All lower bandwid	Iths (15 MHz, 10 M	Hz, 5 MHz)		Reduced ⁵		

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		20850					Reduced ⁶
		21100			50	25	Tested
		21350					Reduced ⁶
		20850	-			0	Reduced ¹
		21100			100		Reduced ¹
		21350		QPSK			Reduced ¹
		20850		QFSK			Reduced ²
		21100				49 99	Reduced ²
		21350	20 MHz		1		Reduced ²
		20850					Tested
		21100					Tested
Band 7		21350					Tested
2500-2570 MHz	D	20850	20 IVIHZ				Reduced ³
2300-2370 10112		21100			50	25	Reduced ³
		21350					Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		16QAM			Reduced ¹
		20850		TOQAIVI			Reduced ⁴
		21100				49	Reduced ⁴
		21350			1		Reduced ⁴
		20850			I		Reduced ⁴
		21100				99	Reduced ⁴
		21350					Reduced ⁴
			All lower bandwid	lths (15 MHz, 10 M	Hz, 5 MHz)		Reduced⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Sides B & F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 199.5 mW Closest Distance to Side B: 75 mm Closest Distance to Side F: 71 mm

Side F is the closest; therefore, if Side F is excluded side B would also be excluded.

[{[(3.0)/(\doldsymbol{2.70})]*50 mm}]+[{71-50 mm}*10]=301 mW which is greater than 223.9 mW

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		27710			25	12	Tested
		27710		QPSK	50	0	Reduced ¹
		27710		QFON	4	24	Tested
		27710			I	49	Reduced ²
	Α	27710		16QAM	25	12	Reduced ³
		27710			50	0	Reduced ¹
		27710			1	24	Reduced ⁴
		27710			I	49	Reduced ⁴
Band 30			Reduced ⁵				
Band 30 2305-2315 MHz		27710		0.001/	25	12	Tested
		27710			50	0	Reduced ¹
		27710		QPSK	4	24	Tested
		27710			I	49	Reduced ²
	С	27710	10 MHz		25	12	Reduced ³
		27710]	16QAM	50	0	Reduced ¹
		27710]	INQAM	1	24	Reduced ⁴
		27710	1		I	49	Reduced ⁴
			All lower	bandwidths (5 MH	z)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		27710	10 MHz -		25	12	Tested
		27710		QPSK	50	0	Reduced ¹
Dand 20		27710			1	24	Tested
		27710			I	49	Reduced ²
Band 30 2305-2315 MHz	D	27710			25	12	Reduced ³
2303-2313 MHZ		27710			50	0	Reduced ¹
		27710		16QAM	1	24	Reduced ⁴
		27710	1		1	49	Reduced ⁴
			Reduced ⁵				

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 97 mm

[{[(3.0)/(√2.315)]*50 mm}]+[{97-50 mm}*10]=578 mW which is greater than 251.2 mW

Band/		Required	_		RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		37850			Anobation	Chicot	Tested
		38000	•		50	25	Tested
		38150			00	20	Tested
		37850	•				Reduced ¹
		38000			100	0	Tested
		38150			100	°	Reduced ¹
		37850		QPSK			Tested
		38000				49	Tested
		38150				10	Tested
		37850			1	99	Reduced ¹
		38000	•				Reduced ¹
		38150	•			00	Reduced ¹
	А	37850	20 MHz				Reduced ³
	~	38000	•		50	25	Reduced ³
		38150	•	-	00	20	Reduced ³
		37850					Reduced ¹
		38000			100	0	Reduced ¹
		38150			100	0	Reduced ¹
		37850	•	16QAM			Reduced ⁴
		38000	•			49	Reduced ⁴
		38150					Reduced ⁴
		37850			1		Reduced ⁴
		38000				99	Reduced ⁴
		38150					Reduced ⁴
Band 38			Reduced ⁵				
2570-2620 MHz		37850	All lower bandwid		50	25 0	Reduced ⁶
		38000		QPSK			Tested
		38150					Reduced ⁶
		37850					Reduced ¹
		38000					Reduced ¹
		38150					Reduced ¹
		37850					Reduced ²
		38000				49	Reduced ²
		38150	•			10	Reduced ²
		37850			1		Reduced ⁶
		38000				99	Tested
		38150				00	Reduced ⁶
	С	37850	20 MHz				Reduced ³
	Ŭ	38000			50	25	Reduced ³
		38150			00	20	Reduced ³
		37850					Reduced ¹
		38000			100	0	Reduced ¹
		38150			100	0	Reduced ¹
		37850	1	16QAM			Reduced ⁴
		38000	1			49	Reduced ⁴
		38150	1			43	Reduced ⁴
		37850	1		1		Reduced ⁴
			{			00	
		38000	{			99	Reduced ⁴
		38150		 			Reduced ⁴
		n the 50% RB testing	All lover bandWic	ths (15 MHz, 10 M	TL, J IVITZ)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		37850					Reduced ⁶
		38000			50	25	Tested
		38150					Reduced ⁶
		37850				0	Reduced ¹
		38000			100		Reduced ¹
		38150		QPSK			Reduced ¹
		37850		QFSK			Reduced ²
		38000	-			49	Reduced ²
		38150			1		Reduced ²
		37850			I	99	Reduced ⁶
		38000					Tested
Band 38		38150	20 MHz				Reduced ⁶
2570-2620 MHz	D	37850	20 IVIHZ				Reduced ³
2370-2020 10112		38000			50	25	Reduced ³
		38150					Reduced ³
		37850					Reduced ¹
		38000			100	0	Reduced ¹
		38150		16QAM			Reduced ¹
		37850		TOQAIN			Reduced ⁴
		38000				49	Reduced ⁴
		38150			1		Reduced ⁴
		37850			I		Reduced ⁴
		38000				99	Reduced ⁴
		38150					Reduced ⁴
				ths (15 MHz, 10 M			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Sides B & F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 199.5 mW Closest Distance to Side B: 75 mm Closest Distance to Side F: 71 mm

Side F is the closest; therefore, if Side F is excluded side B would also be excluded.

[{[(3.0)/(\doldsymbol{2.70})]*50 mm}]+[{71-50 mm}*10]=301 mW which is greater than 223.9 mW

Band/		Required	_		RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
requercy (miliz)		38750			Anocation	Onser	Reduced ⁶
		39150			50	25	Tested
		39550			50	25	Reduced ⁶
		38750					Reduced ¹
		39150			100	0	Reduced ¹
		39550			100	0	Tested
		38750		QPSK			Tested
		39150				49	Tested
		39550				49	Tested
		38750			1		Reduced ¹
		39150				99	Reduced ¹
		39550				99	Reduced ¹
	^		20 MHz				
	A	38750			50	25	Reduced ³ Reduced ³
		39150			50	25	
		39550 38750					Reduced ³ Reduced ¹
		39150	-		100	0	Reduced ¹
		39550			100	0	Reduced ¹
		39550		16QAM			Reduced ⁴
		39150			1	49	Reduced ⁴
		39550				49	
						99	Reduced ⁴ Reduced ⁴
		38750 39150	-				Reduced ⁴
		39550				99	Reduced ⁴
Band 40		39330	All lower bandwid	Reduced ⁵			
2300-2400 MHz		20850	All lower bandwid		12, 3 10112)		Reduced ⁶
2300 2400 10112		38750			50	25	Tested
		39150					Reduced ⁶
		39550			100	0	Reduced ¹
		38750					Reduced ¹
		39150					Reduced ¹
		39550		QPSK			Reduced ⁶
		38750				49	Tested
		39150				45	Reduced ⁶
		39550			1		Reduced ²
		38750				99	Reduced ²
		39150				33	Reduced ²
	С	39550	20 MHz				Reduced ³
	U	38750			50	25	Reduced ³
		39150			50	25	Reduced ³
		39550					Reduced ¹
		38750			100	0	Reduced ¹
		39150			100	0	Reduced ¹
		39550		16QAM			Reduced ⁴
		38750				49	Reduced ⁴
		39150				75	Reduced ⁴
		39550			1		Reduced ⁴
		39550				00	Reduced ⁴
		39150				99	
		39100		39550			Reduced ⁴ Reduced ⁵
Deduced ¹ If the C		n the 50% RB testing	is loss than 1 45) taating in raduun	d por KDD044	

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		38750					Reduced ⁶
		39150			50	25	Tested
		39550					Reduced ⁶
		38750	-				Reduced ¹
		39150			100	0	Reduced ¹
		39550		QPSK			Reduced ¹
		38750		QFSK			Reduced ⁶
		39150				49 99	Tested
		39550	20 MHz		1		Reduced ⁶
		38750					Reduced ²
		39150					Reduced ²
Band 40	F	39550					Reduced ²
2300-2400 MHz	D	38750	20 IVIHZ				Reduced ³
2300-2400 10112		39150			50	25	Reduced ³
		39550					Reduced ³
		38750					Reduced ¹
		39150			100	0	Reduced ¹
		39550		16QAM			Reduced ¹
		38750		TOQAIN			Reduced ⁴
		39150				49	Reduced ⁴
		39550			1		Reduced ⁴
		38750			I		Reduced ⁴
		39150				99	Reduced ⁴
		39550					Reduced ⁴
			All lower bandwid	lths (15 MHz, 10 M	Hz, 5 MHz)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Sides B & F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 199.5 mW Closest Distance to Side B: 75 mm Closest Distance to Side F: 71 mm

Side F is the closest; therefore, if Side F is excluded side B would also be excluded.

[{[(3.0)/(\doldsymbol{2.40})]*50 mm}]+[{71-50 mm}*10]=306 mW which is greater than 223.9 mW

Band/	a : 1	Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		23060					Reduced ⁶
		23095			25	12	Tested
		23129			20		Reduced ⁶
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129				C C	Reduced ¹
		23060		QPSK -			Reduced ⁶
		23095				24	Tested
		23129					Reduced ⁶
		23060			1		Reduced ²
		23095				49	Reduced ²
		23129					Reduced ²
	А	23060	10 MHz	-			Reduced ³
		23095			25	12	Reduced ³
		23129					Reduced ³
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		400414			Reduced ¹
		23060		16QAM			Reduced ⁴
		23095				24	Reduced ⁴
		23129			1		Reduced ⁴
		23060					Reduced ⁴
		23095				49	Reduced ⁴
		23129					Reduced ⁴
Band 12			All lower	⁻ bandwidths (5 MH	z)		Reduced ⁵
699-716 MHz		23060		QPSK -	25 50	12 0	Reduced ⁶
		23095					Tested
		23129					Reduced ⁶
		23060					Reduced ¹
		23095					Reduced ¹
		23129					Reduced ¹
		23060		QION		24	Reduced ⁶
		23095					Tested
		23129			1		Reduced ⁶
		23060			I		Reduced ²
		23095				49	Reduced ²
		23129	10 MHz				Reduced ²
	В	23060	10 10 12				Reduced ³
		23095			25	12	Reduced ³
		23129					Reduced ³
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		16QAM			Reduced ¹
		23060				- ·	Reduced ⁴
		23095				24	Reduced ⁴
		23129			1		Reduced ⁴
		23060				49	Reduced ⁴
		23095					Reduced ⁴
		23129					Reduced ⁴
		n the 50% RB testing		bandwidths (5 MH			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	a : 1	Required			RB	RB	Tested/		
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced		
		23060					Reduced ⁶		
		23095			25	12	Tested		
		23129			20		Reduced ⁶		
		23060					Reduced ¹		
		23095			50	0	Reduced ¹		
		23129				C C	Reduced ¹		
		23060		QPSK			Reduced ⁶		
		23095				24	Tested		
		23129					Reduced ⁶		
		23060			1		Reduced ²		
		23095				49	Reduced ²		
		23129	40.04				Reduced ²		
	С	23060	10 MHz	-			Reduced ³		
		23095			25	12	Reduced ³		
		23129					Reduced ³		
		23060					Reduced ¹		
		23095			50	0	Reduced ¹		
		23129		400414			Reduced ¹		
		23060		16QAM			Reduced ⁴		
		23095			1	24	Reduced ⁴		
		23129					Reduced ⁴		
		23060					Reduced ⁴		
		23095				49	Reduced ⁴		
		23129					Reduced ⁴		
Band 12			All lower bandwidths (5 MHz)						
699-716 MHz		23060		QPSK	25 50	12 0	Reduced ⁶		
		23095					Tested		
		23129					Reduced ⁶		
		23060					Reduced ¹		
		23095					Reduced ¹		
		23129					Reduced ¹		
		23060		QION		12	Reduced ⁶		
		23095					Tested		
		23129			1		Reduced ⁶		
		23060					Reduced ²		
		23095				24	Reduced ²		
	_	23129	10 MHz				Reduced ²		
	D	23060					Reduced ³		
		23095			25	12	Reduced ³		
		23129					Reduced ³		
		23060				_	Reduced ¹		
		23095			50	0	Reduced ¹		
		23129		16QAM			Reduced ¹		
		23060					Reduced ⁴		
		23095				24	Reduced ⁴		
		23129			1		Reduced ⁴		
		23060				49	Reduced ⁴		
		23095					Reduced ⁴		
		23129					Reduced ⁴		
		n the 50% RB testing		bandwidths (5 MH			Reduced ⁵		

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23060					Reduced ⁶
		23095			25	12	Tested
		23129					Reduced ⁶
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		ODCK			Reduced ¹
		23060		QPSK			Reduced ⁶
		23095	- - - 10 MHz			12	Tested
		23129			1		Reduced ⁶
		23060				24	Reduced ²
		23095					Reduced ²
Band 12		23129					Reduced ²
699-716 MHz	Е	23060	TUIVIHZ				Reduced ³
099-710 10112		23095			25	12	Reduced ³
		23129					Reduced ³
		23060				0	Reduced ¹
		23095			50		Reduced ¹
		23129		16QAM			Reduced ¹
		23060		TOQAIN			Reduced ⁴
		23095				24	Reduced ⁴
		23129	-		1		Reduced ⁴
		23060			1		Reduced ⁴
		23095				49	Reduced ⁴
		23129					Reduced ⁴
			All lower	⁻ bandwidths (5 MH	lz)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 97 mm

[{[(3.0)/(√0.716)]*50 mm}]+[{97-50 mm}*10]=632 mW which is greater than 251.2 mW

Band/		Required	_		RB	RB	Tested/		
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced		
		23780			Anobation	Onset	Reduced ⁶		
		23790	-		25	12	Tested		
		23800	-		20	12	Reduced ⁶		
		23780	-				Reduced ¹		
		23790	-		50	0	Reduced ¹		
		23800	-		00	0	Reduced ¹		
		23780	-	QPSK			Reduced ⁶		
		23790				24	Tested		
		23800					Reduced ⁶		
		23780			1		Reduced ²		
		23790				49	Reduced ²		
		23800	-			10	Reduced ²		
	А	23780	10 MHz				Reduced ³		
		23790			25	12	Reduced ³		
		23800			_0	.=	Reduced ³		
		23780					Reduced ¹		
		23790			50	0	Reduced ¹		
		23800				J. J	Reduced ¹		
		23780		16QAM			Reduced ⁴		
		23790			1	24	Reduced ⁴		
		23800					Reduced ⁴		
		23780					Reduced ⁴		
		23790				49	Reduced ⁴		
		23800				Reduced ⁴			
Band 17			All lower	bandwidths (5 MH	z)		Reduced⁵		
704-716 MHz		23780			25	12	Reduced ⁶		
		23790					Tested		
		23800			50	0	Reduced ⁶		
		23780					Reduced ¹		
		23790					Reduced ¹		
		23800					Reduced ¹		
		23780		QPSK		24	Reduced ⁶		
		23790					Tested		
		23800			4		Reduced ⁶		
		23780			1		Reduced ²		
		23790				49	Reduced ²		
		23800					Reduced ²		
	В	23780	10 MHz				Reduced ³		
		23790			25	12	Reduced ³		
		23800					Reduced ³		
		23780					Reduced ¹		
		23790			50	0	Reduced ¹		
		23800		400414			Reduced ¹		
		23780		16QAM			Reduced ⁴		
		23790				24	Reduced ⁴		
		23800			4		Reduced ⁴		
		23780	1		1		Reduced ⁴		
		23790	1			49	Reduced ⁴		
			1			49	Reduced ⁴		
	-		23800 All lower bandwidths (5 MHz)						

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	a : 1	Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
······································		23780					Reduced ⁶
		23790			25	12	Tested
		23800			_0	.=	Reduced ⁶
		23780					Reduced ¹
		23790			50	0	Reduced ¹
		23800				C C	Reduced ¹
		23780		QPSK			Reduced ⁶
		23790				24	Tested
		23800					Reduced ⁶
		23780			1		Reduced ²
		23790				49	Reduced ²
		23800				-	Reduced ²
	С	23780	10 MHz				Reduced ³
	_	23790			25	12	Reduced ³
		23800			-		Reduced ³
		23780		-			Reduced ¹
		23790			50	0	Reduced ¹
		23800		16QAM er bandwidths (5 MHz		Ŭ	Reduced ¹
		23780					Reduced ⁴
		23790			1	24 49	Reduced ⁴
		23800					Reduced ⁴
		23780					Reduced ⁴
		23790					Reduced ⁴
		23800					Reduced ⁴
Band 17			Reduced ⁵				
704-716 MHz		23780			25 50	12 0	Reduced ⁶
		23790					Tested
		23800					Reduced ⁶
		23780		QPSK			Reduced ¹
		23790					Reduced ¹
		23800					Reduced ¹
		23780					Reduced ⁶
		23790				12	Tested
		23800			1		Reduced ⁶
		23780			I		Reduced ²
		23790				24	Reduced ²
	_	23800	10 MHz				Reduced ²
	D	23780					Reduced ³
		23790			25	12	Reduced ³
		23800					Reduced ³
		23780					Reduced ¹
		23790			50	0	Reduced ¹
		23800		16QAM			Reduced ¹
		23780				- ·	Reduced ⁴
		23790				24	Reduced ⁴
		23800			1		Reduced ⁴
		23780					Reduced ⁴
		23790				49	Reduced ⁴
		23800					Reduced ⁴
		n the 50% RB testing	All lower	bandwidths (5 MH	z)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23780					Reduced ⁶
		23790			25	12	Tested
		23800					Reduced ⁶
		23780				0	Reduced ¹
		23790			50		Reduced ¹
		23800		QPSK			Reduced ¹
		23780		QFSK			Reduced ⁶
		23790				12	Tested
		23800	10 MHz –		1		Reduced ⁶
		23780				24	Reduced ²
		23790					Reduced ²
Band 17		23800					Reduced ²
704-716 MHz	E	23780					Reduced ³
704-71010112		23790			25	12	Reduced ³
		23800					Reduced ³
		23780					Reduced ¹
		23790			50	0	Reduced ¹
		23800		16QAM			Reduced ¹
		23780		TOQAIVI			Reduced ⁴
		23790				24	Reduced ⁴
		23800			1		Reduced ⁴
		23780			1		Reduced ⁴
		23790				49	Reduced ⁴
		23800					Reduced ⁴
		the COV DD testing		r bandwidths (5 MH			Reduced⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 97 mm

[{[(3.0)/(√0.716)]*50 mm}]+[{97-50 mm}*10]=632 mW which is greater than 251.2 mW

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23230			25	12	Tested
		23230		QPSK	50	0	Tested
		23230		QFSK	1	24	Tested
		23230	10 MHz		I	49	Reduced ²
	Α	23230		16QAM	25	12	Reduced ³
		23230	1		50	0	Reduced ¹
		23230			1	24	Reduced ⁴
		23230			I	49	Reduced ⁴
Band 13			All lower bandwidths (5 MHz)				
777-787 MHz		23230		QPSK	25	12	Tested
		23230			50	0	Reduced ¹
		23230		QFSK	1	24	Tested
		23230	10 MHz		Ι	49	Reduced ²
	В	23230			25	12	Reduced ³
		23230		16QAM	50	0	Reduced ¹
		23230		TOQAIVI	1	24	Reduced ⁴
		23230]		I	49	Reduced ⁴
			All lower	bandwidths (5 MH	z)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced	
		23230			25	12	Tested	
		23230		QPSK	50	0	Reduced ¹	
		23230			4	24	Tested	
		23230			I	49	Reduced ²	
	С	23230	10 MHz	16QAM	25	12	Reduced ³	
		23230			50	0	Reduced ¹	
		23230			1	24	Reduced ⁴	
		23230			I	49	Reduced ⁴	
Band 13			All lower bandwidths (5 MHz)					
777-787 MHz		23230		0.001/	25	12	Tested	
		23230			50	0	Reduced ¹	
		23230		QPSK	4	24	Tested	
		23230	10 MHz		I	49	Reduced ²	
	D	23230	TUMHZ		25	12	Reduced ³	
	-	23230]	16QAM	50	0	Reduced ¹	
		23230]	TOQAIVI	1	24	Reduced ⁴	
		23230	1		I	49	Reduced ⁴	
			All lower	bandwidths (5 MH	z)	-	Reduced ⁵	

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23230	. 10 MHz		25	12	Tested
		23230		QPSK	50	0	Reduced ¹
		23230			1	24	Tested
Dond 12		23230			I	49	Reduced ²
Band 13 777-787 MHz	E	23230			25	12	Reduced ³
///-/0/ WIHZ		23230		100414	50	0	Reduced ¹
		23230		16QAM	1	24	Reduced ⁴
		23230			I	49	Reduced ⁴
			All lower	bandwidths (5 MH	z)		Reduced⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 97 mm

[{[(3.0)/(√0.782)]*50 mm}]+[{97-50 mm}*10]=639 mW which is greater than 251.2 mW

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23330			25	12	Tested
		23330		0001/	50	0	Reduced ¹
		23330		QPSK	4	24	Tested
		23330	10 MHz		1	49	Reduced ²
	Α	23330		16QAM r bandwidths (5 MH	25	12	Reduced ³
		23330			50	0	Reduced ¹
		23330			1	24	Reduced ⁴
		23330			I	49	Reduced ⁴
Band 14			Reduced ⁵				
788-798 MHz		23330		0.001/	25	12	Tested
		23330			50	0	Reduced ¹
		23330		QPSK	4	24	Tested
		23330	10 MHz		I	49	Reduced ²
	В	23330			25	12	Reduced ³
		23330		16QAM	50	0	Reduced ¹
		23330		TOQAIVI	1	24	Reduced ⁴
		23330			I	49	Reduced ⁴
			All lower	bandwidths (5 MH	z)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23330			25	12	Tested
		23330		QPSK	50	0	Reduced ¹
		23330			1	24	Tested
		23330	10 MHz		I	49	Reduced ²
	С	23330		16QAM	25	12	Reduced ³
		23330	All lower l		50	0	Reduced ¹
		23330			1	24	Reduced ⁴
		23330			1	49	Reduced ⁴
Band 14			Reduced ⁵				
788-798 MHz		23330		0.001/	25	12	Tested
		23330			50	0	Reduced ¹
		23330		QPSK	1	24	Tested
		23330	10 MHz		I	49	Reduced ²
	D	23330			25	12	Reduced ³
		23330]	16QAM	50	0	Reduced ¹
		23330]	IOQAIVI	1	24	Reduced ⁴
		23330]			49	Reduced ⁴
			All lower	bandwidths (5 MH	lz)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23330	- - - 10 MHz -		25	12	Tested
		23330		QPSK	50	0	Reduced ¹
		23330			1	24	Tested
Dond 14		23330			I	49	Reduced ²
Band 14 788-798 MHz	E	23330			25	12	Reduced ³
700-790 WIFIZ		23330			50	0	Reduced ¹
		23330		16QAM	1	24	Reduced ⁴
		23330			I	49	Reduced ⁴
			All lower	bandwidths (5 MH	z)		Reduced⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 97 mm

[{[(3.0)/(√0.787)]*50 mm}]+[{97-50 mm}*10]=639 mW which is greater than 251.2 mW

Band/	O:de	Required	Deve develoption		RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		39750					Tested
		40135					Tested
		40620			50	25	Tested
		41105					Tested
		41490					Tested
		39750					Reduced ¹
		40135					Reduced ¹
		40620	-		100	0	Tested
		41105					Reduced ¹
		41490		0001/			Reduced ¹
		39750		QPSK			Tested
		40135					Tested
		40620				49	Tested
		41105				-	Tested
		41490			1		Tested
		39750			1	99	Reduced ²
		40135					Reduced ²
		40620	20 MHz				Reduced ²
		41105					Reduced ²
Band 41		41490					Reduced ²
2496-2690 MHz	Α	39750				25	Reduced ³
2490-2090 1011 12		40135			50		Reduced ³
		40620					Reduced ³
		41105					Reduced ³
		41490					Reduced ³
		39750					Reduced ¹
		40135					Reduced ¹
		40620			100	0	Reduced ¹
		41105					Reduced ¹
		41490		16QAM			Reduced ¹
		39750		IOQAIVI			Reduced ⁴
		40135					Reduced ⁴
		40620				49	Reduced ⁴
		41105					Reduced ⁴
		41490			1		Reduced ⁴
		39750			I		Reduced ⁴
		40135					Reduced ⁴
		40620				99	Reduced ⁴
		41105				33	Reduced ⁴
		41490					Reduced ⁴
		All lower	bandwidths (15 M	/Hz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Ciao	Test Channel	Banamatin	modulation	Allocation	Offset	Reduced
		39750					Reduced ⁶
		40135					Reduced ⁶
		40620			50	25	Tested
		41105					Reduced ⁶
		41490					Reduced ⁶
		39750					Reduced ¹
		40135					Reduced ¹
		40620			100	0	Reduced ¹
		41105					Reduced ¹
		41490		ODOK			Reduced ¹
		39750		QPSK			Reduced ⁶
		40135					Reduced ⁶
		40620				49	Tested
		41105				99	Reduced ⁶
		41490			1		Reduced ⁶
		39750					Reduced ²
		40135					Reduced ²
		40620					Reduced ²
		41105					Reduced ²
Devid 44		41490	20 MH-7				Reduced ²
Band 41	С	39750	20 MHz	-			Reduced ³
2496-2690 MHz		40135				25	Reduced ³
		40620			50		Reduced ³
		41105					Reduced ³
		41490					Reduced ³
		39750			100	0	Reduced ¹
		40135					Reduced ¹
		40620					Reduced ¹
		41105				-	Reduced ¹
		41490					Reduced ¹
		39750		16QAM			Reduced ⁴
		40135					Reduced ⁴
		40620				49	Reduced ⁴
		41105					Reduced ⁴
		41490	1				Reduced ⁴
		39750	1		1		Reduced ⁴
		40135	1				Reduced ⁴
		40620	1			99	Reduced ⁴
		41105	1				Reduced ⁴
		41490	1				Reduced ⁴
			handwidths (15 M	⊔ //Hz, 10 MHz, 5 M⊦	17 3 MH7 1 4 MH	7)	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	Olda	Required	Deve deviately		RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		39750					Tested
		40135					Tested
		40620			50	25	Tested
		41105					Tested
		41490					Tested
		39750					Reduced ¹
		40135					Reduced ¹
		40620			100	0	Tested
		41105					Reduced ¹
		41490		QPSK			Reduced ¹
		39750		QP5K -			Tested
		40135					Tested
		40620				49	Tested
		41105					Tested
		41490			1	99	Tested
		39750					Reduced ²
		40135					Reduced ²
		40620					Reduced ²
		41105	20 MHz				Reduced ²
Band 41		41490					Reduced ²
2496-2690 MHz	D	39750	20 1011 12			25	Reduced ³
2490-2090 10112		40135			50		Reduced ³
		40620					Reduced ³
		41105					Reduced ³
		41490					Reduced ³
		39750				0	Reduced ¹
		40135					Reduced ¹
		40620			100		Reduced ¹
		41105					Reduced ¹
		41490		16QAM			Reduced ¹
		39750		TOQAM			Reduced ⁴
		40135					Reduced ⁴
		40620				49	Reduced ⁴
		41105					Reduced ⁴
		41490			1		Reduced ⁴
		39750			I		Reduced ⁴
		40135					Reduced ⁴
		40620				99	Reduced ⁴
		41105					Reduced ⁴
		41490					Reduced ⁴
		All lower	bandwidths (15 M	/Hz, 10 MHz, 5 MF	lz, 3 MHz, 1.4 MH	z)	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Sides B & F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side B: 78 mm Closest Distance to Side F: 97 mm

Side B is the closest; therefore, if Side B is excluded side F would also be excluded.

[{[(3.0)/(√2.69)]*50 mm}]+[{78-50 mm}*10]=301 mW which is greater than 251.2 mW

Report Number: SAR.20190210

Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Jue	Test Channel	Danuwium	Modulation	Allocation	Offset	Reduced
		41690					Reduced ⁶
		42140					Reduced ⁶
		42590			50	25	Tested
		43040					Reduced ⁶
		43490					Reduced ⁶
		41690					Reduced ¹
		42140					Reduced ¹
		42590			100	0	Reduced ¹
		43040					Reduced ¹
		43490		QPSK			Reduced ¹
		41690		QPSK			Reduced ⁶
		42140					Reduced ⁶
		42590			1	49	Tested
		43040				-	Reduced ⁶
		43490					Reduced ⁶
		41690					Reduced ²
	Read 42	42140					Reduced ²
		42590	20 MHz			99	Reduced ²
		43040					Reduced ²
David 40		43490					Reduced ²
Band 42	А	41690					Reduced ³
3400-3600 MHz		42140				25	Reduced ³
		42590			50		Reduced ³
		43040					Reduced ³
		43490					Reduced ³
		41690				0	Reduced ¹
		42140					Reduced ¹
		42590			100		Reduced ¹
		43040					Reduced ¹
		43490		400 414			Reduced ¹
		41690		16QAM			Reduced ⁴
		42140					Reduced ⁴
		42590				49	Reduced ⁴
		43040	1				Reduced ⁴
		43490	1		4		Reduced ⁴
		41690	1		1		Reduced ⁴
		42140	1				Reduced ⁴
		42590	1			99	Reduced ⁴
		43040	1				Reduced ⁴
		43490	1				Reduced ⁴
			bandwidths (15 M	/Hz, 10 MHz, 5 M⊦	z. 3 MHz. 1.4 MHz	7)	Reduced ⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/	
Frequency (MHz)	Side	Test Channel	Banuwiuth	wouldation	Allocation	Offset	Reduced	
		41690	-		50	Offset 25 0 49 99 25	Reduced ⁶	
		42140					Reduced ⁶	
		42590					25	Tested
		43040					Reduced ⁶	
		43490				Offset 25 0 49 99	Reduced ⁶	
		41690					Reduced ¹	
		42140					Reduced ¹	
		42590			100 0	Reduced ¹		
		43040				0 49 99 25	Reduced ¹	
		43490		QPSK			Reduced ¹	
		41690		QFOR			Reduced ⁶	
		42140				49	Reduced ⁶	
		42590				49	Tested	
		43040					Reduced ⁶	
		43490			1		Reduced ⁶	
		41690			I		Reduced ²	
		42140				99	Reduced ²	
		42590					99	Reduced ²
		43040					Reduced ²	
Band 42		43490	20 MHz				Reduced ²	
3400-3600 MHz	С	41690	20 1011 12			25	Reduced ³	
5400 5000 Mil 12		42140					Reduced ³	
		42590			50		Reduced ³	
		43040					Reduced ³	
		43490					Reduced ³	
		41690					Reduced ¹	
		42140				Reduced ¹		
		42590			100	0	Reduced ¹	
		43040				25	Reduced ¹	
		43490		16QAM			Reduced ¹	
		41690		TOQAIVI			Reduced ⁴	
		42140					Reduced ⁴	
		42590				49	Reduced ⁴	
		43040					Reduced ⁴	
		43490	ļ		1		Reduced ⁴	
	1	41690			I I		Reduced ⁴	
	1	42140					Reduced ⁴	
		42590]			99	Reduced ⁴	
		43040]				Reduced ⁴	
		43490					Reduced ⁴	
		All lower	bandwidths (15 M	/Hz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced ⁵	

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	0.1	Required	Dan had hit	Mar Inda Cara	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
,		41690					Reduced ⁶
		42140					Reduced ⁶
		42590			50	25	Tested
		43040				-	Reduced ⁶
		43490					Reduced ⁶
		41690					Reduced ¹
		42140					Reduced ¹
		42590			100	0	Reduced ¹
		43040					Reduced ¹
		43490		ODOK			Reduced ¹
		41690		QPSK			Reduced ⁶
		42140					Reduced ⁶
		42590				49	Tested
		43040					Reduced ⁶
		43490			1	99	Reduced ⁶
		41690			I		Reduced ²
		42140					Reduced ²
		42590					Reduced ²
		43040					Reduced ²
Band 42		43490	20 MHz				Reduced ²
3400-3600 MHz	D	41690	20 IVIHZ			50 25	Reduced ³
3400-3000 IVII IZ		42140					Reduced ³
		42590			50		Reduced ³
		43040					Reduced ³
		43490					Reduced ³
		41690					Reduced ¹
		42140					Reduced ¹
		42590			100	0	Reduced ¹
		43040					Reduced ¹
		43490		16QAM			Reduced ¹
		41690		IbQAM		Reduced ⁴	
		42140					Reduced ⁴
		42590				49	Reduced ⁴
		43040					Reduced ⁴
		43490			1	0	Reduced ⁴
		41690]		I		Reduced ⁴
		42140					Reduced ⁴
		42590]			99	Reduced ⁴
		43040]				Reduced ⁴
		43490]				Reduced ⁴
		All lower		MHz, 10 MHz, 5 MH			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	Olala	Required	Den desidette		RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		41690	-			25	Reduced ⁶
		42140					Reduced ⁶
		42590			50		Tested
		43040					Reduced ⁶
		43490					Reduced ⁶
		41690			Reduced ¹		
		42140					Reduced ¹
		42590			100	0	Reduced ¹
		43040					Reduced ¹
		43490		QPSK			Reduced ¹
		41690					Reduced ⁶
		42140					Reduced ⁶
		42590				49	Tested
		43040					Reduced ⁶
		43490			1	99	Reduced ⁶
		41690			I		Reduced ²
		42140					Reduced ²
		42590					Reduced ²
		43040					Reduced ²
Band 42		43490	20 MHz				Reduced ²
3400-3600 MHz	E	41690			50	50 25	Reduced ³
3400-3000 IVII IZ		42140					Reduced ³
		42590					Reduced ³
		43040					Reduced ³
		43490					Reduced ³
		41690					Reduced ¹
		42140]				Reduced ¹
		42590			100	0	Reduced ¹
		43040					Reduced ¹
		43490		16QAM			Reduced ¹
		41690		IUGAIN			Reduced ⁴
		42140					Reduced ⁴
		42590				49	Reduced ⁴
		43040					Reduced ⁴
		43490			1		Reduced ⁴
		41690			I		Reduced ⁴
		42140					Reduced ⁴
		42590				99	Reduced ⁴
		43040]				Reduced ⁴
		43490					Reduced ⁴
		All lower	bandwidths (15 M	/Hz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Sides B & F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side B: 78 mm Closest Distance to Side F: 97 mm

Side B is the closest; therefore, if Side B is excluded side F would also be excluded.

[{[(3.0)/(√3.60)]*50 mm}]+[{78-50 mm}*10]=359 mW which is greater than 251.2 mW

Band/	O:de	Required	Deve develoption		RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
	_	55340					Reduced ⁶
		55665			50		Reduced ⁶
		55990					Tested
		56315					Reduced ⁶
		56640					Reduced ⁶
		55340					Reduced ¹
		55665			400		Reduced ¹
		55990			100		Reduced ¹
		56315					Reduced ¹
		56640		QPSK			Reduced ¹
		55340		QPSK			Reduced ⁶
		55665				49	Reduced ⁶
		55990				49	Tested
		56315					Reduced ⁶
		56640			1		Reduced ⁶
		55340			I		Reduced ²
		55665					Reduced ²
		55990					Reduced ²
		56315					Reduced ²
Band 48		56640	20 MHz				Reduced ²
3550-3700 MHz	A	55340	20 1011 12				Reduced ³
3330-37 00 WHZ		55665					Reduced ³
		55990			50	25	Reduced ³
		56315				49 99 25 0	Reduced ³
		56640					Reduced ³
		55340					Reduced ¹
		55665					Reduced ¹
		55990			100	0	Reduced ¹
		56315					Reduced ¹
		56640		16QAM			Reduced ¹
		55340		IOQAIN			Reduced ⁴
		55665					Reduced ⁴
		55990				49	Reduced ⁴
		56315				25 0 49	Reduced ⁴
		56640			1		Reduced ⁴
		55340			I		Reduced ⁴
		55665					Reduced ⁴
		55990				99	Reduced ⁴
		56315					Reduced ⁴
		56640					Reduced ⁴
		All lower	bandwidths (15 M	/Hz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/	
Frequency (MHz)	Side	Test Channel	Banawiath	wodulation	Allocation	Offset	Reduced	
		55340					Reduced ⁶	
		55665					Reduced ⁶	
		Test Channel Bandwidth Modulation Allocation Offset 55340	Tested					
							Reduced ⁶	
							Reduced ⁶	
		55340					Reduced ¹	
		55665	1				Reduced ¹	
		55990			100	0	Reduced ¹	
		56315					Reduced ¹	
				ODSK			Reduced ¹	
				QFSK		Offset 25 0 49 99 25 0 49 99 49 49 99 25 0 49 99 25 0 49 99 25 0 49 49	Reduced ⁶	
		55665					Reduced ⁶	
		55990				49 99	Tested	
							Reduced ⁶	
					1		Reduced ⁶	
		55340			I		Reduced ²	
						99	Reduced ²	
		55990					99	Reduced ²
		56315					Reduced ²	
Band 48			20 MH-				Reduced ²	
3550-3700 MHz	С		20 1011 12				Reduced ³	
3330-37 00 IVII IZ							Reduced ³	
					50	50 25	Reduced ³	
							Reduced ³	
		56640					Reduced ³	
		55340]				Reduced ¹	
		55665					Reduced ¹	
		55990			100	0	Reduced ¹	
		56315					Reduced ¹	
		56640		16QAM			Reduced ¹	
		55340	7	IOQAIVI			Reduced ⁴	
		55665					Reduced ⁴	
		55990				49	Reduced ⁴	
		56315					Reduced ⁴	
		56640			1		Reduced ⁴	
		55340]		I		Reduced ⁴	
		55665					Reduced ⁴	
		55990]			99	Reduced ⁴	
		56315]				Reduced ⁴	
		56640					Reduced ⁴	
	1	All lower	bandwidths (15 N	/Hz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced ⁵	

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	0.1	Required	Dan bat kit	Mar Inda Cara	RB	RB	Tested/	
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced	
		55340					Reduced ⁶	
		55665				25	Reduced ⁶	
		55990			50		Tested	
		56315					Reduced ⁶	
		56640				RB 25 0 49 99 25 0 49 99 25 0 49 99 25 0 49 25 0 49	Reduced ⁶	
		55340					Reduced ¹	
		55665					Reduced ¹	
		55990			100	0	Reduced ¹	
		56315					Reduced ¹	
		56640		QPSK			Reduced ¹	
		55340		QPSK			Reduced ⁶	
		55665					Reduced ⁶	
		55990				49	Tested	
		56315					Reduced ⁶	
		56640			1		Reduced ⁶	
		55340			I		Reduced ²	
		55665				99	Reduced ²	
		55990					Reduced ²	
		56315					Reduced ²	
Band 48		56640	20 MHz				Reduced ²	
3550-3700 MHz	D	55340	20 1011 12				Reduced ³	
3330 3700 Miliz		55665			Reduced ³			
		55990			50	0 49 99 25 0 49 25 0 49 49 99	Reduced ³	
		56315						Reduced ³
		56640					Reduced ³	
		55340					Reduced ¹	
		55665					Reduced ¹	
		55990			100	0	Reduced ¹	
		56315					Reduced ¹	
		56640		16QAM			Reduced ¹	
		55340		IUQAIN			Reduced ⁴	
		55665					Reduced ⁴	
		55990				49	Reduced ⁴	
		56315					Reduced ⁴	
		56640			1		Reduced ⁴	
		55340		I		Reduced ⁴		
		55665	ļ				Reduced ⁴	
		55990				99	Reduced ⁴	
		56315					Reduced ⁴	
		56640					Reduced ⁴	
Paduaad If the S				/Hz, 10 MHz, 5 MH			Reduced ⁵	

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	Olala	Required	Deve deviately	Madulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		55340			50	25	Reduced ⁶
		55665					Reduced ⁶
		55990					Tested
		56315				-	Reduced ⁶
		56640					Reduced ⁶
		55340					Reduced ¹
		55665					Reduced ¹
		55990			100	0	Reduced ¹
		56315					Reduced ¹
		56640		QPSK			Reduced ¹
		55340		QPSK			Reduced ⁶
		55665					Reduced ⁶
		55990				0 49 99 25	Tested
		56315					Reduced ⁶
		56640			1		Reduced ⁶
		55340			I	99	Reduced ²
		55665					Reduced ²
		55990					Reduced ²
		56315					Reduced ²
Band 48		56640	20 MHz				Reduced ²
3550-3700 MHz	E	55340			50	25	Reduced ³
3330-37 00 Will 12		55665					Reduced ³
		55990					Reduced ³
		56315					Reduced ³
		56640					Reduced ³
		55340				100 0	Reduced ¹
		55665					Reduced ¹
		55990			100		Reduced ¹
		56315					Reduced ¹
		56640		16QAM			Reduced ¹
		55340		1000/111			Reduced ⁴
		55665					Reduced ⁴
		55990				49	Reduced ⁴
		56315					Reduced ⁴
		56640	ļ		1		Reduced ⁴
		55340	ļ		1		Reduced ⁴
		55665	ļ				Reduced ⁴
		55990	ļ			99	Reduced ⁴
		56315	ļ				Reduced ⁴
		56640					Reduced ⁴
		All lower n the 50% RB testing		/Hz, 10 MHz, 5 MH			Reduced⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Sides B & F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side B: 78 mm Closest Distance to Side F: 97 mm

Side B is the closest; therefore, if Side B is excluded side F would also be excluded.

[{[(3.0)/(√3.70)]*50 mm}]+[{78-50 mm}*10]=357 mW which is greater than 251.2 mW

MEASUREMENT RESULTS End RB RB MPR Frequency BW/ Measured Reported Gap Plot Position Power Modulation Size Offset Target SAR (W/kg) SAR (W/kg) MHz Ch. (dBm) 10 MHz/QPSK 24 0.78 1 707.5 23095 1 0 23.00 0.620 Side A 23095 707.5 10 MHz/QPSK 25 12 22.23 0.507 0.61 1 -----707.5 23095 10 MHz/QPSK 24 0 23.00 0.271 0.34 -----1 Side B 10 MHz/QPSK 707.5 23095 -----25 12 1 22.23 0.219 0.26 707.5 10 MHz/QPSK 23.00 10 23095 24 0 0.607 0.76 1 -----Side C mm -----707.5 23095 10 MHz/QPSK 25 12 1 22.23 0.490 0.59 707.5 23095 10 MHz/QPSK 24 0 23.00 0.131 0.17 1 Side D -----25 23095 10 MHz/QPSK 22.23 707.5 12 1 0.108 0.13 707.5 23095 10 MHz/QPSK 1 24 0 23.00 0.0768 0.10 -----Side E -----707.5 23095 10 MHz/QPSK 25 12 22.23 0.0623 0.07 1 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Power Measured Conducted ERP EIRP 2. SAR Measurement Phantom Configuration Left Head \times Eli4 Right Head SAR Configuration \boxtimes Body Head 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration With Belt Clip Without Belt Clip $\square N/A$

5. Tissue Depth is at least 15.0 cm

MEASUREMENT RESULTS End RB RB MPR Frequency BW/ Measured Reported Gap Plot Position Power Modulation Size Offset Target SAR (W/kg) SAR (W/kg) MHz Ch. (dBm) 10 MHz/QPSK 24 0.80 2 710.0 23780 1 0 23.09 0.645 Side A 710.0 22.13 23780 10 MHz/QPSK 25 12 0.548 0.67 1 -----710.0 23780 10 MHz/QPSK 24 0 23.09 0.306 0.38 -----1 Side B 10 MHz/QPSK 710.0 23780 -----25 12 1 22.13 0.247 0.30 10 MHz/QPSK 23.09 10 710.0 23780 24 0 0.67 1 0.540 -----Side C mm -----710.0 23780 10 MHz/QPSK 25 12 1 22.13 0.442 0.54 710.0 23780 10 MHz/QPSK 24 0 23.09 0.151 0.19 1 Side D -----25 23780 10 MHz/QPSK 22.13 710.0 12 1 0.118 0.14 23780 10 MHz/QPSK 710.0 1 24 0 23.09 0.0799 0.10 -----Side E -----710.0 23780 10 MHz/QPSK 25 12 22.13 0.0667 0.08 1 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Power Measured Conducted ERP EIRP 2. SAR Measurement Phantom Configuration Left Head \times Eli4 Right Head SAR Configuration \boxtimes Body Head 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration With Belt Clip Without Belt Clip $\square N/A$ 5. Tissue Depth is at least 15.0 cm

ZZ

MEASUREMENT RESULTS End RB RB MPR Frequency BW/ Measured Reported Gap Plot Position Power Modulation Size Offset Target SAR (W/kg) SAR (W/kg) MHz Ch. (dBm) 3 782.0 23230 10 MHz/QPSK 1 24 0 23.48 1.00 1.13 23.51 782.0 23230 10 MHz/QPSK 25 12 0.824 0.92 Side A 1 -----782.0 23230 10 MHz/QPSK 50 23.26 0.721 0.86 -----0 1 782.0 23230 -----10 MHz/QPSK 1 24 0 23.48 0.602 0.68 Side B 10 MHz/QPSK 782.0 23230 25 23.51 0.55 12 0.492 -----1 10 -----782.0 23230 10 MHz/QPSK 24 0 23.48 0.775 0.87 1 Side C mm ____ 782.0 23230 10 MHz/QPSK 25 12 23.51 0.606 0.68 1 782.0 232<u>30</u> 10 MHz/QPSK 23.48 1 24 0 0.284 0.32 ----Side D 782.0 23230 10 MHz/QPSK 25 12 1 23.51 0.231 0.26 ----------782.0 23230 10 MHz/QPSK 1 24 0 23.48 0.0911 0.10 Side E 782.0 23230 10 MHz/QPSK 25 12 23.51 0.0731 0.08 -----1 Repeat 0.987 782.0 23230 10 MHz/QPSK 24 0 23.48 1.11 -----1 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Power Measured Conducted ERP EIRP 2. SAR Measurement Phantom Configuration Left Head \times Eli4 Right Head **SAR** Configuration Head \boxtimes Body 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration Without Belt Clip N/A With Belt Clip 5. Tissue Depth is at least 15.0 cm

ZZ

MEASUREMENT RESULTS End RB RB MPR Frequency BW/ Measured Reported Gap Plot Position Power Modulation Size Offset Target SAR (W/kg) SAR (W/kg) MHz Ch. (dBm) 0.757 4 793 23330 10 MHz/QPSK 1 24 0 23.45 0.86 793 23.54 23330 10 MHz/QPSK 25 12 0.513 0.57 Side A 1 -----23330 10 MHz/QPSK 50 23.37 0.436 0.50 -----793 0 1 10 MHz/QPSK 23330 -----793 1 24 0 23.45 0.366 0.42 Side B 10 MHz/QPSK 23.54 793 23330 25 0.329 0.37 12 -----1 10 -----793 23330 10 MHz/QPSK 24 0 23.45 0.464 0.53 1 Side C mm ____ 793 23330 10 MHz/QPSK 25 12 23.54 0.435 0.48 1 10 MHz/QPSK 1 23.45 793 23330 24 0 0.133 0.15 ----Side D 793 10 MHz/QPSK 23330 25 12 1 23.54 0.134 0.15 ----------793 23330 10 MHz/QPSK 1 24 0 23.45 0.102 0.12 Side E 793 23330 10 MHz/QPSK 25 12 0.0786 0.19 -----1 23.54 Repeat 793 23.45 0.734 0.83 23330 10 MHz/QPSK 24 0 -----1 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Power Measured Conducted ERP EIRP 2. SAR Measurement Phantom Configuration Left Head \times Eli4 Right Head **SAR** Configuration \boxtimes Body Head 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration Without Belt Clip N/A With Belt Clip 5. Tissue Depth is at least 15.0 cm

Without Belt Clip X/A

SAR Data Summary – 835 MHz Body - WCDMA

MEASUREMENT RESULTS End Measured Reported Frequency Power RMC Gap Plot Modulation Position Test Set Up SAR SAR Ch. (W/kg) MHz (dBm) (W/kg) WCDMA Side A ----836.6 4183 23.13 12.2 kbps Test Loop 1 0.552 0.67 WCDMA Side B Test Loop 1 0.20 ----836.6 4183 23.13 12.2 kbps 0.163 10 12.2 kbps 5 836.6 4183 WCDMA Side C 23.13 Test Loop 1 0.589 0.72 mm WCDMA Side D 23.13 12.2 kbps ----836.6 4183 Test Loop 1 0.117 0.14 WCDMA Side E 23.13 Test Loop 1 0.130 ----836.6 4183 12.2 kbps 0.16 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Conducted Power Measured ERP EIRP 2. SAR Measurement \boxtimes Eli4 Phantom Configuration Left Head Right Head \boxtimes Body SAR Configuration Head Test Code Base Station Simulator

With Belt Clip

3. Test Signal Call Mode

4. Test Configuration

5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 835 MHz Body – LTE Band 5

MEASUREMENT RESULTS Measured Reported MPR **End Power** BW/ RB RB Frequency Plot Position Gap SAR SAR Modulation Size Offset Target MHz Ch. (dBm) (W/kg) (W/kg) 829.0 10 MHz/QPSK 24 0 6 20450 1 23.9 0.975 1.00 836.5 20525 10 MHz/QPSK 1 24 0 24.0 0.954 0.95 ----------Side A 844.0 20599 10 MHz/QPSK 1 24 0 24.0 0.937 0.94 10 MHz/QPSK 25 12 836.5 20525 1 22.9 0.782 0.80 -----836.5 20525 10 MHz/QPSK 50 0 1 22.9 0.698 0.71 ----------836.5 20525 10 MHz/QPSK 1 24 0 24.0 0.400 0.40 Side B 10 MHz/QPSK 10 25 12 1 -----836.5 20525 22.9 0.326 0.33 10 MHz/QPSK mm 836.5 20525 1 24 0 24.0 0.790 0.79 -----Side C 836.5 20525 10 MHz/QPSK 25 12 1 22.9 0.647 -----0.66 -----836.5 20525 10 MHz/QPSK 1 24 0 24.0 0.233 0.23 Side D 10 MHz/QPSK 836.5 20525 25 12 0.20 1 22.9 0.191 -----836.5 20525 10 MHz/QPSK 24 0 24.0 0.0973 0.10 1 Side E 836.5 20525 10 MHz/QPSK 25 12 1 22.9 0.0769 0.08 20525 10 MHz/QPSK 24 0 23.9 0.956 Repeat 836.5 1 0.98 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Power Measured Conducted ERP EIRP 2. SAR Measurement Left Head \boxtimes Eli4 Right Head Phantom Configuration SAR Configuration Head \boxtimes Body 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration Without Belt Clip N/A With Belt Clip 5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 835 MHz Body – LTE Band 26

MEASUREMENT RESULTS End RB RB MPR Frequency BW/ Measured Reported Gap Plot Position Power Modulation Size Offset Target SAR (W/kg) SAR (W/kg) MHz Ch. (dBm) 37 -----831.5 26865 15 MHz/QPSK 1 0 23.43 0.535 0.61 Side A 26865 22.20 831.5 15 MHz/QPSK 36 19 0.512 0.62 1 -----831.5 15 MHz/QPSK 37 0 23.43 0.337 0.38 -----26865 1 Side B -----831.5 26865 15 MHz/QPSK 36 19 1 22.20 0.274 0.33 831.5 15 MHz/QPSK 10 7 26865 37 0 23.43 0.79 1 0.689 Side C mm -----831.5 26865 15 MHz/QPSK 36 19 1 22.20 0.560 0.67 831.5 26865 15 MHz/QPSK 37 0 23.43 0.195 0.22 1 Side D -----15 MHz/QPSK 22.20 831.5 26865 36 19 1 0.155 0.19 831.5 15 MHz/QPSK 0.0949 26865 1 37 0 23.43 0.11 -----Side E -----831.5 26865 15 MHz/QPSK 36 19 22.20 0.0751 0.09 1 Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Power Measured Conducted ERP EIRP 2. SAR Measurement Phantom Configuration Left Head \times Eli4 Right Head SAR Configuration \boxtimes Body Head 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration With Belt Clip Without Belt Clip $\square N/A$ 5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 1750 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Frequ	ency	Rev Level/ Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR		
-		MHz	Ch.	Modulation		(dBm)		_	(W/kg)	(W/kg)		
	8	1712.4	1312	WCDMA		22.56	12.2 kbps	Test Loop 1	0.945	1.32		
		1732.6	1413	WCDMA	Side A	22.77	12.2 kbps	Test Loop 1	0.902	1.20		
		1752.6	1513	WCDMA		23.32	12.2 kbps	Test Loop 1	0.961	1.12		
		1732.6	1413	WCDMA	Side B	22.77	12.2 kbps	Test Loop 1	0.595	0.79		
10		1712.4	1312	WCDMA		22.56	12.2 kbps	Test Loop 1	0.586	0.82		
mm		1732.6	1413	WCDMA	Side C	22.77	12.2 kbps	Test Loop 1	0.644	0.86		
		1752.6	1513	WCDMA		23.32	12.2 kbps	Test Loop 1	0.604	0.71		
		1732.6	1413	WCDMA	Side D	22.77	12.2 kbps	Test Loop 1	0.139	0.19		
		1732.6	1413	WCDMA	Side E	22.77	12.2 kbps	Test Loop 1	0.540	0.72		
		1712.4	1312	WCDMA	Repeat	22.56	12.2 kbps	Test Loop 1	0.973	1.36		
						Body 1.6 W/kg (mW/g) averaged over 1 gram						
		1. Batte	ry is ful	lly charged for	r all tests.							
		Powe	er Meas	ured	Cond	lucted	ERF)	EIRP			
			Measur									
			tom Con Config	nfiguration uration	n Deft Head Eli4 Right Head Head					ad		
		3. Test	Signal C	Call Mode	Test	Test Code Base Station Simulator						
		4. Test	Configu	iration	With	With Belt Clip \square Without Belt Clip \square N/A						
			-	n is at least 15.		1		I				

Jay M. Moulton Vice President

SAR Data Summary – 1750 MHz Body – LTE Band 66

MEA	SURE	EMENT R	ESULT	S							
Gap	Plot	Position	Freq	uency	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported SAR (W/kg)
-			MHz	Ch.		Size	Unset	Target	(dBm)	SAR (W/Kg)	(w/kg)
	9		1720.0	132072	20 MHz/QPSK	1	49	0	23.9	1.28	1.31
			1745.0	132322	20 MHz/QPSK	1	49	0	24.0	1.10	1.10
			1780.0	132572	20 MHz/QPSK	1	49	0	24.0	0.96	0.96
		Side A	1720.0	132072	20 MHz/QPSK	50	24	1	22.9	1.23	1.26
			1745.0	132322	20 MHz/QPSK	50	24	1	23.0	0.893	0.89
			1780.0	132572	20 MHz/QPSK	50	24	1	23.0	0.786	0.79
			1720.0	132072	20 MHz/QPSK	100	0	1	23.0	0.721	0.72
		Side B	1745.0	132322	20 MHz/QPSK	1	49	0	24.0	0.408	0.41
10		Side D	1745.0	132322	20 MHz/QPSK	50	24	1	23.0	0.341	0.34
mm		Side C	1745.0	132322	20 MHz/QPSK	1	49	0	24.0	0.773	0.77
		Side C	1745.0	132322	20 MHz/QPSK	50	24	1	23.0	0.640	0.64
		Side D	1745.0	132322	20 MHz/QPSK	1	49	0	24.0	0.196	0.20
		Side D	1745.0	132322	20 MHz/QPSK	50	24	1	23.0	0.165	0.17
		Side E	1720.0	132072	20 MHz/QPSK	1	49	0	23.9	1.21	1.24
			1745.0	132322	20 MHz/QPSK	1	49	0	24.0	0.916	0.92
			1780.0	132572	20 MHz/QPSK	1	49	0	24.0	0.509	0.51
			1745.0	132322	20 MHz/QPSK	50	24	1	23.0	0.666	0.67
		Repeat	1720.0	132072	20 MHz/QPSK	1	49	0	23.9	1.26	1.29
									1.6 W/	ody (g (mW/g) over 1 gram	
	1.	Battery Power M	•	-	for all tests.	lucted		ERF)	EIF	2P
	2.										
		Phantor SAR Co		guration tion	Left I Head	t Head Eli4 Right Head				ht Head	
	3.	Test Sig			Test	Code			•	Simulator	
	4.	Test Co				Belt C	Clip	Witl	hout Belt	t Clip $\square N/A$	A
	5.	Tissue l	Depth is	at least	15.0 cm						

SAR Data Summary – 1900 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Freque	ency	Rev Level/ Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR		
_		MHz	Ch.	Modulation		(dBm)		_	(W/kg)	(W/kg)		
	10	1852.4	9262	WCDMA		23.67	12.2 kbps	Test Loop 1	1.11	1.20		
		1880.0	9400	WCDMA	Side A	23.89	12.2 kbps	Test Loop 1	1.08	1.11		
		1907.6	9538	WCDMA		23.71	12.2 kbps	Test Loop 1	0.968	1.04		
		1852.4	9262	WCDMA	Side B	23.89	12.2 kbps	Test Loop 1	0.220	0.23		
10		1852.4	9262	WCDMA		23.67	12.2 kbps	Test Loop 1	0.851	0.92		
mm		1880.0	9400	WCDMA	Side C	23.89	12.2 kbps	Test Loop 1	0.821	0.84		
		1907.6	9538	WCDMA		23.71	12.2 kbps	Test Loop 1	0.732	0.78		
		1852.4	9262	WCDMA	Side D	23.89	12.2 kbps	Test Loop 1	0.237	0.24		
		1852.4	9262	WCDMA	Side E	23.89	12.2 kbps	Test Loop 1	0.229	0.23		
		1907.6	9538	WCDMA	Repeat	23.67	12.2 kbps	Test Loop 1	1.09	1.18		
						Body 1.6 W/kg (mW/g) averaged over 1 gram						
		1. Batte	ry is ful	lly charged for	r all tests.							
			er Measi		Cond	lucted	ERF)	EIRP			
			Measur									
		Phan		nfiguration	n Eli4 Right Head Head					ad		
		3. Test	Signal (Call Mode	Test	Test Code Base Station Simulator						
		4. Test	Configu	iration	With	With Belt Clip Without Belt Clip N/A						
			•	n is at least 15.		1		1	<u> </u>			

SAR Data Summary – 1900 MHz Body – LTE Band 2

MEA	SURE		ESULTS	S			1	1	I		
Gap	Plot	Position	Frequ	lency	BW/	RB	RB	MPR	End Power	Measured SAR	Reported SAR
•			MHz	Ch.	Modulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)
			1860.0	18700	20 MHz/QPSK	1	49	0	24.0	0.838	0.84
			1880.0	18900	20 MHz/QPSK	1	49	0	24.0	0.940	0.94
	11		1900.0	19100	20 MHz/QPSK	1	49	0	24.0	0.948	0.95
		Side A	1860.0	18700	20 MHz/QPSK	50	24	1	23.0	0.796	0.80
			1880.0	18900	20 MHz/QPSK	50	24	1	23.0	0.878	0.88
			1900.0	19100	20 MHz/QPSK	50	24	1	23.0	0.846	0.85
			1900.0	19100	20 MHz/QPSK	100	0	1	23.0	0.732	0.73
		Side B	1880.0	18900	20 MHz/QPSK	1	49	0	24.0	0.244	0.24
10		Side D	1880.0	18900	20 MHz/QPSK	50	24	1	23.0	0.202	0.20
mm			1860.0	18700	20 MHz/QPSK	1	49	0	24.0	0.831	0.83
		Side C	1880.0	18900	20 MHz/QPSK	1	49	0	24.0	0.797	0.80
		Side C	1900.0	19100	20 MHz/QPSK	1	49	0	24.0	0.799	0.80
			1880.0	18900	20 MHz/QPSK	50	24	1	23.0	0.622	0.62
		Side D	1880.0	18900	20 MHz/QPSK	1	49	0	24.0	0.183	0.18
		Side D	1880.0	18900	20 MHz/QPSK	50	24	1	23.0	0.156	0.16
		Side E	1880.0	18900	20 MHz/QPSK	1	49	0	24.0	0.186	0.19
		Side L	1880.0	18900	20 MHz/QPSK	50	24	1	23.0	0.153	0.15
		Repeat	1860.0	18700	20 MHz/QPSK	1	49	0	24.0	0.922	0.92
								a	Body 1.6 W/kg (mW veraged over 1		
	1.	•	-	-	for all tests.						
		Power M	easured		Cond	ducted		ERP		EIRP	
	2.	SAR Mea	asureme	ent							
		Phantom	Config	uration	Left	Head		\boxtimes Eli4		Right	Head
		SAR Cor	-		Head		i	$\overline{\times}$ Body		8	
	3.	Test Sign	-		Test		1		Station Sim	ilator	
	4.	Test Con				Belt C	lin		ut Belt Clip	_	
	5.	Tissue De	0			2011 0	P				
			-r								
	\sim	-									

SAR Data Summary – 1900 MHz Body – LTE Band 25

Gap	Plot	Position	Frequ	iency	BW/	RB	RB	MPR	End Power	Measured SAR	Reported SAR
Oap	1100	1 031001	MHz	Ch.	Modulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)
	12		1860.0	26140	20 MHz/QPSK	1	49	0	23.46	1.18	1.34
			1882.5	26365	20 MHz/QPSK	1	49	0	22.70	0.992	1.34
			1905.0	26590	20 MHz/QPSK	1	49	0	23.20	1.02	1.23
		Side A	1860.0	26140	20 MHz/QPSK	50	24	1	22.60	0.956	1.05
		1	1882.5	26365	20 MHz/QPSK	50	24	1	21.95	0.831	1.06
			1905.0	26590	20 MHz/QPSK	50	24	1	22.29	0.914	1.08
			1860.0	26140	20 MHz/QPSK	100	0	1	22.66	0.972	1.05
		Side B	1882.5	26365	20 MHz/QPSK	1	49	0	22.70	0.369	0.50
10		Side D	1882.5	26365	20 MHz/QPSK	50	24	1	21.95	0.320	0.41
mm			1860.0	26140	20 MHz/QPSK	1	49	0	23.46	0.955	1.08
		Side C	1882.5	26365	20 MHz/QPSK	1	49	0	22.70	0.827	1.12
		Side C	1905.0	26590	20 MHz/QPSK	1	49	0	23.20	0.834	1.00
			1882.5	26365	20 MHz/QPSK	50	24	1	21.95	0.676	0.86
		Side D	1882.5	26365	20 MHz/QPSK	1	49	0	22.70	0.139	0.19
		Side D	1882.5	26365	20 MHz/QPSK	50	24	1	21.95	0.111	0.14
		Side E	1882.5	26365	20 MHz/QPSK	1	49	0	22.70	0.245	0.33
			1882.5	26365	20 MHz/QPSK	50	24	1	21.95	0.199	0.25
		Repeat	1860.0	26140	20 MHz/QPSK	1	49	0	23.46	1.23	1.39
								a	Body 1.6 W/kg (mW/ veraged over 1 g		
			•	0	for all tests.						
		Power M	easured		Conc	lucted		ERP		EIRP	
	2.	SAR Mea	asureme	ent							
		Phantom				Head		Eli4		Right	Head
			0								Incau
		SAR Con			Head	1		Body			
	3.	Test Sign	al Call	Mode	Test	Code		Base S	Station Simu	ulator	
		Test Con				Belt C	lip	Witho	ut Belt Clip	N/A	
	5.	Tissue De	epth is a	t least	15.0 cm		•		1		

SAR Data Summary – 2300 MHz Body – LTE Band 30

- 1			iency	BW/ Modulation	RB Size	RB Offset	MPR Terret	End Power		Reported
1		MHz	Ch.	Modulation	Size	Unset	Target	(dBm)	SAR (W/kg)	SAR (W/kg)
	13	2310.0	27710	10 MHz/QPSK	1	24	0	23.46	0.742	0.84
	Side A	2310.0	27710	10 MHz/QPSK	25	12	1	22.42	0.660	0.75
		2310.0	27710	10 MHz/QPSK	50	0	1	22.75	0.562	0.60
10	Side C	2310.0	27710	10 MHz/QPSK	1	24	0	23.46	0.369	0.42
mm	Side C	2310.0	27710	10 MHz/QPSK	25	12	1	22.42	0.242	0.28
	Side D	2310.0	27710	10 MHz/QPSK	1	24	0	23.46	0.664	0.75
	Side D	2310.0	27710	10 MHz/QPSK	25	12	1	22.42	0.543	0.62
	Repeat	2310.0	27710	10 MHz/QPSK	1	24	0	23.46	0.721	0.82
								1.6 W/kg	ody g (mW/g) over 1 gram	

Power Measured Conducted

2. SAR Measurement Phantom Configuration SAR Configuration

3. Test Signal Call Mode

4. Test Configuration

Left Head

Head Test Code

With Belt Clip

 \boxtimes Eli4 \boxtimes Body

Right Head

Base Station Simulator Without Belt Clip $\square N/A$

5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 2300 MHz Body – LTE Band 40

Gap	Plot	Position	Frequ	ency	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported SAR (W/kg)
-			MHz	Ch.		Size	Unset	Taryet	(dBm)	SAR (W/Ky)	SAR (W/Kg)
			2310.0	38750	20 MHz/QPSK	1	49	0	23.42	0.923	1.06
			2350.0	39150	20 MHz/QPSK	1	49	0	23.44	0.836	0.95
	14	Side A	2390.0	39550	20 MHz/QPSK	1	49	0	23.61	1.07	1.17
			2350.0	39150	20 MHz/QPSK	50	24	1	22.75	0.758	0.80
10			2390.0	39550	20 MHz/QPSK	100	0	1	22.72	0.658	0.70
mm		Side C	2350.0	39150	20 MHz/QPSK	1	49	0	23.44	0.359	0.41
		Side C	2350.0	39150	20 MHz/QPSK	50	24	1	22.75	0.282	0.30
		Side D	2350.0	39150	20 MHz/QPSK	1	49	0	23.44	0.569	0.65
		Side D	2350.0	39150	20 MHz/QPSK	50	24	1	22.75	0.470	0.50
		Repeat	2390.0	39550	20 MHz/QPSK	1	49	0	23.61	1.05	1.15
	1.	•	is fully Measure	0	l for all tests.	nducted		ERP		EIRF)
	2.				Cor	auctea		LERP			
			n Config			t Head		Eli4		Righ	t Head
		SAR C	onfigura	tion	Hea	ıd		Body	V		
	3.		gnal Call			t Code				Simulator	
		•	-				~				
	4.	Test Co	onfigurat	10n	W1t	h Belt (Clip	With	out Belt	Clip $\square N/A$	
	5.	Tissue]	Depth is	at least	15.0 cm						
	_		1								
		_									
	\subset	\sum	\supset								

Jay M. Moulton Vice President

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05 v02r05 clause 5.4. TDD is tested at the highest duty factor using UL-DL configuration 1 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05 v02r05. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4. A duty cycle of 1:1.58 is the highest duty cycle achievable which was used for testing Band 40.

SAR Data Summary – 2550 MHz Body – LTE Band 7

MEA	SUR	EMENT F	RESULT	rs							
Gap	Plot	Position	•	uency	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported SAR (W/kg)
-			MHz	Ch.		Size		Target	(dBm)	SAR (W/Kg)	
			2507.5	20850	20 MHz/QPSK	1	49	0	22.4	1.10	1.26
	15		2535.0	21100	20 MHz/QPSK	1	49	0	22.6	1.31	1.44
			2562.5	21350	20 MHz/QPSK	1	49	0	22.2	1.18	1.42
		Side A	2507.5	20850	20 MHz/QPSK	50	24	1	21.1	0.973	1.20
			2535.0	21100	20 MHz/QPSK	50	24	1	21.1	1.03	1.27
			2562.5	21350	20 MHz/QPSK	50	24	1	21.3	1.02	1.20
			2535.0	21100	20 MHz/QPSK	100	0	1	21.2	1.01	1.21
		Side B	2535.0	21100	20 MHz/QPSK	1	49	0	22.6	0.152	0.17
10		Side D	2535.0	21100	20 MHz/QPSK	50	24	1	21.1	0.106	0.13
mm		Side C	2535.0	21100	20 MHz/QPSK	1	49	0	22.6	0.681	0.75
		Side C	2535.0	21100	20 MHz/QPSK	50	24	1	21.1	0.692	0.85
			2507.5	20850	20 MHz/QPSK	1	49	0	22.4	0.801	0.92
		Side D	2535.0	21100	20 MHz/QPSK	1	49	0	22.6	0.921	1.01
		Side D	2562.5 21350 2535.0 21100		20 MHz/QPSK	1	49	0	22.2	0.832	1.00
				21100	20 MHz/QPSK	50	24	1	21.1	0.760	0.94
		Side E	2535.0	21100	20 MHz/QPSK	1	49	0	22.6	0.129	0.14
			2535.0	21100	20 MHz/QPSK	50	24	1	21.1	0.0987	0.12
		Repeat	2535.0	21100	20 MHz/QPSK	1	49	0	22.6	1.29	1.41
								Body 1.6 W/kg (mW/g) averaged over 1 gram			
	1.	Battery	is fully	charge	d for all tests.						
		Power I	•	-		nducted	b	ERI	þ	EIR	Р
	2.	SAR M	easuren	nent							
		Phantor SAR Co	n Confi	guratio	nLet He	ft Head ad		⊠Eli4 ⊠Bod		Rig	ht Head
	3. Test Signal Call Mode Test Co							Bas	e Station	Simulator	
	4. Test Configuration With Be									Clip N/A	
	5.		-		t 15.0 cm		~~ <u>r</u>				
	5.		- Pur It	1040							

SAR Data Summary – 2500 MHz Body – LTE Band 38

Gap	Plot	Position	Frequ	•	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported SAR (W/kg)
			MHz	Ch.			40	•	(dBm)		
			2580	37850	20 MHz/QPSK	1	49	0	23.13	0.711	0.87
			2595 2610	38000 38150	20 MHz/QPSK 20 MHz/QPSK	1	49 49	0	22.82	0.734 0.723	0.96
		Side A	2580	37850	20 MHz/QPSK 20 MHz/QPSK	1 50	49 24	0	22.87 22.04	0.723	0.94 0.76
		Side A	2580			50 50	24	1		0.629	0.76
10			2595	38000 38150	20 MHz/QPSK 20 MHz/QPSK	50 50	24	1	21.84 21.89	0.618	0.82
mm			2595	38000	20 MHz/QPSK	100	0	1	21.89	0.603	0.63
			2595	38000	20 MHz/QPSK	100	49	0	22.82	0.190	0.05
		Side C	2595	38000	20 MHz/QPSK	50	24	1	21.84	0.0988	0.23
			2595	38000	20 MHz/QPSK	1	49	0	22.82	0.237	0.13
		Side D	2595	38000	20 MHz/QPSK	50	24	1	21.84	0.195	0.25
		Repeat	2595	38000	20 MHz/QPSK	1	49	0	22.82	0.721	0.95
	1.	•	Measure	-	l for all tests. Con	nducted		ERP		EIRF)
	2.	SAR M	easurem	lent							
		Phantor	n Config	guration		t Head		Eli4		Righ	t Head
			onfigura	-	Hea			Body	7		
						t Code		= .		Simulator	
	3	Test Sig				. 0046					
	3. 4	Test Sig				h Relt (`lin	With	out Relt	Clin $ X N/A$	
	4.	Test Co	nfigurat	ion		h Belt (Clip	With	out Belt	Clip 🖾 N/A	
		Test Co	nfigurat	ion	Wit 15.0 cm	h Belt (Clip	With	out Belt	Clip 🖄 N/A	
	4.	Test Co	nfigurat	ion		h Belt (Clip	With	out Belt	Clip 🖄 N/A	

Jay M. Moulton Vice President

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05 v02r05 clause 5.4. TDD is tested at the highest duty factor using UL-DL configuration 1 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05 v02r05. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4. A duty cycle of 1:1.58 is the highest duty cycle achievable which was used for testing Band 40.

SAR Data Summary – 2500 MHz Body – LTE Band 41

Sap	Plot	Position	Frequ	uency	BW/	RB	RB	MPR	End Power	Measured	Reported
•			MHz	Ch.	Modulation	Size	Offset	Target	(dBm)	SAR (W/kg)	SAR (W/kg
			2506.0	39750	20 MHz/QPSK	1	49	0	24.58	1.03	1.14
			2544.5	40135	20 MHz/QPSK	1	49	0	24.37	1.04	1.20
	17		2593.0	40620	20 MHz/QPSK	1	49	0	24.42	1.20	1.37
			2641.5	41105	20 MHz/QPSK	1	49	0	24.01	1.07	1.34
			2680.0	41490	20 MHz/QPSK	1	49	0	23.40	0.929	1.34
		Side A	2506.0	39750	20 MHz/QPSK	50	24	1	23.80	0.859	0.90
			2544.5	40135	20 MHz/QPSK	50	24	1	23.86	0.970	1.00
			2593.0	40620	20 MHz/QPSK	50	24	1	23.59	0.982	1.08
			2641.5	41105	20 MHz/QPSK	50	24	1	23.33	0.965	1.13
			2680.0	41490	20 MHz/QPSK	50	24	1	23.77	1.01	1.07
			2593.0	40620	20 MHz/QPSK	100	0	1	23.73	0.785	0.84
10		Side C	2593.0	40620	20 MHz/QPSK	1	49	0	24.42	0.641	0.73
nm		elde e	2593.0	40620	20 MHz/QPSK	50	24	1	23.59	0.541	0.59
			2506.0	39750	20 MHz/QPSK	1	49	0	24.58	0.757	0.83
			2544.5	40135	20 MHz/QPSK	1	49	0	24.37	0.773	0.89
			2593.0	40620	20 MHz/QPSK	1	49	0	24.42	0.753	0.86
			2641.5	41105	20 MHz/QPSK	1	49	0	24.01	0.697	0.88
		Side D	2680.0	41490	20 MHz/QPSK	1	49	0	23.40	0.638	0.92
			2506.0	39750	20 MHz/QPSK	50	24	1	23.80	0.823	0.86
			2544.5	40135	20 MHz/QPSK	50	24	1	23.86	0.854	0.88
			2593.0	40620	20 MHz/QPSK	50	24	1	23.59	0.814	0.89
			2641.5	41105	20 MHz/QPSK	50	24	1	23.33	0.766	0.89
		Denset	2680.0 2593.0	41490 40620	20 MHz/QPSK 20 MHz/QPSK	50 1	24 49	1	23.77 24.42	0.755 1.25	0.80
										g (mW/g) over 1 gram	
	1.	•		0	d for all tests.			_		_	
	•	Power M				nducted	t	ERI		EIR	Р
	2.	SAR M	easuren	nent							
		Phantor	n Confi	guratio	n 🗌 Let	ft Head		Eli4	-	Rig	ht Head
				-							
		SAR Co	U					Bod	•		
	3.	Test Sig	gnal Cal	ll Mode		st Code		Bas	e Station	Simulator	
	4.	Test Co	nfigura	tion	Wi	th Belt	Clin	Wif	hout Belt	Clip 🕅 N/A	
	5.	Tissue l				nout Den					
			1								
	\sim										
	\mathbf{i}		\geq								
	Ì	A.	\mathbf{D}								

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05 v02r05 clause 5.4. TDD is tested at the highest duty factor using UL-DL configuration 1 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05 v02r05. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4. A duty cycle of 1:1.58 is the highest duty cycle achievable which was used for testing Band 41.

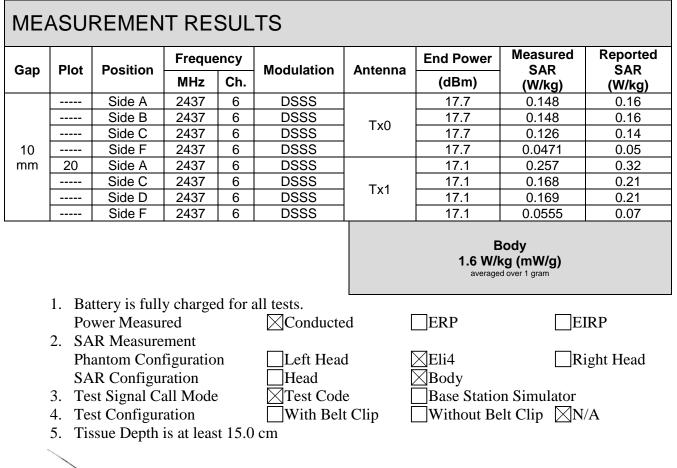
SAR Data Summary – 3500 MHz Body – LTE Band 42

Gap	Plot	Position	Frequ	iency	BW/	RB	RB	MPR	End Power	Measured SAR	Reported SAR
•			MHz	Ch.	Modulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)
	18	Side A	3500.0	42590	20 MHz/QPSK	1	49	0	22.96	0.331	0.42
		Side A	3500.0	42590	20 MHz/QPSK	50	24	1	22.42	0.270	0.31
		Side C	3500.0	42590	20 MHz/QPSK	1	49	0	22.96	0.264	0.34
10		Side C	3500.0	42590	20 MHz/QPSK	50	24	1	22.42	0.218	0.25
mm		Side D	3500.0	42590	20 MHz/QPSK	1	49	0	22.96	0.0894	0.11
		Olde D	3500.0	42590	20 MHz/QPSK	50	24	1	22.42	0.0784	0.09
		Side E	3500.0	42590	20 MHz/QPSK	1	49	0	22.96	0.0723	0.09
		Olde E	3500.0	42590	20 MHz/QPSK	50	24	1	22.42	0.0590	0.07
	1.	Battery is	s fully c	harged	for all tests.						
		Power M	•	-	Cond	ducted		ERP		EIRP	
	2.	SAR Mea	asureme	ent							
		Phantom	Config	uration	Left	Head		⊠Eli4		Right	Head
		SAR Cor	-		Head	ł		Body		-	
	3.	Test Sign	al Call	Mode	⊠Test	Code		Base S	Station Sim	ulator	
	4.	Test Con	figuratio	on	With	n Belt C	lip	Witho	ut Belt Clip) 🖾 N/A	
	5.	Tissue D	epth is a	t least	15.0 cm						

Jay M. Moulton Vice President

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05 v02r05 clause 5.4. TDD is tested at the highest duty factor using UL-DL configuration 1 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05 v02r05. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4. A duty cycle of 1:1.58 is the highest duty cycle achievable which was used for testing Band 42.

SAR Data Summary – 3600 MHz Body – LTE Band 48


Gap	Plot	Position	Freq	uency	BW/	RB	RB	MPR	End Power	Measured SAR	Reported SAR
•			MHz	Ch.	Modulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)
	19	Side A	3625	55990	20 MHz/QPSK	1	49	0	23.6	0.319	0.35
		Side A	3625	55990	20 MHz/QPSK	50	24	1	23.1	0.285	0.35
		Side C	3625	55990	20 MHz/QPSK	1	49	0	23.6	0.269	0.30
10		Side C	3625	55990	20 MHz/QPSK	50	24	1	23.1	0.224	0.28
mm		Side D	3625	55990	20 MHz/QPSK	1	49	0	23.6	0.112	0.12
		Side D	3625	55990	20 MHz/QPSK	50	24	1	23.1	0.0897	0.11
		Side E	3625	55990	20 MHz/QPSK	1	49	0	23.6	0.104	0.11
		Side L	3625	55990	20 MHz/QPSK	50	24	1	23.1	0.0856	0.11
	6.	Battery is	s fully c	harged	for all tests.			a	veraged over 1	gram	
		Power M			Cond	ducted	ed ERP EIRP				
	7.	SAR Mea									
		Phantom SAR Con			n Left Head ⊠Eli4 ☐Head ⊠Body				Right Head		
	8. Test Signal Call Mode					Test Code Base Station Sin					
	9.	Test Con	figurati	on	With	ith Belt Clip \Box Without Belt Clip \boxtimes N/A					

Jay M. Moulton Vice President

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05 v02r05 clause 5.4. TDD is tested at the highest duty factor using UL-DL configuration 1 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05 v02r05. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4. A duty cycle of 1:1.58 is the highest duty cycle achievable which was used for testing Band 48.

SAR Data Summary – 2450 MHz Body 802.11b

ZZ

SAR Data Summary – 5200 MHz Body 802.11a

MEASUREMENT RESULTS

Gan	Plot	Position	Frequency		Medulation	Antonno	End Power	Measured	Reported SAR
Gap	Plot		MHz	Ch.	Modulation	Antenna	(dBm)	SAR (W/kg)	(W/kg)
10		Side A	5220	44	OFDM	Tx0	11.0	0.150	0.19
	21	Side B	5200	40	OFDM		11.1	0.547	0.67
		Side B	5220	44	OFDM		11.0	0.479	0.60
		Side C	5220	44	OFDM		11.0	0.092	0.12
		Side F	5220	44	OFDM		11.0	0.00933	0.01
mm		Side A	5220	44	OFDM	Tx1	11.0	0.0716	0.09
		Side C	5220	44	OFDM		11.0	0.0489	0.06
		Side D	5220	44	OFDM		11.0	0.236	0.30
		Side F	5220	44	OFDM		11.0	0.00575	0.01
						Body 1.6 W/kg (mW/g) averaged over 1 gram			

1.	Battery is fully charged for a	ll tests.		
	Power Measured	Conducted	ERP	EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	Base Station Simu	lator
4.	Test Configuration	With Belt Clip	Without Belt Clip	$\square N/A$

- 4. Test Configuration
- 5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 5800 MHz Body 802.11a

MEASUREMENT RESULTS

			Frequ	ency			End Power	Measured	Reported
Gap	Plot	Position	MHz	Ch.	Modulation	Antenna	(dBm)	SAR (W/kg)	SAR (W/kg)
			5785	157	OFDM		19.8	0.926	0.97
		Side A	5825	165	OFDM		19.9	0.838	0.86
			5745	149	OFDM		19.9	1.15	1.18
	22	Side B	5785	157	OFDM		19.8	1.36	1.42
			5825	165	OFDM	Tx0	19.9	1.25	1.28
		Side C	5785	157	OFDM		19.8	0.546	0.57
		Side C	5825	165	OFDM		19.9	0.519	0.53
		Side D	5785	157	OFDM		19.8	0.137	0.14
		Side E	5785	157	OFDM		19.8	0.116	0.12
10		Side F	5785	157	OFDM		19.8	0.147	0.15
mm			5785	157	OFDM		17.6	0.695	0.76
		Side A	5825	165	OFDM		17.8	0.635	0.66
		Side B	5785	157	OFDM		17.6	0.102	0.11
		Side C	5785	157	OFDM		17.6	0.300	0.33
			5745	149	OFDM	Tx1	17.7	1.12	1.20
		Side D	5785	157	OFDM		17.6	1.29	1.41
			5825	165	OFDM		17.8	1.26	1.32
		Side E	5785	157	OFDM		17.6	0.0687	0.08
		Side F	5785	157	OFDM		17.6	0.0559	0.06
		Repeat	5785	157	OFDM	Tx0	19.8	1.34	1.40

Body 1.6 W/kg (mW/g) averaged over 1 gram

1. Battery is fully charged for all tests. Power Measured Conducted ERP 2. SAR Measurement

Head

Test Code

With Belt Clip

Left Head

- \boxtimes Eli4
- EIRP

Right Head

 \boxtimes Body Base Station Simulator

Without Belt Clip $\square N/A$

3. Test Signal Call Mode

SAR Configuration

Phantom Configuration

4. Test Configuration

5. Tissue Depth is at least 15.0 cm

SAR Data Summary – Simultaneous Transmit (Worst Case) Ant 0 – WiFi

Side	Frequency (WLAN)		Frequency (WWAN)		WWAN Technology	SAR (W/kg)	SAR (W/kg)	Total		
0.00	MHz	Ch.	MHz	Ch.	, in the second s	WLAN	WWAN SAR (W/kg			
А	5785	157	1882.5	26365	LTE Band 25	0.97	1.34	2.31		
В	5785	157	1732.6	1413	WCDMA Band 4	1.41	0.79	2.20		
С	5785	157	1882.5	26365	LTE Band 25	0.57	1.12	1.69		
D	5785	157	782.0	23230	LTE Band 13	1.41	0.32	1.73		
Е	5785	157	1720.0	132072	LTE Band 66	0.12	1.24	1.36		
F	5785	157		Estim	ated	0.15	0.48	0.63		
					Body 1.6 W/kg (mW/g) averaged over 1 gram					

The worst case condition is Side A. The WWAN and WLAN antennas are a minimum of 80 mm apart. Using the highest reported SAR to calculate the simultaneous Tx using peak separation ratio, the highest ratio would be 0.04 which meets the requirements of KDB 447498 section 4.3.2 3) on page 13. The calculation is shown below.

Simultaneous Separation Ratio Calculation

 $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits

 $(0.97 + 1.34)^{1.5}/80 = 0.04$

SAR Data Summary – Simultaneous Transmit (Worst Case) Ant 2 – WiFi

MEASUREMENT RESULTS

Side	Frequency (WLAN)		Frequency (WWAN)		WWAN Technology	SAR (W/kg) WLAN	SAR (W/kg) WWAN	Total SAR (W/kg)	
	MHz	Ch.	MHz	Ch.					
А	5785	157	2535.0	21100	LTE Band 7	0.97	1.44	2.41	
В	5785	157	2535.0	21100	LTE Band 7	1.41	0.17	1.58	
С	5785	157	2535.0	21100	LTE Band 7	0.57	0.85	1.42	
D	5785	157	2535.0	21100	LTE Band 7	1.41	1.01	2.42	
Е	5785	157	2535.0	21100	LTE Band 7	0.12	0.14	0.26	
F	5785	157	Estimated			0.15	0.40	0.55	
					Body 1.6 W/kg (mW/g) averaged over 1 gram				

The worst case condition is Side A. The WWAN and WLAN antennas are a minimum of 85 mm apart. Using the highest reported SAR to calculate the simultaneous Tx using peak separation ratio, the highest ratio would be 0.04 which meets the requirements of KDB 447498 section 4.3.2 3) on page 13. The calculation is shown below.

Simultaneous Separation Ratio Calculation

 $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits

 $(0.97 + 1.44)^{1.5}/85 = 0.04$

SAR Data Summary – Simultaneous Transmit (Worst Case) Ant 4 – WiFi

Side	Frequency (WLAN)		Frequency (WWAN)		WWAN Technology	SAR (W/kg) WLAN	SAR (W/kg) WWAN	Total SAR (W/kg)	
	MHz	Ċh.	MHz	Ch.					
А	5785	157	3500.0	42590	LTE Band 42	0.97	0.42	1.39	
В	5785	157		Estim	nated	1.41	0.40	1.81	
С	5785	157	3500.0	42590	LTE Band 42	0.57	0.34	0.91	
D	5785	157	3625.0	55990	LTE Band 48	1.41	0.12	1.53	
Е	5785	157	3625.0	55990	LTE Band 48	0.12	0.11	0.23	
F	5785	157		Estim	nated	0.15	0.40	0.55	
					Body 1.6 W/kg (mW/g) averaged over 1 gram				

The worst case condition is Side B. The WWAN and WLAN antennas are a minimum of 76 mm apart. Using the highest reported SAR to calculate the simultaneous Tx using peak separation ratio, the highest ratio would be 0.03 which meets the requirements of KDB 447498 section 4.3.2 3) on page 13. The calculation is shown below.

Simultaneous Separation Ratio Calculation

 $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits

 $(1.41 + 0.40)^{1.5}/76 = 0.03$

SAR Data Summary – Simultaneous Transmit (Uplink CA)

The volume scan was conducted for the two highest channels for all the uplink configurations on Side A of the device. The worst case SAR combined value for the Uplink CA is 1.46 W/kg. See plots 23 and 24 in Appendix B for the data sheets.

1 st Band	2 nd Band	1 st Band Conducted Power	2 nd Band Conducted Power	1 st Band Channel	2 nd Band Channel	SAR Volume Scan Sum	Scaled SAR
B2	B13	23.1 dBm	23.6 dBm	19100	23230	1.18	1.45
B66	B13	22.9 dBm	23.6 dBm	132072	23230	1.13	1.46

11. Test Equipment List

Table 11.1 Equipment Specifications

Туре	Calibration Due Date	Calibration Done Date	Serial Number	
Staubli Robot TX60L	N/A	N/A	F07/55M6A1/A/01	
Measurement Controller CS8c	N/A	N/A	1012	
ELI5 Flat Phantom	N/A	N/A	2037	
Device Holder	N/A	N/A	N/A	
Data Acquisition Electronics 4	01/10/2019	01/10/2018	1321	
Data Acquisition Electronics 4	01/10/2020	01/10/2019	1321	
SPEAG E-Field Probe EX3DV4	08/18/2018	08/18/2017	3693	
SPEAG E-Field Probe EX3DV4	04/20/2019	04/20/2018	3662	
Speag Validation Dipole D750V2	08/10/2018	08/10/2015	1053	
Speag Validation Dipole D750V2	07/13/2019	07/13/2018	1016	
Speag Validation Dipole D835V2	08/10/2018	08/10/2015	4d131	
Speag Validation Dipole D835V2	07/13/2019	07/13/2018	4d089	
Speag Validation Dipole D1750V2	08/13/2018	08/13/2015	1061	
Speag Validation Dipole D1750V2	07/20/2019	07/20/2018	1018	
Speag Validation Dipole D1900V2	08/13/2019	08/13/2015	5d147	
Speag Validation Dipole D1900V2	07/13/2018	07/13/2018	5d116	
Speag Validation Dipole D2300V2	08/20/2019	08/20/2018	1060	
Speag Validation Dipole D2450V2	08/10/2016	08/10/2015	881	
Speag Validation Dipole D2550V2	08/10/2018	08/10/2015	1003	
Speag Validation Dipole D2550V2	07/12/2020	07/12/2018	1003	
Speag Validation Dipole D2550V2	04/13/2019	04/13/2018	1061	
	04/13/2019	04/13/2018	1024	
Speag Validation Dipole D3700V2				
Speag Validation Dipole D5GHzV2	08/11/2018	08/11/2015	1119	
Agilent N1911A Power Meter	05/20/2019	03/20/2017	GB45100254	
Agilent N1922A Power Sensor	06/21/2019	06/21/2017	MY45240464	
Advantest R3261A Spectrum Analyzer	03/26/2019	03/20/2017	31720068	
Agilent (HP) 8350B Signal Generator	03/26/2019	03/20/2017	2749A10226	
Agilent (HP) 83525A RF Plug-In	03/26/2019	03/20/2017	2647A01172	
Agilent (HP) 8753C Vector Network Analyzer	03/26/2019	03/20/2017	3135A01724	
Agilent (HP) 85047A S-Parameter Test Set	03/26/2019	03/20/2017	2904A00595	
Agilent (HP) 8960 Base Station Sim.	03/30/2019	03/30/2017	MY48360364	
Anritsu MT8820C	07/27/2019	07/27/2017	6201176199	
Agilent N1911A Power Meter	04/27/2020	04/27/2019	GB45100254	
Agilent N1922A Power Sensor	04/27/2020	04/27/2019	MY45240464	
Advantest R3261A Spectrum Analyzer	03/25/2020	03/25/2019	31720068	
Agilent (HP) 8350B Signal Generator	03/20/2020	03/20/2019	2749A10226	
Agilent (HP) 83525A RF Plug-In	03/20/2020	03/20/2019	2647A01172	
Agilent (HP) 8753C Vector Network Analyzer	03/20/2020	03/20/2019	3135A01724	
Agilent (HP) 85047A S-Parameter Test Set	03/20/2020	03/20/2019	2904A00595	
Agilent (HP) 8960 Base Station Sim.	03/19/2020	03/19/2019	MY48360364	
Anritsu MT8820C	01/26/2020	01/26/2019	6201176199	
Agilent 778D Dual Directional Coupler	N/A	N/A	MY48220184	
MiniCircuits BW-N20W5+ Fixed 20 dB Attenuator	N/A	N/A	N/A	
MiniCircuits SPL-10.7+ Low Pass Filter	N/A	N/A	R8979513746	
Aprel Dielectric Probe Assembly	N/A	N/A	0011	
Body Equivalent Matter (750 MHz)	N/A	N/A	N/A	
Body Equivalent Matter (835 MHz)	N/A	N/A	N/A	
Body Equivalent Matter (1750 MHz)	N/A	N/A	N/A	
Body Equivalent Matter (1900 MHz)	N/A	N/A	N/A	
Body Equivalent Matter (2450 MHz)	N/A	N/A	N/A	
Body Equivalent Matter (2550 MHz)	N/A	N/A	N/A	
Body Equivalent Matter (3-5 GHz)	N/A	N/A	N/A	

12. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

13. References

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996

[2] ANSI/IEEE C95.1 – 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.

[3] ANSI/IEEE C95.3 – 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 2002.

[4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010.

[5] IEEE Standard 1528 – 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013.

[6] Industry Canada, RSS – 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015.

[7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

```
*****
Test Result for UIM Dielectric Parameter
Wed 06/Jun/2018
Freq Frequency(GHz)
FCC_eH Limits for Head Epsilon
FCC_sH Limits for Head Sigma
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
FreqFCC_eB FCC_sB Test_e Test_s0.700055.730.9655.720.970.710055.690.9655.690.980.720055.650.9655.660.980.730055.610.9655.630.980.740055.570.9655.600.990.750055.530.9655.570.990.760055.490.9655.540.990.770055.450.9655.501.000.780055.410.9755.461.000.782055.4040.9755.4521.00*0.793055.3680.9755.4081.003*0.800055.340.9755.381.01
Freq FCC_eB FCC_sB Test_e Test_s
* value interpolated
Test Result for UIM Dielectric Parameter
Thu 26/Jul/2018
Freq Frequency(GHz)
FCC_eH Limits for Head Epsilon
FCC_sH Limits for Head Sigma
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
```


***** Test Result for UIM Dielectric Parameter Tue 19/Feb/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 55.73 0.96 55.53 0.97 Freq 0.7000 55.714 0.96 55.518 0.974* 0.7040 55.70 0.96 55.508 0.978* 0.7075 0.7100 55.69 0.96 55.50 0.98 0.7110 0.7200 0.7300 0.7400 0.7500 0.7600 0.7700 0.7800 0.780055.410.9755.371.000.790055.380.9755.331.000.800055.340.9755.291.01 * value interpolated Test Result for UIM Dielectric Parameter Fri 01/Jun/2018 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 55.32 0.97 56.05 0.96 55.28 0.97 56.00 0.98 Freq 0.8050 0.8150

***** Test Result for UIM Dielectric Parameter Mon 18/Feb/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 55.32 0.97 54.87 0.98 55.28 0.97 54.82 0.98 Freq 0.8050 0.8150 0.8215 55.254 0.97 54.788 0.987* 0.8250 55.24 0.97 54.77 0.99 0.8250 0.8315 0.8350 0.8415 0.8550 0.8650
 55.214
 0.97
 54.744
 0.99*

 55.20
 0.97
 54.73
 0.99
 55.181 0.97754.707 0.993*55.14 0.9954.66 1.0055.11 1.0154.62 1.01 0.875055.081.0254.601.020.885055.051.0354.551.030.895055.021.0454.521.05 * value interpolated Test Result for UIM Dielectric Parameter Tue 05/Jun/2018 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 53.53 1.47 53.55 1.48 Freq 1.7100 53.51 1.47 53.52 1.49 1.7200 1.7300 53.48 1.48 53.38 1.50 53.46 1.48 53.36 1.51 1.7400 1.7450 53.445 1.485 53.34 1.515* 1.7500 53.43 1.49 53.32 1.52 1.7600 53.41 1.49 53.30 1.53 1.770053.381.5053.271.551.780053.351.5153.231.55

***** Test Result for UIM Dielectric Parameter Thu 26/Jul/2018 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ***** FCC_eB FCC_sB Test_e Test_s 53.53 1.47 53.39 1.47 Freq 1.7100 1.7200 53.51 1.47 53.36 1.48 53.48 1.48 53.32 1.49 1.7300 1.7400 53.46 1.48 53.29 1.50 1.745053.4451.48553.281.5051.750053.431.4953.271.511.760053.411.4953.251.521.770053.381.5053.221.531.780053.351.5153.201.54 53.445 1.485 53.28 1.505* 53.43 1.49 53.27 1.51 * value interpolated Test Result for UIM Dielectric Parameter Thu 21/Feb/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test e Epsilon of UIM Test_s Sigma of UIM **** Freq FCC_eB FCC_sB Test_e Test_s FreqFCC_eB FCC_sB Test_e Test_s1.710053.531.4752.811.491.712453.5251.4752.8031.492*1.720053.511.4752.781.501.730053.481.4852.741.511.732653.4751.4852.7351.513*1.740053.461.4852.721.521.750053.431.4952.681.531.752653.4251.4952.6751.533*1.760053.411.4952.661.541.770053.381.5052.631.551.780053.351.5152.591.56

***** Test Result for UIM Dielectric Parameter Thu 31/May/2018 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ***** FCC_eB FCC_sB Test_e Test_s 53.30 1.52 52.04 1.43 53.30 1.52 52.03 1.44 Freq 1.8400 1.8500 53.30 1.52 52.03 1.44* 1.8524 1.852453.301.5252.031.44*1.860053.301.5252.031.441.870053.301.5252.141.451.880053.301.5252.101.451.890053.301.5252.171.461.900053.301.5252.071.471.907653.301.5252.1081.493*1.910053.301.5252.121.501.920053.301.5252.001.50 * value interpolated Test Result for UIM Dielectric Parameter Thu 26/Jul/2018 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM
 Freq
 FCC_eB FCC_sB Test_e Test_s

 1.8500
 53.30
 1.52
 53.27
 1.49

 1.8600
 53.30
 1.52
 53.25
 1.50
 1.8500 1.8600 1.8700 1.8800 1.8900 1.9000 1.910053.301.5253.151.551.920053.301.5253.141.571.930053.301.5253.121.58

Test Result for UIM Dielectric Parameter Wed 27/Feb/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM Freq 1.8400 1.8500 53.30 1.52 52.40 1.54 1.8600 53.30 1.52 52.38 1.55 1.8700 1.8800 1.8825 53.30 1.52 52.36 1.55 53.30 1.52 52.355 1.553* 53.30 1.52 52.34 1.56 53.30 1.52 52.31 1.56 1.8900 1.890053.301.3252.341.301.900053.301.5252.311.561.905053.301.5252.301.565*1.910053.301.5252.291.571.920053.301.5252.271.57 * value interpolated Test Result for UIM Dielectric Parameter Thu 14/Feb/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FreqFCC_eB FCC_sB Test_e Test_s2.290052.911.8052.651.832.300052.901.8152.631.842.310052.891.8252.611.85 2.3200 52.87 1.83 52.59 1.86 2.3300
 52.87
 1.83
 52.97
 1.80

 52.86
 1.84
 52.58
 1.87

 52.85
 1.84
 52.56
 1.88

 52.83
 1.85
 52.54
 1.89
 2.3400 2.3500 2.3600 52.82 1.86 52.52 1.89 2.370052.811.8752.501.902.380052.791.8852.481.912.390052.781.8852.471.922.400052.771.8952.451.93

***** Test Result for UIM Dielectric Parameter Mon 02/Jul/2018 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 52.75 1.91 52.85 1.88 Freq 2.4100 2.4120 52.748 1.912 52.846 1.882* 2.4200 2.4300 2.4370 2.4400 2.4500 2.4600 52.74 1.92 52.83 1.89 52.73 1.93 52.81 1.90 2.430052.731.9352.811.902.437052.7161.93752.7961.907*2.440052.711.9452.791.912.450052.701.9552.771.922.460052.691.9652.751.932.462052.6861.96452.7461.932*2.470052.671.9852.731.942.480052.661.9952.711.95 * value interpolated Test Result for UIM Dielectric Parameter Mon 09/Jul/2018 Freq Frequency(GHz) FCC eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

***** Test Result for UIM Dielectric Parameter Mon 25/Feb/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

 Freq
 FCC_eB FCC_sB Test_e Test_s

 2.4900
 52.65
 2.01
 52.31
 2.01

 2.5000
 52.64
 2.02
 52.29
 2.02

 2.5060
 52.628
 2.032
 52.272
 2.032*

 2.5100
 52.62
 2.04
 52.26
 2.04

 2.5200
 52.61
 2.05
 52.23
 2.06

 2.5300
 52.60
 2.06
 52.21
 2.08

 2.5400
 52.59
 2.08
 52.20
 2.10

 2.5445
 52.581
 2.085
 52.191
 2.105*

 2.5500
 52.57
 2.09
 52.18
 2.11

 2.5600
 52.55
 2.12
 52.14
 2.15

 2.5800
 52.517
 2.13
 2.16
 2.13

 2.5930
 52.517
 2.15
 52.10
 2.18

 2.6000
 52.48
 2.19
 52.04
 2.22

 2.6300
 52.47
 2.21
 52.03
 2.24

 2.6410
 52.46
 2.22
 52.01
 2.25

 2.6415
 52.459
 2.23
 52.00
 FreqFCC_eB FCC_sB Test_e Test_s2.490052.65 2.01 52.31 2.012.500052.64 2.02 52.29 2.02

***** Test Result for UIM Dielectric Parameter Mon 11/Jun/2018 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ***** FCC_eB FCC_sB Test_e Test_s 51.33 3.31 51.24 3.34 51.32 3.32 51.23 3.35 Freq 3.4900 3.490051.333.3151.243.343.500051.323.3251.233.353.510051.313.3351.233.363.520051.293.3451.223.373.530051.283.3551.203.383.540051.273.3651.193.393.550051.253.3751.173.403.560051.243.3851.153.413.570051.233.4051.143.423.580051.213.4151.123.433.590051.203.4251.103.443.592551.1983.42351.0983.445*3.600051.173.4451.073.473.620051.163.4551.053.483.625051.1553.4651.0453.485*3.630051.153.4751.043.493.640051.133.4851.023.503.657551.1053.49850.9933.528*3.660051.103.5050.993.533.670051.083.5250.963.553.680051.083.5250.943.563.700051.063.5450.913.58*valueinterpolated 3.5000

***** Test Result for UIM Dielectric Parameter Thu 28/Jun/2018 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 49.15 5.18 49.22 5.10 49.12 5.21 49.19 5.12 Freq 5.1000

 5.1000
 49.15
 5.18
 49.22
 5.10

 5.1200
 49.12
 5.21
 49.19
 5.12

 5.1400
 49.10
 5.23
 49.16
 5.14

 5.1800
 49.04
 5.28
 49.10
 5.19

 5.2000
 49.01
 5.30
 49.07
 5.21

 5.2100
 49.00
 5.31
 49.055
 5.22*

 5.2200
 48.99
 5.32
 49.04
 5.23

 5.2400
 48.96
 5.37
 48.98
 5.28

 5.2600
 48.93
 5.37
 48.98
 5.28

 5.2800
 48.91
 5.39
 48.92
 5.33

 5.2900
 48.895
 5.405
 48.935
 5.32*

 5.3000
 48.88
 5.42
 48.92
 5.33

 5.3200
 48.85
 5.44
 48.89
 5.36

 5.400
 48.63
 5.63
 48.65
 5.53

 5.400
 48.63
 5.63
 48.65
 5.55

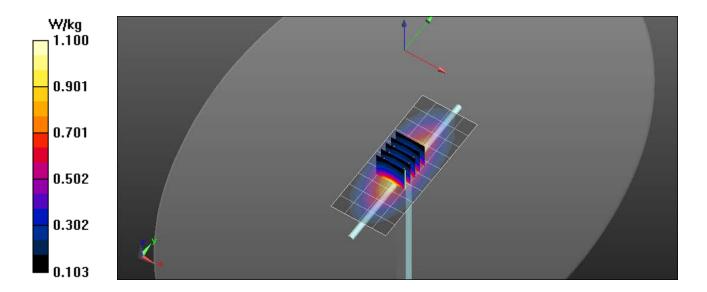
 5.500
 48.61
 5.65
 48.62
 5.58

 5.400
 48.63
 5. 5.1200 49.10 5.23 49.16 5.14 5.1400

Plot 1

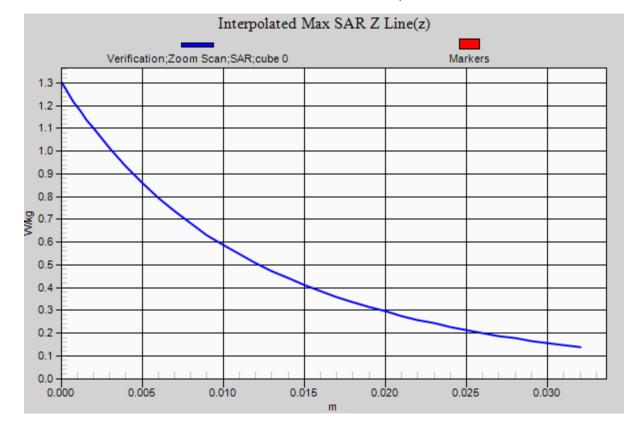
DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN:1053

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used: f = 750 MHz; σ = 0.99 S/m; ϵ_r = 55.57; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 6/6/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.62, 9.62, 9.62); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


750 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.08 W/kg

750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.30 W/kg **SAR(1 g) = 0.865 W/kg; SAR(10 g) = 0.569 W/kg** Maximum value of SAR (measured) = 1.10 W/kg

Report Number: SAR.20190210

Plot 2

DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN:1053

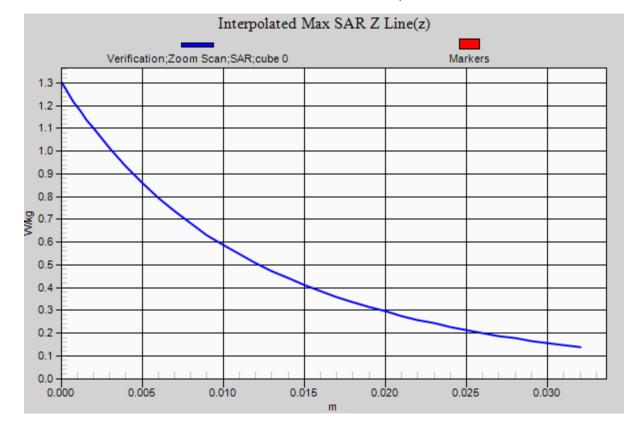
Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used: f = 750 MHz; σ = 0.98 S/m; ϵ_r = 55.38; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/26/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(9.35, 9.35, 9.35); Calibrated: 8/18/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/21/2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 1251 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

750 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.09 W/kg


750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.143 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.31 W/kg P_{in}= 100 mW **SAR(1 g) = 0.852 W/kg; SAR(10 g) = 0.551 W/kg**

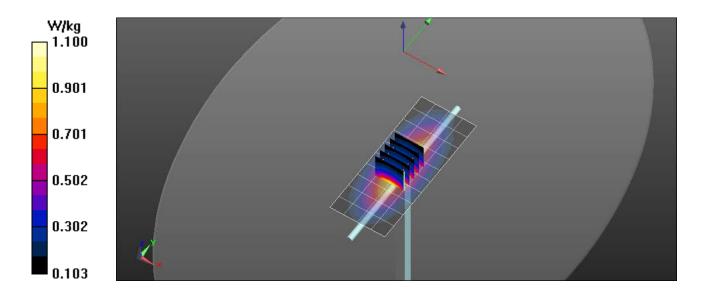
Maximum value of SAR (measured) = 1.10 W/kg

Report Number: SAR.20190210

Plot 3

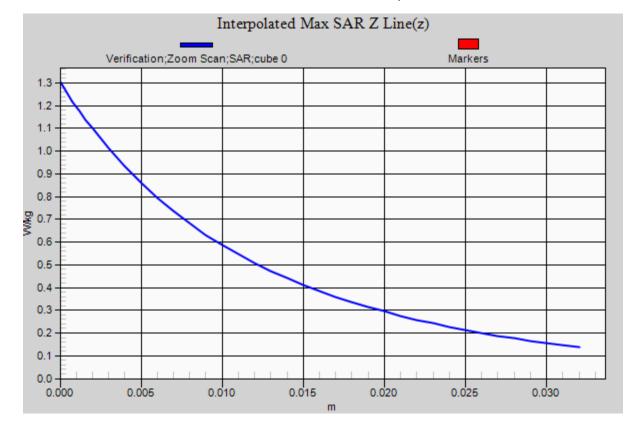
DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN:1016

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used: f = 750 MHz; σ = 0.99 S/m; ϵ_r = 55.38; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 2/19/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.62, 9.62, 9.62); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

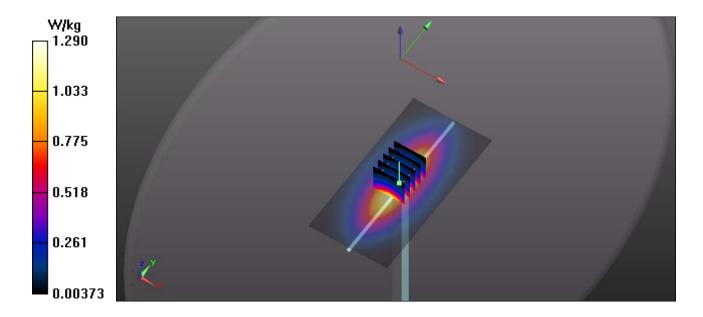

750 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.05 W/kg

750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.897 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.28 W/kg **SAR(1 g) = 0.859 W/kg; SAR(10 g) = 0.564 W/kg** Maximum value of SAR (measured) = 1.09 W/kg

Report Number: SAR.20190210

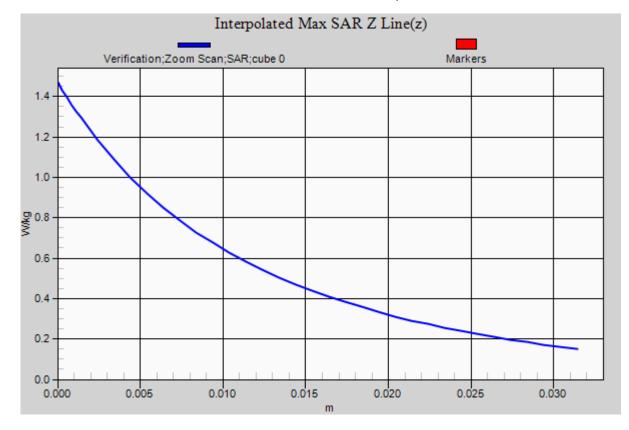
Plot 4

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d131


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used: f = 835 MHz; σ = 0.99 S/m; ϵ_r = 55.91; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/1/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(9.21, 9.21, 9.21); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

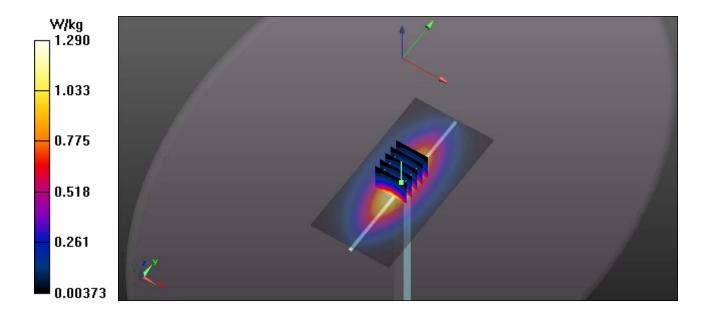

835 MHz Body/Verification/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.29 W/kg

835 MHz Body/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.612 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.47 W/kg SAR(1 g) = 0.953 W/kg; SAR(10 g) = 0.632 W/kg Maximum value of SAR (measured) = 1.29 W/kg

Report Number: SAR.20190210

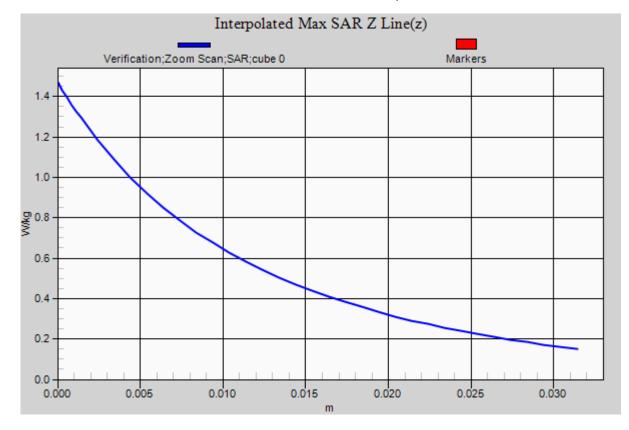
Plot 5

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d089


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used: f = 835 MHz; σ = 0.99 S/m; ϵ_r = 54.73; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 2/18/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(9.21, 9.21, 9.21); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


835 MHz Body/Verification/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.34 W/kg

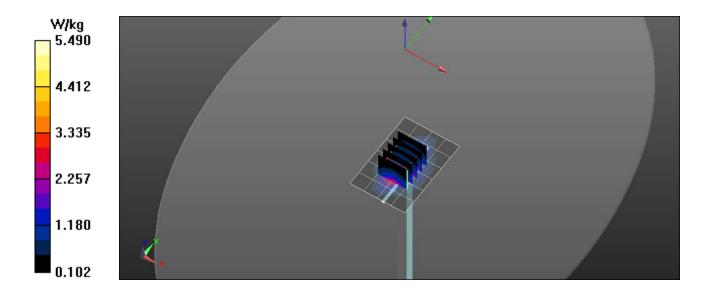
835 MHz Body/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 53.568 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.49 W/kg SAR(1 g) = 0.963 W/kg; SAR(10 g) = 0.637 W/kg Maximum value of SAR (measured) = 1.30 W/kg

Report Number: SAR.20190210

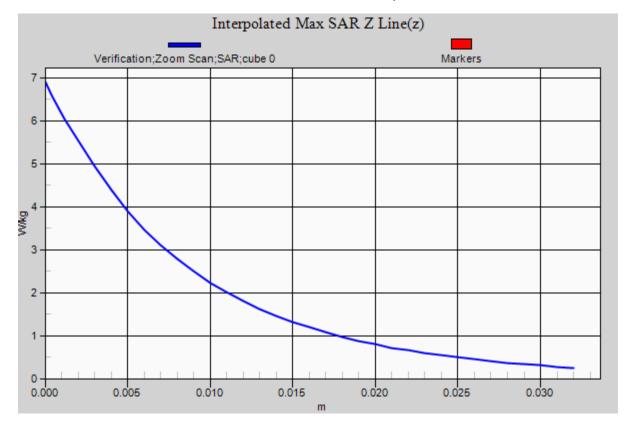
Plot 6

DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1061

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1750 MHz; σ = 1.52 S/m; ϵ_r = 53.32; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 6/5/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.96, 7.96, 7.96); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.33 W/kg

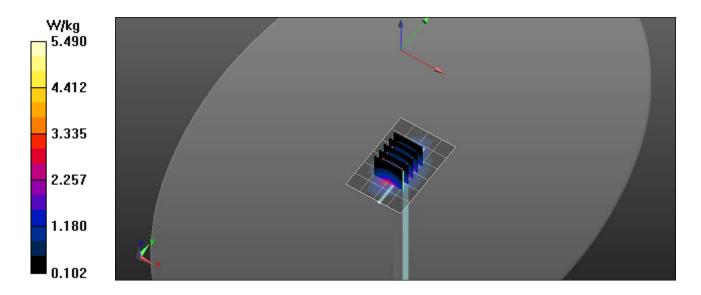
1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 6.89 W/kg **SAR(1 g) = 3.85 W/kg; SAR(10 g) = 2.03 W/kg** Maximum value of SAR (measured) = 5.49 W/kg

Plot 7

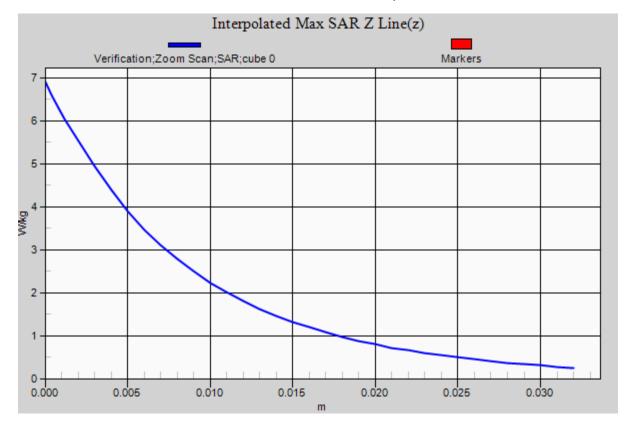
DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1061

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1750 MHz; σ = 1.51 S/m; ϵ_r = 53.27; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/26/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C


Probe: EX3DV4 - SN3693; ConvF(7.77, 7.77, 7.77); Calibrated: 8/18/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/21/2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 1251 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.31 W/kg

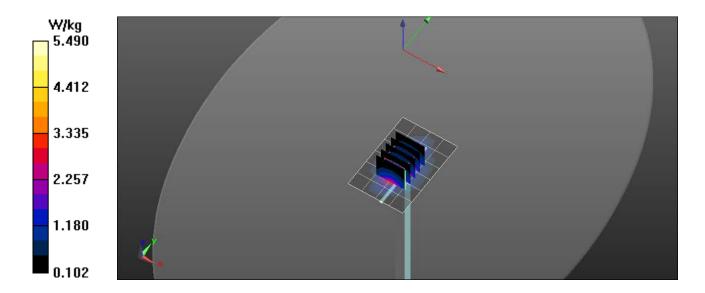
1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.489 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 6.92 W/kg P_{in}= 100 mW **SAR(1 g) = 3.81 W/kg; SAR(10 g) = 2 W/kg**

Maximum value of SAR (measured) = 5.47 W/kg

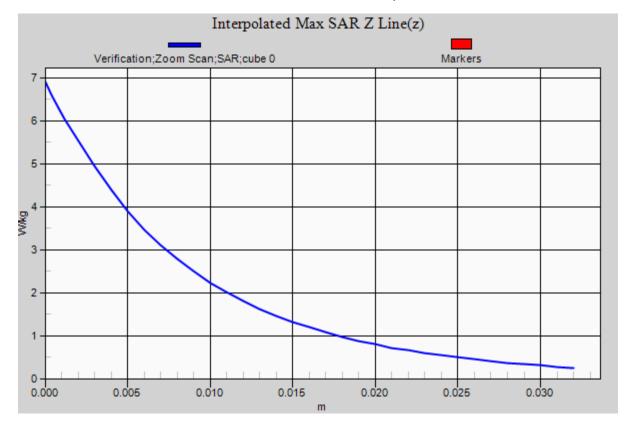
Plot 8

DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1018

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1750 MHz; σ = 1.53 S/m; ϵ_r = 52.68; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 2/6/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.96, 7.96, 7.96); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

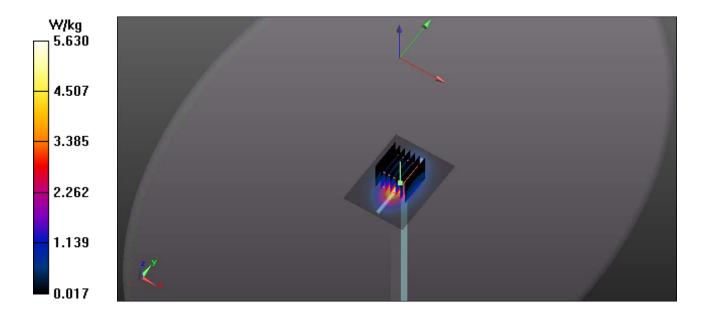

Procedure Notes:

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.25 W/kg

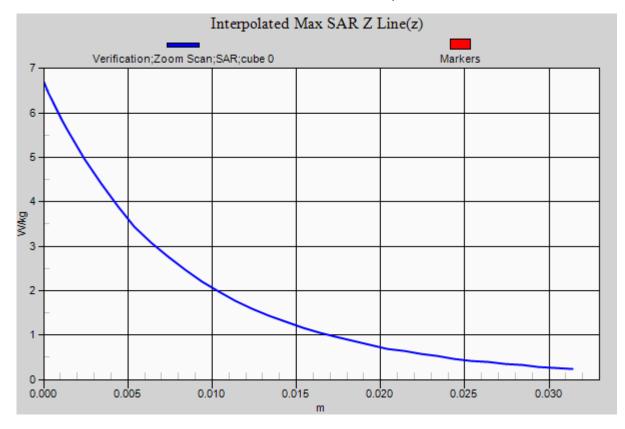
1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.236 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 6.86 W/kg SAR(1 g) = 3.69 W/kg; SAR(10 g) = 1.95 W/kg Maximum value of SAR (measured) = 5.47 W/kg

Plot 9

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d147


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 52.07; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/31/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(7.54, 7.54, 7.54); Calibrated: 8/18/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

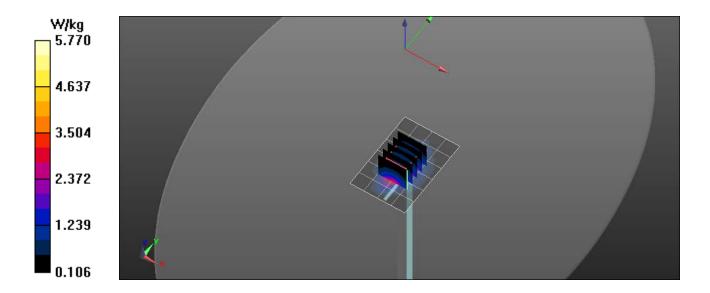
1900 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.63 W/kg

1900 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.612 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 6.68 W/kg **SAR(1 g) = 3.98 W/kg; SAR(10 g) = 1.92 W/kg** Maximum value of SAR (measured) = 5.63 W/kg

Plot 10

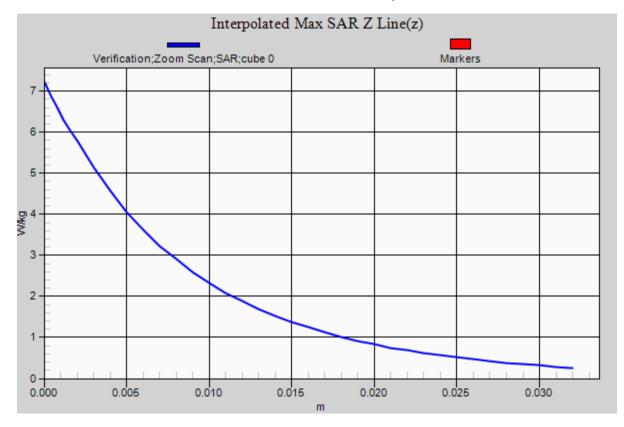
DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d147

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1900 MHz; σ = 1.54 S/m; ϵ_r = 53.17; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 7/26/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(7.54, 7.54, 7.54); Calibrated: 8/18/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/21/2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 1251 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

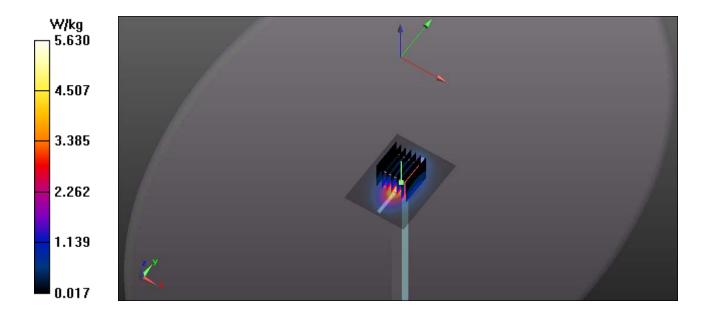

1900 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.44 W/kg

1900 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 7.22 W/kg **SAR(1 g) = 4.02 W/kg; SAR(10 g) = 2.1 W/kg** Maximum value of SAR (measured) = 5.77 W/kg

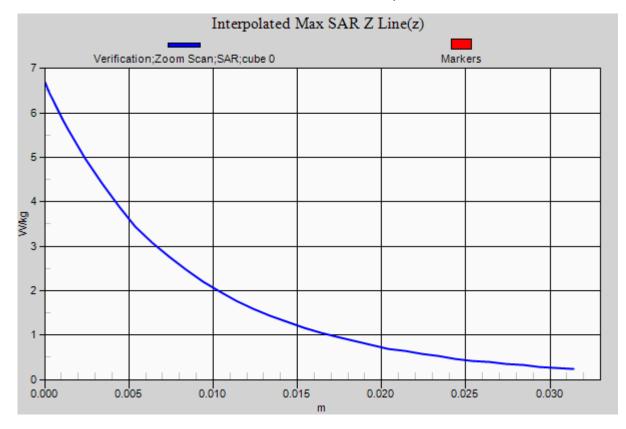
Report Number: SAR.20190210

Plot 11

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d116


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1900 MHz; σ = 1.56 S/m; ϵ_r = 52.31; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 2/27/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.61, 7.61, 7.61); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

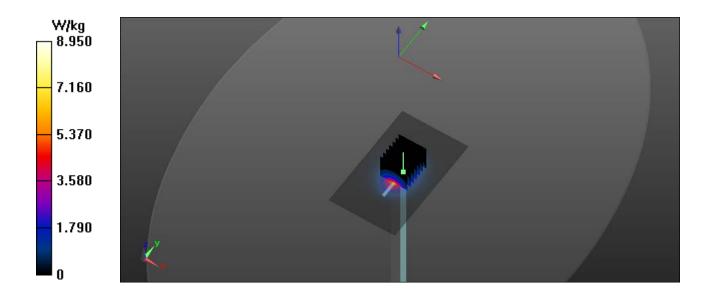

Procedure Notes:

1900 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.69 W/kg

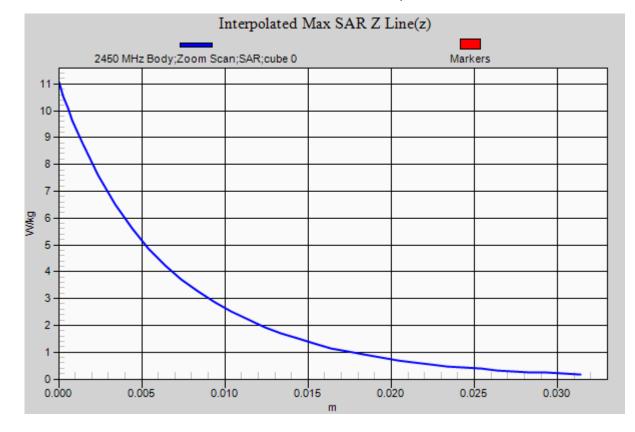
1900 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.975 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 6.65 W/kg **SAR(1 g) = 4.06 W/kg; SAR(10 g) = 1.97 W/kg** Maximum value of SAR (measured) = 5.62 W/kg

Plot 12

DUT: Dipole 2300 MHz D2300V2; Type: D2300V2; Serial: D2300V2 - SN:1060


Communication System: CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: MSL2300; Medium parameters used: f = 2300 MHz; σ = 1.84 S/m; ϵ_r = 52.63; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 2/14/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.33, 7.33, 7.33); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

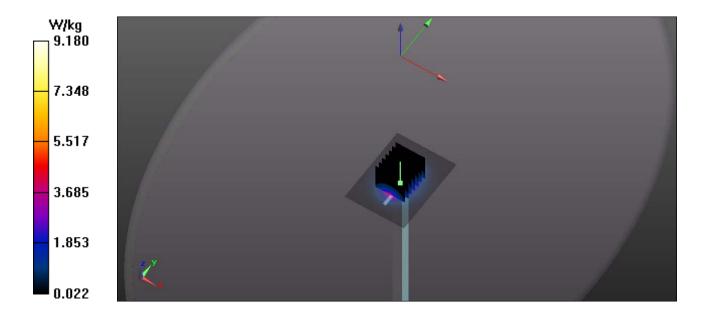

Procedure Notes:

Body Verification/2300 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.95 W/kg

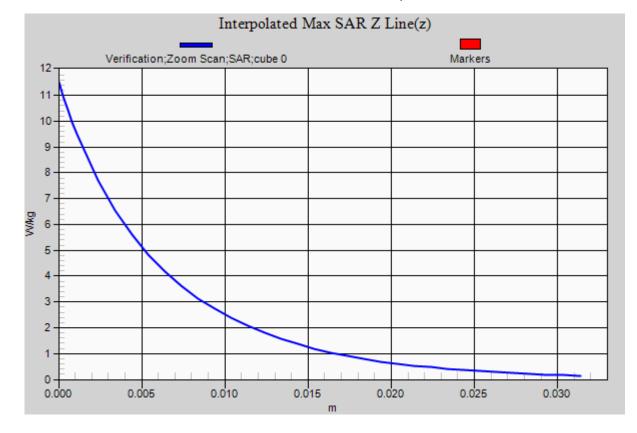
Body Verification/2300 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.597 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 11.18 W/kg Pin= 100 mW SAR(1 g) = 4.82 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 8.71 W/kg

Plot 13

DUT: Dipole 2550 MHz D2550V2; Type: D2550V2; Serial: D2550V2 - SN:1003


Communication System: CW; Frequency: 2550 MHz; Duty Cycle: 1:1 Medium: MSL2600; Medium parameters used: f = 2550 MHz; σ = 2.12 S/m; ϵ_r = 52.47; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/9/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.15, 7.15, 7.15); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

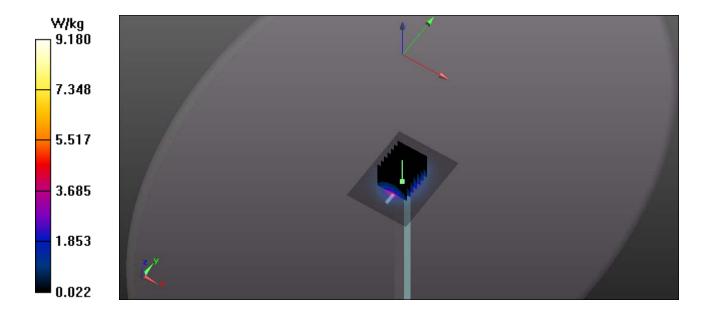

Procedure Notes:

2550 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.18 W/kg

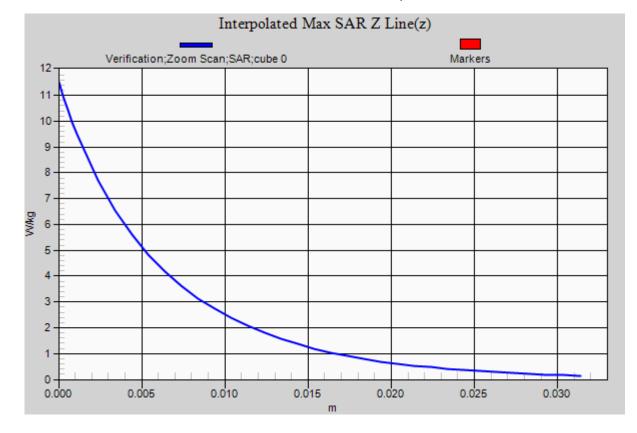
2550 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.541 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.5 W/kg SAR(1 g) = 5.41 W/kg; SAR(10 g) = 2.42 W/kg Maximum value of SAR (measured) = 8.98 W/kg

Plot 14

DUT: Dipole 2550 MHz D2550V2; Type: D2550V2; Serial: D2550V2 - SN:1003


Communication System: CW; Frequency: 2550 MHz; Duty Cycle: 1:1 Medium: MSL2600; Medium parameters used: f = 2550 MHz; σ = 2.11 S/m; ϵ_r = 52.18; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 2/25/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.15, 7.15, 7.15); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

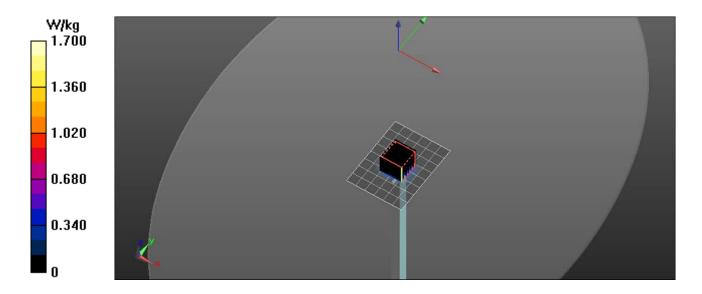

Procedure Notes:

2550 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 8.91 W/kg

2550 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.867 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 11.6 W/kg SAR(1 g) = 5.33 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 9.18 W/kg

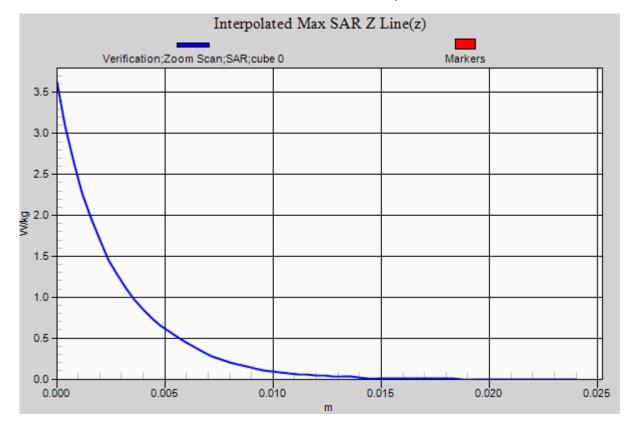
Plot 15

DUT: Dipole D3500V2; Type: D3500V2; Serial: D3500V2 - SN:1061


Communication System: CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 3500 MHz; σ = 3.35 S/m; ϵ_r = 51.23; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/11/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7, 7, 7); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

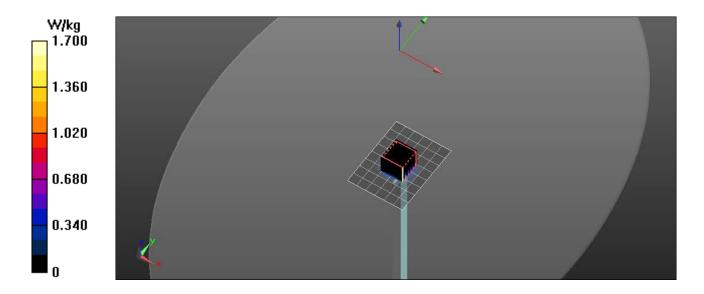

3500 MHz Body/Verification/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.64 W/kg

3500 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 11.892 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 0.655 W/kg; SAR(10 g) = 0.245 W/kg Maximum value of SAR (measured) = 1.70 W/kg

Report Number: SAR.20190210

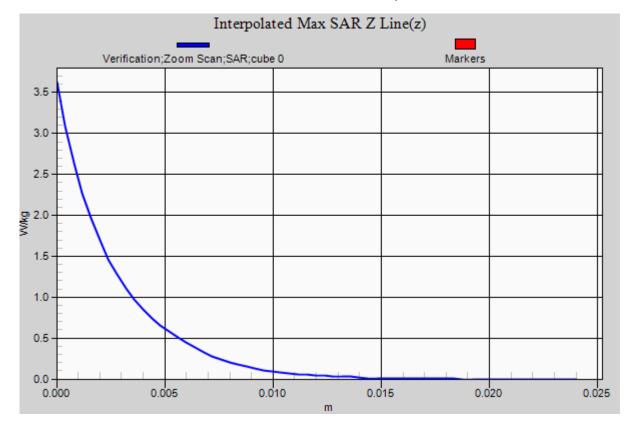
Plot 16

DUT: Dipole D3500V2; Type: D3500V2; Serial: D3500V2 - SN:1061


Communication System: CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 3500 MHz; σ = 3.34 S/m; ϵ_r = 51.11; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 2/25/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7, 7, 7); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

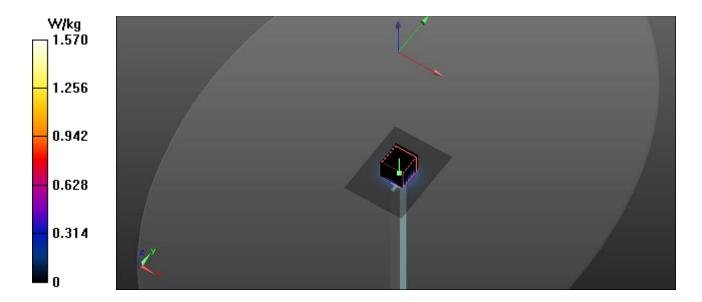

3500 MHz Body/Verification/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.61 W/kg

3500 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 12.358 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 0.657 W/kg; SAR(10 g) = 0.246 W/kg Maximum value of SAR (measured) = 1.68 W/kg

Report Number: SAR.20190210

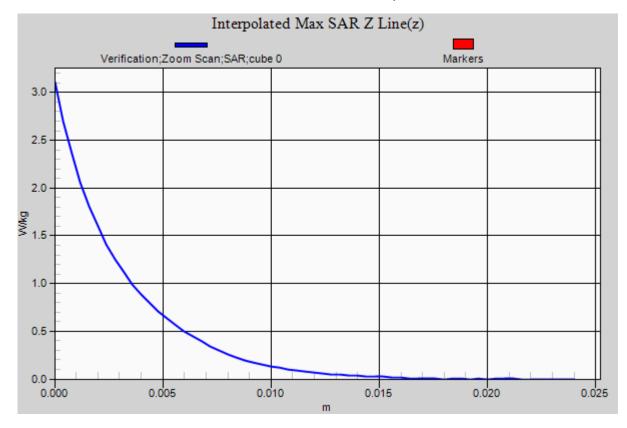
Plot 17

DUT: Dipole D3700V2; Type: D3700V2; Serial: D3700V2 - SN:1024


Communication System: CW; Frequency: 3700 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 3700 MHz; σ = 3.57 S/m; ϵ_r = 50.92; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/11/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(6.71, 6.71, 6.71); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

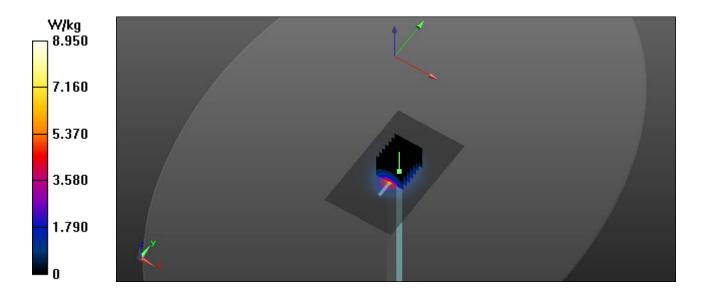

3700 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.55 W/kg

3700 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 55.759 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.09 W/kg SAR(1 g) = 0.659 W/kg; SAR(10 g) = 0.238 W/kg Maximum value of SAR (measured) = 1.58 W/kg

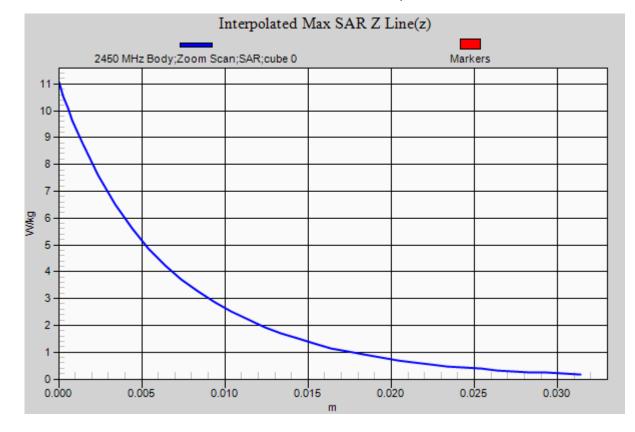
Report Number: SAR.20190210

Plot 18

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 881


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used: f = 2450 MHz; σ = 1.92 S/m; ϵ_r = 52.77; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/2/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.29, 7.29, 7.29); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

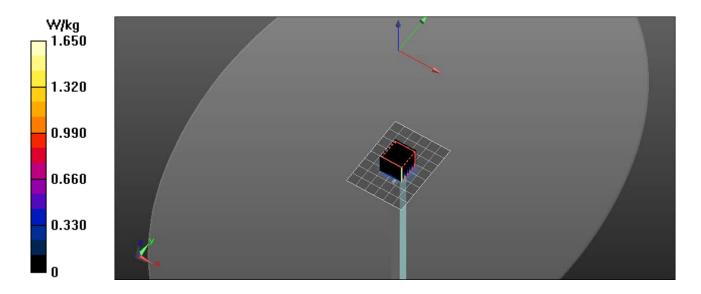

Procedure Notes:

Body Verification/2450 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.92 W/kg

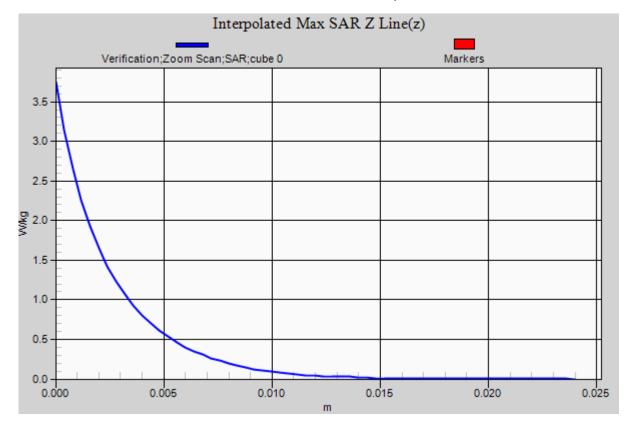
Body Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.359 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.04 W/kg SAR(1 g) = 5.22 W/kg; SAR(10 g) = 2.47 W/kg Maximum value of SAR (measured) = 8.79 W/kg

Plot 19

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119


Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5200 MHz; σ = 5.21 S/m; ϵ_r = 49.07; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/28/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(4.46, 4.46, 4.46); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

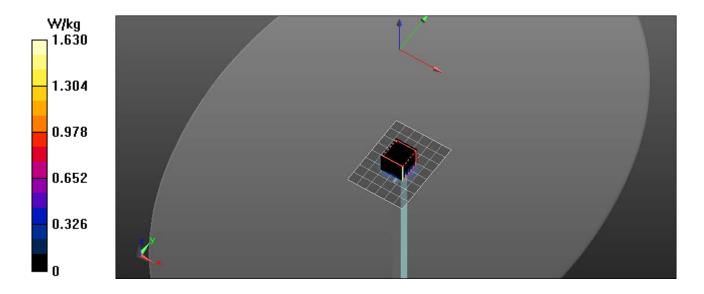

Procedure Notes:

5200 MHz Body/Verification/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.58 W/kg

5200 MHz Body/Verification/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 11.705 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.75 W/kg SAR(1 g) = 0.813 W/kg; SAR(10 g) = 0.231 W/kg Maximum value of SAR (measured) = 1.65 W/kg

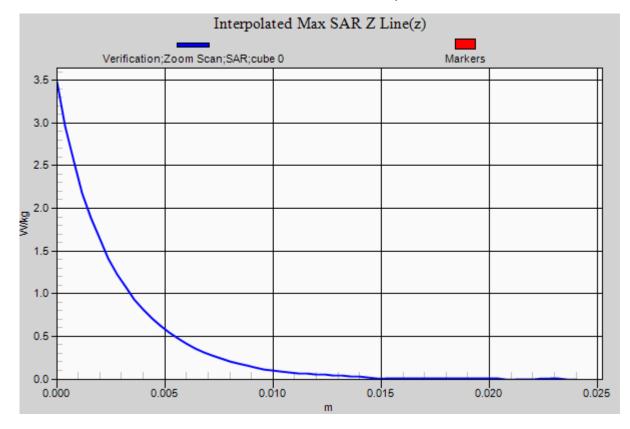
Plot 20

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119


Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5800 MHz; σ = 5.99 S/m; ϵ_r = 48.17; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/28/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(4.08, 4.08, 4.08); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

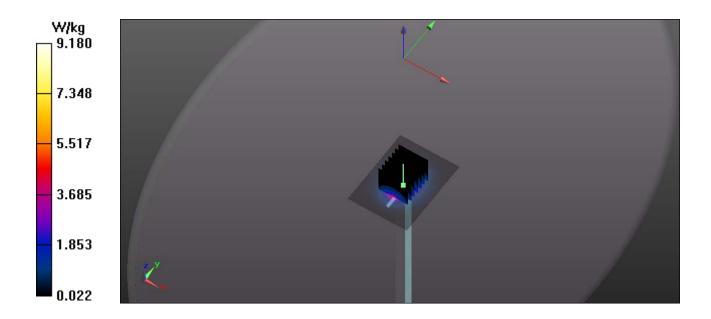

5800 MHz Body/Verification/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.56 W/kg

5800 MHz Body/Verification/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 11.621 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.47 W/kg SAR(1 g) = 0.799 W/kg; SAR(10 g) = 0.228 W/kg Maximum value of SAR (measured) = 1.63 W/kg

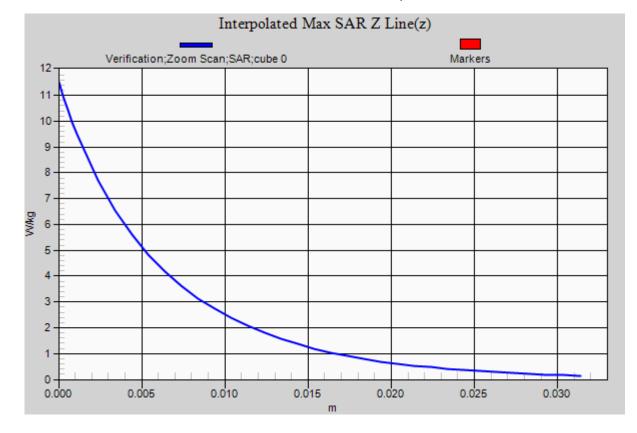
Report Number: SAR.20190210

Plot 21

DUT: Dipole 2550 MHz D2550V2; Type: D2550V2; Serial: D2550V2 - SN: 1003


Communication System: CW; Frequency: 2550 MHz; Duty Cycle: 1:1 Medium: MSL2600; Medium parameters used: f = 2550 MHz; σ = 2.12 S/m; ϵ_r = 51.89; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 9/9/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.12, 7.12, 7.12); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

2550 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 8.97 W/kg

2550 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.963 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 11.55 W/kg Pin= 100 mW SAR(1 g) = 5.29 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 9.18 W/kg

Appendix B – SAR Test Data Plots

Plot 1

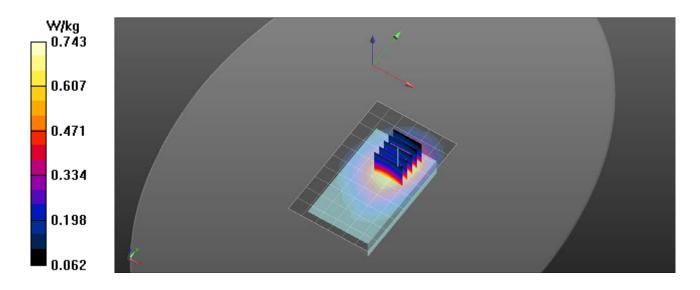
DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 707.5 MHz; σ = 0.978 S/m; ϵ_r = 55.508; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 2/19/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.8, 9.8, 9.8); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


Band 12 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.716 W/kg

Band 12 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

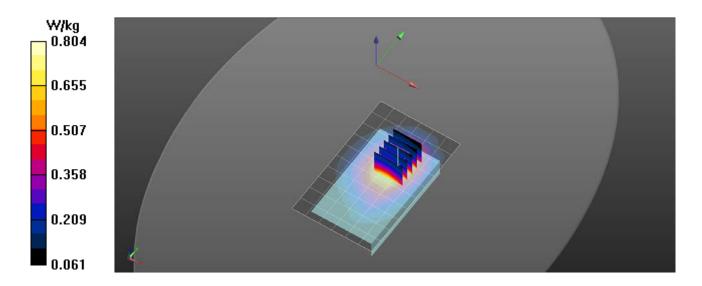
dy=8mm, dz=5mm Reference Value = 23.23 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.850 W/kg SAR(1 g) = 0.620 W/kg; SAR(10 g) = 0.441 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.743 W/kg

Plot 2

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 710 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used: f = 710 MHz; σ = 0.98 S/m; ϵ_r = 55.5; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 2/19/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.8, 9.8, 9.8); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 17 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.746 W/kg

Band 17 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.13 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.914 W/kg SAR(1 g) = 0.645 W/kg; SAR(10 g) = 0.460 W/kg Maximum value of SAR (measured) = 0.804 W/kg

Plot 3

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 782 MHz; σ = 1 S/m; ϵ_r = 55.452; ρ = 1000 kg/m³ Phantom section: Flat Section

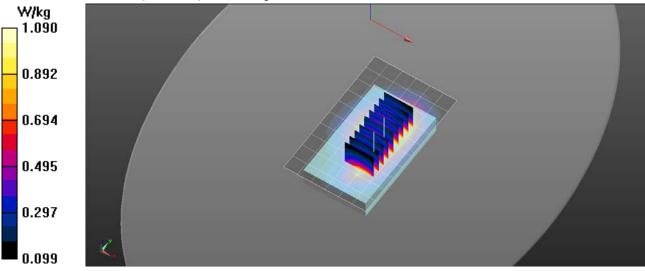
Test Date: Date: 6/6/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.8, 9.8, 9.8); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 13 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.18 W/kg


Band 13 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 32.32 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.33 W/kg SAR(1 g) = 1 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.19 W/kg

Band 13 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.32 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.21 W/kg SAR(1 g) = 0.905 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.09 W/kg

Plot 4

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 793 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 793 MHz; σ = 1.003 S/m; ϵ_r = 55.408; ρ = 1000 kg/m³ Phantom section: Flat Section

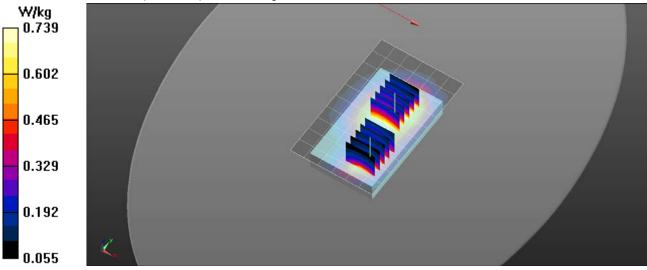
Test Date: Date: 6/6/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.8, 9.8, 9.8); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 14 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.921 W/kg


Band 14 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.73 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.757 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Band 14 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.73 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.861 W/kg SAR(1 g) = 0.597 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.739 W/kg

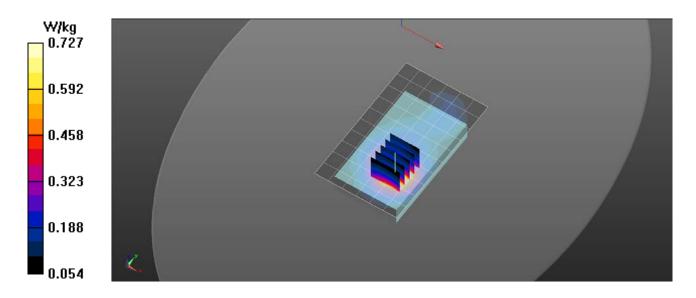
Plot 5

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.99 S/m; ϵ_r = 55.902; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/1/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.21, 9.21, 9.21); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

Band 5 UMTS/Side C Ant 0 Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.709 W/kg

Band 5 UMTS/Side C Ant 0 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.23 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.843 W/kg SAR(1 g) = 0.589 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.727 W/kg

Plot 6

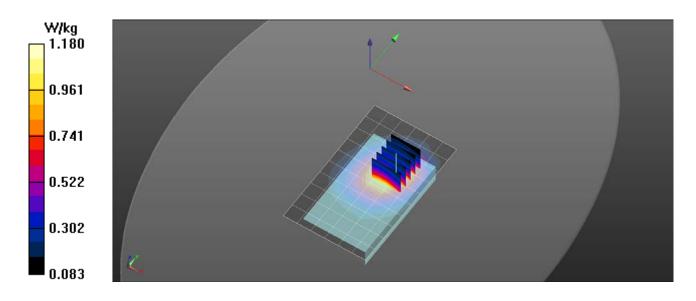
DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 829 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 829 MHz; σ = 0.984 S/m; ϵ_r = 55.934; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/1/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.21, 9.21, 9.21); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


Band 5 LTE/Side A 1 RB 24 Offset Ant 0 Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.14 W/kg

Band 5 LTE/Side A 1 RB 24 Offset Ant 0 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.59 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.36 W/kg SAR(1 g) = 0.975 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.18 W/kg

Plot 7

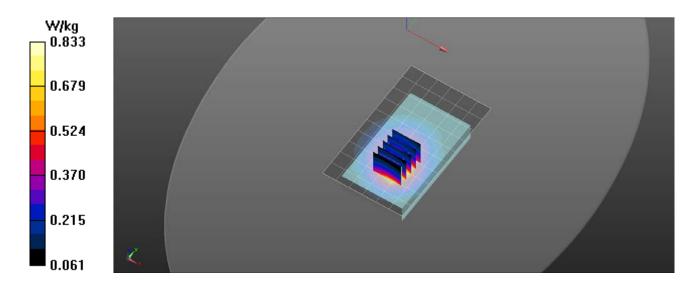
DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 831.5 MHz; σ = 0.99 S/m; ϵ_r = 54.744; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 2/19/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.21, 9.21, 9.21); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


Band 26 LTE/Side C 1 RB 24 Offset Ant 0 Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.800 W/kg

Band 26 LTE/Side C 1 RB 24 Offset Ant 0 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 20.82 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.951 W/kg SAR(1 g) = 0.689 W/kg; SAR(10 g) = 0.481 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.833 W/kg

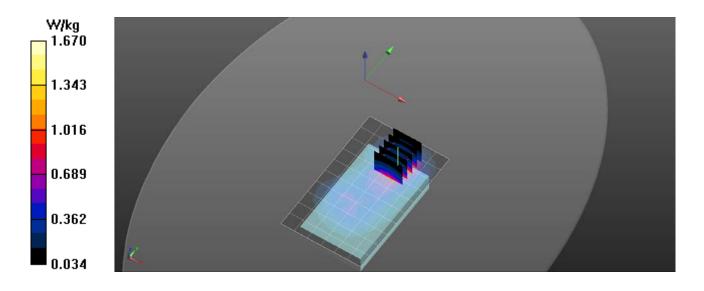
Plot 8

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: UMTS (WCDMA); Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used (interpolated): f = 1712.4 MHz; σ = 1.492 S/m; ϵ_r = 52.803; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 2/22/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.96, 7.96, 7.96); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

Band 4 UMTS/Side A Ant 0 Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.53 W/kg

Band 4 UMTS/Side A Ant 0 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.41 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.09 W/kg SAR(1 g) = 0.945 W/kg; SAR(10 g) = 0.482 W/kg

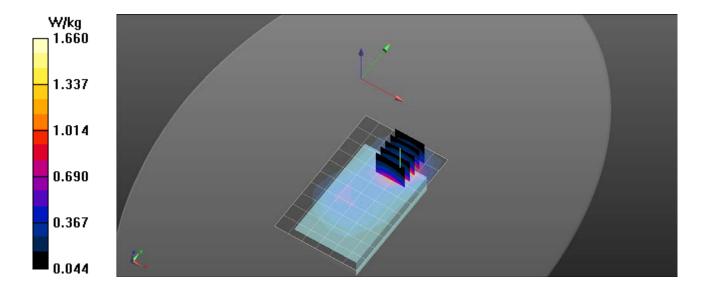
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.67 W/kg

Plot 9

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1720 MHz; σ = 1.49 S/m; ϵ_r = 53.52; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/8/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C


Probe: EX3DV4 - SN3662; ConvF(7.96, 7.96, 7.96); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 66 LTE Retest/Side A 1 RB 49 Offset Ant 0 Low2/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.73 W/kg

Band 66 LTE Retest/Side A 1 RB 49 Offset Ant 0 Low2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.62 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.07 W/kg SAR(1 g) = 1.28 W/kg Maximum value of SAR (measured) = 1.66 W/kg

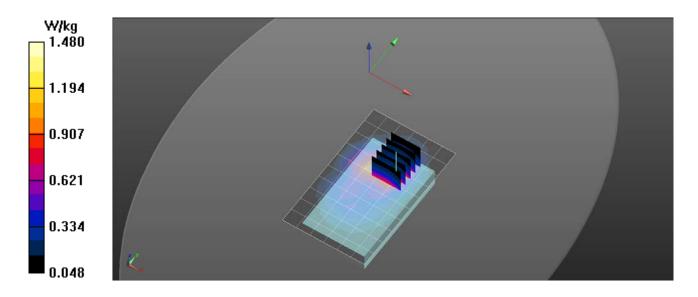
Plot 10

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: UMTS (WCDMA); Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used (interpolated): f = 1852.4 MHz; σ = 1.44 S/m; ϵ_r = 52.03; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/1/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(7.54, 7.54, 7.54); Calibrated: 8/18/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

Band 2 UMTS/Side A Ant 0 Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.38 W/kg

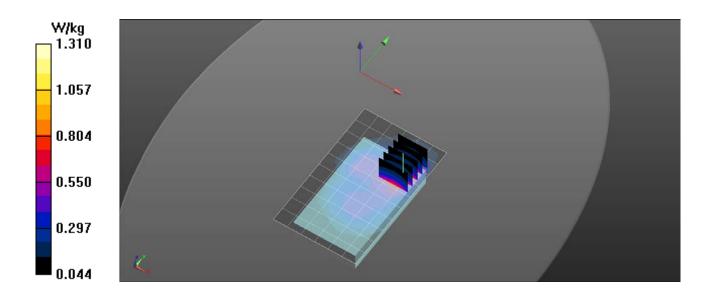
Band 2 UMTS/Side A Ant 0 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.81 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.83 W/kg SAR(1 g) = 1.11 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.48 W/kg

Plot 11

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 52.07; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 5/31/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(7.54, 7.54, 7.54); Calibrated: 8/18/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

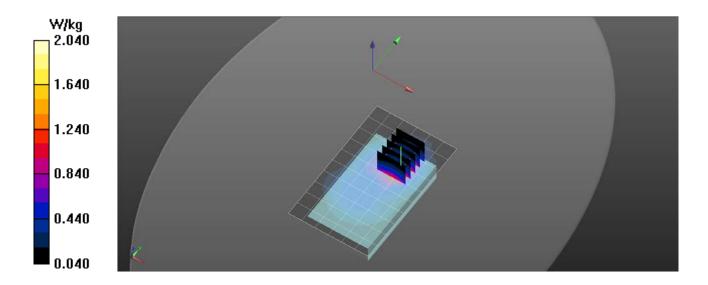
Band 2 LTE/Side A 1 RB 49 Offset Ant 0 High/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.04 W/kg

Band 2 LTE/Side A 1 RB 49 Offset Ant 0 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.79 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.63 W/kg SAR(1 g) = 0.948 W/kg Maximum value of SAR (measured) = 1.31 W/kg

Plot 12

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1860 MHz; σ = 1.54 S/m; ϵ_r = 52.4; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 2/27/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.61, 7.61, 7.61); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

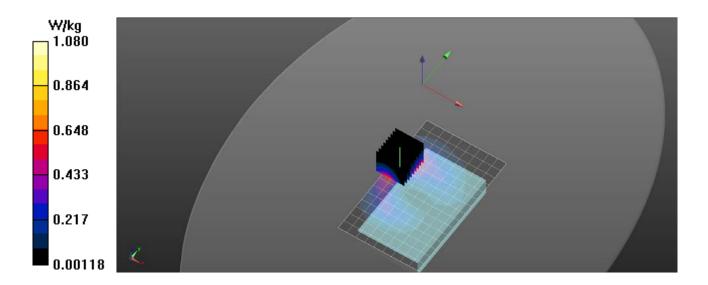
Band 25 LTE/Side A 1 RB 49 Offset Ant 0 Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.99 W/kg

Band 25 LTE/Side A 1 RB 49 Offset Ant 0 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.67 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 2.58 W/kg SAR(1 g) = 1.18 W/kg; SAR(10 g) = 0.615 W/kg Maximum value of SAR (measured) = 2.04 W/kg

Plot 13

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: MSL2300; Medium parameters used: f = 2310 MHz; σ = 1.85 S/m; ϵ_r = 52.61; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 2/14/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.33, 7.33, 7.33); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 30 LTE/Side A 1 RB 24 Offset Ant 2 Mid/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.05 W/kg

Band 30 LTE/Side A 1 RB 24 Offset Ant 2 Mid/Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 4.858 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.41 W/kg SAR(1 g) = 0.742 W/kg; SAR(10 g) = 0.374 W/kg Maximum value of SAR (measured) = 1.08 W/kg

Plot 14

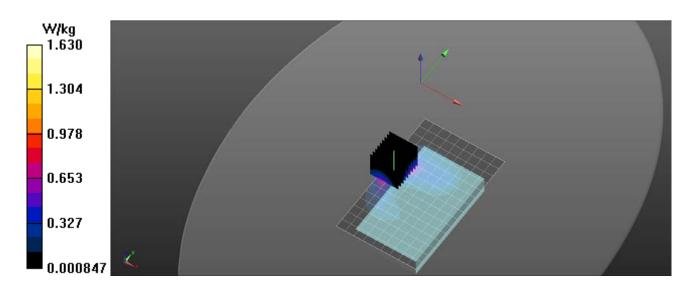
DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2390 MHz; Duty Cycle: 1:8.33681 Medium: MSL2300; Medium parameters used (extrapolated): f = 2390 MHz; σ = 1.92 S/m; ϵ_r = 52.47; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 2/14/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.33, 7.33, 7.33); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


Band 40 LTE/Side A 1 RB 49 Offset Ant 2 High/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm

Info: Extrapolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.48 W/kg

Band 40 LTE/Side A 1 RB 49 Offset Ant 2 High/Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=4mm Reference Value = 6.025 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.20 W/kg SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.482 W/kg

Info: Extrapolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.63 W/kg

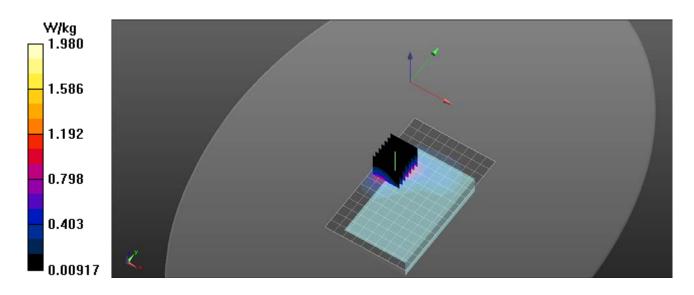
Plot 15

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: MSL2550; Medium parameters used (interpolated): f = 2535 MHz; σ = 2.1 S/m; ϵ_r = 52.495; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/9/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.15, 7.15, 7.15); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

Band 7 LTE Final/Side A 50 RB 24 Offset Ant 2 Mid/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.92 W/kg

Band 7 LTE Final/Side A 50 RB 24 Offset Ant 2 Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.825 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.62 W/kg SAR(1 g) = 1.31 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.98 W/kg

Plot 16

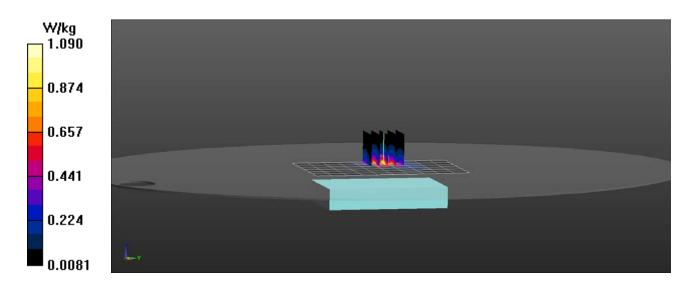
DUT: MIFI8800; Type: Hotspot; Serial: 48

Communication System: LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2595 MHz; Duty Cycle: 1:1 Medium: MSL2550; Medium parameters used (interpolated): f = 2595 MHz; σ = 2.2 S/m; ϵ_r = 51.805; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 9/9/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.21, 7.21, 7.21); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


Band 38 LTE/Side A 1 RB 49 Offset Ant 0 Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.968 W/kg

Band 38 LTE/Side A 1 RB 49 Offset Ant 0 Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 6.404 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.45 W/kg SAR(1 g) = 0.734 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.09 W/kg

Plot 17

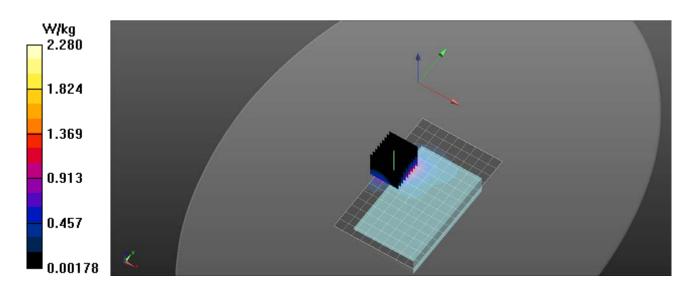
DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2593 MHz; Duty Cycle: 1:8.33681 Medium: MSL2550; Medium parameters used (interpolated): f = 2593 MHz; σ = 2.186 S/m; ϵ_r = 52.097; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 2/25/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.15, 7.15, 7.15); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


Band 41 LTE/Side A 1 RB 49 Offset Ant 2 Mid/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.05 W/kg

Band 41 LTE/Side A 1 RB 49 Offset Ant 2 Mid/Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=4mm Reference Value = 8.500 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.24 W/kg SAR(1 g) = 1.20 W/kg; SAR(10 g) = 0.575 W/kg

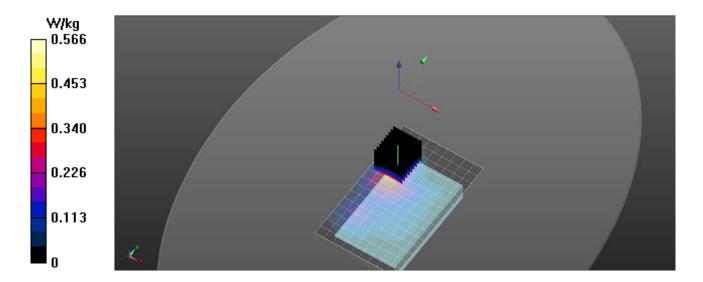
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.28 W/kg

Plot 18

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 3500 MHz; Duty Cycle: 1:8.33681 Medium: MSL 3-6 GHz; Medium parameters used: f = 3500 MHz; σ = 3.34 S/m; ϵ_r = 51.11; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 2/25/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C


Probe: EX3DV4 - SN3662; ConvF(7, 7, 7); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 42 LTE/Side A 1 RB 49 Offset Ant 2 Mid/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.590 W/kg

Band 42 LTE/Side A 1 RB 49 Offset Ant 2 Mid/Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 6.230 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.895 W/kg SAR(1 g) = 0.331 W/kg; SAR(10 g) = 0.137 W/kg Maximum value of SAR (measured) = 0.566 W/kg

Plot 19

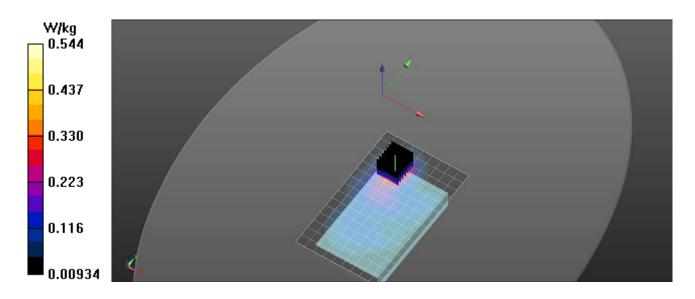
DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 3625 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 3625 MHz; σ = 3.485 S/m; ϵ_r = 51.045; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/11/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(6.71, 6.71, 6.71); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


Band 48 LTE/Side A 1 RB 49 Offset Ant 4 Mid2/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.516 W/kg

Band 48 LTE/Side A 1 RB 49 Offset Ant 4 Mid2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=4mm Reference Value = 5.811 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.836 W/kg SAR(1 g) = 0.319 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.544 W/kg

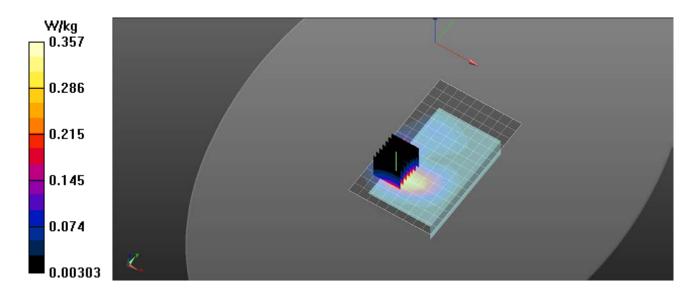
Plot 20

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: WiFi 802.11b (DSSS, 11 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used (interpolated): f = 2437 MHz; σ = 1.907 S/m; ϵ_r = 52.796; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/2/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.29, 7.29, 7.29); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

2450 MHz/Side A Ant 1Mid/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.343 W/kg

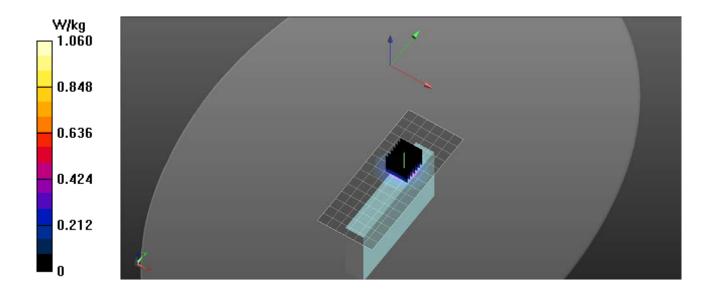
2450 MHz/Side A Ant 1Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.066 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.471 W/kg SAR(1 g) = 0.257 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.357 W/kg

Plot 21

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5200 MHz; σ = 5.27 S/m; ϵ_r = 49.11; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 6/28/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(4.46, 4.46, 4.46); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

5200 MHz/Side B Ant 0 40/Area Scan (7x16x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.942 W/kg

5200 MHz/Side B Ant 0 40/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 4.305 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.10 W/kg SAR(1 g) = 0.547 W/kg Maximum value of SAR (measured) = 1.06 W/kg

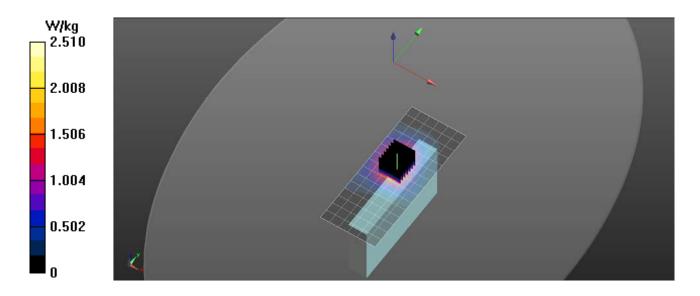
Plot 22

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5785 MHz; σ = 5.975 S/m; ϵ_r = 48.193; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/28/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(4.08, 4.08, 4.08); Calibrated: 4/20/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

5800 MHz/Side B Ant 0 157/Area Scan (7x16x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.35 W/kg

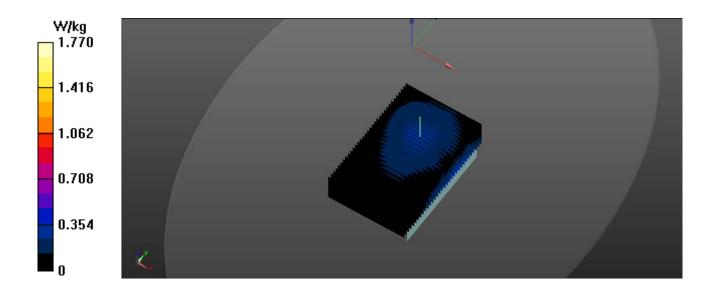
5800 MHz/Side B Ant 0 157/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 13.25 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 5.62 W/kg SAR(1 g) = 1.36 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.51 W/kg

Plot 23

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1900 MHz; σ = 1.57 S/m; ϵ_r = 51.05; ρ = 1000 kg/m³ Phantom section: Flat Section


Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 782 MHz; σ = 0.926 S/m; ϵ_r = 41.412; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/26/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(9.55, 9.55, 9.55); Calibrated: 8/18/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/21/2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 1251 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Multi Band Result: SAR(1 g) = 1.18 W/kg; SAR(10 g) = 0.788 W/kg Maximum value of SAR (interpolated) = 1.77 W/kg

Plot 24

DUT: MIFI8000; Type: Hotspot; Serial: 67

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used (interpolated): f = 1720 MHz; σ = 1.444 S/m; ϵ_r = 53.316; ρ = 1000 kg/m³ Phantom section: Flat Section

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 782 MHz; σ = 0.926 S/m; ϵ_r = 41.412; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 7/26/2018; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(9.55, 9.55, 9.55); Calibrated: 8/18/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/21/2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 1251 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

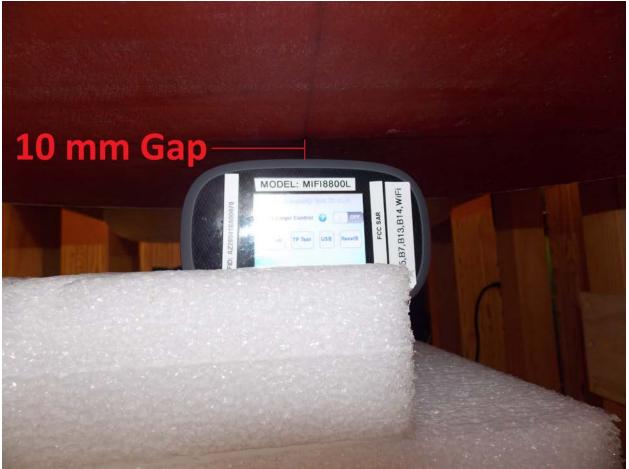
Multi Band Result: SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.702 W/kg Maximum value of SAR (interpolated) = 1.76 W/kg



Appendix C – SAR Test Setup Photos

Test Position Side A 10 mm Gap

Report Number: SAR.20190210



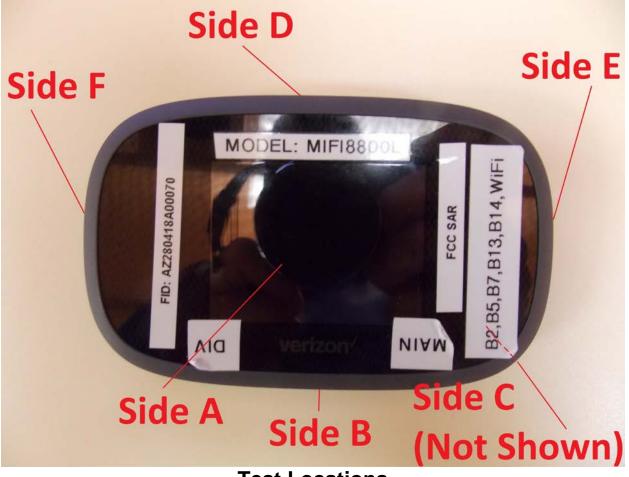
Test Position Side B 10 mm Gap

Test Position Side C 10 mm Gap

Test Position Side D 10 mm Gap

Test Position Side E 10 mm Gap

RF Exposure Lab


Report Number: SAR.20190210

Test Position Side F 10 mm Gap

RF Exposure Lab

Report Number: SAR.20190210

Test Locations

RF Exposure Lab

Report Number: SAR.20190210

Front of Device

Report Number: SAR.20190210

Back of Device

Appendix D – Probe Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: EX3-3662_Apr18

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

CALIBRATION	CERTIFICATE
Object	EX3DV4 - SN:3662
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	April 20, 2018
	cuments the traceability to national standards, which realize the physical units of measurements (SI). Incertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been cor	nducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature	
Calibrated by:	Leif Klysner	Laboratory Technician	Saf They	\sim
Approved by:	Katja Pokovic	Technical Manager	All	Ļ
			Issued: April 20, 2	018
This calibration certificate	e shall not be reproduced except in	full without written approval of the labo	ratory.	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Accreditation No.: SCS 0108

Probe EX3DV4

SN:3662

Calibrated:

Manufactured: October 20, 2008 April 20, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.44	0.45	0.48	± 10.1 %
DCP (mV) ^B	102.6	97.6	96.4	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc ⁻
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	0.0 1.0	0.00	136.8	±3.3 %
		Y	0.0	0.0	1.0		132.2	
		Z	0.0	0.0	1.0		148.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

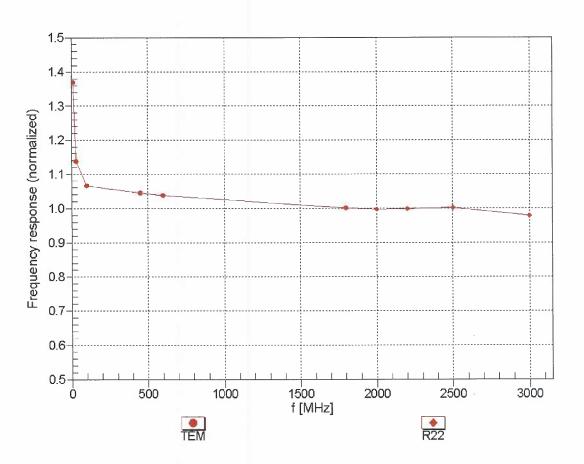
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.80	9.80	9.80	0.43	0.90	± 12.0 %
900	41.5	0.97	9.29	9.29	9.29	0.40	0.91	± 12.0 %
1750	40.1	1.37	8.29	8.29	8.29	0.29	0.84	± 12.0 %
1900	40.0	1.40	8.01	8.01	8.01	0.37	0.80	± 12.0 %
2300	39.5	1.67	7.71	7.71	7.71	0.35	0.80	± 12.0 %
2450	39.2	1.80	7.39	7.39	7.39	0.28	0.91	± 12.0 %
2600	39.0	1.96	7.14	7.14	7.14	0.36	0.85	± 12.0 %
3500	37.9	2.91	7.08	7.08	7.08	0.25	1.20	± 13.1 %
3700	37.7	3.12	6.99	6.99	6.99	0.25	1.20	<u>± 13.1 %</u>
5250	35.9	4.71	5.04	5.04	5.04	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.81	4.81	4.81	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.89	4.89	4.89	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.

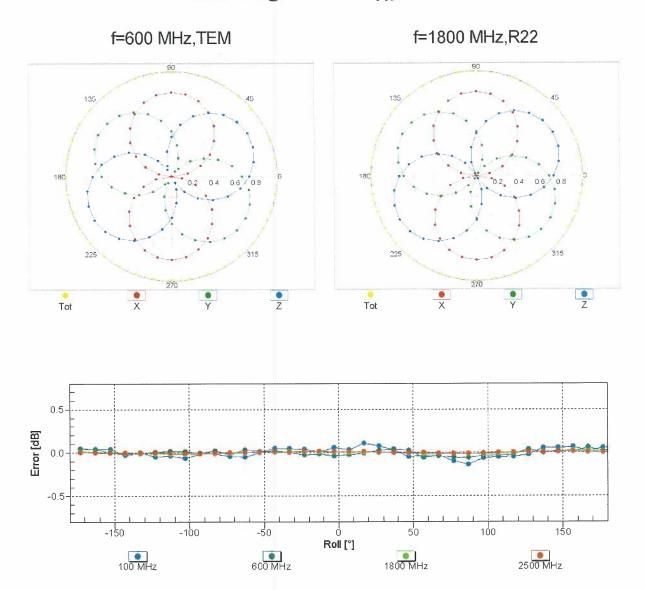
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

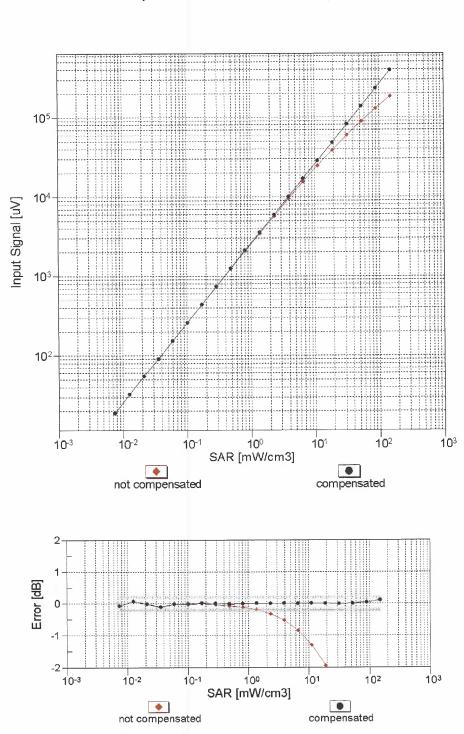

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.62	9.62	9.62	0.37	0.98	± 12.0 %
900	55.0	1.05	9.21	9.21	9.21	0.44	0.84	± 12.0 %
1750	53.4	1.49	7.96	7.96	7.96	0.45	0.80	± 12.0 %
1900	53.3	1.52	7.61	7.61	7.61	0.44	0.80	± 12.0 %
2300	52.9	1.81	7.33	7.33	7.33	0.41	0.80	± 12.0 %
2450	52.7	1.95	7.29	7.29	7.29	0.36	0.87	± 12.0 %
2600	52.5	2.16	7.15	7.15	7.15	0.26	0.99	± 12.0 %
3500	51.3	3.31	7.00	7.00	7.00	0.25	1.20	± 13.1 %
3700	51.0	3.55	6.71	6.71	6.71	0.23	1.20	± 13.1_%
5250	48.9	5.36	4.46	4.46	4.46	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.91	3.91	3.91	0.50	1.90	<u>± 13.1 %</u>
5750	48.3	5.94	4.08	4.08	4.08	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

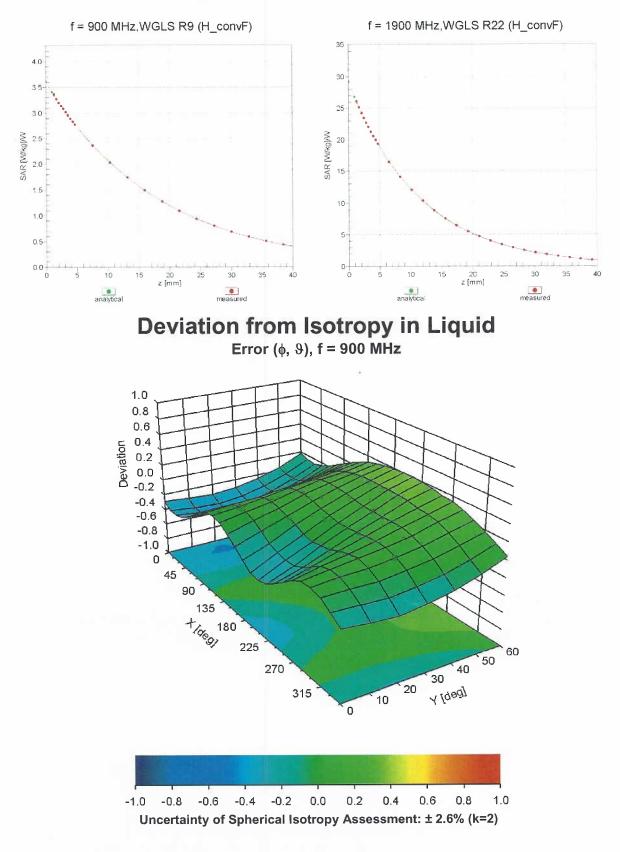
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-22.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С

Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RF Exposure Lab Client

Certificate No: EX3-3662_Apr19

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3662
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	April 24, 2019
	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	Va
Approved by:	Katja Pokovic	Technical Manager	LIUG
			Issued: April 25, 2019
This calibration certificate	shall not be reproduced except in f	ull without written approval of the labor	atory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center),
Connector Angle	i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.43	0.45	0.50	± 10.1 %
DCP (mV) ^B	100.7	100.3	97.0	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	157.7	±1.9 %	±4.7 %
		Y	0.0	0.0	1.0		152.9		
		Y	0.0	0.0	1.0		153.2		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-22.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

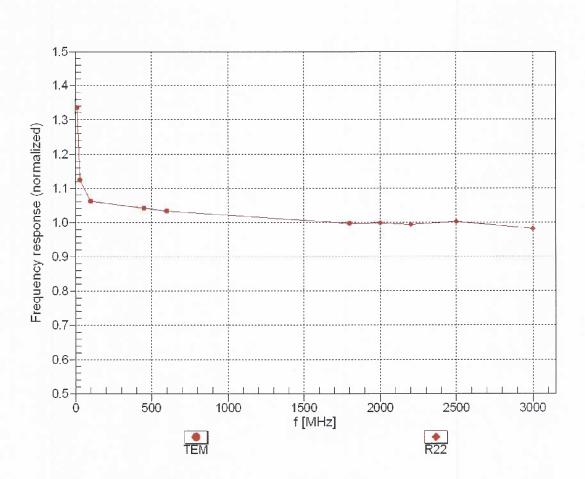
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.57	9.57	9.57	0.49	0.80	± 12.0 %
900	41.5	0.97	9.12	9.12	9.12	0.51	0.80	± 12.0 %
1750	40.1	1.37	8.23	8.23	8.23	0.38	0.85	± 12.0 %
1900	40.0	1.40	7.90	7.90	7.90	0.37	0.85	± 12.0 %
2300	39.5	1.67	7.50	7.50	7.50	0.39	0.85	± 12.0 %
2450	39.2	1.80	7.33	7.33	7.33	0.41	0.84	± 12.0 %
2600	39.0	1.96	7.21	7.21	7.21	0.42	0.85	± 12.0 %
3500	37.9	2.91	7.07	7.07	7.07	0.30	1.20	± 13.1 %
3700	37.7	3.12	6.92	6.92	6.92	0.35	1.25	± 13.1 %
5250	35.9	4.71	5.05	5.05	5.05	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.81	4.81	4.81	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.90	4.90	4.90	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

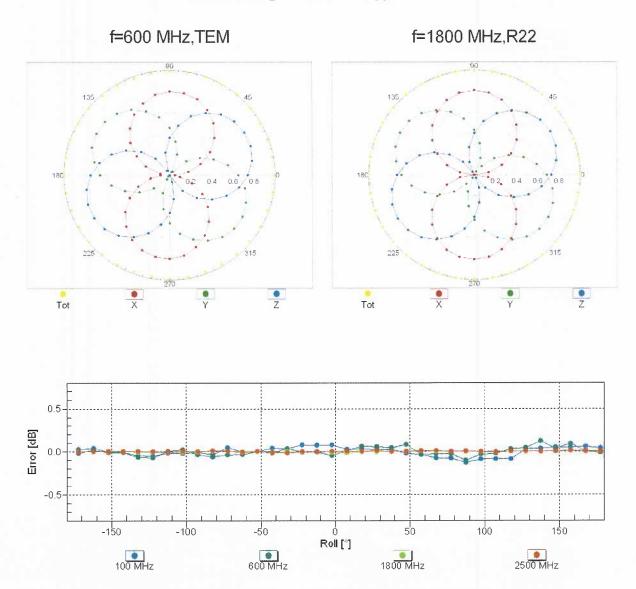
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.55	9.55	9.55	0.47	0.80	± 12.0 %
900	55.0	1.05	9.34	9.34	9.34	0.45	0.80	± 12.0 %
1750	53.4	1.49	7.95	7.95	7.95	0.40	0.85	± 12.0 %
1900	53.3	1.52	7.69	7.69	7.69	0.43	0.84	± 12.0 %
2300	52.9	1.81	7.43	7.43	7.43	0.40	0.86	± 12.0 %
2450	52.7	1.95	7.36	7.36	7.36	0.40	0.85	± 12.0 %
2600	52.5	2.16	7.12	7.12	7.12	0.22	0.97	± 12.0 %
3500	51.3	3.31	6.83	6.83	6.83	0.30	1.25	± 13.1 %
3700	51.0	3.55	6.52	6.52	6.52	0.35	1.25	± 13.1 %
5250	48.9	5.36	4.30	4.30	4.30	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.87	3.87	3.87	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.07	4.07	4.07	0.50	1.90	± 13.1 %

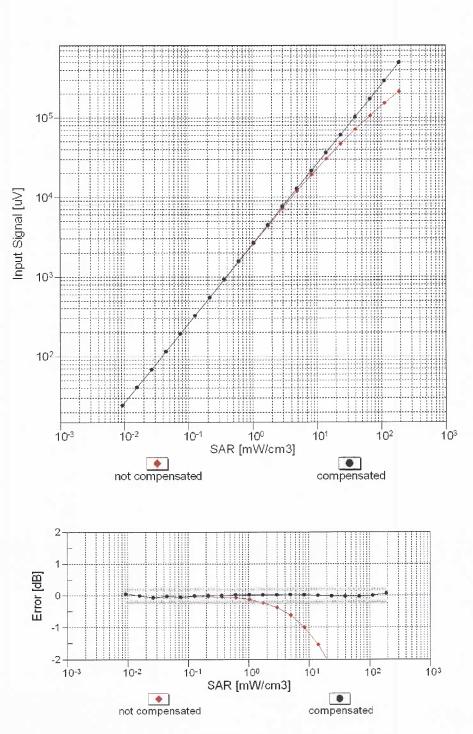
Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

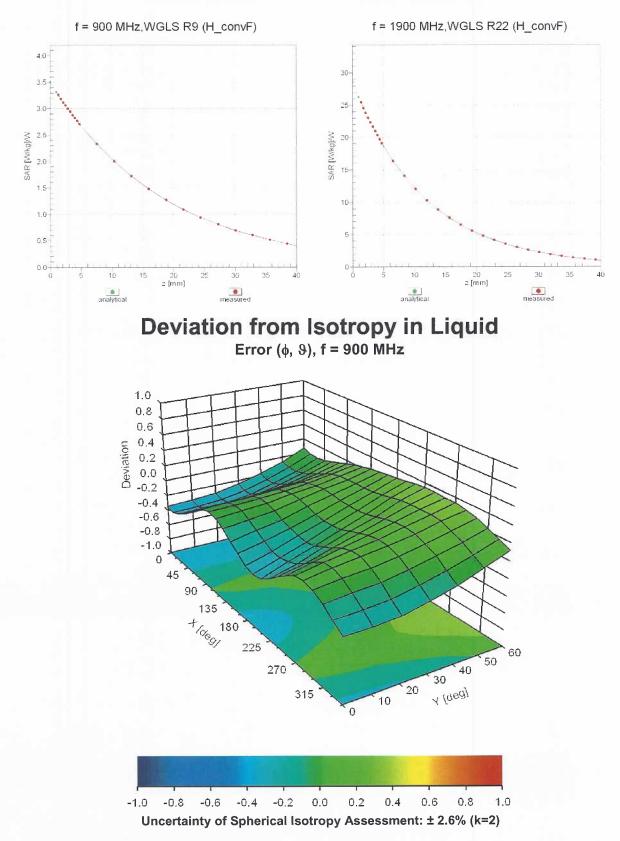

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

April 24, 2019

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

April 24, 2019

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

С

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

Certificate No: EX3-3693_Aug17

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3693	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes	
Calibration date:	August 18, 2017	
	cuments the traceability to national standards, which realize the physical units of measurements (SI).	

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	$\neg F = F$
			4- Ca
Approved by:	Katia Pokovic	Technical Manager	' 10 m
			aras
The second second		full without written approval of the lab	Issued: August 22, 2017

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3693

Manufactured: April 22, 2009 Calibrated:

August 18, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.39	0.32	0.35	± 10.1 %
DCP (mV) ^B	95.1	97.9	107.8	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc [⊦]
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	153.2	±3.5 %
		Y	0.0	0.0	1.0		144.5	-
		Z	0.0	0.0	1.0		151.4	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V⁻1	Т6
Х	33.42	257.2	37.63	9.549	1.014	5.071	0	0.481	1.008
Y	36.13	269.4	35.53	11.22	0.702	5.041	0.308	0.41	1.005
Z	28.36	204.6	33.61	4.581	0.465	5.032	0.705	0.298	1.004

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

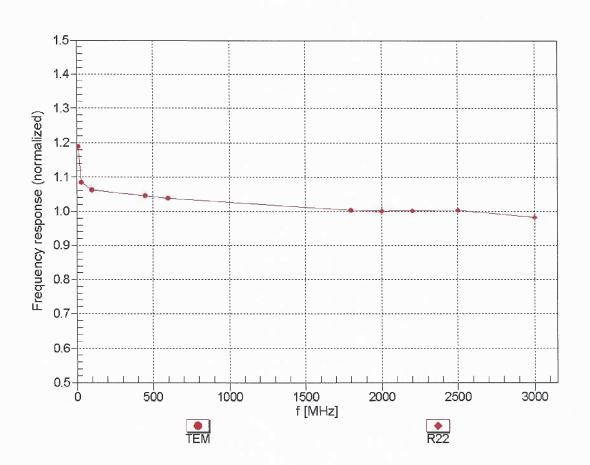
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	11.31	11.31	11.31	0.00	1.00	± 13.3 %
220	49.0	0.81	10.54	10.54	10.54	0.00	1.00	± 13.3 %
450	43.5	0.87	9.78	9.78	9.78	0.13	1.60	± 13.3 %
750	41.9	0.89	9.55	9.55	9.55	0.36	1.03	± 12.0 %
1750	40.1	1.37	8.15	8.15	8.15	0.28	0.85	± 12.0 %
1900	40.0	1.40	7.85	7.85	7.85	0.30	0.85	± 12.0 %
2300	39.5	1.67	7.44	7.44	7.44	0.38	0.85	± 12.0 %
2450	39.2	1.80	7.05	7.05	7.05	0.31	0.84	± 12.0 %
5200	36.0	4.66	5.09	5.09	5.09	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.83	4.83	4.83	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.85	4.85	4.85	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.70	4.70	4.70	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.65	4.65	4.65	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

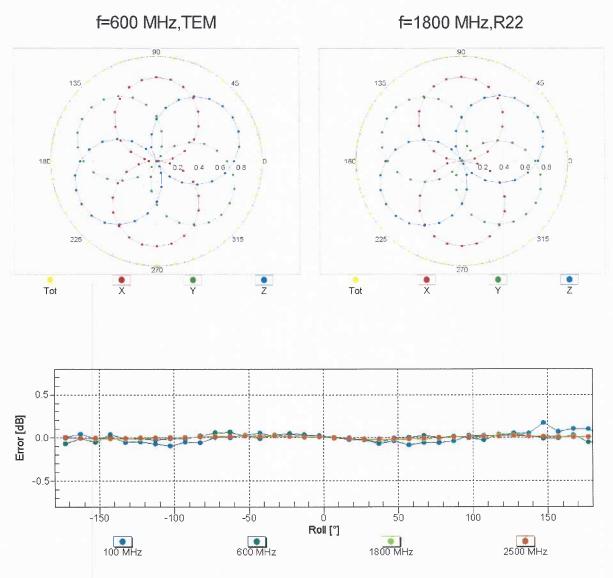
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	10.76	10.76	10.76	0.00	1.00	± 13.3 %
220	60.2	0.86	10.08	10.08	10.08	0.00	1.00	± 13.3 %
450	56.7	0.94	10.19	10.19	10.19	0.10	1.30	± 13.3 %
750	55.5	0.96	9.35	9.35	9.35	0.50	0.85	± 12.0 %
1750	53.4	1.49	7.77	7.77	7.77	0.37	0.85	± 12.0 %
1900	53.3	1.52	7.54	7.54	7.54	0.30	0.96	± 12.0 %
2300	52.9	1.81	7.41	7.41	7.41	0.38	0.84	± 12.0 %
2450	52.7	1.95	7.26	7.26	7.26	0.34	0.89	± 12.0 %
5200	49.0	5.30	4.70	4.70	4.70	0.35	1.90	± 13.1 %
5300	48.9	5.42	4.46	4.46	4.46	0.40	1.90	± 13.1 %
5500	48.6	5.65	4.04	4.04	4.04	0.40	1.90	± 13.1 %
5600	48.5	5.77	4.00	4.00	4.00	0.40	1.90	± 13.1 %
5800	48.2	6.00	4.21	4.21	4.21	0.40	1.90	± 13.1 %

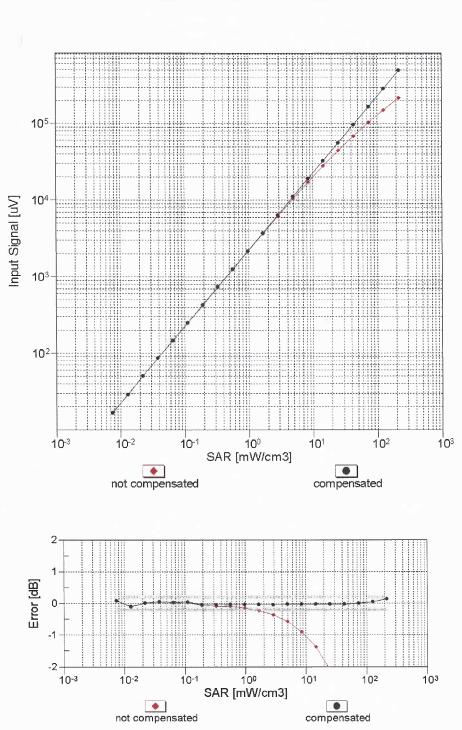
Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

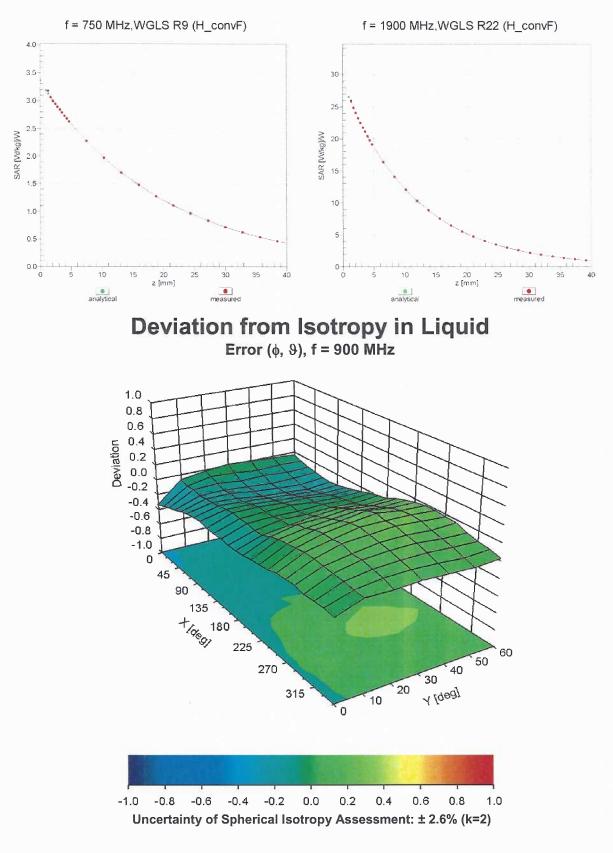

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

August 18, 2017

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular			
Connector Angle (°)	107.3			
Mechanical Surface Detection Mode	enabled			
Optical Surface Detection Mode	disabled			
Probe Overall Length	337 mm			
Probe Body Diameter	10 mm			
Tip Length	9 mm			
Tip Diameter	2.5 mm			
Probe Tip to Sensor X Calibration Point	1 mm			
Probe Tip to Sensor Y Calibration Point	1 mm			
Probe Tip to Sensor Z Calibration Point	1 mm			
Recommended Measurement Distance from Surface	1.4 mm			