

Report No.: FG041657-01C

FCC RADIO TEST REPORT

FCC ID : PKRISGM2000A

Equipment : Wireless Hotspot Modem

Brand Name : Inseego Model Name : M2000A Marketing Name : M2000

Applicant : Inseego Corporation

9710 Scranton Road Suite 200, San Diego, CA 92121

Manufacturer : Inseego Corporation

9710 Scranton Road Suite 200, San Diego, CA 92121

Standard : FCC 47 CFR Part 2, 22(H), 24(E), 27

The product was received on Jul. 09, 2020 and testing was started from Aug. 06, 2020 and completed on Sep. 02, 2020. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

Table of Contents

His	tory c	of this test report	3
Su	mmar	y of Test Result	4
1	Gene	eral Description	6
	1.1	Product Feature of Equipment Under Test	6
	1.2	Modification of EUT	6
	1.3	Testing Location	6
	1.4	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	8
	2.1	Test Mode	8
	2.2	Connection Diagram of Test System	10
	2.3	Support Unit used in test configuration and system	11
	2.4	Measurement Results Explanation Example	11
	2.5	Frequency List of Low/Middle/High Channels	12
3	Conc	lucted Test Items	14
	3.1	Measuring Instruments	14
	3.2	Conducted Output Power and ERP/EIRP	15
	3.3	Peak-to-Average Ratio	16
	3.4	Occupied Bandwidth	17
	3.5	Conducted Band Edge	18
	3.6	Conducted Spurious Emission	20
	3.7	Frequency Stability	21
4	Radia	ated Test Items	22
	4.1	Measuring Instruments	22
	4.2	Radiated Spurious Emission Measurement	24
5	List	of Measuring Equipment	25
6	Unce	ertainty of Evaluation	27
Аp	pendi	x A. Test Results of Conducted Test	
Аp	pendi	x B. Test Results of ERP/EIRP and Radiated Test	
Αp	pendi	x C. Test Setup Photographs	

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FGLTE Version 2.4

Page Number : 2 of 27

Issued Date : Sep. 16, 2020

Report Version : 01

History of this test report

Report No. : FG041657-01C

Report No.	Version	Description	Issued Date
FG041657-01C	01	Initial issue of report	Sep. 16, 2020

TEL: 886-3-327-3456 Page Number : 3 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

Summary of Test Result

Report No. : FG041657-01C

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
	§2.1046	Conducted Output Power	Reporting only	
	§22.913 (a)(2)	Effective Radiated Power (n5)		
3.2	§27.50 (c)(10)	Effective Radiated Power (n12) (n71)	Pass	-
	§24.232 (c)	Equivalent Isotropic Radiated Power (n2)	Pass	
	§27.50 (d)(4)	Equivalent Isotropic Radiated Power (n66)		
3.3	§24.232 (d) §27.50 (d)(5)	Peak-to-Average Ratio	Pass	-
3.4	§2.1049	Occupied Bandwidth	Reporting only	-
3.5	§2.1051 §22.917 (a) §24.238 (a) §27.53 (g) §27.53 (h)	Conducted Band Edge Measurement (n2) (n5) (n12) (n66) (n71)	Pass	-
3.6	§2.1051 §22.917 (a) §24.238 (a) §27.53 (g) §27.53 (h)	Conducted Spurious Emission (n2) (n5) (n12) (n66) (n71)	Pass	-
3.7	§2.1055 §22.355 §24.235 §27.54	Frequency Stability Temperature & Voltage	Pass	-

TEL: 886-3-327-3456 Page Number : 4 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
4.2	\$2.1053 \$22.917 (a) \$24.238 (a) \$27.53 (g) \$27.53 (h)	Radiated Spurious Emission (n2) (n5) (n12) (n66) (n71)	Pass	Under limit 16.47 dB at 3742.000 MHz

Report No.: FG041657-01C

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Celery Wei

TEL: 886-3-327-3456 Page Number : 5 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

1 General Description

1.1 Product Feature of Equipment Under Test

WCDMA/LTE/5G NR, Wi-Fi 2.4GHz 802.11b/g/n/ax, Wi-Fi 5GHz 802.11a/n/ac/ax and GNSS.

Product Specification subjective to this standard						
	WWAN: Fixed Internal Antenna					
	WLAN:					
Antenna Type	<ant. 1="">: Fixed Internal Antenna</ant.>					
	<ant. 2="">: Fixed Internal Antenna</ant.>					
	GPS: Fixed Internal Antenna					

Report No.: FG041657-01C

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory					
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978					
Test Site No.	Sporton Site No.					
lest Site No.	TH05-HY					
Test Engineer	Amber Cheng					
Temperature 23.6~24.5°C						
Relative Humidity 53.6~54.5%						

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory			
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.			
rest Site No.	03CH12-HY			
Test Engineer	Jack Cheng, Lance Chiang and Chuan Chu			
Temperature	23.8~25.6℃			
Relative Humidity	56~68%			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW0007

TEL: 886-3-327-3456 Page Number : 6 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FG041657-01C

- + ANSI C63.26-2015
- ANSI / TIA-603-E
- FCC 47 CFR Part 2, 22(H), 24(E), 27
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- FCC KDB 414788 D01 Radiated Test Site v01r01.

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

TEL: 886-3-327-3456 Page Number : 7 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

2 Test Configuration of Equipment Under Test

2.1 Test Mode

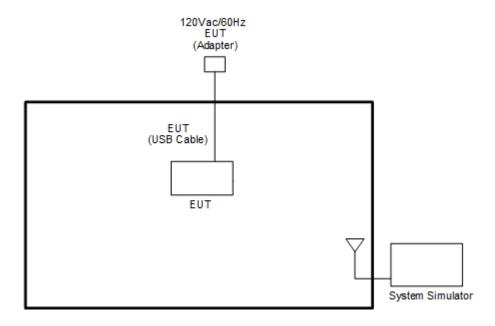
Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

Report No.: FG041657-01C

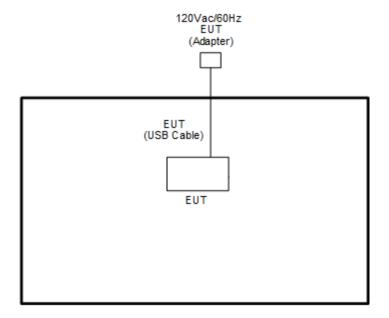
For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.

Test Items	NR		Baı	ndwic	ith (M	lHz)			М	odulation				RB#			Test nann	
iest itellis	Band	5	10	15	20	40	50	PI/2 BPSK	QPSK	16QAM	64QAM	256QAM	1	Half	Full	L	М	н
	n2				٧	-	•	v	٧	v	v	v	٧	v	٧		v	
	n5				v	-	-	v	v	v	v	v	٧		v		v	
Peak-to-Avera ge Ratio	n12			٧	-	-	-	v	v	v	v	v	v		v		v	
ge italio	n66				٧	-	-	v	v	v	v	v	٧		٧		v	
	n71				v	-	-	v	v	v	v	v	٧		٧		v	
	n2	٧	v	٧	٧	-	ı	v	٧	v	v	v		v	٧		v	
00.15	n5	٧	v	٧	٧	-	-	v	v	v	v	v			v		v	
26dB and 99% Bandwidth	n12	٧	v	٧	-	-	-	v	v	v	v	v			v		v	
Danawiani	n66	٧	v	٧	٧	-	-	v	v	v	v	v			v		v	
	n71	٧	v	٧	٧	-	-	v	٧	v	v	v			v		v	
	n2	٧	v	٧	٧	•	•	v	٧	v	٧	v	٧		٧	v		v
	n5	>	v	٧	٧	•	•	v	٧	v	V	v	٧		٧	v		v
Conducted Band Edge	n12	>	v	٧	•	•	ı	v	٧	v	V	v	>		٧	v		v
Dana Luge	n66	٧	v	v	v	-	-	v	٧	v	v	v	٧		v	v		v
	n71	٧	v	v	٧	•	ı	v	٧	v	v	v	٧		v	v		v
	n2	٧	٧	٧	٧	-	-	v	v	v	٧	v	٧			٧	v	v
Conducted	n5	V	٧	٧	v	•	-	v	٧	v	V	v	٧			v	٧	v
Spurious	n12	v	٧	٧	-	-	-	v	v	v	v	v	٧			٧	v	٧
Emission	n66	V	٧	٧	v	•	-	v	٧	v	V	v	٧			v	٧	v
	n71	v	v	v	v	-	-	v	٧	v	v	v	v			v	v	v
	n2				v	-	-		v						v		v	
_	n5				v	•	-		٧						٧		٧	
Frequency Stability	n12			v	-	-	-		v						v		v	
Stability	n66				٧	-	-		v						v		v	
	n71				v	•	-		٧						٧		٧	
	n2	v	٧	v	v	-	-	v	٧	v	٧	v	٧			٧	v	v
	n5	v	٧	V	٧	-	-	v	٧	v	٧	v	٧			v	v	v
E.R.P / E.I.R.P	n12	v	٧	٧	-	-	-	v	٧	v	٧	v	٧			v	v	v
	n66	v	٧	v	v	-	-	v	٧	v	٧	v	v			٧	v	v
	n71	v	٧	V	v	-	-	v	٧	v	v	v	V			v	v	v

TEL: 886-3-327-3456 Page Number : 8 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020


Test Items	NR		Bandwidth (MHz)			Modulation					RB#			Test Channel			
rest items	Band	5	10 1	5 20	40	50	PI/2 BPSK	QPSK	16QAM	64QAM	256QAM	1	Half	Full	L	М	Н
	n2		Worst Case											٧	٧	v	
Radiated	n5						1	Vorst Cas	se						v	٧	٧
Spurious	n12						1	Vorst Cas	se						v	v	v
Emission	n66		Worst Case v											v	v	v	
	n71						\	Vorst Cas	se						v	٧	v
Remark	2. TI 3. TI di 4. Te 5/ 5. Fo wo cc 6. TI	he mark ferent fest com A-n66A or radia ere recomplian he NR i	k "-" me ce is inv RB size binatior , EN-DO ated mea orded ir nt. radio op	ens that restigate foffset and is EN- C 12A-n assurement this representation the restion on, expenses	this bed from the thick th	pandwin 30M odulati N-n5A, N-DC e-scar nd the trolled	uration is che idth is not sup ons in explor EN-DC 2A-r 12A-n66A, E nned in two m e worst mode id via software requency sta st power acre	oported. es of fundatory test. 12A, EN- N-DC 66A nodes, DF s of FR1 a tool QRC bility is tes	amental signamental signamenta	ently, only SA, EN-DO DC 66A-r and CP (r simultan de (SW: \)	the worst of 2A-n71A. 112A and EDFDM. The neous trans Version 4.0 allator.	ase e EN-I N-DC wors mission	emission DC 5A 66A-I t case on well 66.0) u	ons ar -n2A, n71A s (DF re veri	e rep EN-l T-s (DC DFDI and	ed. M)

Report No. : FG041657-01C


TEL: 886-3-327-3456 Page Number : 9 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

2.2 Connection Diagram of Test System

<FTM Mode>

TEL: 886-3-327-3456 Page Number : 10 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

: 01

2.3 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model No.	FCC ID	Data Cable	Power Cord	
1.	System Simulator	Anritsu	MT8821C	N/A	N/A	Unshielded, 1.8 m	

Report No.: FG041657-01C

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Example:

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$

$$= 4.2 + 10 = 14.2 (dB)$$

TEL: 886-3-327-3456 Page Number : 11 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

2.5 Frequency List of Low/Middle/High Channels

	5G NR Band n2 Channel and Frequency List											
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest								
20	Channel	372000	376000	380000								
20	Frequency	1860	1880	1900								
15	Channel	371500	376000	380500								
15	Frequency	1857.5	1880	1902.5								
10	Channel	371000	376000	381000								
10	Frequency	1855	1880	1905								
5	Channel	370500	376000	381500								
o O	Frequency	1852.5	1880	1907.5								

Report No. : FG041657-01C

	5G NR Band n5 Channel and Frequency List											
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest								
20	Channel	166800	167300	167800								
20	Frequency	834	836.5	839								
15	Channel	166300	167300	168300								
15	Frequency	831.5	836.5	841.5								
10	Channel	165800	167300	168800								
10	Frequency	829	836.5	844								
5	Channel	165300	167300	169300								
5	Frequency	826.5	836.5	846.5								

	5G NR Band n12 Channel and Frequency List										
BW [MHz]	Channel/Frequency(MHz)	Channel/Frequency(MHz) Lowest Middle									
15	Channel 5	141300	141500	141700							
15	Frequency	706.5	707.5	708.5							
10	Channel	140800	141500	142200							
10	Frequency	704	707.5	711							
5	Channel	140300	141500	142700							
5	Frequency	701.5	707.5	713.5							

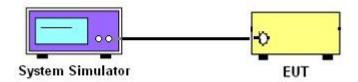
TEL: 886-3-327-3456 Page Number : 12 of 27 FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020 : 01

	5G NR Band n66 C	hannel and Freque	ency List								
RW [MHz]	BW [MHz] Channel/Frequency(MHz) Lowest Middle Highe										
DVV [IVII 12]	, ,										
20	Channel	344000	349000	354000							
	Frequency	1720	1745	1770							
15	Channel	343500	349000	354500							
13	Frequency	1717.5	1745	1772.5							
10	Channel	343000	349000	355000							
10	Frequency	1715	1745	1775							
F	Channel	342500	349000	355500							
5	Frequency	1712.5	1745	1777.5							

Report No. : FG041657-01C

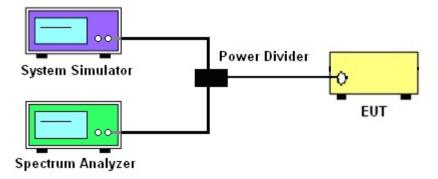
	5G NR Band n71 Channel and Frequency List										
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest							
20	Channel	134600	136100	137600							
20	Frequency	673	680.5	688							
45	Channel	134100	136100	138100							
15	Frequency	670.5	680.5	690.5							
10	Channel	133600	136100	138600							
10	Frequency	668	680.5	693							
5	Channel	133100	136100	139100							
5	Frequency	665.5	680.5	695.5							

TEL: 886-3-327-3456 Page Number : 13 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

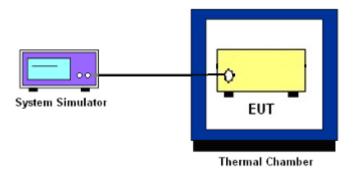

3 Conducted Test Items

3.1 Measuring Instruments

See list of measuring instruments of this test report.


3.1.1 Test Setup

3.1.2 Conducted Output Power



Report No.: FG041657-01C

3.1.3 Peak-to-Average Ratio, Occupied Bandwidth ,Conducted Band-Edge and Conducted Spurious Emission

3.1.4 Frequency Stability

3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 14 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

3.2 Conducted Output Power and ERP/EIRP

3.2.1 Description of the Conducted Output Power Measurement and ERP/EIRP Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

Report No.: FG041657-01C

The ERP of mobile transmitters must not exceed 7 Watts for 5G NR n5

The ERP of mobile transmitters must not exceed 3 Watts for 5G NR n12 and n71

The EIRP of mobile transmitters must not exceed 2 Watts for 5G NR n2

The EIRP of mobile transmitters must not exceed 1 Watts for 5G NR n66

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$, ERP = EIRP - 2.15, where

 P_T = transmitter output power in dBm

 G_T = gain of the transmitting antenna in dBi

 L_C = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

TEL: 886-3-327-3456 Page Number : 15 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

3.3 Peak-to-Average Ratio

3.3.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Report No.: FG041657-01C

3.3.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.2.6

- 1. The EUT was connected to spectrum and system simulator via a power divider.
- 2. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 4. Record the deviation as Peak to Average Ratio.

TEL: 886-3-327-3456 Page Number : 16 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

3.4 Occupied Bandwidth

3.4.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

Report No.: FG041657-01C

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.4.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.4.3 (26dB) and Section 5.4.4 (99OB)

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.
 The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- 3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 4. Set the detection mode to peak, and the trace mode to max hold.
- Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace.
 (this is the reference value)
- 6. Determine the "-26 dB down amplitude" as equal to (Reference Value X).
- 7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "–X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- 8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

TEL: 886-3-327-3456 Page Number : 17 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

3.5 Conducted Band Edge

3.5.1 Description of Conducted Band Edge Measurement

22.917(a)

For operations in the 824 - 849 MHz band, the FCC limit is 43 + 10log10(P[Watts]) dB below the transmitter power P(Watts) in a 100kHz bandwidth. However, in the 1MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

Report No.: FG041657-01C

24.238 (a)

For operations in the 1850-1910 and 1930-1990 MHz band, the FCC limit is 43 + 10log10(P[Watts]) dB below the transmitter power P(Watts) in a 1MHz bandwidth. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

27.53 (g)

For operations in the 600MHz band and 698-746 MHz band, the FCC limit is 43 + 10log10(P[Watts]) dB below the transmitter power P(Watts) in a 100 kHz bandwidth. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

27.53 (h)

For operations in the 1710 - 1755 MHz band, 1755-1780 MHz band, the FCC limit is 43 + 10log10(P[Watts]) dB below the transmitter power P(Watts) in a 1 MHz bandwidth. However, in the 1MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

TEL: 886-3-327-3456 Page Number : 18 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

3.5.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.
- 3. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.

Report No.: FG041657-01C

- 4. Beyond the 1 MHz band from the band edge, RBW=1MHz was used.
- 5. Set spectrum analyzer with RMS detector.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- Checked that all the results comply with the emission limit line.
 The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

TEL: 886-3-327-3456 Page Number : 19 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

3.6 Conducted Spurious Emission

3.6.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

Report No.: FG041657-01C

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

3.6.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 6. Set spectrum analyzer with RMS detector.
- 7. Taking the record of maximum spurious emission.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

TEL: 886-3-327-3456 Page Number : 20 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

3.7 Frequency Stability

3.7.1 Description of Frequency Stability Measurement

22.355

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5ppm) of the center frequency.

Report No.: FG041657-01C

24.235 & 27.54

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.7.2 Test Procedures for Temperature Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

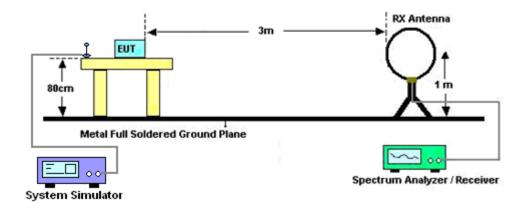
- 1. The EUT was set up in the thermal chamber and connected with the system simulator.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.7.3 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

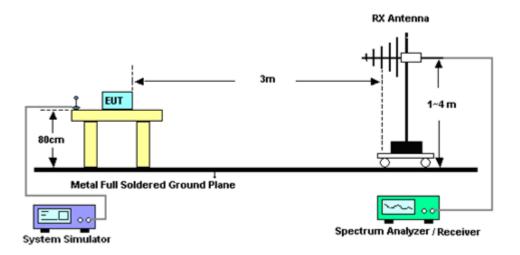
- 1. The EUT was placed in a temperature chamber at 20±5° C and connected with the system simulator.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

TEL: 886-3-327-3456 Page Number : 21 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

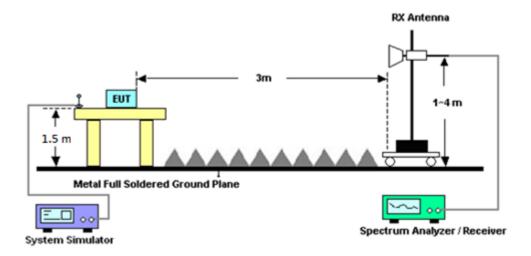

4 Radiated Test Items

4.1 Measuring Instruments

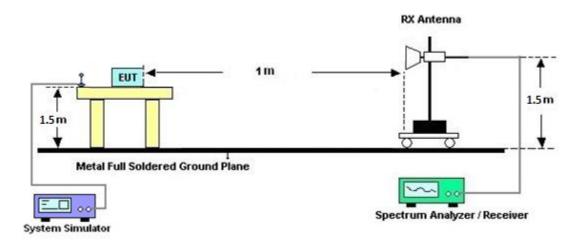
See list of measuring instruments of this test report.


4.1.1 Test Setup

For radiated emissions below 30MHz


Report No.: FG041657-01C

For radiated test from 30MHz to 1GHz



TEL: 886-3-327-3456 Page Number : 22 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

For radiated test from 1GHz to 18GHz

For radiated test above 18GHz

4.1.2 Test Result of Radiated Test

Please refer to Appendix B.

Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

TEL: 886-3-327-3456 Page Number : 23 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

4.2 Radiated Spurious Emission Measurement

4.2.1 Description of Radiated Spurious Emission Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E.

Report No.: FG041657-01C

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.2.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

TEL: 886-3-327-3456 Page Number : 24 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

5 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Dec. 26, 2019	Aug. 14, 2020~ Sep. 02, 2020	Dec. 25, 2020	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	37059 & 01	30MHz~1GHz	Oct. 12, 2019	Aug. 14, 2020~ Sep. 02, 2020	Oct. 11, 2020	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1328	1GHz~18GHz	Nov. 14, 2019	Aug. 14, 2020~ Sep. 02, 2020	Nov. 13, 2020	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-1522	1GHz ~ 18GHz	Sep. 19, 2019	Aug. 14, 2020~ Sep. 02, 2020	Sep. 18, 2020	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917058 4	18GHz~40GHz	Dec. 10, 2019	Aug. 14, 2020~ Sep. 02, 2020	Dec. 09, 2020	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917098 0	18GHz ~ 40GHz	Jan. 10, 2019	Aug. 14, 2020~ Sep. 02, 2020	Jan. 09, 2021	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 25, 2020	Aug. 14, 2020~ Sep. 02, 2020	Mar. 24, 2021	Radiation (03CH12-HY)
Preamplifier	Keysight	83017A	MY57280120	1GHz~26.5GHz	Jul. 20, 2020	Aug. 14, 2020~ Sep. 02, 2020	Jul. 19, 2021	Radiation (03CH12-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03K	1710001800 054002	1GHz~18GHz	Feb. 07, 2020	Aug. 14, 2020~ Sep. 02, 2020	Feb. 06, 2021	Radiation (03CH12-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 13, 2019	Aug. 14, 2020~ Sep. 02, 2020	Dec. 12, 2020	Radiation (03CH12-HY)
Spectrum Analyzer	Agilent	N9010A	MY54200485	10Hz~44GHz	Feb. 10, 2020	Aug. 14, 2020~ Sep. 02, 2020	Feb. 09, 2021	Radiation (03CH12-HY)
Signal Generator	Anritsu	MG3694C	163401	0.1Hz~40GHz	Feb. 15, 2020	Aug. 14, 2020~ Sep. 02, 2020	Feb. 14, 2021	Radiation (03CH12-HY)
5G Wireless Test Platform	Anritsu	MT8000A	6262012917	FR1 (+MT8821C SN:6261849015)	Jan. 20, 2020	Aug. 14, 2020~ Sep. 02, 2020	Jan. 19, 2021	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30MHz~18GHz	Dec. 12, 2019	Aug. 14, 2020~ Sep. 02, 2020	Dec. 11, 2020	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz~40GHz	Feb. 25, 2020	Aug. 14, 2020~ Sep. 02, 2020	Feb. 24, 2021	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30MHz~40GHz	Feb. 25, 2020	Aug. 14, 2020~ Sep. 02, 2020	Feb. 24, 2021	Radiation (03CH12-HY)
Hygrometer	TECPEL	DTM-303B	TP140349	N/A	Oct. 25, 2019	Aug. 14, 2020~ Sep. 02, 2020	Oct. 24, 2020	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Aug. 14, 2020~ Sep. 02, 2020	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Aug. 14, 2020~ Sep. 02, 2020	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Aug. 14, 2020~ Sep. 02, 2020	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-000989	N/A	N/A	Aug. 14, 2020~ Sep. 02, 2020	N/A	Radiation (03CH12-HY)

Report No. : FG041657-01C

TEL: 886-3-327-3456 Page Number : 25 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Programmable Power Supply	GW Instek	SPS-666	GES842931	0V~64V ; 0A~6A	Aug. 19, 2020	Aug. 06, 2020~ Aug. 27, 2020	Aug. 18, 2021	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV30	100895	9KHz~30GHz	May 29, 2020	Aug. 06, 2020~ Aug. 27, 2020	May 28, 2021	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SN O11	10MHz~6GHz	Dec. 30, 2019	Aug. 06, 2020~ Aug. 27, 2020	Dec. 29, 2020	Conducted (TH05-HY)
Temperature Chamber	ESPEC	SH-641	92013720	-40°C ~90°C	Sep. 02, 2019	Aug. 06, 2020~ Aug. 27, 2020	Sep. 01, 2020	Conducted (TH05-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2020	Aug. 06, 2020~ Aug. 27, 2020	Mar. 16, 2021	Conducted (TH05-HY)
Base Station (Measure)	Anritsu	MT8821C	6262044657	LTE(FDD)	Jan. 16, 2020	Aug. 06, 2020~ Aug. 27, 2020	Jan. 15, 2021	Conducted (TH05-HY)
Base Station (Measure)	Anritsu	MT8000A	6262012917	5GNR	Jan. 20, 2020	Aug. 06, 2020~ Aug. 27, 2020	Jan. 19, 2021	Conducted (TH05-HY)

Report No. : FG041657-01C

TEL: 886-3-327-3456 Page Number : 26 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.07
Confidence of 95% (U = 2Uc(y))	3.07

Report No. : FG041657-01C

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

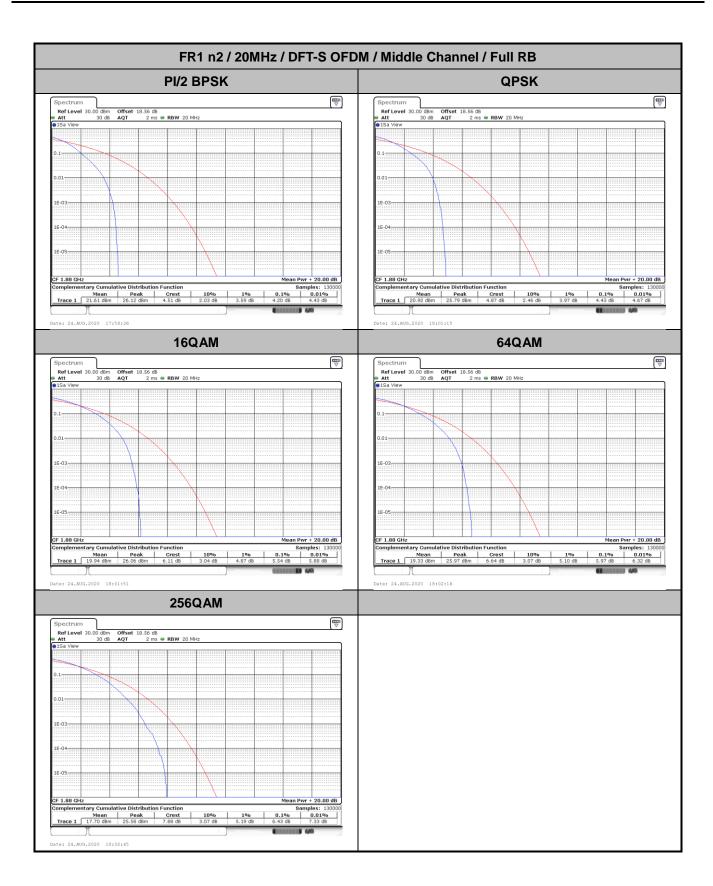
Measuring Uncertainty for a Level of	2.24
Confidence of 95% (U = 2Uc(y))	3.21

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	3.80
Confidence of 95% (U = 2Uc(y))	3.00

TEL: 886-3-327-3456 Page Number : 27 of 27
FAX: 886-3-328-4978 Issued Date : Sep. 16, 2020

Appendix A. Test Results Of Conducted Test


FR1 n2

Peak-to-Average Ratio

Mode					
Mod.	PI/2 BPSK	QPSK	16QAM	64QAM	Limit: 13dB
RB Size	Full RB	Full RB	Full RB	Full RB	Result
Middle CH	4.20	4.43	5.54	5.97	PASS
Mode		FR1 n2 / 20MHz	/ DFT-S OFDM		
Mod.	256QAM				Limit: 13dB
RB Size	Full RB				Result
Middle CH	6.43				PASS

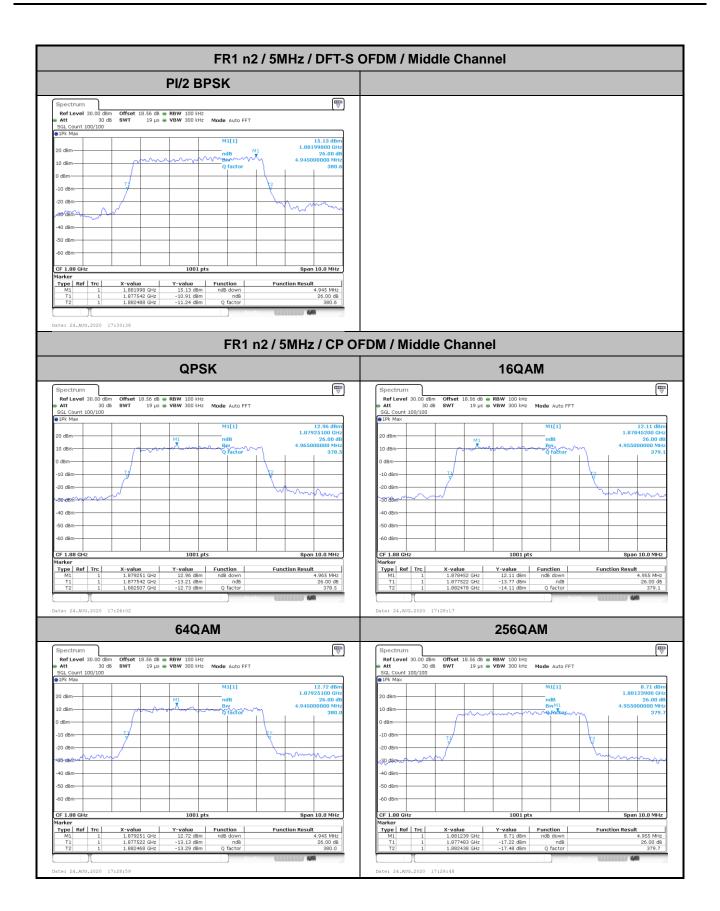
Report No. : FG041657-01C

TEL: 886-3-327-3456 Page Number : An2-1 of 25

Report No.: FG041657-01C

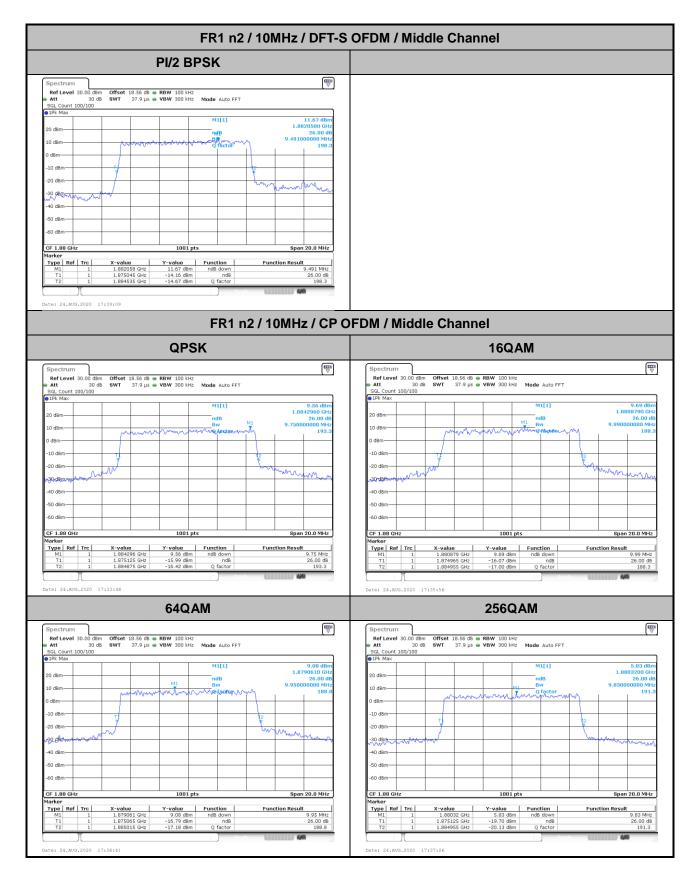
TEL: 886-3-327-3456 Page Number : An2-2 of 25

26dB Bandwidth


Mode		FR1 n2 : 26dB BW(MHz) / DFT-S OFDM								
BW	5MHz		10MHz		15MHz		20MHz			
Mod.	PI/2 BPSK		PI/2 BPSK		PI/2 BPSK		PI/2 BPSK			
Middle CH	4.95		9.49		14.21		18.66			

Report No. : FG041657-01C

Mode		FR1 n2 : 26dB BW(MHz) / CP OFDM									
BW	5MHz		10MHz		15MHz		20MHz				
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM			
Middle CH	4.97	4.96	9.75	9.99	15.11	14.93	19.94	19.94			
Mod.	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM			
Middle CH	4.95	4.96	9.95	9.83	15.08	15.08	19.90	20.02			


TEL: 886-3-327-3456 Page Number : An2-3 of 25

Report No. : FG041657-01C

TEL: 886-3-327-3456 Page Number : An2-4 of 25 FAX: 886-3-328-4978

CC RADIO TEST REPORT Report No. : FG041657-01C

TEL: 886-3-327-3456 Page Number : An2-5 of 25 FAX: 886-3-328-4978

Report No.: FG041657-01C FR1 n2 / 15MHz / DFT-S OFDM / Middle Channel PI/2 BPSK 16.08 dBi 1.8840460 GF 26.00 d 14.206000000 MF 132 Span 30.0 MHz FR1 n2 / 15MHz / CP OFDM / Middle Channel **QPSK 16QAM** 12.85 dBn 1.8785910 GH: 26.00 dE 15.105000000 MH: 10 dBm-124 126. -50 dBm--60 dBm-Function Result 14.925 MHz 26.00 dB 126.4 Marker
Type Ref Trc
 X-value
 Y-value
 Function

 1.878591 GHz
 12.85 d8m
 nd8 down

 1.872448 GHz
 -13.12 d8m
 nd8

 1.887552 GHz
 -13.30 d8m
 Q factor
 Function Result 15.105 MHz
 Marker
 Trc
 X-value
 Y-value
 Function

 M1
 1
 1.885944 GHz
 15.07 dBm
 nd8 down

 T1
 1
 1.872907 GHz
 -10.58 dBm
 nd8

 T2
 1
 1.887433 GHz
 -11.17 dBm
 Q factor
 Date: 24.AUG.2020 17:44:54 64QAM 256QAM 12.70 dB 1.8830270 GF 26.00 d 15.075000000 MF 124 125 -20 dBm -40 dBm -40 dBm-

X-value 1.886803 GHz 1.872448 GHz 1.887522 GHz

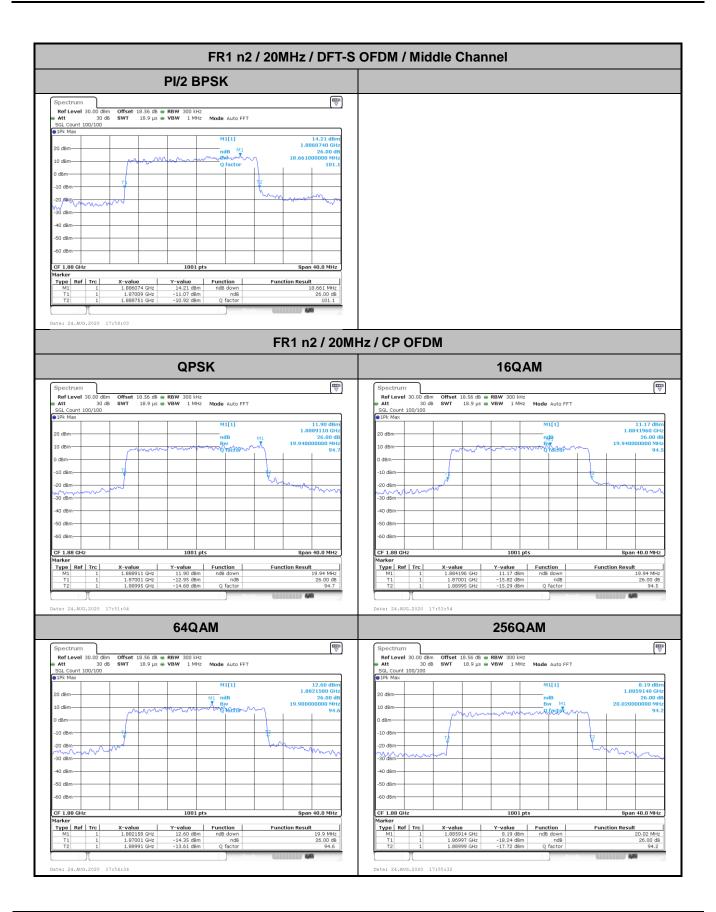
Type Ref Trc

Span 30.0 MHz

Span 30.0 MHz

Function Result

15.075 MHz


26.00 dB

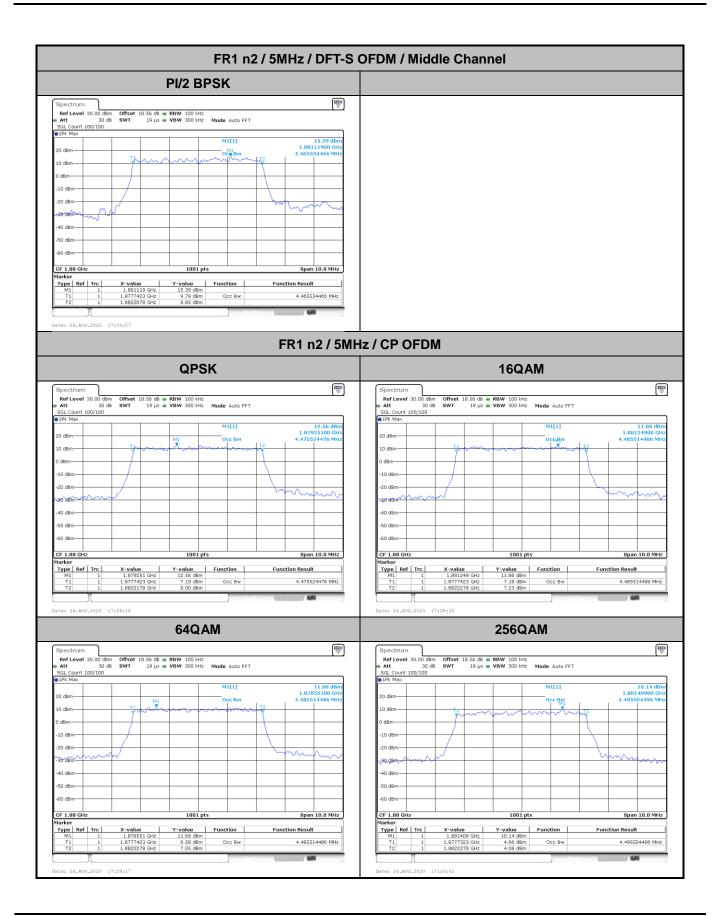
124.9

Function m ndB down

Type Ref Trc

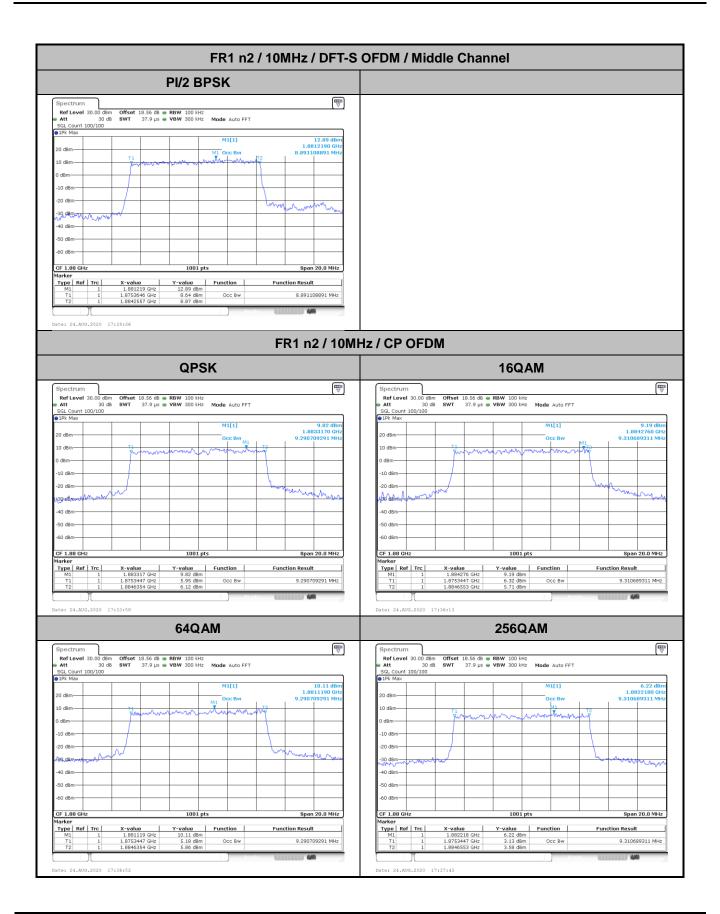
Report No. : FG041657-01C

Occupied Bandwidth

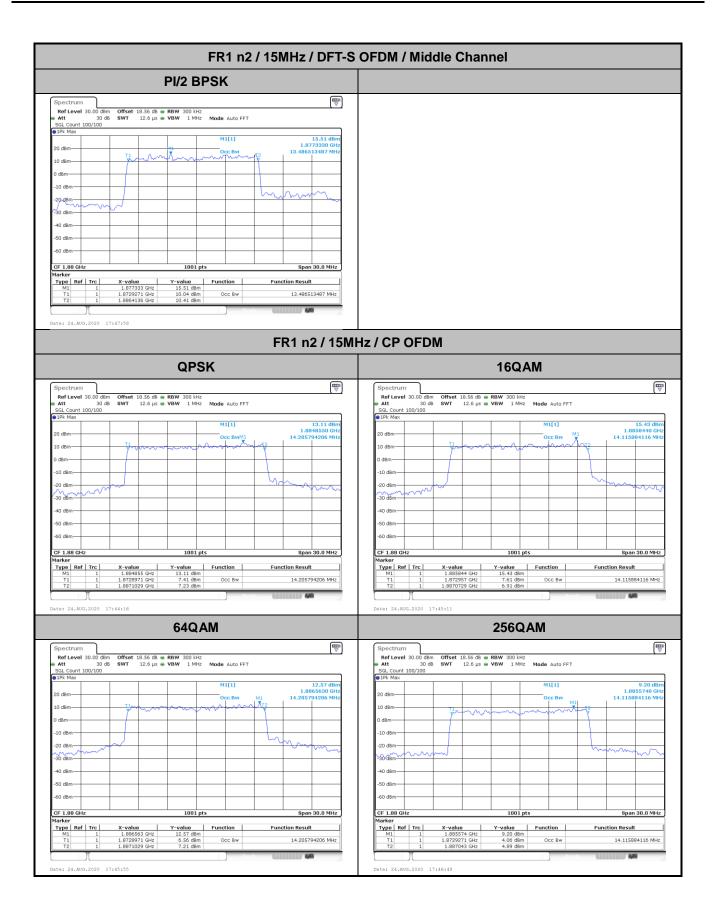

Mode		FR1 n2 : 99%OBW(MHz) / DFT-S OFDM								
BW	5MHz		10MHz		15MHz		20MHz			
Mod.	PI/2 BPSK		PI/2 BPSK		PI/2 BPSK		PI/2 BPSK			
Middle CH	4.47		8.89		13.49		17.86			

Report No. : FG041657-01C

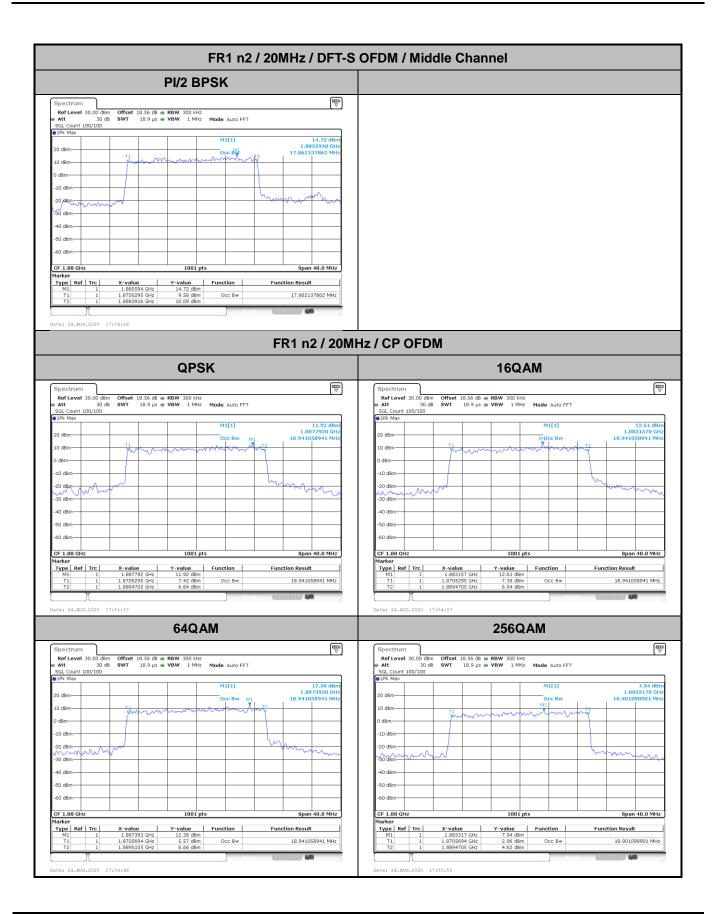
Mode	FR1 n2 : 99%OBW (MHz) / CP OFDM							
BW	5MHz		10MHz		15MHz		20MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Middle CH	4.48	4.49	9.29	9.31	14.21	14.12	18.94	18.94
Mod.	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM
Middle CH	4.49	4.50	9.29	9.31	14.21	14.12	18.94	18.90

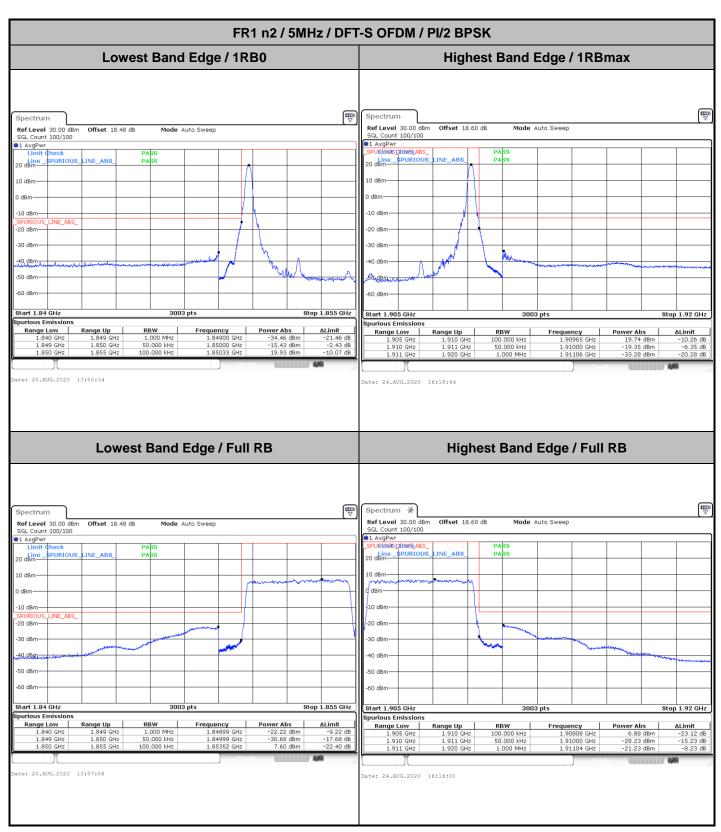

TEL: 886-3-327-3456 Page Number : An2-8 of 25

Report No.: FG041657-01C


TEL: 886-3-327-3456 Page Number : An2-9 of 25 FAX: 886-3-328-4978

Report No.: FG041657-01C


TEL: 886-3-327-3456 Page Number : An2-10 of 25 FAX: 886-3-328-4978



TEL: 886-3-327-3456 Page Number : An2-11 of 25 FAX: 886-3-328-4978

Conducted Band Edge

Report No.: FG041657-01C

TEL: 886-3-327-3456 Page Number : An2-13 of 25

Report No.: FG041657-01C FR1 n2/5MHz/DFT-S OFDM/QPSK Lowest Band Edge / 1RB0 **Highest Band Edge / 1RBmax** Spectrum Mode Auto Sweep Offset 18.48 dB Mode Auto Sweep Ref Level 30.00 dBm SGL Count 100/100 SGL Count 100/100 1 AvgPwr PASS PASS Line 20 dBm 30 dBm 3003 pts Stop 1.855 GHz Start 1.84 GHz Stop 1.92 GHz purious Emissions Range Low * POS GHZ Range Up 1.849 GHz 1.850 GHz 1.855 GHz Frequency 1.84896 GHz 1.85000 GHz 1.85034 GHz Power Abs -37.17 dBm -16.76 dBm 19.16 dBm Range Low 18.65 dBm -19.14 dBm -32.73 dBm Range Up ∆Limit 1.911 GHz 1.920 GHz ate: 20.AUG.2020 13:55:20 Date: 24.AUG.2020 16:17:55 Lowest Band Edge / Full RB **Highest Band Edge / Full RB** Spectrum Ref Level 30.00 dBm Offset 18.60 dB Mode Auto Sweep Ref Level 30.00 dBm SGL Count 100/100 Offset 18.48 dB Mode Auto Sweep SGL Count 100/100 10 dBr n dBm-INE_ABS 20 dBm-30 dBn Start 1.84 GHz Stop 1.855 GHz Stop 1.92 GHz Start 1.905 GHz purious Emissions Range Low 1.905 GHz 1.910 GHz 1.911 GHz Range Low 1.840 GHz 1.849 GHz Range Up 1.849 GHz 1.850 GHz 1.855 GHz 1.84899 GHz 1.84999 GHz 1.84999 GHz 1.85421 GHz ΔLimit -23.49 dB -13.14 dB -7.50 dB Power Abs ΔLimit

TEL: 886-3-327-3456 Page Number : An2-14 of 25

ate: 24.AUG.2020 16:16:46

FAX: 886-3-328-4978

te: 20.AUG.2020 13:57:10

FR1 n2 / 10MHz / DFT-s-OFDM / PI/2 BPSK Lowest Band Edge / 1RB0 **Highest Band Edge / 1RBmax** Spectrum Ref Level 30.00 dBm Offset 18.60 dB Mode Auto Sweep Offset 18.48 dB Mode Auto Sweep Ref Level 30.00 dBm SGL Count 100/100 SGL Count 100/100 1 AvgPwr PASS PASS 20 dBm Line 20 dBm -10 dBm 20 dBm -30 dBm 3003 pts Stop 1.86 GHz Start 1.84 GHz Stop 1.92 GHz purious Emissions Range Low 1 900 GHz 1.849 GHz 1.850 GHz 1.860 GHz Frequency 1.84900 GHz 1.85000 GHz 1.85036 GHz Power Abs -35.10 dBm -14.29 dBm 20.07 dBm Range Low RBW 100.000 kHz 100.000 kHz 1.000 MHz Range Up Power Abs 19.67 dBn ΔLimit 1.911 GHz 1.920 GHz 1.91001 GHz 1.91100 GHz ate: 20.AUG.2020 14:00:22 Date: 24.AUG.2020 16:21:18 Lowest Band Edge / Full RB **Highest Band Edge / Full RB** Spectrum Ref Level 30.00 dBm Offset 18.60 dB Ref Level 30.00 dBm SGL Count 100/100 Offset 18.48 dB Mode Auto Sweep Mode Auto Sweep SGL Count 100/100 10 dBr o dBm 20 dBm 30 dBm Start 1.84 GHz Stop 1.86 GHz Start 1.9 GHz Stop 1.92 GHz purious Emissions 1.84622 GHz 1.84699 GHz 1.85701 GHz Range Low 1.900 GHz 1.910 GHz 1.911 GHz Range Low 1.840 GHz 1.849 GHz Range Up 1.849 GHz 1.850 GHz 1.860 GHz Power Abs ΔLimit te: 20.AUG.2020 14:03:32 ate: 24.AUG.2020 16:23:25

Report No.: FG041657-01C

TEL: 886-3-327-3456 Page Number : An2-15 of 25

FR1 n2 / 10MHz / DFT-s-OFDM / QPSK Lowest Band Edge / 1RB0 **Highest Band Edge / 1RBmax** Spectrum Ref Level 30.00 dBm Offset 18.60 dB Mode Auto Sweep Offset 18.48 dB Mode Auto Sweep Ref Level 30.00 dBm SGL Count 100/100 SGL Count 100/100 1 AvgPwr PASS PASS 20 dBm Line 20 dBm -10 dBm 20 dBm 30 dBm Start 1.84 GHz 3003 pts Stop 1.86 GHz Stop 1.92 GHz purious Emissions Range Low 1 900 GHz 1.849 GHz 1.850 GHz 1.860 GHz Frequency 1.84897 GHz 1.84999 GHz 1.85040 GHz -30.47 dBm -15.05 dBm 19.42 dBm Range Low ΔLimit RBW 100.000 kHz 100.000 kHz 1.000 MHz 18.86 dBm -18.96 dBm -34.88 dBm Range Up ΔLimit -11.14 1.911 GHz 1.920 GHz ate: 20.AUG.2020 14:01:02 Date: 24.AUG.2020 16:21:52 Lowest Band Edge / Full RB **Highest Band Edge / Full RB** Spectrum Ref Level 30.00 dBm Offset 18.60 dB Ref Level 30.00 dBm SGL Count 100/100 Offset 18.48 dB Mode Auto Sweep Mode Auto Sweep SGL Count 100/100 10 dBm or∂êrA≏ -20 dBm-30 dBm Start 1.84 GHz Stop 1.86 GHz Start 1.9 GHz Stop 1.92 GHz purious Emissions Range Low 1.900 GHz 1.910 GHz 1.911 GHz Range Low 1.840 GHz 1.849 GHz Range Up 1.849 GHz 1.850 GHz 1.860 GHz 1.84882 GHz 1.84990 GHz 1.85423 GHz Power Abs ΔLimit -18.87 dBm -26.16 dBm 4.30 dBm te: 20.AUG.2020 14:02:21 ate: 24.AUG.2020 16:22:41

Report No.: FG041657-01C

TEL: 886-3-327-3456 Page Number : An2-16 of 25

FR1 n2 / 15MHz / DFT-s-OFDM / PI/2 BPSK Lowest Band Edge / 1RB0 **Highest Band Edge / 1RBmax** Spectrum Ref Level 30.00 dBm Offset 18.60 dB Mode Auto Sweep Offset 18.48 dB Mode Auto Sweep Ref Level 30.00 dBm SGL Count 100/100 SGL Count 100/100 1 AvgPwr PASS PASS 20 dBm Line 20 dBm -10 dBm -30 dBm Stop 1.865 GHz 3003 pts Start 1.84 GHz Stop 1.92 GHz purious Emissions Range Low * 995 GHz Range Up 1.849 GHz 1.850 GHz 1.865 GHz Frequency 1.84895 GHz 1.84998 GHz 1.85043 GHz -33.40 dBm -14.27 dBm 20.32 dBm Range Low RBW 100.000 kHz 150.000 kHz 1.000 MHz Range Up Power Abs 19.69 dBn ΔLimit 1.911 GHz 1.920 GHz ate: 20.AUG.2020 14:05:03 Date: 24.AUG.2020 16:25:06 Lowest Band Edge / Full RB **Highest Band Edge / Full RB** Spectrum Spectrum Ref Level 30.00 dBm Offset 18.60 dB Ref Level 30.00 dBm SGL Count 100/100 Offset 18.48 dB Mode Auto Sweep Mode Auto Sweep SGL Count 100/100 n/Me/hr 20 dBm -30 dBm Start 1.84 GHz Stop 1.865 GHz Stop 1.92 GHz Start 1.895 GHz purious Emissions Range Low 1.840 GHz 1.849 GHz 1.849 GHz 1.850 GHz 1.865 GHz -16.70 dBm -23.39 dBm 3.27 dBm Power Abs ΔLimit te: 20.AUG.2020 14:07:35 ate: 24.AUG.2020 16:26:54

Report No.: FG041657-01C

TEL: 886-3-327-3456 Page Number : An2-17 of 25

Report No.: FG041657-01C FR1 n2 / 15MHz / DFT-s-OFDM / QPSK Lowest Band Edge / 1RB0 **Highest Band Edge / 1RBmax** Spectrum Ref Level 30.00 dBm Offset 18.60 dB Mode Auto Sweep Offset 18.48 dB Mode Auto Sweep Ref Level 30.00 dBm SGL Count 100/100 SGL Count 100/100 1 AvgPwr PASS PASS 20 dBm Line 20 dBm -10 dBm 20 dBm -30 dBm Stop 1.865 GHz 3003 pts Stop 1.92 GHz Start 1.84 GHz purious Emissions Range Up 1.849 GHz 1.850 GHz 1.865 GHz Frequency 1.84895 GHz 1.85000 GHz 1.85049 GHz Power Abs -33.52 dBm -14.15 dBm 19.40 dBm Range Low RBW 100.000 kHz 150.000 kHz 1.000 MHz Range Low 1.895 GHz Range Up Power Abs 18.70 dBn **∆Limit** -11.30 1.911 GHz 1.920 GHz ate: 20.AUG.2020 14:05:43 Date: 24.AUG.2020 16:25:39 Lowest Band Edge / Full RB **Highest Band Edge / Full RB** Spectrum Ref Level 30.00 dBm Offset 18.60 dB Ref Level 30.00 dBm SGL Count 100/100 Offset 18.48 dB Mode Auto Sweep Mode Auto Sweep SGL Count 100/100 10 dBr INE_ABS -20 dBm Start 1.84 GHz Stop 1.865 GHz Stop 1.92 GHz Start 1.895 GHz purious Emissions Range Low 1.840 GHz 1.849 GHz 1.849 GHz 1.850 GHz 1.865 GHz 1.84899 GHz 1.84994 GHz 1.84994 GHz 1.85539 GHz Power Abs ΔLimit

TEL: 886-3-327-3456 Page Number : An2-18 of 25

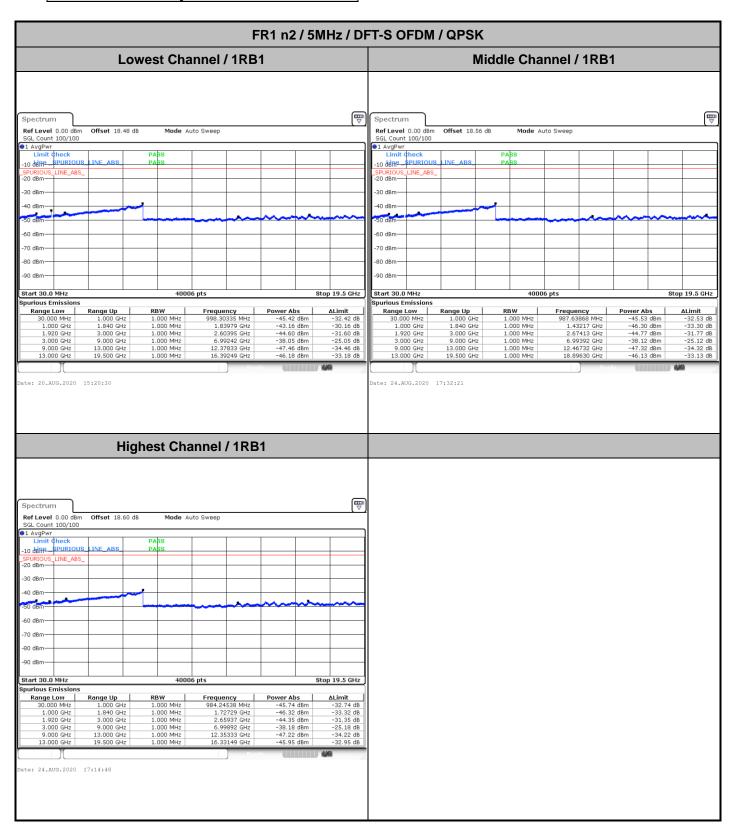
ate: 24.AUG.2020 16:26:23

FAX: 886-3-328-4978

te: 20.AUG.2020 14:06:53

FR1 n2 / 20MHz / DFT-s-OFDM / PI/2 BPSK Lowest Band Edge / 1RB0 **Highest Band Edge / 1RBmax** Spectrum Ref Level 30.00 dBm Offset 18.60 dB Mode Auto Sweep Offset 18.48 dB Mode Auto Sweep Ref Level 30.00 dBm SGL Count 100/100 SGL Count 100/100 1 AvgPwr PASS PASS 20 dBm Line 20 dBm -10 dBm -30 dBm Stop 1.87 GHz 3003 pts Start 1.84 GHz Stop 1.92 GHz purious Emissions Range Low 1 990 GHz Range Up 1.849 GHz 1.850 GHz 1.870 GHz Frequency 1.84893 GHz 1.85000 GHz 1.85051 GHz Power Abs -34.44 dBm -16.08 dBm 20.03 dBm Range Low RBW 100.000 kHz 200.000 kHz 1.000 MHz 19.49 dBm -20.21 dBm -36.54 dBm Range Up ΔLimit 1.911 GHz 1.920 GHz ate: 20.AUG.2020 14:09:12 Date: 24.AUG.2020 16:28:20 Lowest Band Edge / Full RB **Highest Band Edge / Full RB** Spectrum Ref Level 30.00 dBm Offset 18.60 dB Ref Level 30.00 dBm SGL Count 100/100 Offset 18.48 dB Mode Auto Sweep Mode Auto Sweep SGL Count 100/100 10 dBr INE_ABS 20 dBm Stop 1.87 GHz Start 1.84 GHz Stop 1.92 GHz Start 1.89 GHz purious Emissions Range Low 1.890 GHz 1.910 GHz 1.911 GHz Range Low 1.840 GHz 1.849 GHz 1.849 GHz 1.850 GHz 1.870 GHz 1.84887 GHz 1.84937 GHz 1.84937 GHz 1.85826 GHz Power Abs ΔLimit -20.73 dBm -27.12 dBm 2.48 dBm te: 20.AUG.2020 14:11:34 ate: 24.AUG.2020 16:30:02

Report No.: FG041657-01C


TEL: 886-3-327-3456 Page Number : An2-19 of 25

FR1 n2 / 20MHz / DFT-s-OFDM / QPSK Lowest Band Edge / 1RB0 **Highest Band Edge / 1RBmax** Spectrum Ref Level 30.00 dBm Offset 18.60 dB Mode Auto Sweep Offset 18.48 dB Mode Auto Sweep Ref Level 30.00 dBm SGL Count 100/100 SGL Count 100/100 1 AvgPwr PASS PASS 20 dBm Line 20 dBm -10 dBm 30 dBm Stop 1.87 GHz 3003 pts Start 1.84 GHz Stop 1.92 GHz purious Emissions Range Low 1 990 GHz Range Up 1.849 GHz 1.850 GHz 1.870 GHz Frequency 1.84900 GHz 1.85000 GHz 1.85055 GHz Power Abs
-35.55 dBm
-18.83 dBm
19.28 dBm Range Low RBW 100.000 kHz 200.000 kHz 1.000 MHz 18.82 dBm -20.93 dBm -34.44 dBm Range Up ΔLimit 1.911 GHz 1.920 GHz ate: 20.AUG.2020 14:10:01 Date: 24.AUG.2020 16:28:55 Lowest Band Edge / Full RB **Highest Band Edge / Full RB** Spectrum Spectrum Ref Level 30.00 dBm Offset 18.60 dB Ref Level 30.00 dBm SGL Count 100/100 Offset 18.48 dB Mode Auto Sweep Mode Auto Sweep SGL Count 100/100 -30 dBm Stop 1.87 GHz Start 1.84 GHz Stop 1.92 GHz Start 1.89 GHz purious Emissions Range Low 1.890 GHz 1.910 GHz 1.911 GHz Range Low 1.840 GHz 1.849 GHz 1.849 GHz 1.850 GHz 1.870 GHz Frequency 1.84892 GHz 1.84964 GHz 1.85752 GHz -14.95 dBm -20.81 dBm 1.54 dBm ΔLimit te: 20.AUG.2020 14:10:56 ate: 24.AUG.2020 16:29:31

Report No.: FG041657-01C

TEL: 886-3-327-3456 Page Number : An2-20 of 25

Conducted Spurious Emission

Report No.: FG041657-01C

TEL: 886-3-327-3456 Page Number : An2-21 of 25

FR1 n2 / 10MHz / DFT-S OFDM / QPSK Lowest Channel / 1RB1 Middle Channel / 1RB1 Spectrum Spectrum Offset 18.48 dB Mode Auto Sweep Offset 18.56 dB Mode Auto Sweep Ref Level 0.00 dBm Ref Level 0.00 dBm SGL Count 100/100 SGL Count 100/100 ∍1 AvgPwr ●1 AvgPwr Limit d 10 ddHP 30 dBm -30 dBm 40 dBm 40 dBm 60 dBr -60 dBm -70 dBm -70 dBm 80 dBm -80 dBm Start 30.0 MHz Stop 19.5 GHz Start 30.0 MHz 40006 pts Stop 19.5 GHz ırious Emission Spurious Emissions 916.37931 MHz 1.83979 GHz 2.68600 GHz 6.99542 GHz 12.43482 GHz 13.92568 GHz Power Abs
-45.62 dBm
-46.05 dBm
-44.53 dBm
-38.30 dBm
-47.27 dBm
-46.14 dBm ΔLimit
-32.62 dB
-33.05 dB
-31.53 dB
-25.30 dB
-34.27 dB
-33.14 dB RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 987.15392 MHz 1.39313 GHz 2.68744 GHz 6.99742 GHz 12.36483 GHz 18.88880 GHz Power Abs
-45.56 dBm
-46.30 dBm
-44.74 dBm
-38.27 dBm
-47.13 dBm
-46.31 dBm Range Low 30.000 MHz Range Up RBW Range Low 30.000 MHz Range Up ΔLimit 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz -32.56 dB -33.30 dB -31.74 dB -25.27 dB -34.13 dB -33.31 dB 1.000 GHz 1.840 GHz 3.000 GHz 9.000 GHz 30.000 MHz 1.000 GHz 1.920 GHz 3.000 GHz 9.000 GHz 13.000 GHz 1.000 GHz 1.840 GHz 3.000 GHz 9.000 GHz 1.000 MHz 1.000 GHz 1.920 GHz 3.000 GHz 13.000 GHz 19.500 GHz 13.000 GHz 19.500 GHz ate: 20.AUG.2020 15:22:22 ate: 24.AUG.2020 17:40:53 **Highest Channel / 1RB1** Spectrum Ref Level 0.00 dBm Offset 18.60 dB Mode Auto Sweep SGL Count 100/100 11 AvgPwr Limit check 10 delne SPURIOU LINE_ABS 30 dBm 40 dBm -70 dBn -80 dBm Start 30.0 MHz rious Emissions Range Up 1.000 GHz 1.840 GHz 3.000 GHz 9.000 GHz 13.000 GHz 19.500 GHz RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz Prequency 966.79410 MHz 1.38012 GHz 2.68780 GHz 6.99042 GHz 12.35033 GHz 18.40333 GHz Range Low 30.000 MHz te: 24.AUG.2020 16:58:13

Report No.: FG041657-01C

TEL: 886-3-327-3456 Page Number : An2-22 of 25

FR1 n2 / 15MHz / DFT-S OFDM / QPSK Lowest Channel / 1RB1 Middle Channel / 1RB1 Spectrum Spectrum Offset 18.48 dB Mode Auto Sweep Offset 18.56 dB Mode Auto Sweep Ref Level 0.00 dBm Ref Level 0.00 dBm SGL Count 100/100 SGL Count 100/100 ∍1 AvgPwr ●1 AvgPwr Limit d 30 dBm -30 dBm 40 dBm 40 dBm 60 dBr -60 dBm -70 dBm -70 dBm 80 dBm -80 dBm Start 30.0 MHz Stop 19.5 GHz Start 30.0 MHz 40006 pts Stop 19.5 GHz ırious Emission Spurious Emissions 961.94653 MHz 1.83727 GHz 2.69428 GHz 6.99742 GHz 12.44632 GHz 13.92518 GHz Power Abs
-45.81 dBm
-44.93 dBm
-44.62 dBm
-38.24 dBm
-47.31 dBm
-46.17 dBm RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 947.40380 MHz 1.42210 GHz 2.59855 GHz 6.98942 GHz 12.44132 GHz 18.89130 GHz Power Abs
-45.52 dBm
-46.41 dBm
-44.63 dBm
-37.99 dBm
-47.27 dBm
-46.32 dBm -32.81 dB -31.93 dB -31.62 dB -25.24 dB Range Low 30.000 MHz Range Up RBW Range Low 30.000 MHz Range Up ΔLimit 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz -32.52 dB -33.41 dB -31.63 dB -24.99 dB -34.27 dB -33.32 dB 1.000 GHz 1.840 GHz 3.000 GHz 9.000 GHz 30.000 MHz 1.000 GHz 1.920 GHz 3.000 GHz 9.000 GHz 13.000 GHz 1.000 GHz 1.840 GHz 3.000 GHz 9.000 GHz 1.000 MHz 1.000 GHz 1.920 GHz 3.000 GHz -34.31 dB -33.17 dB 13.000 GHz 19.500 GHz 13.000 GHz 19.500 GHz ate: 20.AUG.2020 15:26:19 ate: 24.AUG.2020 17:49:39 **Highest Channel / 1RB1** Spectrum Ref Level 0.00 dBm Offset 18.60 dB Mode Auto Sweep SGL Count 100/100 11 AvgPwr Limit check 10 delne SPURIOU LINE_ABS 30 dBm 40 dBm 50 dBm-70 dBm -80 dBm Start 30.0 MHz rious Emissions Range Up 1.000 GHz 1.840 GHz 3.000 GHz 9.000 GHz 13.000 GHz 19.500 GHz RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz Range Low 30.000 MHz te: 24.AUG.2020 16:49:17

Report No.: FG041657-01C

TEL: 886-3-327-3456 Page Number : An2-23 of 25

FR1 n2 / 20MHz / DFT-S OFDM / QPSK Lowest Channel / 1RB1 Middle Channel / 1RB1 Spectrum Spectrum Offset 18.48 dB Mode Auto Sweep Offset 18.56 dB Mode Auto Sweep Ref Level 0.00 dBm Ref Level 0.00 dBm SGL Count 100/100 SGL Count 100/100 ∍1 AvgPwr ●1 AvgPwr Limit d 10 ddHP 30 dBm -30 dBm 40 dBm 40 dBm 60 dBr -60 dBm -70 dBm -70 dBm 80 dBm -80 dBm Start 30.0 MHz Stop 19.5 GHz Start 30.0 MHz 40006 pts Stop 19.5 GHz ırious Emission Spurious Emissions RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 979.88256 MHz 1.83979 GHz 2.63202 GHz 6.99942 GHz 12.35433 GHz 13.92568 GHz Power Abs
-45.68 dBm
-43.42 dBm
-44.77 dBm
-37.87 dBm
-47.23 dBm
-46.32 dBm ΔLimit
-32.68 dB
-30.42 dB
-31.77 dB
-24.87 dB
-34.23 dB
-33.32 dB RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 982.79110 MHz 1.83349 GHz 2.69572 GHz 6.99242 GHz 12.43782 GHz 18.86280 GHz Power Abs
-45.39 dBm
-46.37 dBm
-44.75 dBm
-38.19 dBm
-47.13 dBm
-46.19 dBm Range Low 30.000 MHz Range Up Range Low 30.000 MHz Range Up ΔLimit -32.39 dB -33.37 dB -31.75 dB -25.19 dB -34.13 dB -33.19 dB 1.000 GHz 1.840 GHz 3.000 GHz 9.000 GHz 30.000 MHz 1.000 GHz 1.920 GHz 3.000 GHz 9.000 GHz 13.000 GHz 1.000 GHz 1.840 GHz 3.000 GHz 9.000 GHz 1.000 MHz 1.000 GHz 1.920 GHz 3.000 GHz 13.000 GHz 19.500 GHz 13.000 GHz 19.500 GHz ate: 20.AUG.2020 15:28:08 Date: 24.AUG.2020 18:00:37 **Highest Channel / 1RB1** Spectrum Ref Level 0.00 dBm Offset 18.60 dB Mode Auto Sweep SGL Count 100/100 11 AvgPwr Limit check 10 delne SPURIOU LINE_ABS 30 dBm 40 dBm 50 dBm--70 dBm -80 dBm Start 30.0 MHz rious Emissions Range Up 1.000 GHz 1.840 GHz 3.000 GHz 9.000 GHz 13.000 GHz 19.500 GHz RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz Range Low 30.000 MHz 45.94953 MHz 1.41748 GHz 2.68097 GHz 6.99142 GHz 12.38333 GHz 18.44533 GHz te: 24.AUG.2020 16:33:06

Report No.: FG041657-01C

TEL: 886-3-327-3456 Page Number : An2-24 of 25

Frequency Stability

Test Conditions		FR1 n2 (QPSK) / Middle Channel	Limit
Temperature (°C)		BW 20MHz	Note 2.
	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0022	
40	Normal Voltage	0.0002	
30	Normal Voltage	0.0015	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0017	
0	Normal Voltage	0.0005	
-10	Normal Voltage	0.0003	PASS
-20	Normal Voltage	0.0003	
-30	Normal Voltage	0.0020	
20	Maximum Voltage	0.0014	
20	Normal Voltage	0.0011	
20	Battery End Point	0.0004	

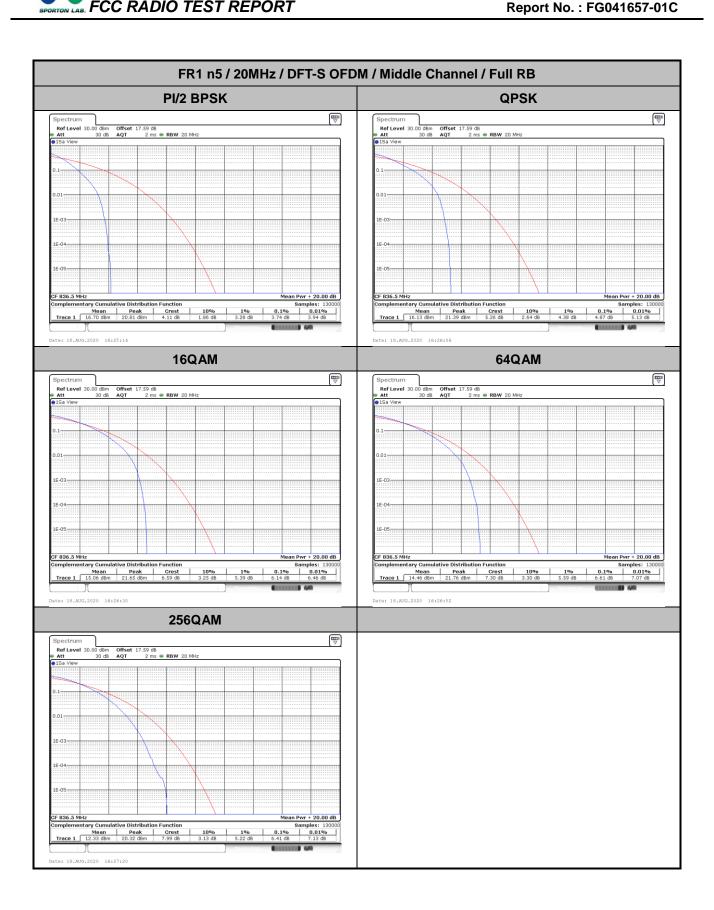
Report No. : FG041657-01C

Note:

- 1. Normal Voltage =3.85 V.; Battery End Point (BEP) =3.30 V.; Maximum Voltage =4.25 V.
- 2. The frequency fundamental emissions stay within the authorized frequency block.

TEL: 886-3-327-3456 Page Number: An2-25 of 25

FR1 n5


Peak-to-Average Ratio

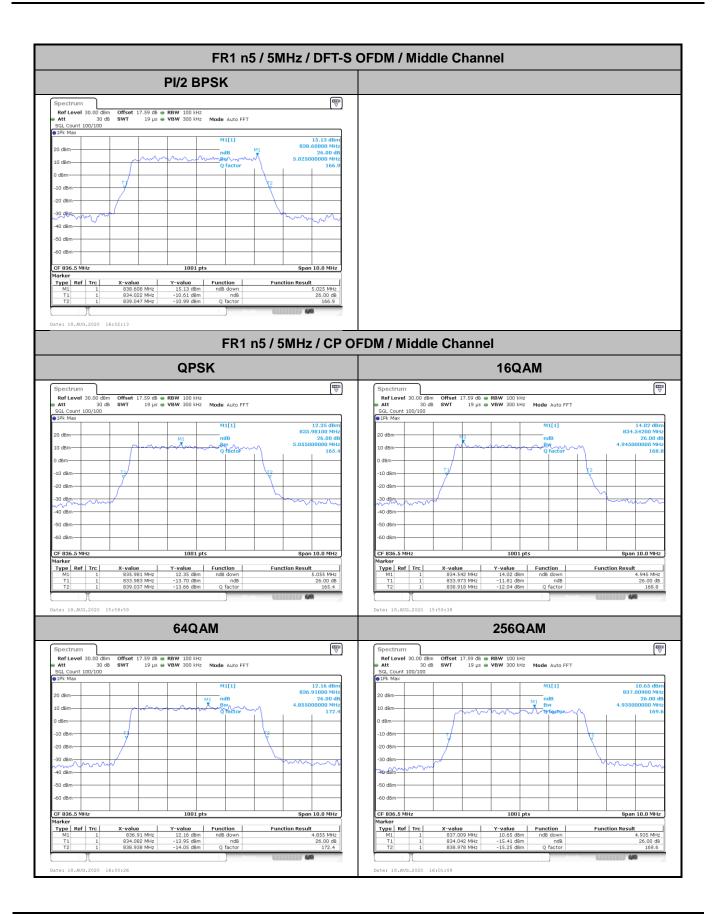
Mode					
Mod.	PI/2 BPSK	QPSK	16QAM	64QAM	Limit: 13dB
RB Size	Full RB	Full RB	Full RB	Full RB	Result
Middle CH	3.74	4.87	6.14	6.61	PASS
Mode					
Mod.	256QAM				Limit: 13dB
RB Size	Full RB				Result
Middle CH	6.41				PASS

Report No. : FG041657-01C

TEL: 886-3-327-3456 Page Number : An5-1 of 29

TEL: 886-3-327-3456 Page Number : An5-2 of 29

26dB Bandwidth


Mode	FR1 n5 : 26dB BW(MHz) / DFT-S OFDM							
BW	5MHz		10MHz		15MHz		20MHz	
Mod.	PI/2 BPSK		PI/2 BPSK		PI/2 BPSK		PI/2 BPSK	
Middle CH	5.03		9.51		14.21		18.70	

Report No. : FG041657-01C

Mode	FR1 n5 : 26dB BW(MHz) / CP OFDM							
BW	5MHz		10MHz		15MHz		20MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Middle CH	5.06	4.95	9.79	9.79	14.96	14.90	19.78	19.90
Mod.	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM
Middle CH	4.86	4.93	9.69	9.87	14.99	15.05	19.70	19.78

TEL: 886-3-327-3456 Page Number : An5-3 of 29

Report No.: FG041657-01C

TEL: 886-3-327-3456 Page Number : An5-4 of 29 FAX: 886-3-328-4978