

MAY CHEONG TOY PRODUCTS FTY., LTD

Application For Certification

FCC ID: PKG92002RC49

Jeep My First Rc In Smaller Packaging & Remove Try Me With Remailer Additional name: Ferrari My First RC, Asst.

> Model: 92004(16994/92002) Additional models: 91000, 91002, 91003

> > Superregenerative Receiver

Report No.: SZHH01191660-002

Prepared and Checked by:

Approved by:

Sign on file

Abel Zhou Senior Engineer Jimmy Wen Assistant Supervisor Date: September 30, 2017

The test results reported in this test report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample
may be said to have been obtained.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results referenced from this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

For Terms And Conditions of the services, it can be provided upon request.

• The evaluation data of the report will be kept for 3 years from the date of issuance.

TRF No.: FCC 15C_RX_b

Intertek Testing Services Shenzhen Ltd. Longhua Branch

1F/2F, Building B, QiaoAn Scientific Technology Park, Shangkeng Community, Guanhu Subdistrict, Longhua District, Shenzhen, P.R. China Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

GENERAL INFORMATION

MAY CHEONG TOY PRODUCTS FTY., LTD Model: 92004(16994/92002)

FCC ID: PKG92002RC49

Grantee:	MAY CHEONG TOY PRODUCTS FTY., LTD
Grantee Address:	UNIT 901-2, 9/F., EAST OCEAN CENTRE, 98
	GRANVILLE ROAD, TSIMSHATSUI EAST,
	KOWLOON, HONG KONG
Contact Person:	Anson Wang
Tel:	(769)8775 3128 ext:132
Manufacturer:	Dongguan Maisto Industries Limited
Manufacturer Address:	Chu Wei Tian, Feng Kang Town, Dongguan City,
	Guangdong Province, China
Model:	92004(16994/92002)
Type of EUT:	Superregenerative Receiver
Description of EUT:	Jeep My First Rc In Smaller Packaging & Remove Try
	Me With Remailer
Serial Number:	N/A
FCC ID :	PKG92002RC49
Date of Sample Submitted:	September 12, 2017
Date of Test:	September 20, 2017
Report No.:	SZHH01191660-002
Report Date:	September 30, 2017
Environmental Conidtions:	Temperature: +10 to 40°C
	Humidity: 10 to 90%

SUMMARY OF TEST RESULT

MAY CHEONG TOY PRODUCTS FTY., LTD Model: 92004(16994/92002) FCC ID: PKG92002RC49

TEST SPECIFICATION	REFERENCE	RESULTS
Maximum Peak Output Power	15.247(b), (c) / RSS-210 A8.4	N/A
Hopping Channel Carrier Frequencies	15.247(e) / RSS-210 A8.1	N/A
Separation		
20dB Bandwidth of the Hopping Channel	15.247(a) / RSS-210 A8.1	N/A
Number of Hopping Frequencies	15.247(e) / RSS-210 A8.1	N/A
Average Time of Occupancy of Hopping	15.247(e) / RSS-210 A8.1	N/A
Frequency		
Anteann Conducted Spurious Emissions	15.247(d) / RSS-210 A8.5	N/A
Radiated Spurious Emissions	15.247(d) / RSS-210 A8.5	N/A
RF Exposure Compliance	15.247(i) / RSS-Gen 5.5	N/A
Transmitter Power Line Conducted	15.207 / RSS-Gen 7.2.2	N/A
Emissions		
Transmitter Field Strength	15.227 / RSS-310 3.8	N/A
Transmitter Field Strength	15.229 / RSS-210 A2.7	N/A
Transmitter Field Strength, Bandwidth	15.231(a) / RSS-210 A1.1.1	N/A
and Timing Requirement		
Transmitter Field Strength, Bandwidth	15.231(e) / RSS-210 A1.1.5	N/A
and Timing Requirement		
Transmitter Field Strength and	15.239 / RSS-210 A2.8	N/A
Bandwidth Requirement		
Transmitter Field Strength and	15.249 / RSS-210 A2.9	N/A
Bandwidth Requirement		
Transmitter Field Strength and	15.235 / RSS-310 3.9	N/A
Bandwidth Requirement		
Receiver / Digital Device Radiated	15.109 / RSS-310 3.1	Pass
Eissions		
Digital Device Conducted Emissions	15.107 / ICES-003	N/A

Table of Contents

1.0 1.1 1.2 1.3 1.4	General Description Product Description Related Submittal(s) Grants Test Methodology Test Facility	1 1 1
2.0 2.2 2.3 2.4 2.5	System Test Configuration EUT Exercising Software Special Accessories Equipment Modification Support Equipment List and Description	2 2 2
3.0 3.1 3.2 3.3	Emission Results Field Strength Calculation Radiated Emission Configuration Photograph Radiated Emission Data	3 4
4.0	Equipment Photographs	6
5.0	Product Labelling	6
6.0	Technical Specifications	6
7.0	Instruction Manual	~
1.0		6
8.0 8.1 8.2 8.3 8.4 8.4	Miscellaneous Information Stabilization Waveform Discussion of Pulse Desensitization Calculation of Average Factor Emissions Test Procedures Emissions Test Procedures (cont'd)	6 7 7 8

1.0 General Description

1.1 Product Description

The equipment under test (EUT) is a receiver for a Jeep My First Rc In Smaller Packaging & Remove Try Me With Remailer operating at 49.860MHz. The EUT is powered by three1.5V size AA batteries.

The models: 92004, 91000 are package numbers. The model: 92004 include a transmitter and a receiver, the transmitter model number is 16994, the receiver model number is 92002 and the additional receiver models: 91002, 91003 are same as the model: 92002 in hardware and electrical aspect. Theirs difference in the appearance and model number.

Antenna Type: Integral Antenna

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

1.2 Related Submittal(s) Grants

This is an application for certification of a receiver for the Jeep My First Rc In Smaller Packaging & Remove Try Me With Remailer, and there has a transmitter which associated with this EUT, FCC ID: PKG16994RC49 has been subjected to the FCC ID at the same time.

1.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.4 (2014). Radiated Emission measurement was performed in a Semi-anechoic chamber. Preliminary scans were performed in the Semi-anechoic chamber only to determine worst case modes. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The Semi-anechoic chamber used to collect the radiated data and conducted data is Intertek **Testing Services Shenzhen Ltd. Longhua Branch** and located at 1F/2F, Building B, QiaoAn Scientific Technology Park, Shangkeng Community, Guanhu Subdistrict, Longhua District, Shenzhen, P.R. China. This test facility and site measurement data have been fully placed on file with File Number: CN1188.

2.0 System Test Configuration

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (2014).

The EUT was powered by new three 1.5V size AA batteries during test.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The unit was operated standalone and placed in the center of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was mounted to a plastic stand if necessary and placed on the styrene turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

2.2 EUT Exercising Software

There was no special software to exercise the device. Once the unit is powered up, it receives the RF signal continuously.

- 2.3 Special Accessories There are no special accessories necessary for compliance of this product.
- 2.4 Equipment Modification

Any modifications installed previous to testing by MAY CHEONG TOY PRODUCTS FTY., LTD will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Longhua Branch.

- 2.5 Measurement Uncertainty When determining of the test conclusion, the Measurement Uncertainty of test has been considered.
- 2.6 Support Equipment List and Description N/A.

3.0 Emission Results

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any), Average Factor (optional) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF + CF - AG - AV

where $FS = Field Strength in dB\mu V/m$ RA = Receiver Amplitude (including preamplifier) in dB μ V CF = Cable Attenuation Factor in dB AF = Antenna Factor in dB AG = Amplifier Gain in dB AV = Average Factor in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows: FS = RR + LF

where $FS = Field Strength in dB\mu V/m$ RR = RA - AG - AV in dB μ V LF = CF + AF in dB

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB are added. The amplifier gain of 29 dB and average factor of 5 dB are subtracted, giving a field strength of 27 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V/m AF = 7.4 dB CF = 1.6 dB AG = 29.0 dB AV = 5.0 dB FS = RR + LF FS = 18 + 9 = 27 dB μ V/m Level in μ V/m = Common Antilogarithm [(27 dB μ V/m)/20] = 22.4 μ V/m

3.2 Radiated Emission Configuration Photograph

Worst Case Radiated Emission at 50.620 MHz

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgment: Passed by 6.1 dB

Applicant: MAY CHEONG TOY PRODUCTS FTY., LTD Date of Test: September 20, 2017 Model: 92004(16994/92002) Test Mode: Receive

Table 1

Radiated Emissions

			Pre-	Antenna	Net	Limit	
	Frequency	Reading	amp	Factor	at 3m	at 3m	Margin
Polarization	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	50.120	39.4	20	11.0	30.4	40.0	-9.6
V	50.370	42.5	20	11.0	33.5	40.0	-6.5
V	50.620	42.9	20	11.0	33.9	40.0	-6.1
V	50.870	41.8	20	11.0	32.8	40.0	-7.2
V	51.120	41.5	20	11.0	32.5	40.0	-7.5
V	51.370	39.5	20	11.0	30.5	40.0	-9.5

NOTES: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.

4.0 Equipment Photographs

For electronic filing, the photographs are saved with filename: external photos.pdf and internal photos.pdf.

5.0 **Product Labelling**

For electronics filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

6.0 **Technical Specifications**

For electronic filing, the block diagram and schematic of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

7.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

8.0 Miscellaneous Information

The miscellaneous information includes details of the test procedure.

This miscellaneous information includes details of the stabilizing process (including a plot of the stabilized waveform), the test procedure and calculation of the factors such as pulse desensitization and averaging factor.

8.1 Stabilization Waveform

Previous to the testing, the superregenerative receiver was stabilized as outlined in the test procedure. For the electronic filing, the plot saved with filename: superreg.pdf show the fundamental emission when a signal generator was used to stabilize the receiver. Please note that the antenna was placed as close as possible to the EUT for clear demonstration of the waveform and that accurate readings are not possible from this plot.

8.2 Discussion of Pulse Desensitization

This device is a superregenerative receiver. No desensitization of the measurement equipment is required as the received signals are continuously.

8.3 Calculation of Average Factor

This device is a superregenerative receiver. It is not necessary to apply average factor to the measurement result.

8.4 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services Shenzhen Ltd. in the measurements of superregenerative receivers operating under the Part 15, Subpart B rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 2014. Superregenerative receivers are stabilized prior to measurement by generating a signal well above the receiver threshold whose frequency is tuned until the emissions stabilize into a line spectrum. The signal is usually generated as CW with a R&S SML03 signal generator and a short whip antenna and is at a level of several hundred to several thousand mV/m. Plots of the stabilized signal will be shown. If a modulated signal is used, it will be noted.

The equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter and approximately 0.8 meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Exhibit 8.3.

The frequency range scanned is from 30 MHz to 1000 MHz.

8.4 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.4 - 2014.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Exhibit 8.2).

Receiver measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ185-01	EMI Receiver	R&S	ESCI	100547	9-Feb-17	9-Feb-18
SZ188-01	Anechoic Chamber	ETS	RFD-F/A-100	4102	16-Jan-17	16-Jan-19
SZ062-02	RF Cable	RADIALL	RG 213U		10-Jul-17	10-Jan-18
SZ062-05	RF Cable	RADIALL	0.04- 26.5GHz		11-Sep-17	11-Mar-18
SZ061-06	Active Loop Antenna	Electro- Metrics	EM-6876	217	26-May-17	26-May-18
SZ061-12	BiConiLog Antenna	ETS	3142E	00166158	14-Jun-17	14-Dec-17
SZ180-01	Signal Generator	R&S	SML03		11-Jul-17	11-Jan-18

9.0 Equipment List