

FCC/ISED RADIO TEST REPORT

FCC ID	: PKRISGM1000
IC	: 3229A-M1000
Equipment	: M1000
Brand Name	: inseego
Model Name	: M1000
Marketing Name	: 5G MiFi M1000
HVIN	: M1000
PMN	: 5G MiFi M1000
Applicant	: Inseego Corp. 9605 Scranton Road, Suite 300, San Diego, CA 92121
Manufacturer	: Inseego Corp. 9605 Scranton Road, Suite 300, San Diego, CA 92121
Standard	: 47 CFR Part 2, 27H
	ISED RSS-139 Issue 3

The product was received on May 03, 2019 and testing was started from Jun. 12, 2019 and completed on Jul. 02, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

bnes/sai

Approved by: Jones Tsai SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	story o	f this test report	3
Su	mmary	/ of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Test Mode	7
	2.2	Connection Diagram of Test System	8
	2.3	Support Unit used in test configuration and system	8
	2.4	Measurement Results Explanation Example	8
3	Cond	ucted Test Items	9
	3.1	Measuring Instruments	9
	3.2	Conducted Output Power and EIRP	.10
	3.3	Peak-to-Average Ratio	.11
	3.4	Occupied Bandwidth	.12
	3.5	Conducted Band Edge	.13
	3.6	Conducted Spurious Emission	.14
	3.7	Frequency Stability	.15
4	Radia	ited Test Items	.16
	4.1	Measuring Instruments	.16
	4.2	Radiated Spurious Emission Measurement	.17
5	List c	f Measuring Equipment	.18
6	Unce	rtainty of Evaluation	.20
Ар	pendix	A. Test Results of Conducted Test	
Ар	pendix	B. Test Results of Radiated Test	
_			

Appendix C. Test Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FG950301-01C	01	Initial issue of report	Jul. 03, 2019

Summary of Test Result

Report Clause	Ref Std. Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
	§2.1046	RSS-Gen 6.12 RSS-139 6.5	Conducted Output Power	Reporting only	
3.2	§27.50 (d)(4)	RSS-139 6.5 SRSP-513 5.1.2	Equivalent Isotropic Radiated Power (Band 66)	Pass	-
3.3	§27.50 (d)(5)	RSS-139 6.5	Peak-to-Average Ratio	Reporting only	-
3.4	§2.1049	RSS-Gen 6.7 RSS-139 3.1	Occupied Bandwidth	Reporting only	-
3.5	§2.1051 §27.53 (h)	§2.1051RSS- 139 6.6	Conducted Band Edge Measurement (Band 66)	Pass	-
3.6	§2.1051 §27.53 (h)	§2.1051RSS- 139 6.6	Conducted Spurious Emission (Band 66)	Pass	-
3.7	§2.1055 §27.54	RSS-Gen 6.11 RSS-139 6.4	Frequency Stability Temperature & Voltage	Pass	-
4.2	§2.1053 §27.53 (h)	§2.1051RSS- 139 6.6	Radiated Spurious Emission (Band 66)	Pass	Under limit 26.11 dB at 5261.000 MHz

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: William Chen

Report Producer: Yung Hsu

1 General Description

1.1 Product Feature of Equipment Under Test

The EUT supports UMTS/LTE/NR/WiFi. The details please find the Operating Description.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.		
Test Sile No.	TH05-HY		
Test Engineer	Chester Chen		
Temperature	23~25 ℃		
Relative Humidity	51~56%		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory			
Test Site Location	No.58, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			
Test Site No.	Sporton Site No. ISED Registration			
Test Sile No.	03CH12-HY			
Test Engineer	Jack Cheng, Lance Chiang, Chuan Chu	10000		
Temperature	22~26°C	- 4086B		
Relative Humidity	54~60%			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

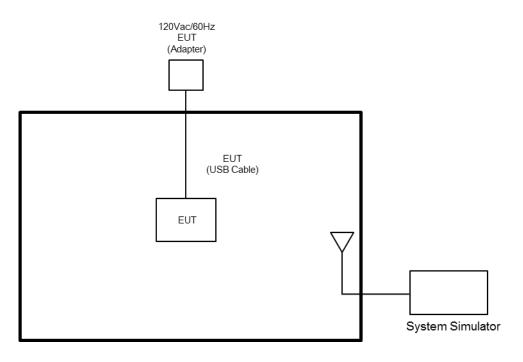
Tollowing standards.

- ANSI C63.26-2015
- ANSI / TIA-603-E
- 47 CFR Part 2, 27H
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- ISED RSS-139 Issue 3

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2 Test Configuration of Equipment Under Test

2.1 Test Mode


Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

For LTE Band 66 Uplink 2CA, all the modulation and bandwidth combination are evaluated to determine the worst case 10MHz +10MHz and 20MHz + 20MHz for reporting.

For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.

The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst case emissions are reported.

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritsu	MT8821C	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

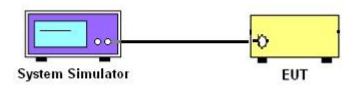
Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

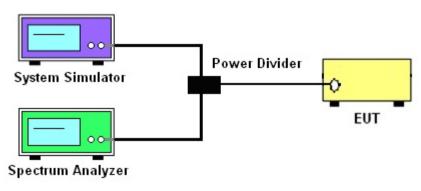
Example :

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

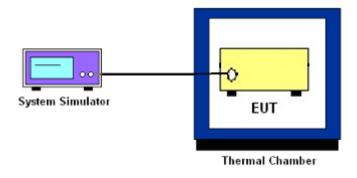
= 4.2 + 10 = 14.2 (dB)


3 Conducted Test Items

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.1.1 Test Setup


3.1.2 Conducted Output Power

3.1.3 Peak-to-Average Ratio, Occupied Bandwidth ,Conducted Band-Edge and Conducted Spurious Emission

3.1.4 Frequency Stability

3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

3.2 Conducted Output Power and EIRP

3.2.1 Description of the Conducted Output Power Measurement and EIRP Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The EIRP of mobile transmitters must not exceed 1 Watts for LTE Band 66.

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$, ERP = EIRP - 2.15, where

 P_T = transmitter output power in dBm

 G_T = gain of the transmitting antenna in dBi

 L_{C} = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

3.3 Peak-to-Average Ratio

3.3.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.3.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.2.6

- 1. The EUT was connected to spectrum and system simulator via a power divider.
- 2. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 4. Record the deviation as Peak to Average Ratio.

3.4 Occupied Bandwidth

3.4.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.4.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.4.3 (26dB) and Section 5.4.4 (99OB)

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- 3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 4. Set the detection mode to peak, and the trace mode to max hold.
- Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value)
- 6. Determine the "-26 dB down amplitude" as equal to (Reference Value X).
- 7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- 8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

3.5 Conducted Band Edge

3.5.1 Description of Conducted Band Edge Measurement

27.53 (h) / RSS-139

For operations in the 1710 - 1755 MHz band, the FCC limit is $43 + 10log_{10}(P[Watts])$ dB below the transmitter power P(Watts) in a 1 MHz bandwidth. However, in the 1MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

3.5.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.
- 3. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 4. Beyond the 1 MHz band from the band edge, RBW=1MHz was used.
- 5. Set spectrum analyzer with RMS detector.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. Checked that all the results comply with the emission limit line.The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

3.6 Conducted Spurious Emission

3.6.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

3.6.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 6. Set spectrum analyzer with RMS detector.
- 7. Taking the record of maximum spurious emission.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

3.7 Frequency Stability

3.7.1 Description of Frequency Stability Measurement

27.54 / RSS-139

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.7.2 Test Procedures for Temperature Variation

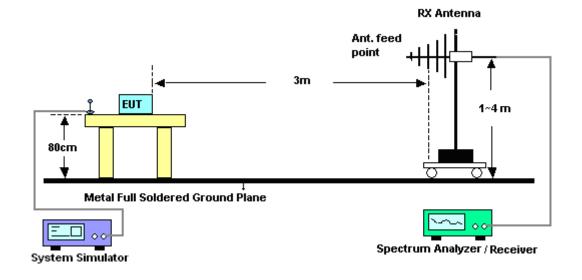
The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was set up in the thermal chamber and connected with the system simulator.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

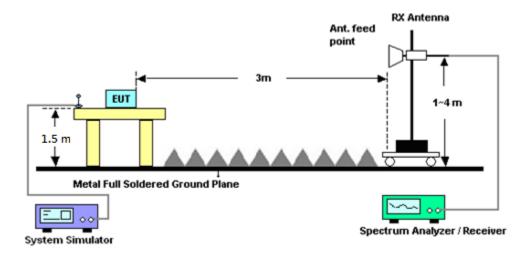
3.7.3 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was placed in a temperature chamber at 20±5° C and connected with the system simulator.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.


4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.1.1 Test Setup

For radiated test from 30MHz to 1GHz

For radiated test above 1GHz

4.1.2 Test Result of Radiated Test

Please refer to Appendix B.

4.2 Radiated Spurious Emission Measurement

4.2.1 Description of Radiated Spurious Emission Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.2.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

List of Measuring Equipment 5

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 07, 2019	Jun. 13, 2019~ Jun. 14, 2019	Jan. 06, 2020	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D&00802 N1D01N-06	47020&06	30MHz to 1GHz	Oct. 13, 2018	Jun. 13, 2019~ Jun. 14, 2019	Oct. 12, 2019	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-1212	1GHz ~ 18GHz	Oct. 19, 2018	Jun. 13, 2019~ Jun. 14, 2019	Oct. 18, 2019	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-1326	1GHz ~ 18GHz	Oct. 30, 2018	Jun. 13, 2019~ Jun. 14, 2019	Oct. 29, 2019	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917058 4	18GHz ~ 40GHz	Dec. 05, 2018	Jun. 13, 2019~ Jun. 14, 2019	Dec. 04, 2019	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 25, 2019	Jun. 13, 2019~ Jun. 14, 2019	Mar. 24, 2020	Radiation (03CH12-HY)
Preamplifier	Agilent	8449B	3008A02375	1GHz~26.5Ghz	May 28, 2018	Jun. 13, 2019~ Jun. 14, 2019	May 26, 2020	Radiation (03CH12-HY)
Preamplifier	Jet-Power	JPA0118-55-30 3	17100018000 55007	1GHz~18GHz	Apr. 01, 2019	Jun. 13, 2019~ Jun. 14, 2019	Mar. 31, 2020	Radiation (03CH12-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 06, 2018	Jun. 13, 2019~ Jun. 14, 2019	Dec. 05, 2019	Radiation (03CH12-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100390	20Hz~26.5GHz	Dec. 26, 2018	Jun. 13, 2019~ Jun. 14, 2019	Dec. 25, 2019	Radiation (03CH12-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Dec. 19, 2018	Jun. 13, 2019~ Jun. 14, 2019	Dec. 18, 2019	Radiation (03CH12-HY)
Hygrometer	TECPEL	DTM-303B	TP161243	N/A	May 11, 2019	Jun. 13, 2019~ Jun. 14, 2019	May 10, 2020	Radiation (03CH12-HY)
Signal Generator	Rohde & Schwarz	SMB100A	175727	100kHz~40GHz	Dec. 23, 2018	Jun. 13, 2019~ Jun. 14, 2019	Dec. 23, 2019	Radiation (03CH12-HY)
Base Station	Anritsu	MT8821C	6201432816	LTE-3CC DLCA,2CC ULCA	May 05, 2019	Jun. 13, 2019~ Jun. 14, 2019	May 04, 2020	Radiation (03CH12-HY)
Filter	Wainwright	WLK4-1000-15 30-6000-40SS	SN11	1 GHz Lowpass	Sep. 16, 2018	Jun. 13, 2019~ Jun. 14, 2019	Sep. 15, 2019	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-1080 -1200-1500-60 SS	SN2	1.2G High Pass	Sep. 16, 2018	Jun. 13, 2019~ Jun. 14, 2019	Sep. 15, 2019	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0ST	SN2	3GHz High Pass	Mar. 20, 2019	Jun. 13, 2019~ Jun. 14, 2019	Mar. 19, 2020	Radiation (03CH12-HY)
Notch Filter	EWT	EWT-14-0041	D1	DCS 1800	Nov. 01, 2018	Jun. 13, 2019~ Jun. 14, 2019	Oct. 31, 2019	Radiation (03CH12-HY)
Notch Filter	Wainwright	WRCT698/798 -10/40 8SSK	SN1	AWS Band	Nov. 01, 2018	Jun. 13, 2019~ Jun. 14, 2019	Oct. 31, 2019	Radiation (03CH12-HY)
Notch Filter	Wainwright	WRCG824/849 -40/8SS	SN35	CDMA 850	Nov. 07, 2018	Jun. 13, 2019~ Jun. 14, 2019	Nov. 06, 2019	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30M-18G	Mar. 13, 2019	Jun. 13, 2019~ Jun. 14, 2019	Mar. 12, 2020	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30M~40GHz	Oct. 16, 2018	Jun. 13, 2019~ Jun. 14, 2019	Oct. 15, 2019	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30M~40GHz	Oct. 16, 2018	Jun. 13, 2019~ Jun. 14, 2019	Oct. 15, 2019	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Jun. 13, 2019~ Jun. 14, 2019	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Jun. 13, 2019~ Jun. 14, 2019	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Jun. 13, 2019~ Jun. 14, 2019	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-000989	N/A	N/A	Jun. 13, 2019~ Jun. 14, 2019	N/A	Radiation (03CH12-HY)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Base Station	Anritsu	MT8821C	6201664755	/LTE-3CC DLCA,2CC ULCA	Mar. 03, 2019	Jun. 12, 2019~ Jul. 02, 2019	Mar. 02, 2020	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 13, 2018	Jun. 12, 2019~ Jul. 02, 2019	Nov. 12, 2019	Conducted (TH05-HY)
Coupler	Warison	20dB 25W SM A Directional Coupler	#A	1-18GHz	Jan. 14, 2019	Jun. 12, 2019~ Jul. 02, 2019	Jan. 13, 2020	Conducted (TH05-HY)

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.36
Confidence of 95% (U = 2Uc(y))	5.50

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	3.70
Confidence of 95% (U = 2Uc(y))	5.70

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	2.08
Confidence of 95% (U = 2Uc(y))	3.98

LTE Band 66

Conducted Output Power

	LTE Band 66_CA Maximum Average Power [dBm]										
	PC	cc	S	00							
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
20+20	100	0	100	0		19.42	18.88	19.45			
20+20	1	0	1	99	QPSK	13.13	13.36	13.44			
20+20	1	99	1	0		21.64	21.49	21.99			
20+20	100	0	100	0		18.69	18.06	18.24			
20+20	1	0	1	99	16-QAM	13.08	13.21	13.62			
20+20	1	99	1	0		20.61	20.93	20.84			
20+20	100	0	100	0		18.67	18.21	18.09			
20+20	1	0	1	99	64-QAM	13.01	13.29	13.34			
20+20	1	99	1	0		18.58	18.89	18.88			

	LTE Band 66_CA Maximum Average Power [dBm]										
	PC	cc	S	00	Mad						
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
20+15	100	0	75	0		19.89	20.59	20.11			
20+15	1	0	1	74	QPSK	13.19	13.53	13.58			
20+15	1	99	1	0		21.98	22.15	22.36			
20+15	100	0	75	0		18.86	19.56	20.08			
20+15	1	0	1	74	16-QAM	13.45	13.95	14.09			
20+15	1	99	1	0]	20.81	21.23	21.53			
20+15	100	0	75	0		18.64	19.54	20.06			
20+15	1	0	1	74	64-QAM	13.35	13.71	13.98			
20+15	1	99	1	0		18.92	19.36	19.34			

		LTE Bai	nd 66_CA Ma	aximum Ave	rage Powei	[dBm]		
	P	00	SC	00				
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest
15+20	75	0	100	0		19.67	20.68	20.10
15+20	1	0	1	99	QPSK	13.46	13.58	13.61
15+20	1	74	1	0		22.07	22.19	22.18
15+20	75	0	100	0		19.64	19.21	20.08
15+20	1	0	1	99	16-QAM	13.85	13.98	14.16
15+20	1	74	1	0		21.19	21.32	21.32
15+20	75	0	100	0		19.77	18.97	19.91
15+20	1	0	1	99	64-QAM	13.68	13.95	13.94
15+20	1	74	1	0		18.65	19.33	19.36

	LTE Band 66_CA Maximum Average Power [dBm]										
	PC	C C	SC	cc	Mad						
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
20+10	100	0	50	0		20.08	19.87	20.19			
20+10	1	0	1	49	QPSK	12.71	13.76	13.74			
20+10	1	99	1	0		22.06	22.28	22.67			
20+10	100	0	50	0		19.18	19.12	19.75			
20+10	1	0	1	49	16-QAM	13.28	14.13	14.12			
20+10	1	99	1	0		21.21	21.42	21.68			
20+10	100	0	50	0		19.21	18.85	19.79			
20+10	1	0	1	49	64-QAM	13.21	13.79	13.84			
20+10	1	99	1	0		19.08	19.34	19.55			

	LTE Band 66_CA Maximum Average Power [dBm]										
	PC	ж С	SC	00	Mad						
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
10+20	50	0	100	0		20.65	20.27	20.37			
10+20	1	0	1	99	QPSK	12.54	13.26	13.61			
10+20	1	49	1	0		21.99	22.06	22.13			
10+20	50	0	100	0		19.85	20.42	19.68			
10+20	1	0	1	99	16-QAM	13.01	13.33	14.16			
10+20	1	49	1	0		21.21	21.22	21.36			
10+20	50	0	100	0		19.79	19.49	19.73			
10+20	1	0	1	99	64-QAM	12.67	13.19	13.95			
10+20	1	49	1	0		18.97	19.16	19.43			

	LTE Band 66_CA Maximum Average Power [dBm]										
	PC	00	SC	00	Mad						
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
20+5	100	0	25	0		20.01	20.14	20.01			
20+5	1	0	1	24	QPSK	12.92	13.45	13.23			
20+5	1	99	1	0		21.73	22.91	21.56			
20+5	100	0	25	0		18.74	19.15	19.04			
20+5	1	0	1	24	16-QAM	13.26	13.96	13.46			
20+5	1	99	1	0		21.22	22.31	20.86			
20+5	100	0	25	0		18.95	19.13	19.27			
20+5	1	0	1	24	64-QAM	13.13	13.93	13.33			
20+5	1	99	1	0		19.56	20.71	19.39			

	LTE Band 66_CA Maximum Average Power [dBm]										
	PC	ж С	SC	00	Mad						
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
5+20	25	0	100	0		20.17	20.05	20.26			
5+20	1	0	1	99	QPSK	12.78	13.52	14.66			
5+20	1	24	1	0		22.00	22.05	22.47			
5+20	25	0	100	0		19.99	19.66	19.77			
5+20	1	0	1	99	16-QAM	13.02	13.31	14.33			
5+20	1	24	1	0		21.03	21.19	21.63			
5+20	25	0	100	0		20.20	19.53	19.85			
5+20	1	0	1	99	64-QAM	12.89	13.86	14.49			
5+20	1	24	1	0		19.05	19.14	19.59			

	LTE Band 66_CA Maximum Average Power [dBm]										
	PC	ж С	SC	00	Mad						
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
15+10	75	0	50	0		21.06	20.26	20.02			
15+10	1	0	1	49	QPSK	12.87	13.76	13.76			
15+10	1	74	1	0		22.12	22.16	22.38			
15+10	75	0	50	0		19.22	19.37	20.61			
15+10	1	0	1	49	16-QAM	13.42	13.43	14.02			
15+10	1	74	1	0		21.18	21.42	21.44			
15+10	75	0	50	0		18.88	18.89	19.01			
15+10	1	0	1	49	64-QAM	13.19	13.86	14.04			
15+10	1	74	1	0		19.12	19.47	19.56			

LTE Band 66_CA Maximum Average Power [dBm]										
	PC	CC	SC	00	Mad					
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest		
10+15	50	0	75	0		20.89	20.82	21.26		
10+15	1	0	1	74	QPSK	21.92	22.37	22.54		
10+15	1	49	1	0		12.70	14.01	14.78		
10+15	50	0	75	0		20.22	19.55	20.21		
10+15	1	0	1	74	16-QAM	21.02	21.51	21.68		
10+15	1	49	1	0		13.24	14.14	14.89		
10+15	50	0	75	0		20.13	19.67	20.28		
10+15	1	0	1	74	64-QAM	19.06	19.54	19.71		
10+15	1	49	1	0		13.18	13.85	14.67		

	LTE Band 66_CA Maximum Average Power [dBm]										
	PC	CC	S	CC	Mad						
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
15+15	75	0	75	0		19.36	19.54	19.58			
15+15	1	0	1	74	QPSK	12.82	13.56	13.54			
15+15	1	74	1	0		22.08	22.14	22.18			
15+15	75	0	75	0		19.28	18.06	18.55			
15+15	1	0	1	74	16-QAM	13.49	13.86	13.99			
15+15	1	74	1	0		21.15	21.46	21.64			
15+15	75	0	75	0		18.23	18.01	18.53			
15+15	1	0	1	74	64-QAM	12.95	13.85	14.05			
15+15	1	74	1	0		19.04	19.51	19.38			

	LTE Band 66_CA Maximum Average Power [dBm]										
	PC	cc	SC	00	Mad						
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
10+10	50	0	50	0		19.54	19.73	19.82			
10+10	1	0	1	49	QPSK	10.97	11.27	11.08			
10+10	1	49	1	0		21.76	21.74	22.02			
10+10	50	0	50	0		18.54	18.62	18.77			
10+10	1	0	1	49	16-QAM	11.08	11.32	11.58			
10+10	1	49	1	0		20.58	21.07	21.04			
10+10	50	0	50	0		18.38	18.82	18.84			
10+10	1	0	1	49	64-QAM	11.01	11.23	11.56			
10+10	1	49	1	0		18.59	18.72	18.72			

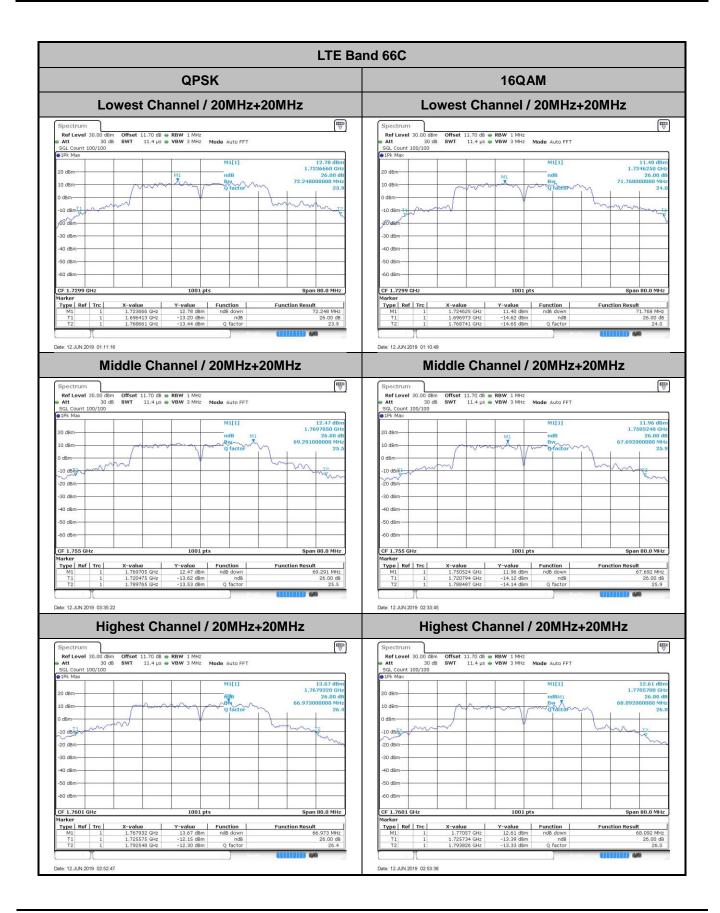
	LTE Band 66_CA Maximum Average Power [dBm]										
	PC	cc	SC	CC	Mad						
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
15+5	75	0	25	0		19.40	19.69	20.14			
15+5	1	0	1	24	QPSK	11.03	10.74	11.36			
15+5	1	74	1	0		21.45	22.67	21.97			
15+5	75	0	25	0		18.40	18.61	19.25			
15+5	1	0	1	24	16-QAM	11.29	11.31	11.29			
15+5	1	74	1	0		20.45	22.32	21.46			
15+5	75	0	25	0		18.20	18.71	19.19			
15+5	1	0	1	24	64-QAM	11.16	11.22	11.35			
15+5	1	74	1	0		18.65	20.42	20.19			

LTE Band 66_CA Maximum Average Power [dBm]								
BW 1111	PCC		SCC					
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest
5+15	25	0	75	0		19.35	19.74	19.96
5+15	1	0	1	74	QPSK	10.82	11.65	11.65
5+15	1	24	1	0		21.42	21.76	22.28
5+15	25	0	75	0		18.36	18.69	19.06
5+15	1	0	1	74	16-QAM	11.42	11.63	11.55
5+15	1	24	1	0		20.56	21.11	21.29
5+15	25	0	75	0		18.35	18.77	19.1
5+15	1	0	1	74	64-QAM	11.21	11.71	11.62
5+15	1	24	1	0		18.42	18.94	19.25

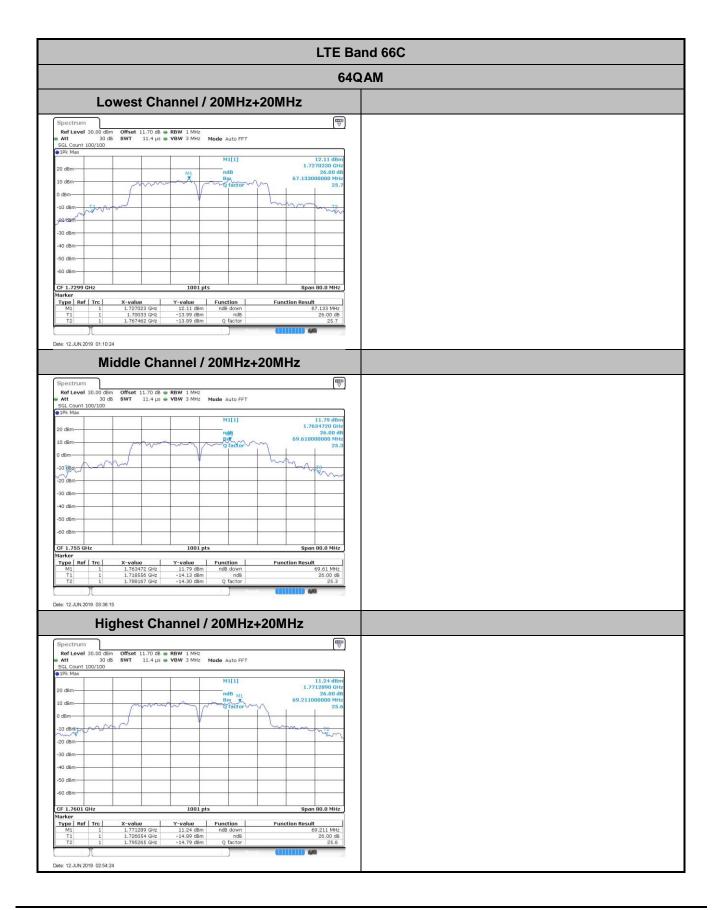
LTE Band 66_CA Maximum Average Power [dBm]								
	PCC		SCC					
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest
10+5	50	0	25	0		21.62	22.01	22.16
10+5	1	0	1	24	QPSK	13.88	14.16	13.81
10+5	1	49	1	0		23.56	23.89	24.14
10+5	50	0	25	0		20.61	21.06	21.07
10+5	1	0	1	24	16-QAM	13.92	14.21	13.95
10+5	1	49	1	0		22.85	23.03	22.85
10+5	50	0	25	0		20.58	20.97	21.06
10+5	1	0	1	24	64-QAM	13.74	14.12	13.77
10+5	1	49	1	0		20.65	21.19	21.23

LTE Band 66_CA Maximum Average Power [dBm]								
BW 1111	PCC		SCC					
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest
5+10	25	0	50	0		21.65	22.01	22.11
5+10	1	0	1	49	QPSK	13.88	14.56	14.36
5+10	1	24	1	0		23.74	23.98	24.06
5+10	25	0	50	0		20.69	20.91	21.12
5+10	1	0	1	49	16-QAM	13.92	14.33	14.33
5+10	1	24	1	0		22.86	23.17	23.36
5+10	25	0	50	0	64-QAM	20.72	20.97	20.93
5+10	1	0	1	49		13.81	14.28	14.25
5+10	1	24	1	0		20.67	20.83	21.72

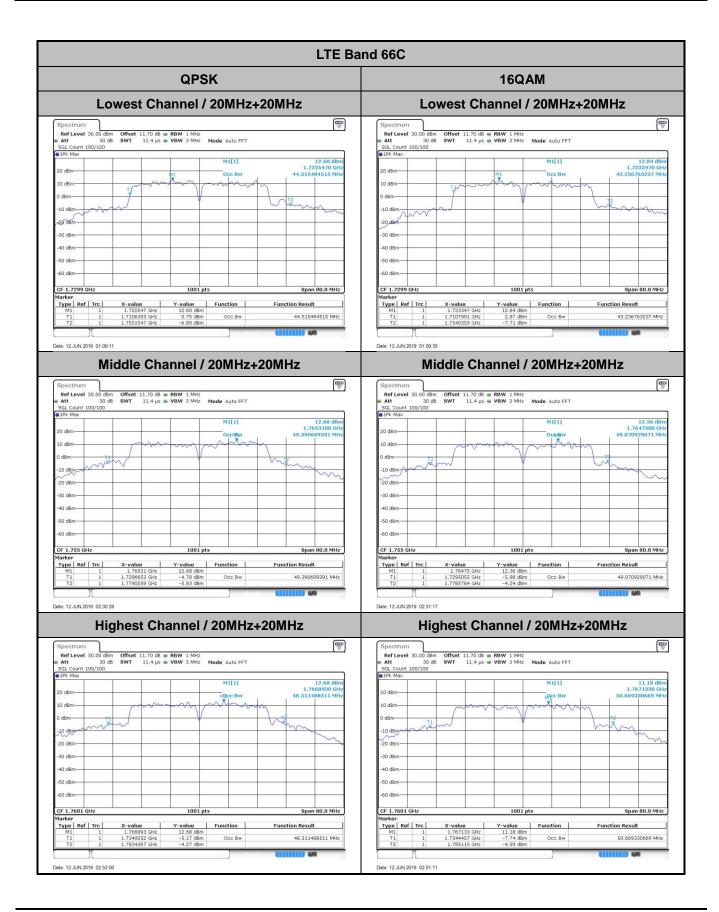
LTE Band 66_CA Maximum Average Power [dBm]								
	PCC		SCC					
BW [MHz]	RB Size	RB Offset	RB Size	RB Offset	Mod	Lowest	Middle	Highest
5+5	25	0	25	0		21.41	21.94	22.12
5+5	1	0	1	24	QPSK	13.51	13.62	13.99
5+5	1	24	1	0		23.46	23.81	23.90
5+5	25	0	25	0		20.33	20.75	20.81
5+5	1	0	1	24	16-QAM	13.53	13.75	14.26
5+5	1	24	1	0		22.65	22.86	23.07
5+5	25	0	25	0		20.49	21.03	21.01
5+5	1	0	1	24	64-QAM	13.68	13.63	14.16
5+5	1	24	1	0		20.10	20.91	20.99

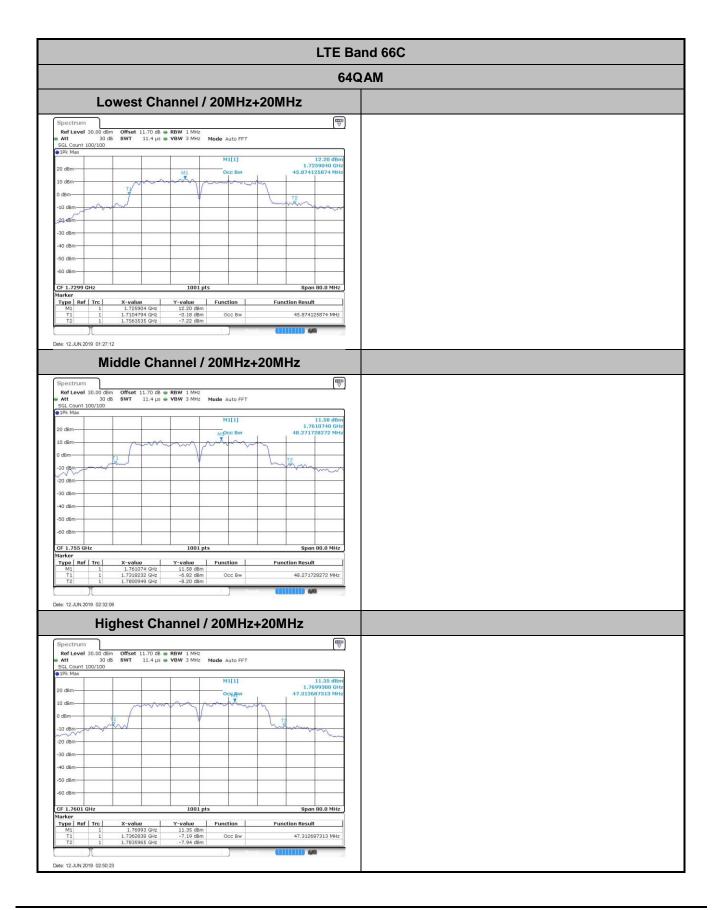


LTE Band 66

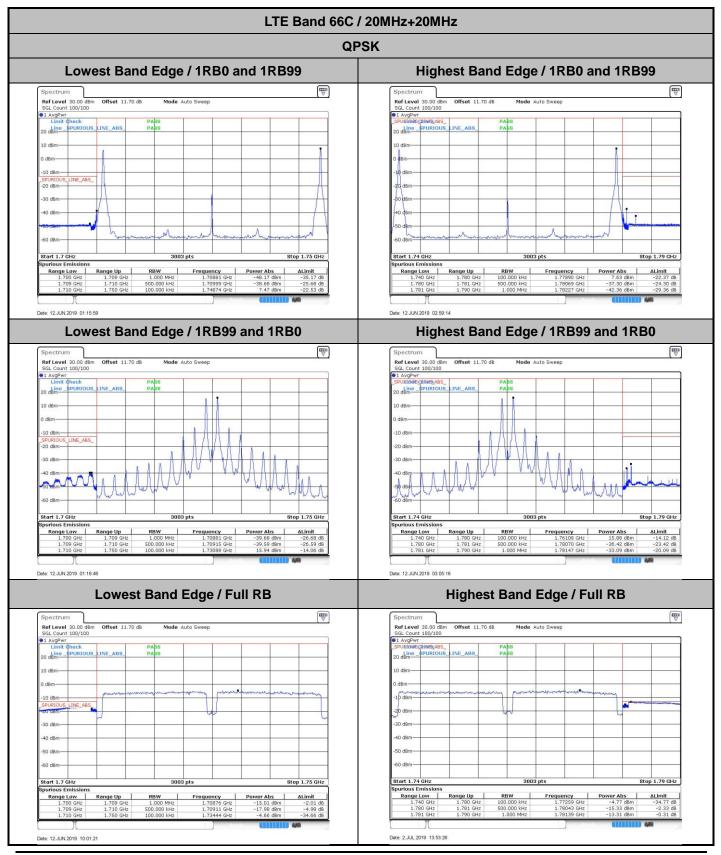

26dB Bandwidth

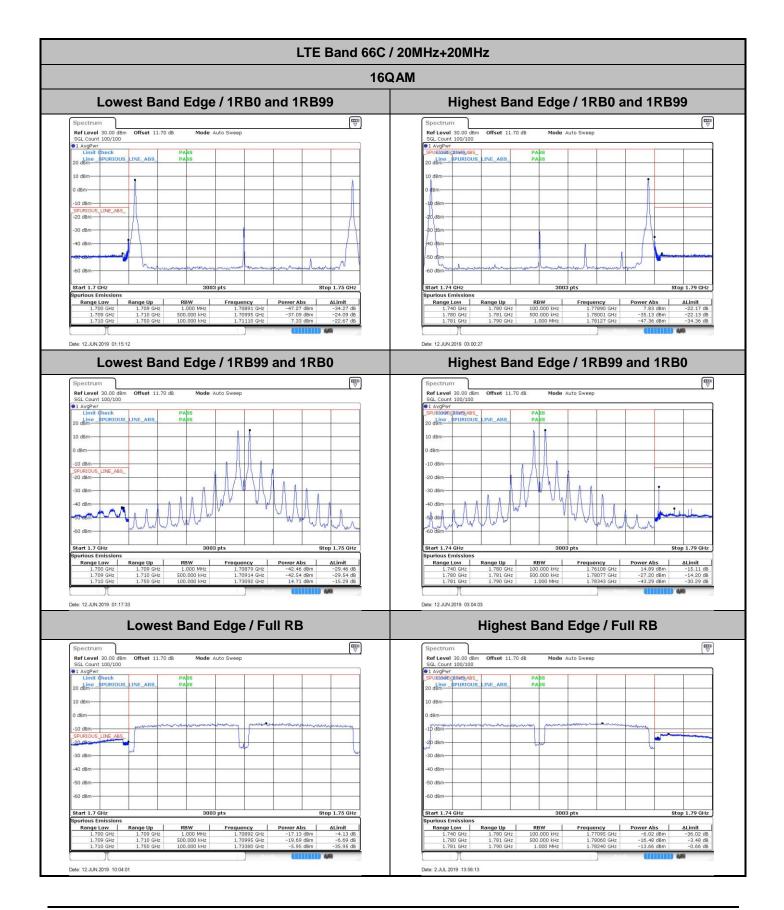
Mode	LTE B	(MHz)					
BW	20MHz+20MHz						
	QPSK 16QAM 64QAM						
Lowest CH	72.24	71.76	67.13				
Middle CH	69.29	67.69	69.61				
Highest CH	66.97	68.09	69.21				



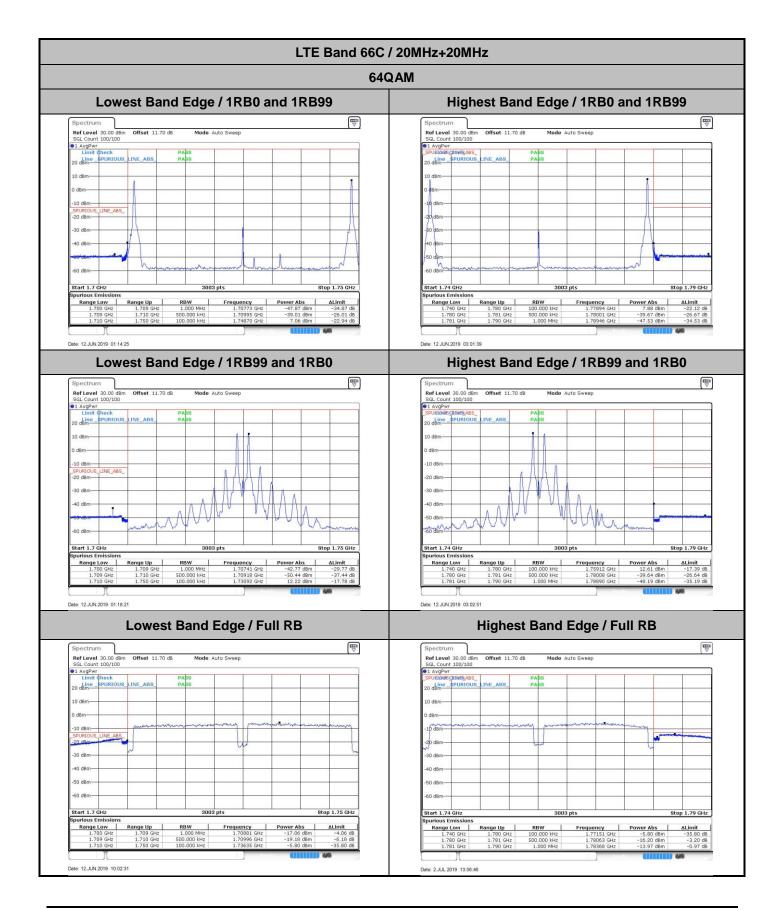

Occupied Bandwidth

Mode	LTE Band 66C : 99%OBW(MHz)							
BW	20MHz+20MHz							
	QPSK 16QAM 64QAM							
Lowest CH	44.51	43.23	45.87					
Middle CH	49.39	49.07	48.27					
Highest CH	H 48.51 50.66 47.31							




Conducted Band Edge

TEL : 886-3-327-3456 FAX : 886-3-328-4978



Conducted Spurious Emission

				LTE Bar	nd 66C /	20MHz	+20MHz				
					QP	SK					
	Lowest (Channel /	1RB0 and	1RB99			Lowes	t Channel	/ 1RB99 and	d 1RB0	
Spectrum						Spectrum					
Ref Level 0.00 dBm SGL Count 100/100		B Mode Au	uto Sweep			Ref Level 0. SGL Count 10		.70 dB Mode	Auto Sweep		
Limit Check 10 dene SPURIOU	S LINE ABS	PASS PASS				AvgPwr Limit Cho to dipe SP	eck URIOUS_LINE_ABS	PASS			
SPURIOUS_LINE_ABS	3					_SPURIOUS_LII	NE_ABS_				_
0 dBm-						-30 dBm			-		
0 dBm		m			m	-40 dBm		min			~~~~~
0 dBm						-60 dBm					
0 dBm						-70 dBm					
) dBm	+ +				+	-80 dBm					
dBm					+	-90 dBm					-
art 30.0 MHz urious Emissions		3900	6 pts	S	top 18.0 GHz	Start 30.0 M Spurious Emi		39	DO6 pts	S	top 18.0 GHz
Range Low 30.000 MHz	Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 995.87956 MHz	-47.17 dBm	ΔLimit -34.17 dB	Range Lov 30.000 f	v Range Up	RBW Hz 1.000 MHz	Frequency 976.00450 MHz	-47.18 dBm	∆Limit -34.18 dB
1.000 GHz 1.790 GHz	1.700 GHz 3.000 GHz	1.000 MHz 1.000 MHz	1.67359 GHz 2.98972 GHz	-46.32 dBm -46.55 dBm	-33.32 dB -33.55 dB	1.000	GHz 1.700 GH	Hz 1.000 MHz	1.69948 GHz 2.95101 GHz	-47.69 dBm -46.67 dBm	-34.69 dB -33.67 dB
3.000 GHz 9.000 GHz	9.000 GHz 13.000 GHz	1.000 MHz 1.000 MHz	7.54137 GHz 12.44182 GHz	-41.97 dBm -40.05 dBm	-28.97 dB -27.05 dB	3.000	GHz 9.000 GH GHz 13.000 GH	Hz 1.000 MHz Hz 1.000 MHz	7.55037 GHz 12.43532 GHz	-42.12 dBm -40.13 dBm	-29.12 dB -27.13 dB
13.000 GHz	18.000 GHz	1.000 MHz	17.84689 GHz	-37.78 dBm	-24.78 dB	13.000	GHz 18.000 GH	Hz 1.000 MHz	17.86314 GHz	-37.76 dBm	-24.76 dB
	Low	vest Char	nnel / FullR	В				I	N/A		
pectrum			uto Sweep								
tef Level 0.00 dBm		B Mode Au									
ef Level 0.00 dBm GL Count 100/100 L AvgPwr Limit Check	1	PABS									
GL Count 100/100 L AvgPwr Limit Check 0 dBRP SPURIOU	S_LINE_ABS_										
ef Level 0.00 dBm GL Count 100/100 AvgPwr Limit Check 0 ddffe SPURIOL: PURIOUS LINE_ABS 0 dBm	S_LINE_ABS_	PABS									
ef Level 0.00 dBm GL Count 100/100 L AvgPwr Limit check o ddime_SPURIOU PURIOUS LINE_ABS 0 dBm	S_ LINE_ABS	PASS PASS									
ef Level 0.00 dBm GL Count 100/100 L AvgPwr Limit check o ddime_SPURIOU PURIOUS LINE_ABS 0 dBm	S_ LINE_ABS	PABS			•						
ef Level 0.00 dBm GL Count 100/100 AvgPwr Limit Check D dBm D dBm D dBm D dBm	S	PASS PASS									
tef Level 0.00 dBm IGL Count 100/100 I AvgPwr Limit Check 0 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm	S	PASS PASS									
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr Limit Gheck Lo dBm James 20 dBm James 30 dBm James 50 dBm James 70 dBm James 30 dBm James	S	PASS PASS									
tef Level 0.00 dBm JogQue 100/100 JavgPwr Limit Gheck JogQue Limit Gheck JogQue <td>S</td> <td></td>	S										
ef Lovel 0.00 dBm GL Count 100/100 L AvgPwr Limit (thack 0 dBm 0 dBm	INE_ABS	PASS PASS 39000	6 pts		top 18.0 GHz						
tet Level 0.00 dBm Limit dhack 0.0 dBm Japan Delta Didam Delta	Range Up	PASS PASS 39000 RBW 1.000 MHz	6 pts	Power Abs -47.36 dBm	∆Limit -34.36 dB						
ef Lovel 0.00 dBm GL Court 100/100 Limit (theck of the second s	INE ABS	PASS PASS 3900/ RBW 1.000 MHz 1.000 MHz	6 pts	Power Abs -47.36 dBm -16.33 dBm -25.92 dBm	ΔLimit -34.36 dB -3.33 dB -12.92 dB						
Limit Gheck 0.00 dBm 1 AvgPwr Limit Gheck 1 AvgPwr Limit Gheck 1 AvgPwr Limit Gheck 10 dBm John Mark 30 dBm John Mark 90 dBm John Mark 100 dBm John Mark 1,790 GHz J.000 GHz 1,000 GHz John GHz 9,000 GHz John GHz	Range Up 1.000 GHz 1.700 GHz 3.000 GHz 3.000 GHz	PASS PASS 3900/ RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	6 pts Frequency 975.03498 MHz 1.69878 GHz 1.7900 GHz 7.54887 GHz 12.40832 GHz	Power Abs -47.36 dBm -16.33 dBm -25.92 dBm -42.05 dBm -40.02 dBm	ΔLimit -34.36 dB -3.33 dB -12.92 dB -29.05 dB -27.02 dB						
Livel 0.00 dBm Job AvgPwr Limit Chock 0.00 dBm Job ABm	Range Up Image Up 1.000 GHz 1.700 GHz 3.000 GHz 3.000 GHz	PA3S PASS 39000 RBW 1.000 MHz 1.000 MHz 1.000 MHz	6 pts Frequency 975.03498 MHz 1.69878 GHz 1.79060 GHz 7.54887 GHz	Power Abs -47.36 dBm -16.33 dBm -25.92 dBm -42.05 dBm	△Limit -34.36 dB -3.33 dB -12.92 dB -29.05 dB						
Ref Level 0.00 dBm SGL Count 100/100 100/100 SGL Count 100/100 Limit dheck 10 dBm 20 dBm 20 dBm 40 dBm 40 dBm 90 dBm 90 dBm 90 dBm 30.000 MHz 1.000 GHz 1.1000 GHz 1.000 GHz 1.000 GHz 1.3000 GHz	Range Up 1.000 GHz 1.700 GHz 1.700 GHz 1.700 GHz 1.8.000 GHz	PASS PASS 3900/ RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	6 pts Frequency 975.03498 MHz 1.69878 GHz 1.7900 GHz 7.54887 GHz 12.40832 GHz	Power Abs -47.36 dBm -16.33 dBm -25.92 dBm -42.05 dBm -40.02 dBm	ΔLimit -34.36 dB -3.33 dB -12.92 dB -29.05 dB -27.02 dB -24.76 dB						
10 ABR EPURIOUS LINE ABS SPURIOUS LINE ABS ABS <t< td=""><td>Range Up 1.000 GHz 1.700 GHz 1.700 GHz 1.700 GHz 1.8.000 GHz</td><td>PASS PASS 3900/ RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz</td><td>6 pts Frequency 975.03498 MHz 1.69878 GHz 1.7900 GHz 7.54887 GHz 12.40832 GHz</td><td>Power Abs -47.36 dBm -16.33 dBm -25.92 dBm -42.05 dBm -40.02 dBm</td><td>ΔLimit -34.36 dB -3.33 dB -12.92 dB -29.05 dB -27.02 dB -24.76 dB</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Range Up 1.000 GHz 1.700 GHz 1.700 GHz 1.700 GHz 1.8.000 GHz	PASS PASS 3900/ RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	6 pts Frequency 975.03498 MHz 1.69878 GHz 1.7900 GHz 7.54887 GHz 12.40832 GHz	Power Abs -47.36 dBm -16.33 dBm -25.92 dBm -42.05 dBm -40.02 dBm	ΔLimit -34.36 dB -3.33 dB -12.92 dB -29.05 dB -27.02 dB -24.76 dB						
Ref Level 0.00 dBm SGL Count 100/100 SGL Count 100/100 Limit check 10 dBm 10 dBm 10 dBm 40 dBm 10 dBm 40 dBm 10 dBm 50 dBm 10 dBm 90 dBm 10 dBm 10 dBm 10 dBm 90 dBm 10 dBm 10 dBm 10 dBm	Range Up 1.000 GHz 1.700 GHz 1.700 GHz 1.700 GHz 1.8.000 GHz	PASS PASS 3900/ RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	6 pts Frequency 975.03498 MHz 1.69878 GHz 1.7900 GHz 7.54887 GHz 12.40832 GHz	Power Abs -47.36 dBm -16.33 dBm -25.92 dBm -42.05 dBm -40.02 dBm	ΔLimit -34.36 dB -3.33 dB -12.92 dB -29.05 dB -27.02 dB -24.76 dB						

				LTE Ba	nd 66C	/ 20MH	lz+20	MHz				
					QF	SK						
	MiddleC	hannel /	1RB0 and 1	IRB99				Middle	Channel /	/ 1RB99 and	d 1RB0	
Spectrum						Spectru	n					
Ref Level 0.00 dBm SGL Count 100/100	Offset 11.70 de	3 Mode Au	ito Sweep			Ref Level SGL Coun	0.00 dBm : 100/100	Offset 11.70	dB Mode /	auto Sweep		
AvgPwr Limit Check -10 dsine_SPURIOUS	LINE ABS	PASS PASS				●1 AvgPwr Limit	theck	LINE_ABS_	PASS PASS			
_SPURIOUS_LINE_ABS_ -20 dBm							LINE_ABS_					
-30 dBm						-30 dBm						
-40 dBm	man					-40 dBm-	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
-60 dBm			· · ·			-60 dBm—						
-70 dBm						-70 dBm						
-90 dBm						-90 dBm						_
Start 30.0 MHz Spurious Emissions	in the second se	3900	6 pts		Stop 18.0 GHz	Start 30.0 Spurious E			390	06 pts	1	Stop 18.0 GHz
Range Low 30.000 MHz	Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 983.27586 MHz	Power Abs -47.32 dBm	∆Limit -34.32 dB	Range 30.0	Low 00 MHz	Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 983.76062 MHz	Power Abs -46.83 dBm	∆Limit -33.83 dB
1.000 GHz 1.790 GHz 3.000 GHz	1.700 GHz 3.000 GHz 9.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	1.69878 GHz 2.46314 GHz 7.55387 GHz	-29.82 dBm -46.12 dBm -42.11 dBm	-16.82 dB -33.12 dB -29.11 dB	1.7	DO GHZ 90 GHZ DO GHZ	1.700 GHz 3.000 GHz 9.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	1.69108 GHz 2.98811 GHz 7.56037 GHz	-48.28 dBm -46.55 dBm -41.83 dBm	-35.28 dB -33.55 dB -28.83 dB
9.000 GHz 13.000 GHz	13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz	12.43382 GHz 17.83314 GHz	-40.16 dBm -37.72 dBm	-27.16 dB -24.72 dB	9.0	DO GHZ DO GHZ	13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz	12.43382 GHz 17.85480 GHz	-40.09 dBm -37.87 dBm	-27.09 dB -24.87 dB
			Read	CHINN	449	[_)(E Rein		449
Date: 12.JUN.2019 02:42:	28					Date: 12.JUN	2019 02:43:4	45				
	Mid	ldle Char	nel / FullR	B					N	I/A		
				_								
Spectrum												
Ref Level 0.00 dBm SGL Count 100/100	Offset 11.70 df	3 Mode Au	ito Sweep									
AvgPwr Limit Check -10 dsine_SPURIOUS	LINE_ABS	PASS										
_SPURIOUS_LINE_ABS_ -20 dBm	-				_							
-30 dBm												
-40 dBm	man	m										
-60 dBm												
-70 dBm												
-90 dBm												
Start 30.0 MHz		3900	6 pts		Stop 18.0 GHz							
Spurious Emissions Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit							
30.000 MHz 1.000 GHz 1.790 GHz	1.000 GHz 1.700 GHz 3.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	963.40080 MHz 1.69948 GHz 1.79060 GHz	-47.07 dBm -29.85 dBm -20.81 dBm	-34.07 dB -16.85 dB -7.81 dB							
3.000 GHz 9.000 GHz	9.000 GHz 13.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	7.57137 GHz 12.44582 GHz	-42.01 dBm -40.14 dBm	-29.01 dB -27.14 dB							
13.000 GHz	18.000 GHz	1.000 MHz	17.84647 GHz	-37.83 dBm	-24.83 dB							
Date: 12.JUN.2019 02:35:	50											
	0.0											

				LTE Ba	nd 66C /	20MH	z+20	MHz				
					QP	SK						
H	Highest C	hannel /	1RB0 and	1RB99			ŀ	lighest	Channel	/ 1RB99 ar	nd 1RB0	
Spectrum						Spectrun						
Ref Level 0.00 dBm SGL Count 100/100	Offset 11.70 dB	Mode Au	to Sweep			Ref Level SGL Count		Offset 11.7	dB Mode	Auto Sweep		
AvgPwr Limit Check -10 dBHP_SPURIOUS	LINE_ABS_	PASS PASS				●1 AvgPwr Limit C	heck SPURIOUS	LINE_ABS	PASS			
_SPURIOUS_LINE_ABS_ -20 dBm	-					_SPURIOUS_ -20 dBm-						
-30 dBm						-30 dBm						
-40 dBm						-40 dBm-			m			
-60 dBm				-		-60 dBm						
-70 dBm						-70 dBm						
-80 dBm						-80 dBm						
Start 30.0 MHz		39006	i pts		Stop 18.0 GHz	Start 30.0	MHz		390	IO6 pts		Stop 18.0 GHz
Spurious Emissions Range Low 30.000 MHz	Range Up	RBW 1.000 MHz	Frequency 996.84908 MHz	Power Abs -47.23 dBm	∆Limit -34.23 dB	Spurious El Range I	.ow	Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 996.36432 MHz	Power Abs -47.21 dBm	ΔLimit -34.21 dB
1.000 GHz 1.790 GHz	1.000 GHz 1.700 GHz 3.000 GHz	1.000 MHz 1.000 MHz	1.66624 GHz 2.46153 GHz	-48.10 dBm -46.11 dBm	-35.10 dB -33.11 dB	1.00	0 MHz 0 GHz 0 GHz	1.700 GHz 3.000 GHz	1.000 MHz 1.000 MHz	1.64875 GHz 2.98165 GHz	-48.22 dBm -46.71 dBm	-35.22 dB -33.71 dB
3.000 GHz 9.000 GHz 13.000 GHz	9.000 GHz 13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	7.55487 GHz 12.43532 GHz 17.83939 GHz	-41.93 dBm -40.18 dBm -37.82 dBm	-28.93 dB -27.18 dB -24.82 dB	9.00	0 GHz 0 GHz 0 GHz	9.000 GHz 13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	7.54137 GHz 12.42832 GHz 17.84022 GHz	-42.03 dBm -40.17 dBm -37.88 dBm	-29.03 dB -27.17 dB -24.88 dB
	10.000 3/12	1.000 Min2	11.03535 GH2		140][]	10.000 GHz	1.000 Miliz			4/9
Date: 12.JUN.2019 03:13:	03					Date: 12.JUN.	2019 03:06:3	32				
	High	est Char	nnel / FullR	В					М	I/A		
Spectrum												
Ref Level 0.00 dBm SGL Count 100/100	Offset 11.70 dB	Mode Au	to Sweep		₹							
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr Limit Check	1 1	Mode Au PASS PASS	to Sweep		₩							
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr	1 1	PASS	to Sweep									
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr Limit Check -10 ddR2 SPURIOUS SPURIOUS LINE_ABS -20 dBm -30 dBm	1 1	PASS	to Sweep									
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr Limit Check -10 dBH2 SPURIOUS SPURIOUS LINE_ABS -20 dBm	1 1	PASS PASS	to Sweep		<u>س</u>							
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr Limit Check -10 ddR2 SPURIOUS SPURIOUS LINE_ABS -20 dBm -30 dBm	LINE_ABS	PASS PASS	to Sweep									
Ref Level 0.00 dBm SGL Count 100/100 100/100 1 AvgPwr Limit Check -10 ddRp. pPURIOUS SPURIOUS -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm -70 dBm	LINE_ABS	PASS PASS	to Sweep		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr Limit Check -10 ddRP PURIOUS -20 dBm	LINE_ABS	PASS PASS	to Sweep									
Ref Level 0.00 dBm SGL Count 100/100 100/100 1 AvgPwr Limit Check -10 ddRp. pPURIOUS SPURIOUS -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm -70 dBm	LINE_ABS	PASS PASS			Stop 18.0 GHz							
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr Limit check -10 dBm BPURIOUS -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm -90 dBm -80 dBm -90 dBm -80 dBm -90 dBm Start 30.0 MHz Spurious Emissions -30 dBm	INE_ABS	PABS PABS	pts		Stop 18.0 GHz							
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr Limit Check 10 ddtPr. PURIOUS -10 ddtPr. PURIOUS LINE ABS -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -30.00 MHz 30,000 MHz 1.000 GHz	INE_ABS INTO GHZ	PABS PABS 39000 RBW 1.000 MHz	ppts	Power Abs -47.21 dBm -30.92 dBm	Stop 18.0 GHz ALimit -34.21 dB -17.92 dB							
Ref Level 0.00 dBm SGL Count 100/100 I AvgPwr Limit Check Lind ddm. ABWRIOUS SD ddm. -30 dBm -30 dBm. -40 dBm -40 dBm. -60 dBm -70 dBm. -80 dBm -90 dBm. -90 dBm -90 dBm. -90 dBm -90 dBm. -90 dBm -30.000 MHz 1.000 GHz 1.000 GHz 1.770 GHz 30.000 GHz 3.000 GHz	INE_ABS - </td <td>PABS PABS 39000 RBW 1.000 MHz 1.000 MHz</td> <td>5 pts</td> <td>Power Abs -47.21 dBm -30.92 dBm -13.42 dBm -41.99 dBm</td> <td>ALimit -34.21 dB -17.92 dB -0.42 dB -28.99 dB -28.99 dB</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	PABS PABS 39000 RBW 1.000 MHz 1.000 MHz	5 pts	Power Abs -47.21 dBm -30.92 dBm -13.42 dBm -41.99 dBm	ALimit -34.21 dB -17.92 dB -0.42 dB -28.99 dB -28.99 dB							
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr Limit Check -10 dBm SPURIOUS_LINE_ABS_ -20 dBm	INE_ABS INE_ABS <td< td=""><td>PABS PABS PABS 39000 RBW 1.000 MHz 1.000 MHz</td><td>5 pts Frequency 973.58071 MHz 1.7914 GHz</td><td>Power Abs -47.21 dBm -30.92 dBm -13.42 dBm</td><td>Stop 18.0 GHz</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	PABS PABS PABS 39000 RBW 1.000 MHz 1.000 MHz	5 pts Frequency 973.58071 MHz 1.7914 GHz	Power Abs -47.21 dBm -30.92 dBm -13.42 dBm	Stop 18.0 GHz							
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr Limit Check -10 ddR2 BPURIOUS -20 dBm	INE_ABS INE_ABS <td< td=""><td>PABS PABS PABS PABS 39000 RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz</td><td>5 pts Frequency 973.58071 MHz 1.69948 GHz 1.79141 GHz 7.85435 GHz 1.2.41222 GHz</td><td>Power Abs -47.21 dBm -30.92 dBm -13.42 dBm -41.99 dBm -40.13 dBm</td><td>Stop 18.0 GHz ALimit -34.21 dB -7.92 dB -0.42 dB -28.99 dB -27.13 dB -27.13 dB</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	PABS PABS PABS PABS 39000 RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	5 pts Frequency 973.58071 MHz 1.69948 GHz 1.79141 GHz 7.85435 GHz 1.2.41222 GHz	Power Abs -47.21 dBm -30.92 dBm -13.42 dBm -41.99 dBm -40.13 dBm	Stop 18.0 GHz ALimit -34.21 dB -7.92 dB -0.42 dB -28.99 dB -27.13 dB -27.13 dB							
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPvr Limit Check -10 ddR2 PPURIOUS -20 dBm	INE_ABS INE_ABS <td< td=""><td>PABS PABS PABS PABS 39000 RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz</td><td>5 pts Frequency 973.58071 MHz 1.69948 GHz 1.79141 GHz 7.85435 GHz 1.2.41222 GHz</td><td>Power Abs -47.21 dBm -30.92 dBm -13.42 dBm -41.99 dBm -40.13 dBm</td><td>Stop 18.0 GHz ALimit -34.21 dB -7.92 dB -0.42 dB -28.99 dB -27.13 dB -27.13 dB</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	PABS PABS PABS PABS 39000 RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	5 pts Frequency 973.58071 MHz 1.69948 GHz 1.79141 GHz 7.85435 GHz 1.2.41222 GHz	Power Abs -47.21 dBm -30.92 dBm -13.42 dBm -41.99 dBm -40.13 dBm	Stop 18.0 GHz ALimit -34.21 dB -7.92 dB -0.42 dB -28.99 dB -27.13 dB -27.13 dB							
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr Limit Check -10 ddR2 BPURIOUS -20 dBm	INE_ABS INE_ABS <td< td=""><td>PABS PABS PABS PABS 39000 RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz</td><td>5 pts Frequency 973.58071 MHz 1.69948 GHz 1.79141 GHz 7.85435 GHz 1.2.41222 GHz</td><td>Power Abs -47.21 dBm -30.92 dBm -13.42 dBm -41.99 dBm -40.13 dBm</td><td>Stop 18.0 GHz ALimit -34.21 dB -34.21 dB -0.42 dB -0.42 dB -28.99 dB -27.13 dB</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	PABS PABS PABS PABS 39000 RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	5 pts Frequency 973.58071 MHz 1.69948 GHz 1.79141 GHz 7.85435 GHz 1.2.41222 GHz	Power Abs -47.21 dBm -30.92 dBm -13.42 dBm -41.99 dBm -40.13 dBm	Stop 18.0 GHz ALimit -34.21 dB -34.21 dB -0.42 dB -0.42 dB -28.99 dB -27.13 dB							

				LTE Ba	nd 66C	/ 20MH	z+20	MHz				
					160	QAM						
	Lowest C	hannel /	1RB0 and	1RB99			I	_owest	Channel	/ 1RB99 ar	nd 1RB0	
Spectrum						Spectrur	n)					B
Ref Level 0.00 dBm SGL Count 100/100	Offset 11.70 dB	Mode Aut	to Sweep			SGL Count		Offset 11.70	dB Mode 4	auto Sweep		
●1 AvgPwr Limit ¢heck -10 dene_\$PURIOUS	INE ABS	PASS PASS				AvgPwr Limit Line	theck	LINE_ABS_	PABS PASS			
_SPURIOUS_LINE_ABS	-	1.649				SPURIOUS						
-30 dBm						-30 dBm						_
-40 dBm			m			-40 dBm			m			
-60 dBm-						-60 dBm-						
-70 dBm						-70 dBm						
-80 dBm						-80 dBm						_
-90 dBm						-90 dBm—		-				
Start 30.0 MHz		39006	i pts		Stop 18.0 GHz	Start 30.0		<u> </u>	390	06 pts		Stop 18.0 GHz
Spurious Emissions Range Low 30.000 MHz	Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 981.33683 MHz	-46.95 dBm	ALimit −33.95 dB	Spurious E Range		Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 994.42529 MHz	-47.16 dBm	∆Limit -34.16 dB
1.000 GHz 1.790 GHz	1.700 GHz 3.000 GHz	1.000 MHz 1.000 MHz	1.67359 GHz 2.92198 GHz	-45.94 dBm -46.74 dBm	-32.94 dB -33.74 dB	1.0	0 GHz 0 GHz	1.700 GHz 3.000 GHz	1.000 MHz 1.000 MHz	1.65505 GHz 2.98690 GHz	-48.35 dBm -46.71 dBm	-35.35 dB -33.71 dB
3.000 GHz 9.000 GHz	9.000 GHz 13.000 GHz	1.000 MHz 1.000 MHz	7.55587 GHz 12.41832 GHz	-42.02 dBm -40.22 dBm	-29.02 dB -27.22 dB	3.0	00 GHz 00 GHz	9.000 GHz 13.000 GHz	1.000 MHz 1.000 MHz	7.55037 GHz 12.44332 GHz	-42.02 dBm -40.27 dBm	-29.02 dB -27.27 dB
13.000 GHz	18.000 GHz	1.000 MHz	17.84355 GHz	-37.80 dBm	-24.80 dB	13.0	00 GHz	18.000 GHz	1.000 MHz	17.84939 GHz	-37.78 dBm	-24.78 dB
Date: 12.JUN.2019 01:22	:45					Date: 12.JUN	2019 01-20-0	15				
				-								
	Low	est Char	nnel / FullR	B					N	I/A		
(Cu a atraura												
Ref Level 0.00 dBm	Offset 11.70 dB	Mode Au	to Sweep		\bigtriangledown	l						
SGL Count 100/100 SGL Count 100/100			1									
Limit Check -10 dsineSPURIOUS	LINE_ABS_	PASS PASS										
_SPURIOUS_LINE_ABS	-				_							
-30 dBm -												
-40 dBm	mmm											
-60 dBm												
-70 dBm												
-80 dBm												
-90 dBm												
Start 30.0 MHz		39006	i pts		Stop 18.0 GHz							
Spurious Emissions Range Low	Range Up	RBW	Frequency	Power Abs	۵Limit							
30.000 MHz 1.000 GHz	1.000 GHz 1.700 GHz	1.000 MHz 1.000 MHz	991.03198 MHz 1.69983 GHz	-47.21 dBm -18.94 dBm	-34.21 dB -5.94 dB							
1.790 GHz 3.000 GHz 9.000 GHz	3.000 GHz 9.000 GHz 13.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	1.79060 GHz 7.54437 GHz 12.42432 GHz	-28.31 dBm -42.09 dBm -40.09 dBm	-15.31 dB -29.09 dB -27.09 dB							
13.000 GHz	18.000 GHz	1.000 MHz	17.83981 GHz	-37.90 dBm	-24.90 dB							
			Rete		6 40							
Date: 12.JUN.2019 01:25	:27											
l												

				LTE Ba	nd 66C	/ 20MH	z+20	MHz				
					160	QAM						
	MiddleC	hannel /	1RB0 and ^r	RB99			[Middle	Channel /	/ 1RB99 and	1RB0	
Spectrum						Spectrur	<u> </u>					
Ref Level 0.00 dBm SGL Count 100/100	Offset 11.70 dE	Mode Au	to Sweep			Ref Level SGL Count	0.00 dBm 100/100	Offset 11.70	dB Mode /	Auto Sweep		(v)
●1 AvgPwr Limit Check -10 dsne_\$PURIOUS	LINE_ABS	PASS PASS				AvgPwr Limit	theck	LINE_ABS_	PASS			
SPURIOUS_LINE_ABS	-					_SPURIOUS -20 dBm-						
-30 dBm						-30 dBm						
-30 GB									m			
-60 dBm						-60 dBm-						
-80 dBm					_	-80 dBm						
-90 dBm						-90 dBm						_
Start 30.0 MHz Spurious Emissions		39000			Stop 18.0 GHz	Start 30.0 Spurious E	missions			06 pts		Stop 18.0 GHz
Range Low 30,000 MHz 1,000 GHz 1,790 GHz 3,000 GHz 9,000 GHz	Range Up 1.000 GHz 1.700 GHz 3.000 GHz 9.000 GHz 13.000 GHz	RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	Frequency 994.91004 MHz 1.69878 GHz 2.46112 GHz 7.55087 GHz 12.44282 GHz	Power Abs -47.22 dBm -29.13 dBm -46.08 dBm -41.81 dBm -40.17 dBm	ΔLimit -34.22 dB -16.13 dB -33.08 dB -28.81 dB -27.17 dB	1.0 1.7 3.0	0 MHz 0 GHz 0 GHz 0 GHz 0 GHz	Range Up 1.000 GHz 1.700 GHz 3.000 GHz 9.000 GHz 13.000 GHz	RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	Frequency 995.39480 MHz 1.61237 GHz 2.99496 GHz 7.57137 GHz 12.42732 GHz	Power Abs -46.91 dBm -48.42 dBm -46.67 dBm -42.06 dBm -40.13 dBm	ΔLimit -33.91 dB -35.42 dB -33.67 dB -29.06 dB -27.13 dB
13.000 GHz	18.000 GHz	1.000 MHz	17.83981 GHz	-37.85 dBm	-24.85 dB		00 GHz	18.000 GHz	1.000 MHz	17.86439 GHz	-37.76 dBm	-24.76 dB
Date: 12.JUN.2019 02:41	08					Date: 12.JUN.	2019 02:45:0	13				
	Mid	dle Chan	nel / FullR	В					N	I/A		
Spectrum Ref Level 0.00 dBm	Offset 11.70 de	Mode Au	to Sweep									
SGL Count 100/100 SGL Count 100/100 SGL Count 100/100 Limit Check		PASS										
-10 dBRPSPURIOUS _SPURIOUS_LINE_ABS_ -20 dBm	LINE_ABS_	PASS										
-30 dBm												
-40 dBm	mmmm	m			~~~~							
-60 dBm-												
-70 dBm					_							
-80 dBm												
Start 30.0 MHz		39000	5 pts		Stop 18.0 GHz							
Spurious Emissions Range Low	Range Up	RBW	Frequency	Power Abs	۵Limit							
30.000 MHz 1.000 GHz 1.790 GHz 3.000 GHz 9.000 GHz 13.000 GHz	1.000 GHz 1.700 GHz 3.000 GHz 9.000 GHz 13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	983.27586 MHz 1.69983 GHz 1.79222 GHz 7.54337 GHz 12.43482 GHz 17.83564 GHz	-47.21 dBm -32.33 dBm -21.77 dBm -41.75 dBm -40.22 dBm -37.88 dBm	-34.21 dB -19.33 dB -8.77 dB -28.75 dB -27.22 dB -24.88 dB							
	20.000 0112	2.000 MILE			-24.00 UB							
Date: 12.JUN.2019 02:37	10											

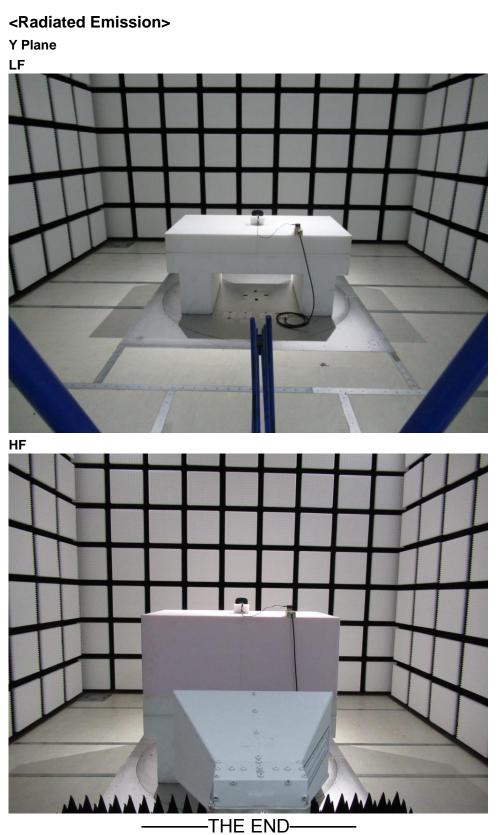
				LTE Ba	nd 66C /	/ 20M⊦	lz+20	MHz				
					160	2AM						
H	Highest C	hannel /	1RB0 and	1RB99			ŀ	lighest	Channel	/ 1RB99 ar	nd 1RB0	
Spectrum						Spectrur	n					
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr	Offset 11.70 dB	Mode Au	ito Sweep			SGL Count		Offset 11.70	dB Mode	Auto Sweep		
Limit Check	LINE_ABS	PASS				●1 AvgPwr Limit -10 dene	theck	LINE_ABS_	PASS			
_SPURIOUS_LINE_ABS_ -20 dBm	-					_SPURIOUS -20 dBm						
-30 dBm						-30 dBm-						
-to dBin			~~~~		ente de la constant				m			and a second second
-60 dBm						-60 dBm						
-70 dBm						-70 dBm						
-90 dBm						-90 dBm						_
Start 30.0 MHz		3900	6 pts		Stop 18.0 GHz	Start 30.0			390	06 pts		Stop 18.0 GHz
Spurious Emissions Range Low 30.000 MHz	Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 996.84908 MHz	Power Abs -47.33 dBm	∆Limit -34.33 dB	Spurious E Range		Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 879.53773 MHz	-47.30 dBm	∆Limit -34.30 dB
1.000 GHz 1.790 GHz	1.700 GHz 3.000 GHz	1.000 MHz 1.000 MHz	1.62811 GHz 2.97319 GHz	-48.12 dBm -46.55 dBm	-35.12 dB -33.55 dB	1.0	00 GHz 90 GHz	1.700 GHz 3.000 GHz	1.000 MHz 1.000 MHz	1.66274 GHz 2.99012 GHz	-48.13 dBm -46.80 dBm	-35.13 dB -33.80 dB
3.000 GHz 9.000 GHz 13.000 GHz	9.000 GHz 13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	7.54387 GHz 12.40232 GHz 17.86980 GHz	-41.97 dBm -40.19 dBm -37.83 dBm	-28.97 dB -27.19 dB -24.83 dB	9.0	00 GHz 00 GHz 00 GHz	9.000 GHz 13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	7.55087 GHz 12.41582 GHz 17.83106 GHz	-41.91 dBm -40.10 dBm -37.72 dBm	-28.91 dB -27.10 dB -24.72 dB
			E Read	C C C C C C C C C C C C C C C C C C C	4/8	(J			[] Re	- anni	49
Date: 12.JUN.2019 03:11:	45					Date: 12.JUN	2019 03:07:	51				
	High	est Cha	nnel / FullR	B					Ν	I/A		
Spectrum Ref Level 0.00 dBm	Offset 11.70 dB	Mode Au	to Sween									
SGL Count 100/100 SGL Count 100/100	onset 11.10 db	mode Ad										
Limit Check -10 dene_SPURIOUS	LINE_ABS_	PASS PASS										
_SPURIOUS_LINE_ABS_ -20 dBm	-											
-30 dBm												
					5 A. 44 C. 7 C. 4							
-60 dBm												
-70 dBm												
-90 dBm												
Start 30.0 MHz		3900	6 pts		Stop 18.0 GHz							
				Power Abs	∆Limit							
Spurious Emissions Range Low	Range Up	RBW	Frequency									
Range Low 30.000 MHz 1.000 GHz	1.000 GHz 1.700 GHz	1.000 MHz 1.000 MHz	976.00450 MHz 1.69983 GHz	-47.15 dBm -32.17 dBm	-34.15 dB -19.17 dB							
Range Low 30.000 MHz 1.000 GHz 1.790 GHz 3.000 GHz	1.000 GHz 1.700 GHz 3.000 GHz 9.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	976.00450 MHz 1.69983 GHz 1.79101 GHz 7.95284 GHz	-47.15 dBm -32.17 dBm -15.69 dBm -42.01 dBm	-19.17 dB -2.69 dB -29.01 dB							
Range Low 30.000 MHz 1.000 GHz 1.790 GHz	1.000 GHz 1.700 GHz 3.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	976.00450 MHz 1.69983 GHz 1.79101 GHz	-47.15 dBm -32.17 dBm -15.69 dBm	-19.17 dB -2.69 dB							
Range Low 30.000 MHz 1.000 GHz 3.000 GHz 9.000 GHz 13.000 GHz	1.000 GHz 1.700 GHz 3.000 GHz 9.000 GHz 13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	976.00450 MHz 1.69983 GHz 1.79101 GHz 7.95284 GHz 12.42582 GHz	-47.15 dBm -32.17 dBm -15.69 dBm -42.01 dBm -40.11 dBm	-19.17 dB -2.69 dB -29.01 dB -27.11 dB							
Range Low 30.000 MHz 1.000 GHz 1.790 GHz 3.000 GHz 9.000 GHz	1.000 GHz 1.700 GHz 3.000 GHz 9.000 GHz 13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	976.00450 MHz 1.69983 GHz 1.79101 GHz 7.95284 GHz 12.42582 GHz	-47.15 dBm -32.17 dBm -15.69 dBm -42.01 dBm -40.11 dBm	-19.17 dB -2.69 dB -29.01 dB -27.11 dB							
Range Low 30.000 MHz 1.000 GHz 3.000 GHz 9.000 GHz 13.000 GHz 13.000 GHz	1.000 GHz 1.700 GHz 3.000 GHz 9.000 GHz 13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	976.00450 MHz 1.69983 GHz 1.79101 GHz 7.95284 GHz 12.42582 GHz	-47.15 dBm -32.17 dBm -15.69 dBm -42.01 dBm -40.11 dBm	-19.17 dB -2.69 dB -29.01 dB -27.11 dB							

				LTE Ba	nd 66C	/ 20MH	z+20	MHz				
					640	QAM						
	Lowest C	hannel /	1RB0 and	1RB99			l	owest	Channel	/ 1RB99 and	d 1RB0	
Spectrum						Spectrur						
Ref Level 0.00 dBm SGL Count 100/100	Offset 11.70 dB	Mode Au	to Sweep			SGL Count	0.00 dBm 100/100	Offset 11.70	dB Mode 4	auto Sweep		
AvgPwr Limit Check -10 dsine_SPURIOUS	LINE ABS	PASS PASS				AvgPwr Limit	heck	LINE_ABS_	PASS			
_SPURIOUS_LINE_ABS_ -20 dBm	-					SPURIOUS -20 dBm						
-30 dBm						-30 dBm						
-40 dBm	mmmm	m	~~~~			-40 dBm		······································	m	mon		~~~~
-60 dBm						-60 dBm-	1					
-70 dBm					_	-70 dBm						
-80 dBm						-80 dBm	-					
-90 dBm						-90 dBm						
Start 30.0 MHz Spurious Emissions		39000	6 pts		Stop 18.0 GHz	Start 30.0 Spurious E	missions		390	06 pts		Stop 18.0 GHz
Range Low 30.000 MHz	Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 978.91304 MHz 1.67359 GHz	Power Abs -47.18 dBm	∆Limit -34.18 dB		0 MHz	Range Up 1.000 GHz	RBW 1.000 MHz	977.94353 MHz 1.64175 GHz	-47.12 dBm	-34.12 dB
1.000 GHz 1.790 GHz 3.000 GHz	1.700 GHz 3.000 GHz 9.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	2.95383 GHz 7.55137 GHz	-46.70 dBm -46.55 dBm -41.81 dBm	-33.70 dB -33.55 dB -28.81 dB	1.7	IO GHZ IO GHZ IO GHZ	1.700 GHz 3.000 GHz 9.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	2.97601 GHz 7.54637 GHz	-48.19 dBm -46.43 dBm -41.73 dBm	-35.19 dB -33.43 dB -28.73 dB
9.000 GHz 13.000 GHz	13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz	12.42482 GHz 17.84814 GHz	-40.14 dBm -37.67 dBm	-27.14 dB -24.67 dB	9.0	IO GHZ	13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz	12.42282 GHz 17.85397 GHz	-40.05 dBm -37.70 dBm	-27.05 dB -24.70 dB
			Real	CITITI C	4/9	(][]			En la Constantina de	CIIIIII)	449
Date: 12.JUN.2019 01:23:	39					Date: 12.JUN.	2019 01:19:1	2				
	Low	est Char	nnel / FullR	В					N	I/A		
Spectrum												
Ref Level 0.00 dBm SGL Count 100/100	Offset 11.70 dB	Mode Au	to Sweep									
AvgPwr Limit Check		PASS										
-10 dene spurious	LINE_ABS	PASS										
-20 dBm												
-40 dBm				warmen and a state of the								
-60 dBm												
-70 dBm												
-90 dBm					_							
Start 30.0 MHz		39000	5 pts		Stop 18.0 GHz							
Spurious Emissions Range Low	Range Up	RBW	Frequency	Power Abs	۵Limit							
30.000 MHz 1.000 GHz	1.000 GHz 1.700 GHz	1.000 MHz 1.000 MHz	999.27286 MHz 1.69948 GHz	-47.37 dBm -19.58 dBm	-34.37 dB -6.58 dB							
1.790 GHz 3.000 GHz	3.000 GHz 9.000 GHz	1.000 MHz 1.000 MHz	1.79141 GHz 7.54687 GHz	-28.83 dBm -41.97 dBm	-15.83 dB -28.97 dB							
9.000 GHz 13.000 GHz	13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz	12.44782 GHz 17.84397 GHz	-40.24 dBm -37.74 dBm	-27.24 dB -24.74 dB							
			E C	- amm	449							
Date: 12.JUN.2019 01:24:	32											
						I						

				LTE Ba	nd 66C	/ 20MH	z+20	MHz				
					640	QAM						
	MiddleC	hannel /	1RB0 and ^r	RB99			[Middle	Channel	/ 1RB99 and	1RB0	
						<u> </u>						E
Spectrum Ref Level 0.00 dBm SGL Count 100/100	Offset 11.70 de	Mode Au	to Sweep			Spectrur Ref Level SGL Count	0.00 dBm	Offset 11.70	dB Mode /	Auto Sweep		\bigtriangledown
●1 AvgPwr Limit Check -10 dene_SPURIOUS		PASS				AvgPwr Limit Lino	theck	LINE_ABS_	PASS			
_SPURIOUS_LINE_ABS_ _20 dBm	- INC_ADS_	PADO			_	-10 dBHP SPURIOUS -20 dBm		LINE_ADS_	PASS			
-30 dBm						-30 dBm	-					
-40 dBm	mmm		~~~~			-40 dBm-						~~~~
-60 dBm					_	-60 dBm						_
-70 dBm						-70 dBm-						
-90 dBm						-90 dBm						
Start 30.0 MHz		3900	5 pts		Stop 18.0 GHz	Start 30.0			390	06 pts		Stop 18.0 GHz
Spurious Emissions Range Low 30.000 MHz	Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 985.21489 MHz	-47.11 dBm	∆Limit -34.11 dB	Spurious E Range		Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 958.55322 MHz	Power Abs -47.25 dBm	∆Limit -34.25 dB
1.000 GHz 1.790 GHz	1.700 GHz 3.000 GHz	1.000 MHz 1.000 MHz	1.69878 GHz 2.46153 GHz	-29.73 dBm -46.69 dBm	-16.73 dB -33.69 dB	1.0	00 GHz 90 GHz	1.700 GHz 3.000 GHz	1.000 MHz 1.000 MHz	1.66064 GHz 2.93166 GHz	-48.30 dBm -46.57 dBm	-35.30 dB -33.57 dB
3.000 GHz 9.000 GHz 13.000 GHz	9.000 GHz 13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	7.55687 GHz 12.43382 GHz 17.85022 GHz	-42.06 dBm -40.26 dBm -37.75 dBm	-29.06 dB -27.26 dB -24.75 dB	9.0	00 GHz 00 GHz 00 GHz	9.000 GHz 13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	7.55137 GHz 12.43732 GHz 17.83814 GHz	-41.88 dBm -40.07 dBm -37.71 dBm	-28.88 dB -27.07 dB -24.71 dB
			() Real		4/0		J			Rea		449
Date: 12.JUN.2019 02:39:	48					Date: 12.JUN	2019 02:46:2	22				
							_					
	Mid	dle Chan	nel / FullR	B					Ν	I/A		
					Ē							
Spectrum Ref Level 0.00 dBm	Offset 11.70 de	Mode Au	to Sweep									
SGL Count 100/100 SGL Count 100/100 SGL Count 100/100		p. bo										
Limit Check -10 diffe_SPURIOUS _SPURIOUS_LINE_ABS_	LINE_ABS_	PASS PASS			_							
-20 dBm												
-40 dBm					~~~~							
So dB					-							
-60 dBm												
-80 dBm			7		-							
-90 dBm												
Start 30.0 MHz Spurious Emissions	· · ·	3900		· ·	Stop 18.0 GHz							
Range Low 30.000 MHz 1.000 GHz	Range Up 1.000 GHz 1.700 GHz	RBW 1.000 MHz 1.000 MHz	Frequency 998.78811 MHz 1.69983 GHz	-47.30 dBm -30.73 dBm	<u>ALimit</u> -34.30 dB -17.73 dB							
1.790 GHz 3.000 GHz	3.000 GHz 9.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz	1.79585 GHz 7.54337 GHz	-19.63 dBm -41.97 dBm	-6.63 dB -28.97 dB							
9.000 GHz 13.000 GHz	13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz	12.43382 GHz 17.86022 GHz	-40.17 dBm -37.72 dBm	-27.17 dB -24.72 dB							
Date: 12 JUN.2019 02:38:	20		Relat		449							
Date: 12.JUN.2019 02:38:	23											

					LTE Ba	nd 66C /	20M⊦	z+20	MHz				
						640	MA						
	H	lighest C	hannel /	1RB0 and	1RB99			ŀ	lighest	Channel	/ 1RB99 a	nd 1RB0	
Spectrum							Spectrur						E
Ref Level 0 SGL Count 1 1 AvgPwr		Offset 11.70 dB	Mode Au	to Sweep			SGL Count		Offset 11.70	dB Mode	Auto Sweep		
Limit Ch -10 dshe_se 	URIOUS	LINE_ABS_	PABS PABS				-10 diffe	theck	LINE_ABS_	PASS PASS			
-20 dBm	INC_405_						-20 dBm-	LINC_ADS_					
-40 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	men			~~~~	-40 dBm—			m			
-60 dBm-							-60 dBm-						
-70 dBm							-70 dBm						
-90 dBm							-90 dBm						
Start 30.0 M Spurious Emi	issions	Pango Un	39000 RBW		Power Abs	Stop 18.0 GHz	Start 30.0 Spurious E Range	missions	Pango Un	390 RBW	006 pts	Power Abs	Stop 18.0 GHz
Range Lo 30.000 1.000 1.790 3.000 9.000 13.000	MHz GHz GHz GHz GHz	Range Up 1.000 GHz 1.700 GHz 3.000 GHz 9.000 GHz 13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	Frequency 966.79410 MHz 1.67254 GHz 2.46153 GHz 7.53637 GHz 12.42882 GHz 17.84147 GHz	-47.29 dBm -48.37 dBm -46.46 dBm -42.00 dBm -40.14 dBm -37.71 dBm	-34.29 dB -35.37 dB -33.46 dB -29.00 dB -27.14 dB -24.71 dB	30.00 1.0 1.7 3.0 9.0	0 MHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	Range Up 1.000 GHz 1.700 GHz 3.000 GHz 9.000 GHz 13.000 GHz 18.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	Frequency 968.24838 MH 1.64770 GH 2.46153 GH 12.43482 GH 17.83939 GH	2 -47.28 dBm 2 -48.04 dBm 2 -46.35 dBm 2 -41.93 dBm 2 -40.17 dBm	-34.28 dB -35.04 dB -33.35 dB -28.93 dB -27.17 dB -24.85 dB
13.000	GHZ	18.000 GH2	1.000 MHz	17.84147 GHZ		-24.71 08	[13.0		18.000 GH2	1.000 MH2	17.83939 GH		-24.85 UB
Date: 12.JUN.20	19 03:10:2	7					Date: 12.JUN.	2019 03:09:	09				
		High	est Chai	nnel / FullR	B					1	N/A		
<u> </u>	_												
Spectrum Ref Level 0 SGL Count 1		Offset 11.70 dB	Mode Au	to Sweep		∇							
●1 AvgPwr Limit Ch -10 dene_SP		LINE_ABS	PASS										
_SPURIOUS_LI -20 dBm-	INE_ABS_												
-30 dBm													
-60 dBm-	-												
-70 dBm													
-80 dBm													
Start 30.0 M Spurious Emi			39000	6 pts	 	Stop 18.0 GHz							
Range Lo 30.000 1.000 1.790 3.000 9.000 13.000	MHz GHz GHz GHz GHz GHz	Range Up	RBW 1.000 MHz 1.000 MHz	Frequency 993.45577 MHz 1.69948 GHz 1.79020 GHz 7.55137 GHz 12.40732 GHz 17.84689 GHz	Power Abs -46.94 dBm -32.27 dBm -16.35 dBm -41.97 dBm -40.25 dBm -37.81 dBm	ΔLimit -33.94 dB -19.27 dB -3.35 dB -28.97 dB -27.25 dB -24.81 dB							
)[]			i i i i i i i i i i i i i i i i i i i	CHINE	449	1						
Date: 12 II IN CO.	10 02 40.0	9											
Date: 12.JUN.20	19 03:16:5	9											

Radiated Spurious Emission


LTE ULCA_B66_20M 1RB99 QPSK + 20M 1RB0 QPSK

		L	TE ULCA_B	66_20M 1RB	99 QPSK+2	0M 1RB0 QP	SK		
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
	3455	-53.52	-13	-40.52	-70.01	-63.95	1.83	12.27	Н
	5191	-41.37	-13	-28.37	-63.1	-51.23	2.28	12.14	Н
Low	6913	-46.08	-13	-33.08	-71.88	-54.68	2.39	10.99	Н
Low	3455	-55.86	-13	-42.86	-72.74	-66.29	1.83	12.27	V
	5191	-47.42	-13	-34.42	-68.99	-57.28	2.28	12.14	V
	6913	-48.25	-13	-35.25	-73.6	-56.85	2.39	10.99	V
	3511	-52.74	-13	-39.74	-69.82	-63.26	1.88	12.39	Н
	5261	-39.11	-13	-26.11	-61.07	-49.01	2.25	12.15	Н
Middle	7015	-45.37	-13	-32.37	-71.66	-53.83	2.41	10.87	Н
wilddie	3511	-54.97	-13	-41.97	-72.36	-65.49	1.88	12.39	V
	5261	-46.13	-13	-33.13	-67.85	-56.03	2.25	12.15	V
	7015	-47.35	-13	-34.35	-73.16	-55.81	2.41	10.87	V
	3518	-53.07	-13	-40.07	-70.14	-63.58	1.88	12.39	Н
	5275	-40.94	-13	-27.94	-62.9	-50.85	2.25	12.16	Н
Lligh	7039	-45.91	-13	-32.91	-72.26	-54.34	2.40	10.83	Н
High	3483	-55.43	-13	-42.43	-72.81	-65.92	1.86	12.35	V
	5226	-47.73	-13	-34.73	-69.45	-57.61	2.27	12.15	V
	6964	-47.97	-13	-34.97	-73.85	-56.50	2.41	10.94	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

Appendix B. Setup Photographs

