Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: 5G-Veri30-1007_Apr19

Object	5G Verification	n Source 30 GHz - SN: 1007						
Calibration procedure(s)	QA CAL-45.v2 Calibration pro	z						
Calibration date:	April 24, 2019							
This calibration certificate docu	ments the traceability to	national standards, which realize the physical units c	of measurements (SI).					
The measurements and the un	certainties with confidence	e probability are given on the following pages and a	re part of the certificate.					
All calibrations have been cond	lucted in the closed labor	atory facility: environment temperature (22 \pm 3)°C ar	nd humidity < 70%.					
Calibration Equipment used (M	&TE critical for calibration	2)						
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration					
Reference Probe EUmmWV3	SN: 9374	31-Dec-18 (No. EUmmWV3-9374 Dec18)	Dec-19					
	011.0011		Ded to					
DAE4	SN: 1215	22-Feb-19 (No. DAE4-1215_Feb19)	Feb-20					
DAE4	SN: 1215	22-Feb-19 (No. DAE4-1215_Feb19)	Feb-20					
	SN: 1215 ID #	22-Feb-19 (No. DAE4-1215_Feb19) Check Date (in house)	Feb-20 Scheduled Check					
DAE4 Secondary Standards	ID #	Check Date (in house)	Scheduled Check					
Secondary Standards	ID #	Check Date (in house) Function						
	ID #	Check Date (in house)	Scheduled Check					

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Glossary

CW

Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45-5Gsources
- IEC TR 63170 ED1, "Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz", January 2018

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The forward power to the horn antenna is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable taking into account the 0.2dB horn loss. (2) 30, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- *Horn Positioning:* The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn.
- *Field polarization:* Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

Local peak E-field (V/m) and peak values of the total and normal component of the poynting vector |Re{S}| and n.Re{S} averaged over the surface area of 1 cm² (pStotavg1cm² and pSnavg1cm²) and 4cm² (pStotavg4cm² and pSnavg4cm²) at the nominal operational frequency of the verification source.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

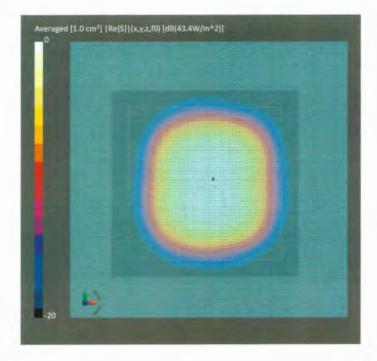
DASY Version	cDASY6 Module mmWave	V1.6
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
XY Scan Resolution	dx, dy = 2.5 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	30 GHz ± 10 MHz	

Calibration Parameters, 30 GHz

Distance Horn Aperture to Measured Plane	Prad1 (mW)	Max E-field (V/m)	Uncertainty (k = 2)	n.Re{S}	er Density , Re{S} m2)	Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	32.9	136	1.27 dB	43.1, 43.4	37.4, 37.9	1.28 dB

¹ derived from far-field data

DASY Report


Measurement Report for 5G Verification Source 30 GHz, UID 0 -, Channel 30000 (30000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type	
5G Verification Source 30 G	Hz 100.0 x 100.0 x 1	100.0	SN: 1007		
Exposure Conditions					
Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	5.55 mm	Validation band	CW	30000.0, 30000	1.0
Hardware Setup			Date C.		
Phantom	Medium		Probe, Calib	the public of an and a second se	DAE, Calibration Date
5G Phantom	Air		EUmmWV3	- SN9374, 2018-12-31	DAE4 Sn1215, 2019-02-22
Scan Setup			Measurer	nent Results	
		5G S	can		5G Scan
Grid Extents [mm]		60.0 x 6	0.0 Date		2019-04-24, 12:10
Grid Steps [lambda]		0.25 x 0	.25 Avg. Area	[cm ²]	1.00
Sensor Surface [mm]		. 5	.55 pStot avg [V	V/m²]	43.4
MAIA		MAIA not u	sed pSn avg [W	/m ²]	43.1

E_{peak} [V/m] Power Drift [dB]

136 -0.04

Engineering AG eughausstrasse 43, 8004 Zurio	h, Switzerland		Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accredita	tion Service (SAS)	Accr	reditation No.: SCS 0108
he Swiss Accreditation Servic	e is one of the signatories t		
lultilateral Agreement for the r	ecognition of calibration ce		EUmmWV3-9413_Feb
lient Sporton		Certificate No:	Louinite 0-0410_1 00
CALIBRATION	CERTIFICATE		
Object	EUmmWV3 - SN:9	413	
object	Lonintitio	110	
Calibration procedure(s)	04 CAL-02 V9 04	CAL-25.v7, QA CAL-42.v2	Contraction of the local division of the loc
calibration procedure(s)	Calibration proced	ure for E-field probes optimized for	or close near field
	evaluations in air		
Calibration date:	February 13, 2019	and the second second second	
	ertainties with confidence prol ucted in the closed laboratory	bability are given on the following pages and a facility: environment temperature $(22\pm3)^\circ C$ a	
The measurements and the unc All calibrations have been condu	ertainties with confidence prol ucted in the closed laboratory RTE critical for calibration)	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.)	ind humidity < 70%.
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP	ertainties with confidence prof ucted in the closed laboratory KTE critical for calibration) ID SN: 104778	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673)	Ind humidity < 70%. Scheduled Calibration Apr-19
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91	ertainties with confidence prol ucted in the closed laboratory RTE critical for calibration)	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.)	ind humidity < 70%.
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP	ertainties with confidence prol ucted in the closed laboratory KTE critical for calibration) ID SN: 104778 SN: 103244	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672)	Ind humidity < 70%. Scheduled Calibration Apr-19 Apr-19
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ertainties with confidence prof ucted in the closed laboratory KTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Oct-19
The measurements and the unc All calibrations have been condu Calibration Equipment used (Mé Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ertainties with confidence prof ucted in the closed laboratory TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x)	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02672)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ER3DV6 DAE4	ertainties with confidence prol ucted in the closed laboratory KTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 2328 SN: 789	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 09-Oct-18 (No. ER3-2328_Oct18) 07-Aug-18 (No. DAE4-789_Aug18)	Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Aug-19
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ER3DV6	ertainties with confidence prof ucted in the closed laboratory TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 55277 (20x) SN: 2328	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02682) 09-Oct-18 (No. ER3-2328_Oct18)	Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Oct-19
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards	ID ID ISN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 789 ID	bability are given on the following pages and a facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 09-Oct-18 (No. ER3-2328 Oct18) 07-Aug-18 (No. DAE4-789 Aug18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Oct-19 Aug-19 Scheduled Check
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power meter E4419B	ertainties with confidence prof ucted in the closed laboratory XTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 55277 (20x) SN: 2328 SN: 789 ID SN: GB41293874 SN: MY41498087 SN: 000110210	bability are given on the following pages and a facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 09-Oct-18 (No. ER3-2328, Oct18) 07-Aug-18 (No. ER3-2328, Oct18) 07-Aug-16 (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Aug-19 Oct-19 Scheduled Check In house check; Jun-20
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ertainties with confidence prof ucted in the closed laboratory KTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 2328 SN: 789 ID SN: GB41293874 SN: MY41498087 SN: WY41498087 SN: 000110210 SN: US3642U01700	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 09-Oct-18 (No. ER3-2328_Oct18) 07-Aug-18 (No. DAE4-789_Aug18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Apr-99 (in house check Jun-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Aug-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	ertainties with confidence prof ucted in the closed laboratory XTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 55277 (20x) SN: 2328 SN: 789 ID SN: GB41293874 SN: MY41498087 SN: 000110210	bability are given on the following pages and a facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 09-Oct-18 (No. ER3-2328, Oct18) 07-Aug-18 (No. ER3-2328, Oct18) 07-Aug-16 (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Aug-19 Oct-19 Aug-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ertainties with confidence prof ucted in the closed laboratory XTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 55277 (20x) SN: 2328 SN: 789 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	bability are given on the following pages and a facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02682) 09-Oct-18 (No. ER3-2328_Oct18) 07-Aug-18 (No. ER3-2328_Oct18) 07-Aug-18 (No. DAE4-789_Aug18) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 05-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 07-Aug-99 (in house check Jun-18) 08-Apr-16 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Aug-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ertainties with confidence prof ucted in the closed laboratory XTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 2328 SN: 2328 SN: 789 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585	Cal Date (Certificate No.) Q4-Apr-18 (No. 217-02672/02673) Q4-Apr-18 (No. 217-02672/02673) Q4-Apr-18 (No. 217-02672) Q6-Apr-18 (No. 217-02673) Q6-Apr-16 (in house) Q7-Aug-18 (No. DAE4-789_Aug18) Check Date (in house) Q6-Apr-16 (in house check Jun-18) Q6-Apr-16 (in house check Jun-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Aug-19 Scheduled Check In house check: Jun-20 In house check: Jun-20
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	ertainties with confidence prof ucted in the closed laboratory XTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 55277 (20x) SN: 2328 SN: 789 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	bability are given on the following pages and a facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02682) 09-Oct-18 (No. ER3-2328_Oct18) 07-Aug-18 (No. ER3-2328_Oct18) 07-Aug-18 (No. DAE4-789_Aug18) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 05-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 07-Aug-99 (in house check Jun-18) 08-Apr-16 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Aug-19 Scheduled Check In house check: Jun-20 In house check: Jun-20
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	ertainties with confidence prof ucted in the closed laboratory XTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 55277 (20x) SN: 2328 SN: 789 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	bability are given on the following pages and a facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02682) 09-Oct-18 (No. ER3-2328_Oct18) 07-Aug-18 (No. ER3-2328_Oct18) 07-Aug-18 (No. DAE4-789_Aug18) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 05-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 07-Aug-99 (in house check Jun-18) 08-Apr-16 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Aug-19 Scheduled Check In house check: Jun-20 In house check: Jun-20
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator DAE4 Secondary Standards Power meter E44198 Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ertainties with confidence prof ucted in the closed laboratory XTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 2328 SN: 789 ID SN: GB41293874 SN: 000110210 SN: US3642U01700 SN: US37390585 Name Jeton Kastrati	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02682) 09-Oct-18 (No. ER3-2328_Oct18) 07-Aug-18 (No. DAE4-789_Aug18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 18-Oct-01 (in house check Jun-18) 18-Oct-01 (in house check Jun-18) 18-Oct-01 (in house check Jun-18) Laboratory Technician	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Aug-19 Scheduled Check In house check: Jun-20 In house check: Jun-20
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator DAE4 Secondary Standards Power meter E44198 Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ertainties with confidence prof ucted in the closed laboratory XTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 2328 SN: 789 ID SN: GB41293874 SN: 000110210 SN: US3642U01700 SN: US37390585 Name Jeton Kastrati	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02682) 09-Oct-18 (No. ER3-2328_Oct18) 07-Aug-18 (No. DAE4-789_Aug18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 18-Oct-01 (in house check Jun-18) 18-Oct-01 (in house check Jun-18) 18-Oct-01 (in house check Jun-18) Laboratory Technician	Ind humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Aug-19 Scheduled Check In house check: Jun-20 In house check: J
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power sensor E44198 Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	ertainties with confidence prof ucted in the closed laboratory ATE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 2328 SN: 55277 (20x) SN: 2328 SN: 789 ID SN: GB41293874 SN: MY41498087 SN: 00110210 SN: US3642U01700 SN: US3642U01700 SN: US37390585 Name Jeton Kastrati Katja Pokovic	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02682) 09-Oct-18 (No. ER3-2328_Oct18) 07-Aug-18 (No. DAE4-789_Aug18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 18-Oct-01 (in house check Jun-18) 18-Oct-01 (in house check Jun-18) 18-Oct-01 (in house check Jun-18) Laboratory Technician	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Oct-19 Aug-19 Scheduled Check In house check: Jun-20 In house check: Jun-20

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: NORMx,y,z

DCFA, PC CSk

ORMx.y.z	sensitivity in free space
CP	diode compression point
F	crest factor (1/duty_cycle) of the RF signal
, B, C, D	modulation dependent linearization parameters
olarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle Sensor Angles k	information used in DASY system to align probe sensor X to the robot coordinate system sensor deviation from the probe axis, used to calculate the field orientation and polarization is the wave propagation direction

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, R_p, inductance L and capacitors C, C_p).
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Sensor Offset: The sensor offset corresponds to the mechanical from the probe tip (on probe axis). No
 tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).
- Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different angles. The
 angles are assessed using the information gained by determining the NORMx (no uncertainty required).
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / hom setup.

Certificate No: EUmmWV3-9413_Feb19

Page 2 of 15

DASY - Parameters of Probe: EUmmWV3 - SN:9413

Basic Calibration Parameters

	Sensor X	Sensor Y	Unc (k=2)
Norm (µV/(V/m) ²)	0.02161	0.02402	± 10.1 %
DCP (mV) ^B	113.0	99.0	
Equivalent Sensor Angle	-61.5	34.9	

Frequency GHz	Target E-Field V/m	equency Response (750 Deviation Sensor X dB	Deviation Sensor Y dB	Unc (k=2) dB	
0.75	77.2	-0.11	-0.17	± 0.43 dB	
1.8	140.4	0.07	0.06	± 0.43 dB	
2	132.9	0.08	0.09	± 0.43 dB	
2.2	124.7	0.02	0.02	± 0.43 dB	
2.5	123.6	-0.04	-0.04	± 0.43 dB	
3.5	256.3	0.14	0.02	± 0.43 dB	
3.7	250.4	0.23	0.04	± 0.43 dB	
6.6	40.04	-0.62	-0.14	± 0.98 dB	
8	48.41	-0.45	-0.45	± 0.98 dB	
10	54.41	-0.16	-0.17	± 0.98 dB	
15	75.04	0.71	-0.01	± 0.98 dB	
18	85.30	0.43	0.38	± 0.98 dB	
26.6	96.89 0.46		0.46	± 0.98 dB	
30	92.55	0.41	0.49	± 0.98 dB	
35	93.71			± 0.98 dB	
40	91.46	0.07	-0.09	± 0.98 dB	
50	19.62	-0.64	-0.39	± 0.98 dB	
55	22.38	0.28	0.08 ± 0.98		
60	23.03	-0.18	-0.23	± 0.98 dB	
65	27.40	-0.43	-0.34	± 0.98 dB	
70	23.95	-0.09	-0.45	± 0.98 dB	
75	19.61	-0.43	-0.37	± 0.98 dB	
75	14.11	-0.47	-0.23	± 0.98 dB	
80	21.51	0.06	0.12	± 0.98 dB	
85	22.75	-0.02	-0.05	± 0.98 dB	
90	23.84	0.05	0.08	± 0.98 dB	
92	23.93	0.07	-0.06	± 0.98 dB	
95	20.55	0.05	-0.09	± 0.98 dB	
97	24.41	-0.05	-0.16	± 0.98 dB	
100	22.61	-0.06	-0.19	± 0.98 dB	
105	22.75	-0.39	-0.40	± 0.98 dB	
110	18.85	-0.44	-0.45	± 0.98 dB	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁸ Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EUmmWV3-9413_Feb19

Page 3 of 15

February 13, 2019

EUmmWV3 - SN: 9413

DASY - Parameters of Probe: EUmmWV3 - SN:9413

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	129.5	± 3.7 %	± 4.7 %
0	C.	Y	0.00	0.00	1.00		64.5		
10352-	Pulse Waveform (200Hz, 10%)	X	1.95	60.00	12.63	10.00	6.0	± 1.7 %	± 9.6 %
AAA	Tuise Waveloini (Looniz, Toro)	Y	2.61	60.00	13.96		6.0		
10353-	Pulse Waveform (200Hz, 20%)	X	1.21	60.00	11.73	6.99	12.0	± 1.3 %	± 9.6 %
AAA	1 0136 11010111 (200112, 2010)	Y	1.63	60.00	13.14		12.0		
10354-	Pulse Waveform (200Hz, 40%)	X	0.65	60.00	10.74	3.98	23.0	± 1.5 %	± 9.6 %
AAA	ruise waveloini (2001/2, 40/0)	Y	0.91	60.00	12.16		23.0		
10355-	Pulse Waveform (200Hz, 60%)	X	0.38	60.00	10.14	2.22	27.0	± 1.2 %	± 9.6 %
AAA	1 uise Waveloini (2001/2, 00/0)	Y	0.63	60.00	11.18		27.0		
10387-	QPSK Waveform, 1 MHz	X	1.26	60.00	5.74	0.00	22.0	± 1.4 %	± 9.6 %
AAA	Qr Sit Wavelonn, Timite	Y	0.03	69.64	4.64		22.0		
10388-	QPSK Waveform, 10 MHz	X	1.16	60.00	11.88	0.00	22.0	± 1.2 %	± 9.6 %
AAA		Y	1.38	60.00	11.80		22.0		
10396-	64-QAM Waveform, 100 kHz	X	2.19	62.12	14.46	3.01	17.0	±0.9 %	± 9.6 %
AAA		Y	2.23	60.00	13.70		17.0		
10399-	64-QAM Waveform, 40 MHz	X	1.98	60.00	12.35	0.00	19.0	± 1.5 %	± 9.6 %
AAA		Y	2.18	60.00	12.46		19.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	2.98	60.00	12.79	0.00	12.0	± 1.1 %	± 9.6 %
AAA	The state of the s	Y	3.22	60.00	12.90		12.0		

Note: For details on all calibrated UID parameters see Appendix

Calibration Results for Linearity Response

Frequency Target E-Field GHz V/m		Deviation Sensor X dB	Deviation Sensor Y dB	Unc (k=2) dB	
0.9	50.0	0.07	0.12	± 0.2 dB	
0.9	100.0	-0.05	0.02	± 0.2 dB	
0.9	500.0	0.02	-0.02	± 0.2 dB	
0.9	1000.0	0.03	0.00	± 0.2 dB	
0.9	1500.0	0.02	0.01	± 0.2 dB	
0.9	2000.0	0.02	-0.01	± 0.2 dB	

Sensor Frequency Model Parameters

	Sensor X	Sensor Y
R (Ω)	32.50	35.41
$R_{p}(\Omega)$	98.61	94.90
L (nH)	0.03042	0.03167
C (pF)	0.2082	0.2181
C _o (pF)	0.1504	0.1374

Sensor Model Parameters

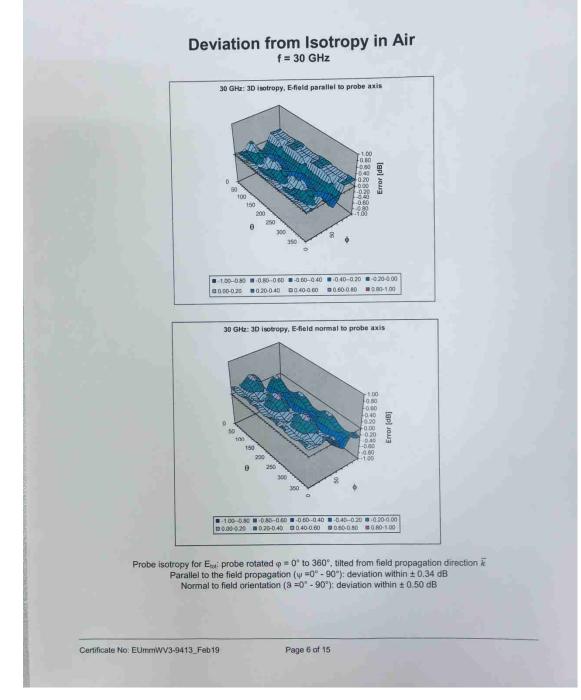
	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	32.2	227.38	32.09	0.92	2.94	4.96	0.00	1.07	1.01
Y	29.3	219.49	35.72	0.92	4.72	4.99	0.00	2.00	1.00

Certificate No: EUmmWV3-9413_Feb19 Page 4 of 15

February 13, 2019

EUmmWV3 - SN: 9413

DASY - Parameters of Probe: EUmmWV3 - SN:9413


Other Probe Parameters

Sensor Arrangement	Rectangular		
Connector Angle (°)	-83.6		
Mechanical Surface Detection Mode	enabled		
Optical Surface Detection Mode	disabled		
Probe Overall Length	320 mm		
Probe Body Diameter	8 mm		
Tip Length	23 mm		
Tip Diameter	8.0 mm		
Probe Tip to Sensor X Calibration Point	1.5 mm		
Probe Tip to Sensor Y Calibration Point	1.5 mm		

Certificate No: EUmmWV3-9413_Feb19

Page 5 of 15

February 13, 2019

February 13, 2019

Appendix: Modulation	Calibration Parameters
----------------------	------------------------

JID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E (k=2)
)		CW	CW	0.00	±4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	±9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 %
10033	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6 %
10042	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6 %
10044	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10045	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 0.0 Mbps)	WLAN	3.60	±9.6 %
		IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6%
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6 %
10063 10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.00	±9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 16 Mbps)	WLAN	9.38	±9.6 %
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10067		IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10069	CAC	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10071		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10073		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10074	CAB CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 24 Mbps) IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6 %
10075		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10077	CAB	CDMA2000 (1) PTT PC3)	CDMA2000	3.97	± 9.6 %
10081	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10082	CAB	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
10090	DAC CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10097		UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %
10098	CAB	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10099	DAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10102	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10103	CAG		LTE-TDD	9.97	± 9.6 %
10104	CAG		LTE-TDD	10.01	± 9.6 %
10105	CAG		LTE-FDD	5.80	± 9.6 %
10108	CAG	LIE-FUD (SC-FUWA, 100% RD, 10 WITZ, Grond			

Certificate No: EUmmWV3-9413_Feb19

Page 7 of 15

February 13, 2019

10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6 %
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 %
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6 %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6 %
0176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
0180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
0181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6 %
0182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
0183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
0184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
0185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
0186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
0187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
0188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
0189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
0193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
0194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
0195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
0196	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
0197	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
0198					

Certificate No: EUmmWV3-9413_Feb19

Page 8 of 15

February 13, 2019

10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	± 9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 9
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	± 9.6 9
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6 °
10226	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	± 9.6 9
10227	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6 9
10228	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	± 9.6 %
10229	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 9
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 9
10232	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10233	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10234	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	
10236	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10237	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6 %
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)			
10240	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	10.25	±9.6 %
10241	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.21 9.82	± 9.6 %
10242	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD		± 9.6 %
10243	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 04-QAM)	LTE-TDD LTE-TDD	9.86	± 9.6 %
10244	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)		9.46	±9.6 %
10245	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
10246	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	10.06	± 9.6 %
10247	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.30	± 9.6 %
10248	CAF	LTE TOD (SC-FDIMA, 50% RB, 5 MHZ, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10249	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10249	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10250	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
		LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6 %
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
10256	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6 %
10257	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6 %
10259	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %
10260	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6 %
10261	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10262	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6 %
10264	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10265	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 9
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 %
10293	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.50	± 9.6 9
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.69
10295	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.72	±9.69

Certificate No: EUmmWV3-9413_Feb19

Page 9 of 15

10000	A A D	LTE EDD (CO EDMA FOX DD ANNI- CA OAN)	LTE-FDD	6.60	1000
10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)			±9.6 %
10301	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	±9.6 %
10302	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	WIMAX	12.57	±9.6 %
10303	AAA	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6 %
10304	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	±9.6 %
10305	AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	WIMAX	15.24	±9.6 %
10306	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	WIMAX	14.67	± 9.6 %
10307	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	WIMAX	14.49	±9.6 %
10308	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WiMAX	14.46	±9.6 %
10309	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	WIMAX	14.58	±9.6 %
10310	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	WiMAX	14.57	±9.6 %
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6 %
10313	AAA	IDEN 1:3	IDEN	10.51	±9.6 %
10314	AAA	IDEN 1:6	IDEN	13.48	±9.6 %
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	± 9.6 %
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	± 9.6 %
10317	AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	± 9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	± 9.6 %
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	± 9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	± 9.6 %
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 %
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10401	AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	± 9.6 %
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53 3.76	± 9.6 % ± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000 CDMA2000	3.77	± 9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000 CDMA2000	5.22	± 9.6 %
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	LTE-TDD	7.82	± 9.6 %
10410	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)		8.54	± 9.6 %
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic WLAN	1.54	± 9.6 %
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6 %
10417	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.14	± 9.6 %
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8,19	± 9.6 %
10419	AAA	LEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.32	± 9.6 %
10422	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.47	± 9.6 %
10423	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.40	± 9.6 %
10424	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	± 9.6 %
10425	AAB	IEEE 802.11n (HT Greenfield, 13 Mbps, br 3rk) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	± 9.6 %
10426	AAB	IEEE 802.11n (HT Greenfield, 50 Mbps, 10 Grwn) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
10427	AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	± 9.6 %
10430	AAD	LTE-FDD (OFDMA, 3 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10431	AAD	LTE-FDD (OFDMA, 10 MHZ, E-TM 3.1) LTE-FDD (OFDMA, 15 MHZ, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10432	AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10433	AAC	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	± 9.6 %
10434 10435	AAA AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
10.11		Subframe=2,3,4,7,8,9) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	± 9.6 %
10447	AAD	LITE EDD (OEDMA 10 MHZ E-TM 3.1 Clippin 44%)	LTE-FDD	7.53	± 9.6 %
10448	AAD	LTE EDD (OEDMA 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	± 9.6 %
10449	AAC	LTE-FDD (OFDMA, 13 Milz, E-TM 3.1, Olipping 44%)	LTE-FDD	7.48	± 9.6 %

Page 10 of 15

February 13, 2019

0451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	± 9.6 %
10456	AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	±9.6 %
0457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	± 9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6 %
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	± 9.6 %
10461	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9)	LILIDD	1.02	1 0.0 70
10462	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	± 9.6 %
10463	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	± 9.6 %
10464	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10465	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10466	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10467	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10468	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10469	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	± 9.6 %
10470	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10471	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10472	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6 %
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10479	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18 8.45	± 9.6 %
10481	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7,71	± 9.6 %
10482	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	± 9.6 %
10483	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	± 9.6 %
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL	LTE-TDD	7.59	± 9.6 %
10485	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, GPGR, 50 Subframe=2,3.4.7.8.9) LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL	LTE-TDD	8.38	± 9.6 %
10486	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 10-QAM, 0L Subframe=2,3.4,7.8.9) LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.60	± 9.6 %
10487	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 04-04M, 51 Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL	LTE-TDD	7.70	± 9.6 %
10488	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.31	± 9.6 %
10489	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6 %
10490	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 %
10491	AAE	Subframe=2,3,4,7,8,9)			

Certificate No: EUmmWV3-9413_Feb19

Page 11 of 15

10492	L A A E				uary 13, 20 ⁻
	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	± 9.6 %
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	± 9.6 %
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
10497	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	± 9.6 %
10498	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	± 9.6 %
10499	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	± 9.6 %
10500	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	± 9.6 %
10501	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	± 9.6 %
10502	AAB	LTE-TD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	± 9.6 %
10503	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	± 9.6 %
10504	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	± 9.6 %
10505	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
10506	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10507	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	± 9.6 %
10508	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6 %
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	±9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	±9.6 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	±9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	± 9.6 %
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	± 9.6 %
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6 %
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	±9.6 %
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	± 9.6 %
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10519	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	±9.6 %
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	7.97	±9.6 %
10522	AAB		WLAN	8.45	± 9.6 %
10523	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	±9.6%
10524	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	± 9.6 %
10525	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	WLAN	8.36	±9.6 %
10526	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	WLAN	8.42	±9.6%
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN	8.21	± 9.6 %
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10531	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	WLAN	8.43	±9.6 %
10532	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10533 10534	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle) IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	WLAN WLAN	8.38 8.45	± 9.6 %

Page 12 of 15

10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	WLAN	8.32	± 9.6 9
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	WLAN	8.44	± 9.6 9
10538	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	WLAN	8.54	± 9.6 9
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 95pc duty cycle)	WLAN	8.39	± 9.6 %
10541	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	WLAN	8.46	± 9.6 %
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	WLAN	8.65	± 9.6 %
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	WLAN	8.65	± 9.6 %
10544	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	WLAN	8.47	± 9.6 %
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	WLAN	8.55	± 9.6 9
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	WLAN	8.35	± 9.6 %
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	WLAN	8.49	± 9.6 9
10548	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	WLAN	8.37	± 9.6 9
10550	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	WLAN	8.38	± 9.6 %
10551	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	WLAN	8.50	± 9.6 %
10552	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10553	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	WLAN	8.47	± 9.6 %
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	WLAN	8.50	± 9.6 %
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	WLAN	8.52	± 9.6 %
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	WLAN	8.61	± 9.6 9
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	WLAN	8.73	± 9.6 %
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	WLAN	8.56	± 9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	WLAN	8.69	± 9.6 %
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.25	± 9.6 %
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.13	± 9.6 %
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.00	± 9.6 %
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	±9.6 %
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.30	± 9.6 %
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	± 9.6 %
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	± 9.6 %
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6 %
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	± 9.6 %
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	± 9.6 %
10576	AAA	IÉEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	± 9.6 %
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM. 18 Mbps, 90pc duty cycle)	WLAN	8.49	± 9.6 %
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6 %
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	± 9.6 %
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	± 9.6 %
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	± 9.6 %
10583	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6 %
10584	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	± 9.6 9
10585	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10586	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	± 9.6 %
10587	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	± 9.6 %

Page 13 of 15

10588	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	± 9.6
10589	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	± 9.6
10590	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	± 9.6
10591	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	WLAN	8.63	± 9.6
10592	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	WLAN	8.79	± 9.6
10593	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	WLAN	8.64	± 9.6
10594	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	± 9.6
10595	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	WLAN	8.74	± 9.6
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	WLAN	8.71	± 9.6
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	WLAN	8,72	± 9.6
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	WLAN	8.50	± 9.6
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	WLAN	8.79	± 9.6
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	WLAN	8.88	± 9.6
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	WLAN	8.82	± 9.6
10602	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	WLAN	8.94	± 9.6
10603	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	WLAN	9.03	± 9.6
10604	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	WLAN	8.76	± 9.6
10605	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	WLAN	8.97	± 9.6
10606	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	± 9.6
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	WLAN	8.64	± 9.6
10608	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	WLAN	8.77	± 9.6
10609	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	WLAN	8.57	± 9.6
10610	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	WLAN	8.78	± 9.6
10611	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	WLAN	8.70	± 9.6
10612	AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6
10613	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	WLAN	8.94	± 9.6
10614	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	WLAN	8.59	± 9.6
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10616	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	WLAN	8.82	± 9.6
10617	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	WLAN	8.81	± 9.6
10618	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	WLAN	8.58	± 9.6
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	WLAN	8.86	± 9.6
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	WLAN	8.87	± 9.6
10621	AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6
10622	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	WLAN	8.68	± 9.6
10623	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	WLAN	8.82 8.96	± 9.6
10624	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	WLAN WLAN	8.96	± 9.6 ± 9.6
10625	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	WLAN	8.83	± 9.6
10626	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	WLAN	8.88	±9.6
10627	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, Sobc duty cycle)	WLAN	8.71	±9.6
	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	WLAN	8.85	± 9.6
10629	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	WLAN	8.72	±9.6
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	WLAN	8.81	± 9.6
10631	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	± 9.6
10633	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	WLAN	8.83	±9.6
10633	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	WLAN	8.80	± 9.6
10635	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6
10636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	WLAN	8.86	± 9.6
10639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	WLAN	8.85	± 9.6
10640	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	WLAN	8.98	± 9.6
10641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6
10642	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	WLAN	9.06	± 9.6
10643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	WLAN	8.89	± 9.6
10644	AAC	IEFE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6
10645	AAC	IEEE 802 11ac WiFi (160MHz, MCS9, 90pc duty cycle)	WLAN	9.11	± 9.6
10646	AAF	I TE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10647	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6
10652	AAD	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	± 9.6
10653	AAD	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	± 9.6
10654	AAD	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6

Page 14 of 15

February 13, 2019

10655	AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
10659	AAA	Pulse Waveform (200Hz, 20%)	Test	6.99	± 9.6 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6 %
10662	AAA	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EUmmWV3-9413_Feb19

Page 15 of 15

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Client Sporton

Certificate No: EUmmWV3-9390_Jun18

CALIBRATION CERTIFICATE

Object	EUmmWV3 - SN:9390
Calibration procedure(s)	QA CAL-02.v8, QA CA

QA CAL-02.v8, QA CAL-25.v6, QA CAL-42.v2 Calibration procedure for E-field probes optimized for close near field evaluations in air

Calibration date:

June 28, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Data (Cartificate Nu.)	
Power meter NRP	SN: 104778	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91		04-Apr-18 (No. 217-02672)	Apr-19
	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ER3DV6	SN: 2328	10-Oct-17 (No. ER3-2328_Oct17)	Oct-18
DAE4	SN: 789	2-Aug-17 (No. DAE4-789_Aug17)	Aug-18
Secondary Standards	ID	Charle Date (in the charles)	
Power meter E4419B	SN: GB41293874	Check Date (in house)	Scheduled Check
Power sensor E4412A		06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature	
Calibrated by:	Jeton Kastrati	Laboratory Technician	- Ve	
Approved by:	Katja Pokovic .	Technical Manager	Llag	
This calibration certificate	chall not be more done to service a		Issued: July 2, 2018	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

С

S

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: NORMx,y,z DCP CF A, B, C, D Polarization φ	sensitivity in free space diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters φ rotation around probe axis
Polarization 9	
Connector Angle Sensor Angles k	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system sensor deviation from the probe axis, used to calculate the field orientation and polarization is the wave propagation direction

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, R_p, inductance L and capacitors C, C_p).
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Sensor Offset: The sensor offset corresponds to the mechanical from the probe tip (on probe axis). No
 tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).
- Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different angles. The angles are assessed using the information gained by determining the NORMx (no uncertainty required).
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / horn setup.

DASY - Parameters of Probe: EUmmWV3 - SN:9390

Sensor X Sensor Y Unc (k=2) Norm (μV/(V/m)²) 0.01947 0.02257 ± 10.1 % DCP (mV)⁸ 105.0 105.0 105.0 Equivalent Sensor Angle -59.7 31.8 31.8

Basic Calibration Parameters (750 MHz – 3 GHz)

Calibration results for Frequency Response (6 – 110 GHz)

Frequency GHz	Target E-Field V/m	Deviation Sensor X dB	Deviation Sensor Y dB	Unc (k=2)
6.6	40.04	-0.14	A STATE	dB
8	48.41	-0.44	-0.09	± 0.98 dB
10	54.41	-0.16	-0.41	± 0.98 dB
15	75.04	0.10	-0.06	± 0.98 dB
18	85.30	0.10	0.20	± 0.98 dB
		0.37	0.28	± 0.98 dB
26.6	96.89	0.43		
30	92.55	0.43	0.42	± 0.98 dB
35	93.71		0.38	± 0.98 dB
40	91.46	0.00	0.11	± 0.98 dB
	51.40	-0.12	-0.15	± 0.98 dB
50	19.62	0.17		
55	22.38	A read and a	0.07	± 0.98 dB
60	23.03	0.53	0.32	± 0.98 dB
65	27.40	0.14	-0.02	± 0.98 dB
70	23.95	-0.19	-0.15	± 0.98 dB
75	19.61	-0.03	-0.25	± 0.98 dB
	19.01	-0.37	-0.34	± 0.98 dB
75	14.11	-0.25		
80	21.51		-0.19	± 0.98 dB
85	22.75	-0.20	-0.09	± 0.98 dB
90	23.84	-0.10	0.08	± 0.98 dB
92	23.93	0.18	0.27	± 0.98 dB
95	20.55	0.00	0.02	± 0.98 dB
97	20.55	0.12	0.07	± 0.98 dB
100		0.16	0.05	± 0.98 dB
105	22.61	0.17	0.04	± 0.98 dB
100	22.75	-0.01	0.02	± 0.98 dB
	18.85	-0.41	-0.33	± 0.98 dB

Calibration Results for Modulation Response

	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	43.9	+ 3.7 %	±4.7 %
	r details on UID parameters see Ap	Y	0.0	0.0	1.0		31.1		- 1.1 70

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

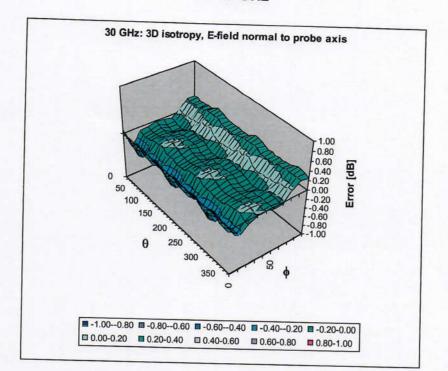
^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

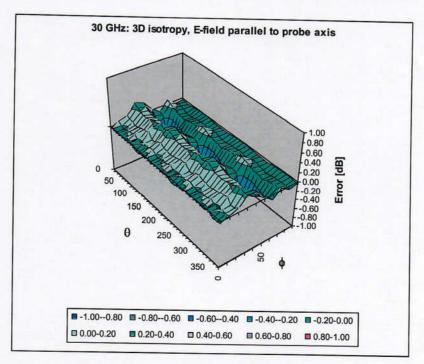
DASY - Parameters of Probe: EUmmWV3 - SN:9390

D (0)	Sensor X	Sensor Y
R (Ω)	38.81	40.25
R _p (Ω)	95.91	
L (nH)	0.03209	92.72
C (pF)	0.2210	0.03114
C _p (pF)	0.1259	
	11200	0.1242

Sensor Frequency Model Parameters


Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V-2	T5	T6
Х	5.466	39.36	33.16	0.916			V -	V-1	
Y	7.841	53.77	30.61		1.745	4.914	0	0.501	0.997
	1.011	55.77	30.01	0.916	0.868	4.977	0	0.593	0.999


Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	
Mechanical Surface Detection Mode	-156.4
Optical Surface Detection Mode	enabled
Probe Overall Length	disabled
Probe Body Diameter	320 mm
	8 mm
Tip Length	23 mm
Tip Diameter	8.0 mm
Probe Tip to Sensor X Calibration Point	1.5 mm
Probe Tip to Sensor Y Calibration Point	1.5 mm

June 28, 2018

Deviation from Isotropy in Air

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Sporton

Client

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: DAE4-853_Jul18

Accreditation No.: SCS 0108

Dbject	DAE4 - SD 000 D0	04 BM - SN: 853	
alibration procedure(s)	QA CAL-06.v29		
	Calibration proced	ure for the data acquisition elec	tronics (DAE)
Calibration date:	July 24, 2018		
alluration date.	July 24, 2010		
	1.11.	at the dealer which regime the physical up	its of monouromonts (SI)
his calibration certificate docume be measurements and the uncert	ents the traceability to nation rtainties with confidence pro	nal standards, which realize the physical un bability are given on the following pages an	d are part of the certificate.
Il calibrations have been conduc	ted in the closed laboratory	facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.
Calibration Equipment used (M&I	E critical for calibration)		
	E critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	1	Cal Date (Certificate No.) 31-Aug-17 (No:21092)	Scheduled Calibration Aug-18
Primary Standards Keithley Multimeter Type 2001	ID #	31-Aug-17 (No:21092)	
Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID # SN: 0810278		Aug-18
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	31-Aug-17 (No:21092) Check Date (in house)	Aug-18 Scheduled Check
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check)	Aug-18 Scheduled Check In house check: Jan-19
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check)	Aug-18 Scheduled Check In house check: Jan-19
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check)	Aug-18 Scheduled Check In house check: Jan-19
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check)	Aug-18 Scheduled Check In house check: Jan-19
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check)	Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check)	Aug-18 Scheduled Check In house check: Jan-19
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check)	Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19
Primary Standards Geithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check) Function Laboratory Technician	Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check)	Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19
Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 Calibrated by: Approved by:	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check) Function Laboratory Technician	Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV ,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement p	arameters: Aut	o Zero Time: 3	sec; Measuring t	time: 3 sec

Calibration Factors	X	Y	Z
Hìgh Range	402.653 ± 0.02% (k=2)	403.319 ± 0.02% (k=2)	403.479 ± 0.02% (k=2)
Low Range	3.95632 ± 1.50% (k=2)	3.96571 ± 1.50% (k=2)	3.96767 ± 1.50% (k=2)

Connector Angle

Γ

Connector Angle to be used in DASY system	133.5 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	199996.99	1.42	0.00
Channel X + Input	20003.62	1.84	0.01
Channel X - Input	-20000.02	1.12	-0.01
Channel Y + Input	199996.86	1.15	0.00
Channel Y + Input	20003.13	1.35	0.01
Channel Y - Input	-20002.42	-1.42	0.01
Channel Z + Input	199995.34	-0.26	-0.00
Channel Z + Input	20000.34	-1.41	-0.01
Channel Z - Input	-20002.42	-1.26	0.01

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ input	2002.06	0.81	0.04
Channel X	+ Input	201.69	0.01	0.00
Channel X	- Input	-197.81	0.40	-0.20
Channel Y	+ İnput	2001.19	-0.07	-0.00
Channel Y	+ Input	201.32	-0.28	-0.14
Channel Y	- Input	-198.71	-0.48	0.24
Channel Z	+ Input	2001.01	-0.10	-0.01
Channel Z	+ Input	200.73	-0.78	-0.39
Channel Z	- Input	-198.74	-0.39	0.19

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-6.54	-8.40
	- 200	10.04	8.25
Channel Y	200	4.94	4.77
	- 200	-5.28	-5.77
Channel Z	200	1.16	1.46
	- 200	-3.62	-3.50

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	8.01	2.30
Channel Y	200	11.72		8.82
Channel Z	200	14.69	9.44	-

Certificate No: DAE4-853_Jul18

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16243	16610
Channel Y	16089	16674
Channel Z	16234	15819

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.29	-0.41	1.44	0.33
Channel Y	-0,17	-1.64	0.77	0.39
Channel Z	0.76	-0.87	2.49	0.52

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	9