

FCC TEST REPORT

REPORT NO.: RF960703H05

- MODEL NO .: 2018R CPE
- **RECEIVED:** July 03, 2007
 - **TESTED:** July 03 to 18, 2007
 - **ISSUED:** July 20, 2007

APPLICANT: ZHONE TECHNOLOGIES

ADDRESS: 7001 Oakland Street, Oakland, CA, 94621.

ISSUED BY: Advance Data Technology Corporation

LAB LOCATION: No. 81-1, Lu Liao Keng, 9 Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien, Taiwan, R.O.C.

This test report consists of 66 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF, A2LA or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1	CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	
2.1	MEASUREMENT UNCERTAINTY	5
3	GENERAL INFORMATION	
3.1	GENERAL DESCRIPTION OF EUT	
3.2	DESCRIPTION OF TEST MODES	
3.3	TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:	8
3.4	GENERAL DESCRIPTION OF APPLIED STANDARDS	. 10
3.5	DESCRIPTION OF SUPPORT UNITS	. 11
3.6	CONFIGURATION OF SYSTEM UNDER TEST	. 12
4	TEST TYPES AND RESULTS	. 13
4.1	CONDUCTED EMISSION MEASUREMENT	. 13
4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	. 13
4.1.2	TEST INSTRUMENTS	. 13
4.1.3	TEST PROCEDURES	
4.1.4	TEST SETUP	
4.1.5	EUT OPERATING CONDITIONS	
4.1.6	TEST RESULTS	
4.2	RADIATED EMISSION MEASUREMENT	
4.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.2.2	TEST INSTRUMENTS	
4.2.3	TEST PROCEDURES	
4.2.4	TEST SETUP	
4.2.5	EUT OPERATING CONDITIONS	
4.2.6	TEST RESULTS (Mode 1)	
4.2.7	TEST RESULTS (Mode 2)	
4.2.8	TEST RESULTS - DSSS	
4.2.9	TEST RESULTS - OFDM	-
4.3	6dB BANDWIDTH MEASUREMENT	
4.3.1	LIMITS OF 6dB BANDWIDTH MEASUREMENT	
4.3.2	TEST INSTRUMENTS	
4.3.3	TEST PROCEDURE	
4.3.4	TEST SETUP	
4.3.5	EUT OPERATING CONDITIONS	
4.3.6	TEST RESULTS –DSSS	
4.3.7	TEST RESULTS-OFDM	
4.4	MAXIMUM PEAK OUTPUT POWER	-
4.4.1	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	. 46

4.4.2	TEST INSTRUMENTS	. 46
4.4.3	TEST PROCEDURES	. 47
4.4.4	TEST SETUP	. 47
4.4.5	EUT OPERATING CONDITIONS	. 47
4.4.6	TEST RESULTS – DSSS	. 48
4.4.7	TEST RESULTS –OFDM	. 49
4.5	POWER SPECTRAL DENSITY MEASUREMENT	. 50
4.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	. 50
4.5.2	TEST INSTRUMENTS	. 50
4.5.3	TEST PROCEDURE	. 51
4.5.4	TEST SETUP	. 51
4.5.5	EUT OPERATING CONDITIONS	. 51
4.5.6	TEST RESULTS –DSSS	. 52
4.5.7	TEST RESULTS –OFDM	. 55
4.6	CONDUCTED EMISSION AND BAND EDGES MEASUREMENT	. 58
4.6.1	LIMITS OF CONDTCTED EMISSION AND BAND EDGES MEASUREME	
4.6.2		
4.6.3	TEST PROCEDURE	
4.6.4	DEVIATION FROM TEST STANDARD	
4.6.5	EUT OPERATING CONDITION	
4.6.6	TEST RESULTS	. 59
4.7	ANTENNA REQUIREMENT	-
4.7.1	STANDARD APPLICABLE	
4.7.2	ANTENNA CONNECTED CONSTRUCTION	
5	INFORMATION ON THE TESTING LABORATORIES	. 65
6	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	00

1 CERTIFICATION

PRODUCT :	SkyZhone Repeater
BRAND NAME :	ZHONE
MODEL NO. :	2018R CPE
TESTED:	July 03 to 18, 2007
APPLICANT :	ZHONE TECHNOLOGIES
TEST ITEM:	ENGINEERING SAMPLE
STANDARDS :	47 CFR Part 15, Subpart C (Section 15.247)
	ANSI C63.4-2003

The above equipment (Model: 2018R CPE) has been tested by **Advance Data Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Sunny Wen **PREPARED BY** : **DATE:** July 20, 2007 (Sunny Wen, Specialist) **TECHNICAL** ACCEPTANCE **DATE:** July 20, 2007 Responsible for RF (Hank Chung, Deputy Manager) **APPROVED BY** : **DATE:** July 20, 2007 (May Chen, Deputy Manager)

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: 47 CFR Part 15, Subpart C							
Standard Section	Test Type and Limit	Result	REMARK				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit Minimum passing margin is –11.19 dB at 0.489 MHz				
15.247(a)(2) Spectrum Bandwidth of a Direct Sequence Spread Spectrum System PASS Limit: min. 500kHz		Meet the requirement of limit					
15.247(b)	5.247(b) Maximum Peak Output Power Limit: max. 30dBm		Meet the requirement of limit				
15.247(c)	Transmitter Radiated Emissions Limit: Table 15.209	PASS	Meet the requirement of limit Minimum passing margin is –0.90 dB at 2390.00 MHz				
15.247(d)	Power Spectral Density Limit: max. 8dBm	PASS	Meet the requirement of limit				
15.247(c)	Band Edge Measurement Limit: 20 dB less than the peak value of fundamental frequency	PASS	Meet the requirement of limit				

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions	2.41 dB
Radiated emissions (30MHz-1GHz)	3.89 dB
Radiated emissions (1GHz -18GHz)	2.21 dB
Radiated emissions (18GHz -40GHz)	1.88 dB

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	SkyZhone Repeater
MODEL NO.	2018R CPE
FCC ID	PJZ2018R
POWER SUPPLY	DC 5V from power adapter
MODULATION TYPE	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM
RADIO TECHNOLOGY	DSSS, OFDM
TRANSFER RATE	802.11b: 11/5.5/2/1Mbps 802.11g: 54/48/36/24/18/12/9/6Mbps
FREQUENCY RANGE	2412MHz ~ 2462MHz
NUMBER OF CHANNEL	11
CHANNEL SPACING	5MHz
OUTPUT POWER	802.11b: 158.489mW 802.11g: 162.181mW
ANTENNA TYPE	see note 2
DATA CABLE	NA
I/O PORT	LAN port x 4

NOTE:

1. The EUT could be supplied with the following power adapter:

Brand:	JENTEC
Model No.:	AF1805-B
• •	AC 100-240V, 0.4A, 50-60Hz
Output power :	DC 5V,2.5A Cable : 1.8m/Unshielded/without core

2. There is one antenna provided to this EUT, please refer to the following table:

Antenna Type	Antenna Connector	Gain (dBi)	Antenna Cable
Dipole	Reverse SMA connector	4.5	200cm

- 3. The EUT operates in the 2.4GHz frequency spectrum with throughput of up to 54Mbps.
- 4. The EUT complies with IEEE 802.11g standards, and backwards compatible with IEEE 802.11b products.
- 5. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Operated in 2400 ~ 2483.5MHz band:

For 802.11b/g normal mode: Eleven channels are provided to this EUT.

Channel	Frequency	Channel	Frequency
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

ower Lin Wher Wher Wher Pre-S comb anter Follor R adiated I Pre-S comb anter S Comb anter N 802 Comb anter S Comb anter N 802 Comb anter S Comb S S Comb S Comb S Comb S Comb S Comb Comb S Comb	EUT						SIED CHAN	NEL DETAIL:		
m wher wher wher Pre-S comb anter Follor adiated I Pre-S comb anter Pre-S comb anter Follor Mathematical The B Mod			Applicable to			Description				
ower Lin Pre-S comb anter Follor 80 adiated I 80 anter Follor M 802 The E Mod	onfigure mode	PLC	RE<10	G RE≥1G	APCM	Description				
ower Lin Pre-S comb anter Follor 80 adiated I 80 anter Follor M 802 The E Mod	-	\checkmark	\checkmark	\checkmark		NA				
comb anter Follo 80 adiated I Pre-S comb anter Follo 802 The E Mod	Where PLC: Power Line Conducted Emission RE<1G: Radiated Emission below 1GHz									
adiated Pre-S comb anter Follor M 802 The F Tes Mod	nbinatior enna div	ns betwe ersity ar	en avai chitectu	lable modu re).	lations, d	ata rate		om all possible a ports (if EUT wi velow.		
adiated Pre-S comb anter Follor M 802 3 The E Moo	Mode	-	ilable Innel	Tested Channel	Modul Techne		Modulation Type	Data Rate (Mbps)		
 Pre-S comb anter Follo Main 802 The B The S Mod 	302.11g		o 11	1	OF		BPSK	6		
802 The E Tes Mod	nbinatior enna div	ns betwe ersity ar	en avai chitectu	lable modu re).	lations, d	ata rate		a ports (if EUT wi		
The E	Mode	Availa Char		Tested Channel	Modula Technol		Modulation Type	Data Rate (Mbps)		
Tes Mod	02.11g	1 to	11	1	OFDI	Λ	BPSK	6		
Mod	EUT webst Mode			following te	est mode	3:				
Moc	ode 1			ntenna cab	le					
	Mode 2 Without Antenna cable									
	ode 2		Withou	t Antenna o	cable					

Radiated Emission Test (Above 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	CCK	1
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6

Bandedge Measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 11	DSSS	CCK	1
802.11g	1 to 11	1, 11	OFDM	BPSK	6

Antenna Port Conducted Measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

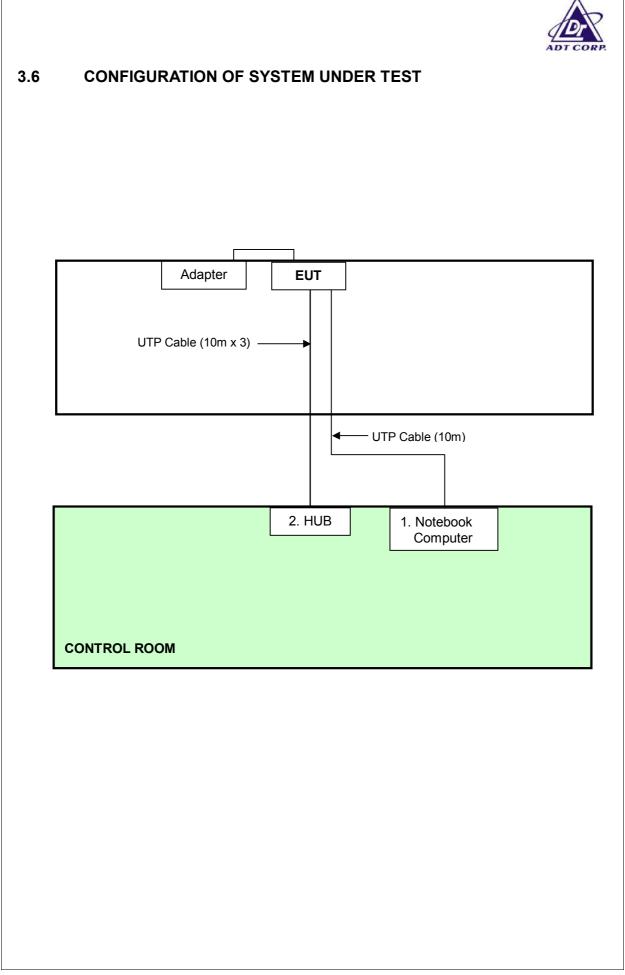
Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	CCK	1
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a SkyZhone Repeater. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

47 CFR Part 15, Subpart C. (15.247) ANSI C63.4 : 2003

All tests have been performed and recorded as per the above standards.


3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
1	NOTEBOOK COMPUTER	DELL	PP19L	CN-OHC416-70166- 5CA-0448	PIW632500516610
2	HUB	AVSYS	110H8	01-20E-000002	DoC

No.	Signal cable description
1	NA
2	NA

NOTE: All power cords of the above support units are non-shielded (1.8m).

4 TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
0.15-0.5	Quasi-peak	Average	
0.15-0.3 0.5-5 5-30	66 to 56 56 60	56 to 46 46 50	

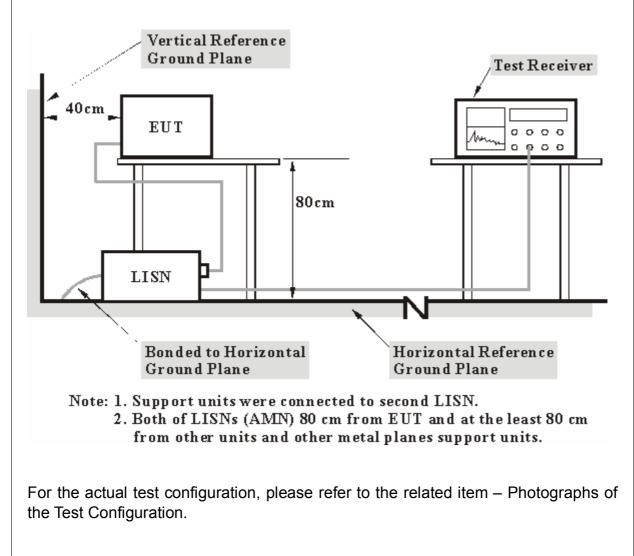
NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. All emanations from a class B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO. SERIAL NO.		CALIBRATED UNTIL
Test Receiver	ESCS 30	847124/029	Mar. 28, 2008
Line-Impedance Stabilization Network(for EUT)	ENV-216	100071	Nov. 26, 2007
Line-Impedance Stabilization Network(for Peripheral)	ESH3-Z5	848773/004	Oct. 26, 2007
RF Cable (JETBAO)	RG233/U	Cable_CB_01	Dec. 09, 2007
Terminator	50	2	Oct. 30, 2007
Software	ADT_Cond_V7.3.2	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


2. The test was performed in ADT Shielded Room No. B.

3. The VCCI Con B Registration No. is C-2193.

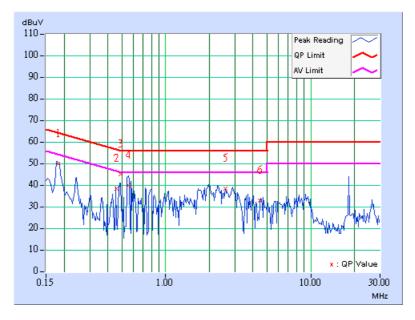
4.1.3 TEST PROCEDURES

- a. The EUT/HOST was placed 0.4 meters from the conducting wall of the shielded room with EUT/HOST being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 ull of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT/HOST were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits could not be reported

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

- a. Placed the EUT on the testing table.
- b. Prepared the computer system (support unit 1) to act as communication partner and placed them outside of testing area.
- c. The communication partner runs test program" MFGTEST " to enable EUT under transmission/receiving condition continuously at specific channel frequency via UTP cables and wireless.

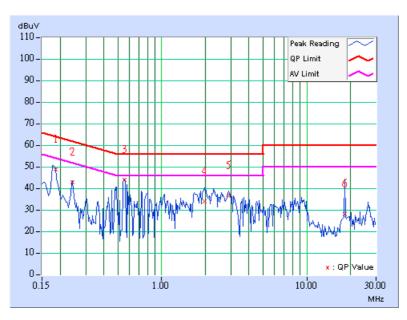

4.1.6 TEST RESULTS

INPUT POWER	120Vac, 60 Hz	6dB BANDWIDTH	9 kHz
PHASE	Line (L)	TRANSFER RATE	6Mbps
ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 951hPa	TESTED BY	Moris Lin

	Freq.	Corr.	Readin	g Value	Emis Le ^v	sion vel	Liı	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB((uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.181	0.40	49.26	-	49.66	-	64.43	54.43	-14.77	-
2	0.459	0.40	38.01	-	38.41	-	56.72	46.72	-18.31	-
3	0.489	0.40	44.60	-	45.00	-	56.19	46.19	-11.19	-
4	0.556	0.40	39.28	-	39.68	-	56.00	46.00	-16.32	-
5	2.584	0.53	38.08	-	38.61	-	56.00	46.00	-17.39	-
6	4.434	0.61	32.44	-	33.05	-	56.00	46.00	-22.95	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



INPUT POWER	120Vac, 60 Hz	6dB BANDWIDTH	9 kHz
PHASE	Neutral (N)	TRANSFER RATE	6Mbps
ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 951hPa	TESTED BY	Moris Lin

	Freq.	Corr.	Readin	g Value	Emis Le ^v		Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB((uV)]	[dB	(uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.186	0.20	47.60	-	47.80	-	64.21	54.21	-16.41	-
2	0.244	0.20	41.79	-	41.99	-	61.97	51.97	-19.98	-
3	0.552	0.23	42.75	-	42.98	-	56.00	46.00	-13.02	-
4	1.966	0.40	32.96	-	33.36	-	56.00	46.00	-22.64	-
5	2.892	0.44	35.54	-	35.98	-	56.00	46.00	-20.02	-
6	18.246	1.26	26.70	-	27.96	-	60.00	50.00	-32.04	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

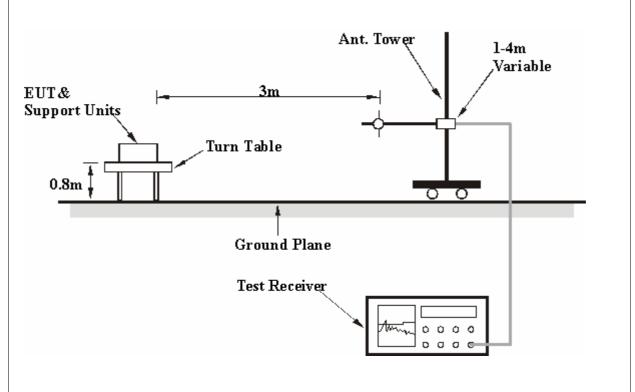
4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ADVANTEST Spectrum Analyzer	R3271A	85060311	July 03, 2008
HP Pre_Amplifier	8449B	3008A01922	Sep. 18, 2007
ROHDE & SCHWARZ Test Receiver	ESCS30	100375	Sep. 20, 2007
CHASE Broadband Antenna	VULB 9168	138	July 17, 2008
Schwarzbeck Horn_Antenna	BBHA9120	D124	Jan. 01, 2008
Schwarzbeck Horn_Antenna	BBHA 9170	BBHA9170153	Jan. 25, 2008
SCHWARZBECK Biconical Antenna	VHBA9123	459	Jun. 08, 2009
SCHWARZBECK Periodic Antenna	UPA6108	1148	Jun. 08, 2009
R&S Loop Antenna	HFH2-Z2	881058/15	Nov. 29, 2007
RF Switches (ARNITSU)	CS-201	1565157	NA
RF CABLE (Chaintek)	SF102	22054-2	Nov. 14. 2007
RF Cable(RICHTEC)	9913-30M N-N Cable	STCCAB-30M-1 GHz	Jul. 15, 2008
Software	ADT_Radiated_V 7.6.15.7	NA	NA
CHANCE MOST Antenna Tower	AT-100	0203	NA
CHANCE MOST Turn Table	TT-100	0203	NA

Note: 1. The calibration interval of the above test instruments is 12 months (36 months for Biconical and Periodic Antenna) and the calibrations are traceable to NML/ROC and NIST/USA.

NIST/USA.
 The horn antenna, HP preamplifier (model: 8449B) and Spectrum Analyzer (model: R3271A) are used only for the measurement of emission frequency above 1GHz if tested.
 The test was performed in ADT Open Site No. C.
 The FCC Site Registration No. is 656396.
 The VCCI Site Registration No. is R-1626.
 The CANADA Site Registration No. is IC 4824A-3.
 Loop antenna was used for all emissions below 30 MHz.

4.2.3 TEST PROCEDURES


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

4.2.4 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.5 EUT OPERATING CONDITIONS

Same as 4.1.5

4.2.6 TEST RESULTS (Mode 1)

Below 1GHz Worst-Case Data

MODULATION TYPE	OFDM	CHANNEL	Channel 1
INPUT POWER	120Vac, 60 Hz	FREQUENCY RANGE	30-1000 MHz
ENVIRONMENTAL CONDITIONS	26deg. C, 69%RH, 951hPa	TRANSFER RATE	6Mbps
TESTED BY	Wen Yu	DETECTOR FUNCTION	Quasi-Peak, 120kHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
	. Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No.	•	Level	(dBuV/m)	-	Height	Angle	Value	Factor		
(MHz)	(dBuV/m)	(ubuv/iii)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)			
1	249.97	35.04 QP	46.00	-10.96	2.77 H	213	21.26	13.78		
2	374.99	35.86 QP	46.00	-10.14	2.58 H	256	17.66	18.20		
3	399.99	37.04 QP	46.00	-8.96	2.53 H	29	18.02	19.02		
4	500.01	42.92 QP	46.00	-3.08	2.29 H	21	21.16	21.76		
5	599.99	41.42 QP	46.00	-4.58	2.10 H	17	16.94	24.48		
6	699.97	43.60 QP	46.00	-2.40	1.54 H	18	17.80	25.80		
7	799.99	41.09 QP	46.00	-4.91	1.82 H	310	13.53	27.56		
8	899.96	42.68 QP	46.00	-3.32	1.13 H	221	13.83	28.85		

	ANTEN	NNA POLAF	RITY & T	EST DIS	TANCE	: VERTIO	CAL AT 3	Μ
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	(MHz)		(dBuV/m)	(dB)	Height	Angle	Value	Factor
		(dBuV/m)			(m)	(Degree)	(dBuV)	(dB/m)
1	70.30	36.24 QP	40.00	-3.76	1.02 V	60	23.74	12.50
2	120.10	36.49 QP	43.50	-7.01	1.03 V	22	24.66	11.83
3	249.99	36.89 QP	46.00	-9.11	1.05 V	41	23.11	13.78
4	375.01	38.60 QP	46.00	-7.40	1.08 V	22	20.40	18.20
5	399.97	43.36 QP	46.00	-2.64	1.09 V	43	24.34	19.02
6	599.97	41.12 QP	46.00	-4.88	1.64 V	226	16.64	24.48
7	699.99	42.10 QP	46.00	-3.90	1.90 V	147	16.30	25.80
8	749.99	41.70 QP	46.00	-4.30	2.06 V	163	14.35	27.35
9	900.01	40.40 QP	46.00	-5.60	2.11 V	16	11.55	28.85

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

TEST RESULTS (Mode 2) 4.2.7

Below 1GHz Worst-Case Data

MODULATION TYPE	OFDM	CHANNEL	Channel 1
INPUT POWER	120Vac, 60 Hz	FREQUENCY RANGE	30-1000 MHz
ENVIRONMENTAL CONDITIONS	26deg. C, 69%RH, 951hPa	TRANSFER RATE	6Mbps
TESTED BY	Wen Yu	DETECTOR FUNCTION	Quasi-Peak, 120kHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No.	•	Level	(dBuV/m)	0	Height	Angle	Value	Factor		
(MHz)	(dBuV/m)	(ubuv/iii)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)			
1	250.02	36.35 QP	46.00	-9.65	2.61 H	100	22.57	13.78		
2	399.90	38.83 QP	46.00	-7.17	2.21 H	106	19.81	19.02		
3	500.01	42.25 QP	46.00	-3.75	2.09 H	23	20.49	21.76		
4	599.98	40.16 QP	46.00	-5.84	2.00 H	196	15.68	24.48		
5	699.97	43.44 QP	46.00	-2.56	1.98 H	217	17.64	25.80		
6	750.01	40.18 QP	46.00	-5.82	1.74 H	22	12.83	27.35		
7	900.01	42.59 QP	46.00	-3.41	1.24 H	20	13.74	28.85		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
No.	No. Freq.	Emission Level	Limit	Limit Margin (dBuV/m) (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor			
	(MHz)	(dBuV/m)	(dBuV/m)		(m)	(Degree)	(dBuV)	(dB/m)			
1	70.13	35.62 QP	40.00	-4.38	1.00 V	66	23.08	12.54			
2	119.98	36.67 QP	43.50	-6.83	1.00 V	30	24.85	11.82			
3	250.02	36.41 QP	46.00	-9.59	1.20 V	27	22.63	13.78			
4	375.03	37.99 QP	46.00	-8.01	1.02 V	336	19.79	18.20			
5	399.99	42.04 QP	46.00	-3.96	1.00 V	300	23.02	19.02			
6	500.01	42.12 QP	46.00	-3.88	1.07 V	33	20.36	21.76			
7	700.01	39.16 QP	46.00	-6.84	1.00 V	350	13.36	25.80			
8	749.97	42.17 QP	46.00	-3.83	1.99 V	251	14.82	27.35			
9	899.96	41.69 QP	46.00	-4.31	2.20 V	22	12.84	28.85			

REMARKS:

- Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
 Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

4.2.8 **TEST RESULTS - DSSS** 802.11b DSSS modulation

MODE	Channel 1	FREQUENCY RANGE	1000~25000MHz					
		DETECTOR	Peak (PK)					
INPUT POWER	120Vac, 60 Hz	FUNCTION &	Average (AV)					
		BANDWIDTH	1 MHz					
ENVIRONMENTAL	22 deg. C, 66%RH,	TESTED BY	Sky Liao					
CONDITIONS	951hPa	IESIEDBI	SKY LIAU					

	ANTENN	NA POLARI	TY & TE	ST DIST	ANCE: I	IORIZO	NTAL AT	3 M
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor
	(10112)	(dBuV/m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)
1	2390.00	56.39 PK	74.00	-17.61	1.30 H	342	26.07	30.32
2	2390.00	44.50 AV	54.00	-9.50	1.30 H	342	14.18	30.32
3	*2412.00	97.70 PK			1.30 H	342	67.29	30.41
4	*2412.00	91.90 AV			1.30 H	342	61.49	30.41
5	4824.00	48.40 PK	74.00	-25.60	1.30 H	63	12.61	35.79
6	4824.00	39.10 AV	54.00	-14.90	1.30 H	63	3.31	35.79
7	7236.00	54.40 PK	74.00	-19.60	1.32 H	64	12.80	41.60
8	7236.00	43.40 AV	54.00	-10.60	1.32 H	64	1.80	41.60

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	2389.50	59.41 PK	74.00	-14.59	1.62 V	75	29.10	30.31			
2	2389.50	49.11 AV	54.00	-4.89	1.62 V	75	18.80	30.31			
3	*2412.00	109.90 PK			1.62 V	75	79.49	30.41			
4	*2412.00	105.10 AV			1.62 V	75	74.69	30.41			
5	4824.00	52.10 PK	74.00	-21.90	1.55 V	85	16.31	35.79			
6	4824.00	47.80 AV	54.00	-6.20	1.55 V	85	12.01	35.79			
7	7236.00	54.30 PK	74.00	-19.70	1.45 V	95	12.70	41.60			
8	7236.00	46.80 AV	54.00	-7.20	1.45 V	95	5.20	41.60			

REMARKS:

Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
 Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 The other emission levels were very low against the limit.
 Margin value = Emission level – Limit value.
 The limit value is defined as per 15.247
 " * " : Fundamental frequency

MODE	Channel 6	FREQUENCY RANGE	1000~25000MHz
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION & BANDWIDTH	Peak (PK) Average (AV) 1 MHz
ENVIRONMENTAL CONDITIONS	22 deg. C, 66%RH, 951hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level	Limit (dBuV/m)	Margin (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor		
	(11112)	(dBuV/m)		(m)	(Degree)	(dBuV)	(dB/m)			
1	*2437.00	103.60 PK			1.00 H	210	73.08	30.52		
2	*2437.00	98.80 AV			1.00 H	210	68.28	30.52		
3	4874.00	51.40 PK	74.00	-22.60	1.65 H	240	15.48	35.92		
4	4874.00	46.70 AV	54.00	-7.30	1.65 H	240	10.78	35.92		
5	7311.00	57.40 PK	74.00	-16.60	1.62 H	96	15.59	41.81		
6	7311.00	48.40 AV	54.00	-5.60	1.62 H	96	6.59	41.81		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2437.00	113.70 PK			1.85 V	345	83.18	30.52		
2	*2437.00	108.60 AV			1.85 V	345	78.08	30.52		
3	4874.00	55.40 PK	74.00	-18.60	1.66 V	248	19.48	35.92		
4	4874.00	52.40 AV	54.00	-1.60	1.66 V	248	16.48	35.92		
5	7311.00	60.27 PK	74.00	-13.73	1.38 V	98	18.46	41.81		
6	7311.00	53.03 AV	54.00	-0.97	1.38 V	98	11.22	41.81		

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

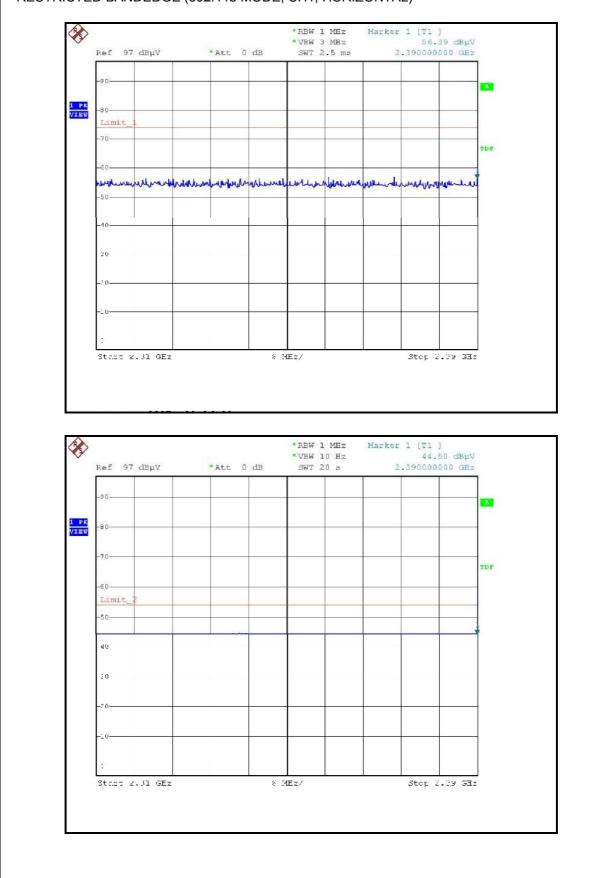
3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. The limit value is defined as per 15.247

6. " * " : Fundamental frequency

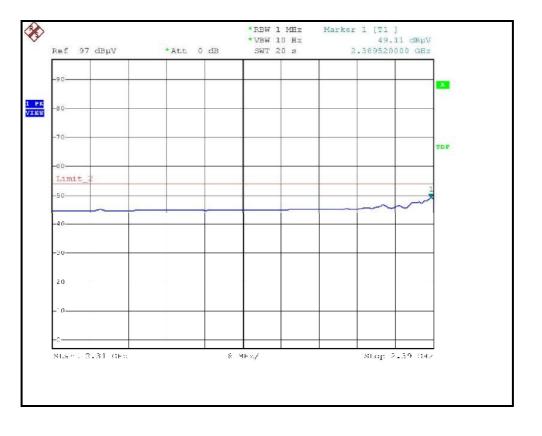
MODE	Channel 11	FREQUENCY RANGE	1000~25000MHz
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION & BANDWIDTH	Peak (PK) Average (AV) 1 MHz
ENVIRONMENTAL CONDITIONS	22 deg. C, 66%RH, 951hPa	TESTED BY	Sky Liao


	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2462.00	98.00 PK			1.44 H	313	67.37	30.63			
2	*2462.00	92.60 AV			1.44 H	313	61.97	30.63			
3	2483.50	57.17 PK	74.00	-16.83	1.44 H	313	26.45	30.72			
4	2483.50	44.55 AV	54.00	-9.45	1.44 H	313	13.83	30.72			
5	4924.00	48.20 PK	74.00	-25.80	1.22 H	48	12.14	36.06			
6	4924.00	39.00 AV	54.00	-15.00	1.22 H	48	2.94	36.06			
7	7386.00	54.00 PK	74.00	-20.00	1.06 H	30	11.99	42.01			
8	7386.00	43.20 AV	54.00	-10.80	1.06 H	30	1.19	42.01			

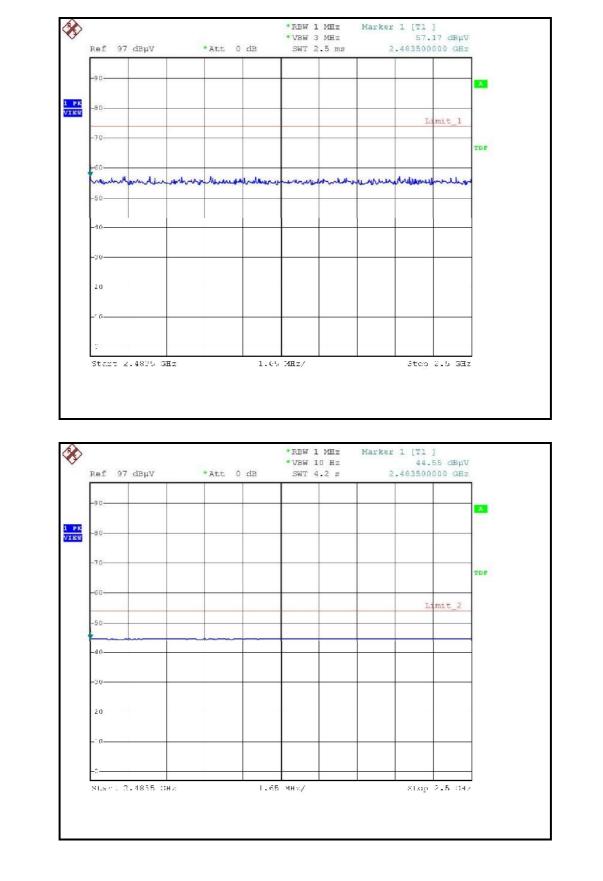
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Correction				
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor				
(IVITZ)	(1011 12)	(dBuV/m)	(ubu v/m)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)				
1	*2462.00	109.00 PK			1.60 V	268	78.37	30.63				
2	*2462.00	104.40 AV			1.60 V	268	73.77	30.63				
3	2483.50	58.56 PK	74.00	-15.44	1.58 V	268	27.84	30.72				
4	2483.50	49.58 AV	54.00	-4.42	1.58 V	268	18.86	30.72				
5	4924.00	52.00 PK	74.00	-22.00	1.50 V	72	15.94	36.06				
6	4924.00	47.60 AV	54.00	-6.40	1.50 V	72	11.54	36.06				
7	7386.00	54.20 PK	74.00	-19.80	1.42 V	105	12.19	42.01				
8	7386.00	46.60 AV	54.00	-7.40	1.42 V	105	4.59	42.01				

REMARKS:

Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
 Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 The other emission levels were very low against the limit.
 Margin value = Emission level – Limit value.
 The limit value is defined as per 15.247
 " * " : Fundamental frequency

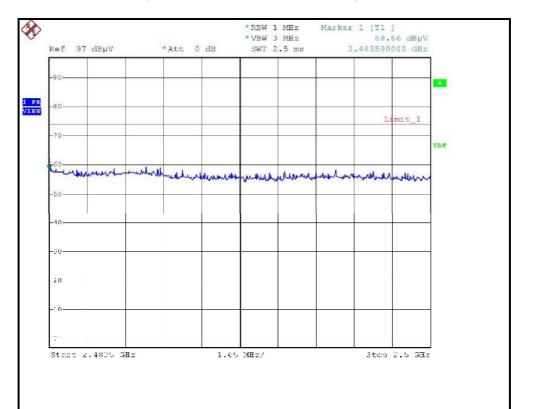


RESTRICTED BANDEDGE (802.11b MODE, CH1, HORIZONTAL)



Marker 1 [T1] 59.41 dBpV 2.389520000 GHz Ì • RBW 1 MHz VBW 3 MHz Ref 97 dBµV *Att 0 dB SWT 2.5 ms 91 1 PK VIEW 80 Limit -70-TDF 61 an man show how and the more when - and man man mel 1.110 -50 40 20 Stop 2.39 GHz Start 2.31 GEz 8 MEz/

RESTRICTED BANDEDGE (802.11b MODE, CH1, VERTICAL)





RESTRICTED BANDEDGE (802.11b MODE, CH11, HORIZONTAL)

RESTRICTED BANDEDGE (802.11b MODE, CH11, VERTICAL)

4.2.9 **TEST RESULTS - OFDM** 802.11g OFDM modulation

MODE	Channel 1	FREQUENCY RANGE	1000~25000MHz						
			Peak (PK)						
INPUT POWER	120Vac, 60 Hz	FUNCTION &	Average (AV)						
		BANDWIDTH	1 MHz						
ENVIRONMENTAL 22 deg. C, 66%RH,		TESTED BY	Sky Liao						
CONDITIONS	951hPa	IESIEDBI	Sky Llau						

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	2390.00	61.22 PK	74.00	-12.78	1.00 H	170	30.90	30.32			
2	2390.00	46.42 AV	54.00	-7.58	1.00 H	170	16.10	30.32			
3	*2412.00	102.20 PK			1.00 H	170	71.79	30.41			
4	*2412.00	90.30 AV			1.00 H	170	59.89	30.41			
5	4824.00	46.80 PK	74.00	-27.20	1.08 H	54	11.01	35.79			
6	4824.00	33.80 AV	54.00	-20.20	1.08 H	54	-1.99	35.79			
7	7236.00	54.50 PK	74.00	-19.50	1.38 H	74	12.90	41.60			
8	7236.00	42.00 AV	54.00	-12.00	1.38 H	74	0.40	41.60			

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
	No. Freq. (MHz)	Emission	Limit	Margin	Antenna	Table	Raw	Correction				
No.		Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor				
		(dBuV/m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)				
1	2390.00	71.53 PK	74.00	-2.47	1.42 V	160	41.21	30.32				
2	2390.00	53.10 AV	54.00	-0.90	1.42 V	160	22.78	30.32				
3	*2412.00	112.00 PK			1.45 V	168	81.59	30.41				
4	*2412.00	100.10 AV			1.45 V	168	69.69	30.41				
5	4824.00	56.90 PK	74.00	-17.10	1.37 V	84	21.11	35.79				
6	4824.00	38.40 AV	54.00	-15.60	1.37 V	84	2.61	35.79				
7	7236.00	59.30 PK	74.00	-14.70	1.44 V	92	17.70	41.60				
8	7236.00	43.30 AV	54.00	-10.70	1.44 V	92	1.70	41.60				

REMARKS:

- Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
 Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 The other emission levels were very low against the limit.
 Margin value = Emission level Limit value.
 The limit value is defined as per 15.247
 " * " : Fundamental frequency

MODE	Channel 6	FREQUENCY RANGE	1000~25000MHz
INPUT POWER	120Vac, 60 Hz		Peak (PK) Average (AV) 1 MHz
ENVIRONMENTAL CONDITIONS	22 deg. C, 66%RH, 951hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
Nia	Freq. (MHz)	Emission	Limit	Margin	Antenna	Table	Raw	Correction				
No.		Level (dBuV/m)	(dBuV/m) (dB)	(dB)	Height (m)	Angle (Degree)	Value (dBuV)	Factor (dB/m)				
1	*2437.00	105.50 PK			1.00 H	165	74.98	30.52				
2	*2437.00	93.50 AV			1.00 H	165	62.98	30.52				
3	4874.00	47.20 PK	74.00	-26.80	1.05 H	38	11.28	35.92				
4	4874.00	34.00 AV	54.00	-20.00	1.05 H	38	-1.92	35.92				
5	7311.00	54.80 PK	74.00	-19.20	1.22 H	65	12.99	41.81				
6	7311.00	42.50 AV	54.00	-11.50	1.22 H	65	0.69	41.81				

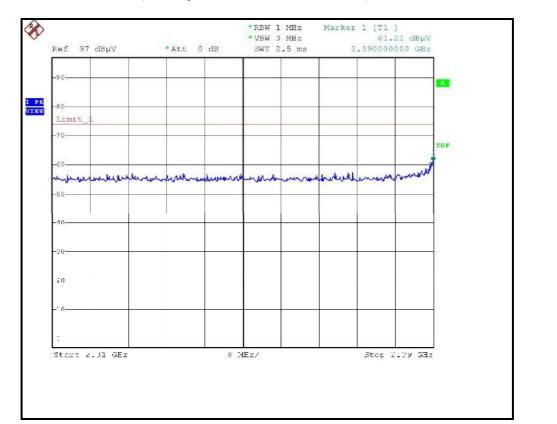
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	*2437.00	115.30 PK			1.35 V	275	84.78	30.52				
2	*2437.00	102.70 AV			1.35 V	275	72.18	30.52				
3	4874.00	57.20 PK	74.00	-16.80	1.20 V	96	21.28	35.92				
4	4874.00	38.80 AV	54.00	-15.20	1.20 V	96	2.88	35.92				
5	7311.00	59.60 PK	74.00	-14.40	1.36 V	66	17.79	41.81				
6	7311.00	43.80 AV	54.00	-10.20	1.36 V	66	1.99	41.81				

REMARKS:

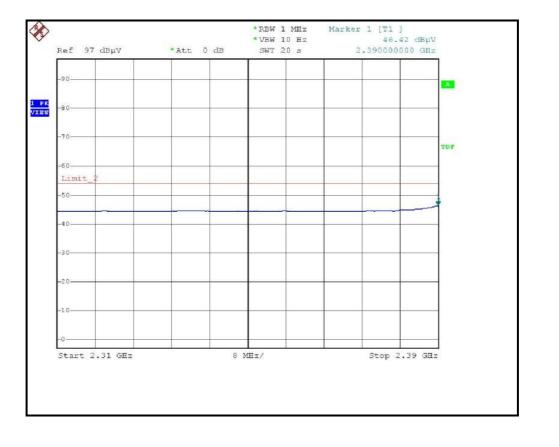
1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

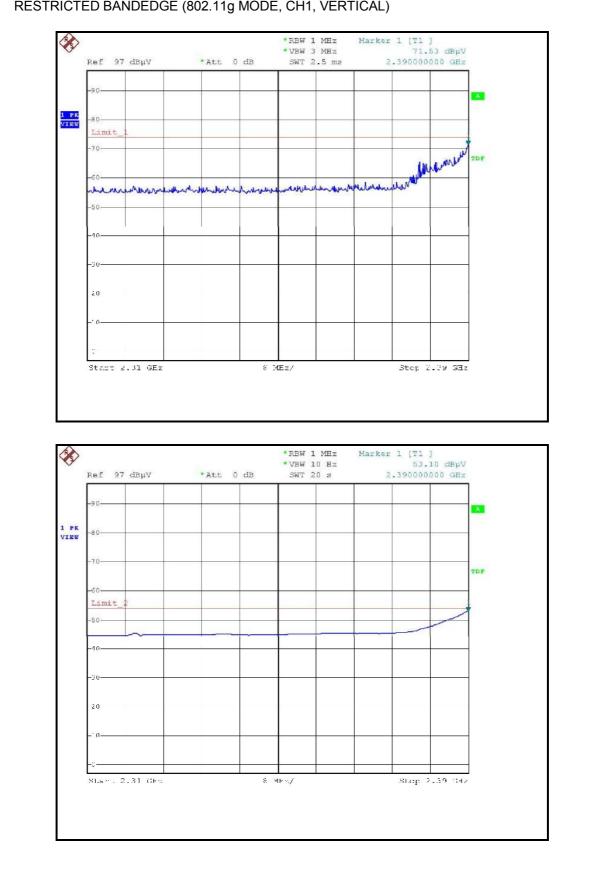
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The limit value is defined as per 15.247
- 6. " * " : Fundamental frequency


MODE	Channel 11	FREQUENCY RANGE	1000~25000MHz
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION & BANDWIDTH	Peak (PK) Average (AV) 1 MHz
ENVIRONMENTAL CONDITIONS	22 deg. C, 66%RH, 951hPa	TESTED BY	Sky Liao

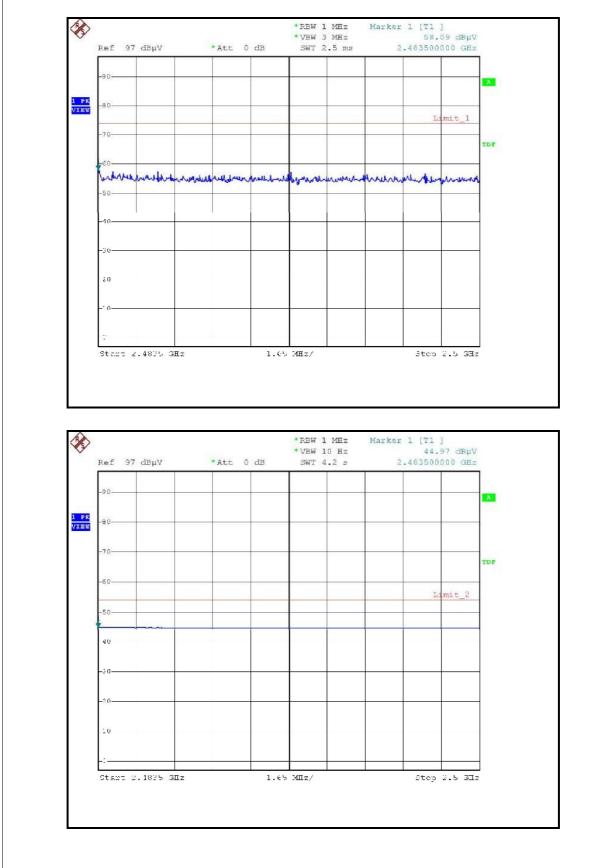
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2462.00	98.80 PK			1.58 H	48	68.17	30.63			
2	*2462.00	87.50 AV			1.58 H	48	56.87	30.63			
3	2483.50	58.09 PK	74.00	-15.91	1.58 H	48	27.37	30.72			
4	2483.50	44.97 AV	54.00	-9.03	1.58 H	48	14.25	30.72			
5	4924.00	46.60 PK	74.00	-27.40	1.12 H	48	10.54	36.06			
6	4924.00	38.80 AV	54.00	-15.20	1.12 H	48	2.74	36.06			
7	7386.00	54.60 PK	74.00	-19.40	1.26 H	55	12.59	42.01			
8	7386.00	42.20 AV	54.00	-11.80	1.26 H	55	0.19	42.01			

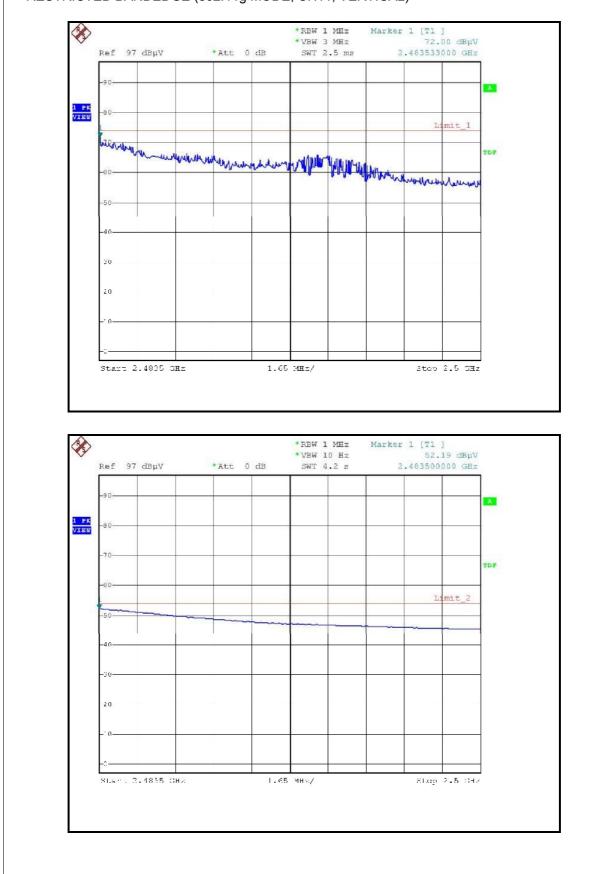

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
	No. (MHz)	Emission	Limit	Margin	Antenna	Table	Raw	Correction				
No.		Level	(dBuV/m)	0	Height	Angle	Value	Factor				
(MHz)	(dBuV/m)	(ubuv/iii)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)					
1	*2462.00	111.50 PK			1.56 V	256	80.87	30.63				
2	*2462.00	99.50 AV			1.56 V	256	68.87	30.63				
3	2483.50	72.00 PK	74.00	-2.00	1.54 V	248	41.28	30.72				
4	2483.50	52.19 AV	54.00	-1.81	1.54 V	248	21.47	30.72				
5	4924.00	57.40 PK	74.00	-16.60	1.20 V	75	21.34	36.06				
6	4924.00	38.60 AV	54.00	-15.40	1.20 V	75	2.54	36.06				
7	7386.00	59.60 PK	74.00	-14.40	1.38 V	62	17.59	42.01				
8	7386.00	43.60 AV	54.00	-10.40	1.38 V	62	1.59	42.01				

 Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
 Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 The other emission levels were very low against the limit.
 Margin value = Emission level – Limit value.
 The limit value is defined as per 15.247
 " * " : Fundamental frequency **REMARKS**:



RESTRICTED BANDEDGE (802.11g MODE, CH1, HORIZONTAL)




RESTRICTED BANDEDGE (802.11g MODE, CH1, VERTICAL)

RESTRICTED BANDEDGE (802.11g MODE, CH11, HORIZONTAL)

RESTRICTED BANDEDGE (802.11g MODE, CH11, VERTICAL)

4.3 6dB BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2007

NOTE:

1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURE

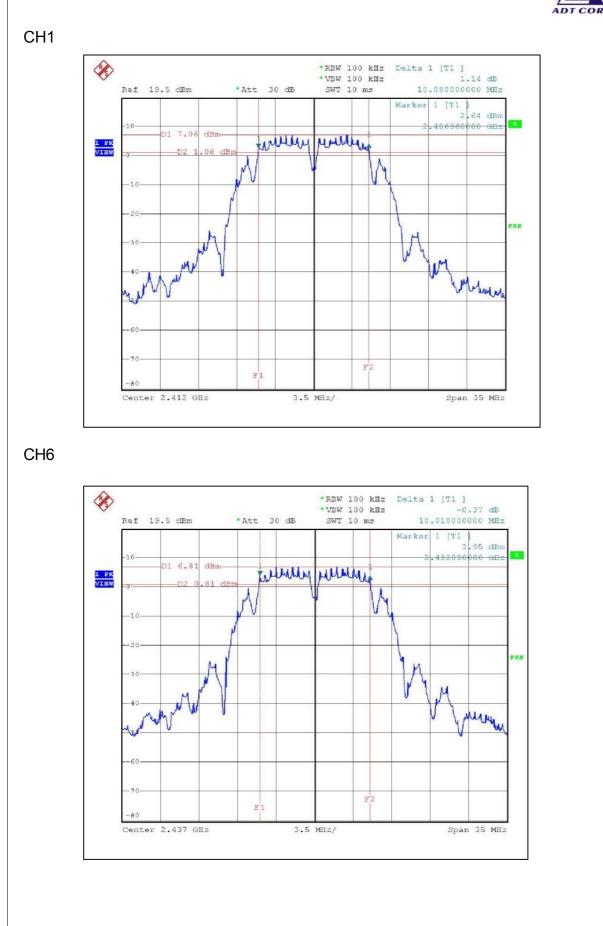
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 100 kHz VBW. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB.

4.3.4 TEST SETUP

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

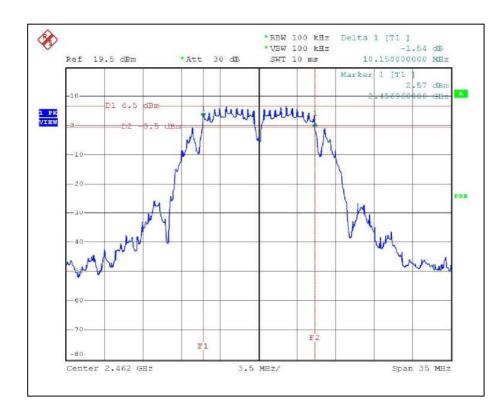
4.3.5 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

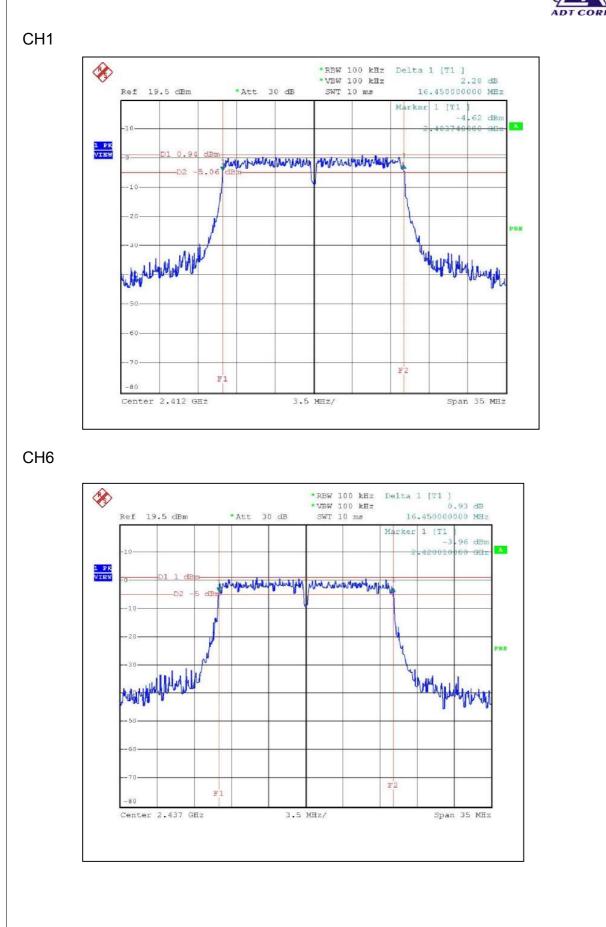

4.3.6 TEST RESULTS - DSSS

802.11b DSSS modulation

MODULATION TYPE	ССК	TRANSFER RATE	1Mbps
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	28 deg. C, 62 %RH, 951 hPa
TESTED BY	Phoenix Huang		

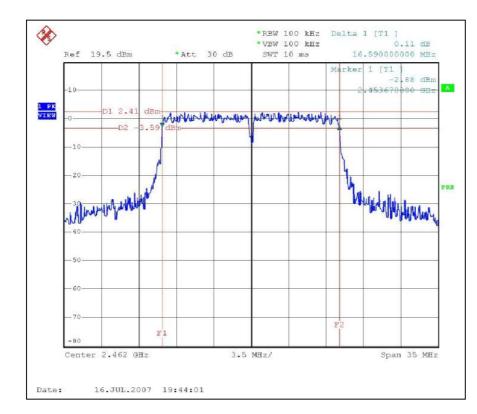

CHANNEL	CHANNEL FREQUENCY (MHz)	6 dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS/FAIL
1	2412	10.08	0.5	PASS
6	2437	10.01	0.5	PASS
11	2462	10.15	0.5	PASS

CH11


4.3.7 TEST RESULTS-OFDM

802.11g OFDM modulation

MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	28 deg. C, 62 %RH, 951 hPa
TESTED BY	Phoenix Huang		


CHANNEL	CHANNEL FREQUENCY (MHz)	6 dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS/FAIL
1	2412	16.45	0.5	PASS
6	2437	16.45	0.5	PASS
11	2462	16.59	0.5	PASS

CH11

4.4 MAXIMUM PEAK OUTPUT POWER

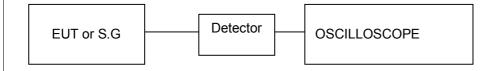
4.4.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Measurement is 30dBm.

4.4.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2007
Agilent SIGNAL GENERATOR	E8257C	MY43320668	Dec. 07, 2007
TEKTRONIX OSCILLOSCOPE	TDS380	B016335	Jul. 04, 2008
NARDA DETECTOR	4503A	FSCM99899	NA

NOTE:


The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.4.3 TEST PROCEDURES

- 1. A detector was used on the output port of the EUT. An oscilloscope was used to read the peak response of the detector.
- 2. Replaced the EUT by the signal generator. The center frequency of the S.G was adjusted to the center frequency of the measured channel.
- 3. Adjusted the power to have the same peak reading on oscilloscope. Record the power level.

4.4.4 TEST SETUP

4.4.5 EUT OPERATING CONDITIONS

Same as Item 4.3.5

4.4.6 TEST RESULTS – DSSS

802.11b DSSS modulation

MODULATION TYPE	ССК	TRANSFER RATE	1Mbps
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	28 deg. C, 62 %RH, 951 hPa
TESTED BY	Phoenix Huang		

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)	PASS/FAIL
1	2412	74.989	18.75	30	PASS
6	2437	158.489	22.00	30	PASS
11	2462	77.446	18.89	30	PASS

4.4.7 TEST RESULTS –OFDM

802.11g OFDM modulation

MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	28 deg. C, 62 %RH, 951 hPa
TESTED BY	Phoenix Huang		

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)	PASS/FAIL
1	2412	107.152	20.30	30	PASS
6	2437	162.181	22.10	30	PASS
11	2462	102.329	20.10	30	PASS

4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm.

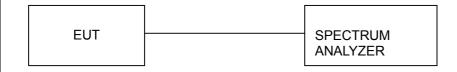
4.5.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2007

NOTE:

1.The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.



4.5.3 TEST PROCEDURE

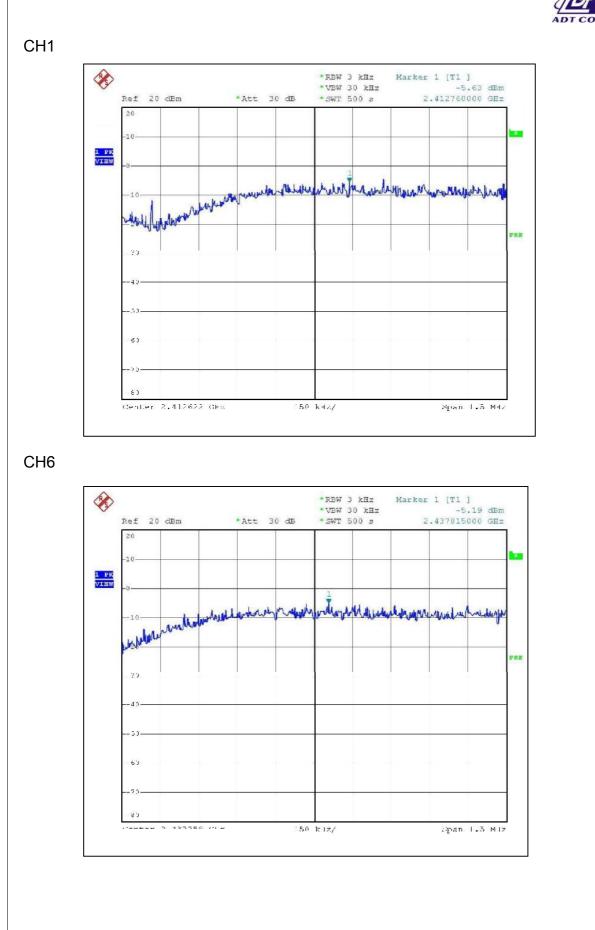
The transmitter output was connected to the spectrum analyzer through an attenuator, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using 3 kHz RBW and 30 kHz VBW, set sweep time=span/3kHz. The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span/3KHz for a full response of the mixer in the spectrum analyzer.

4.5.4 TEST SETUP

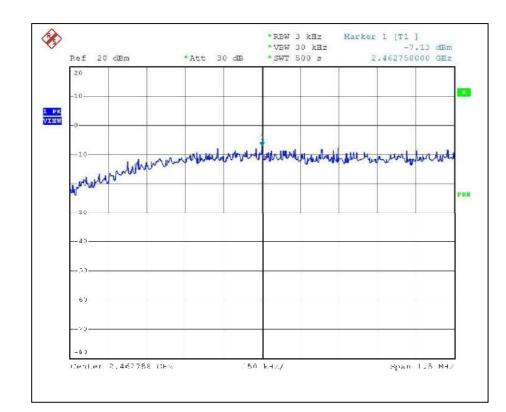
4.5.5 EUT OPERATING CONDITIONS

Same as 4.3.5

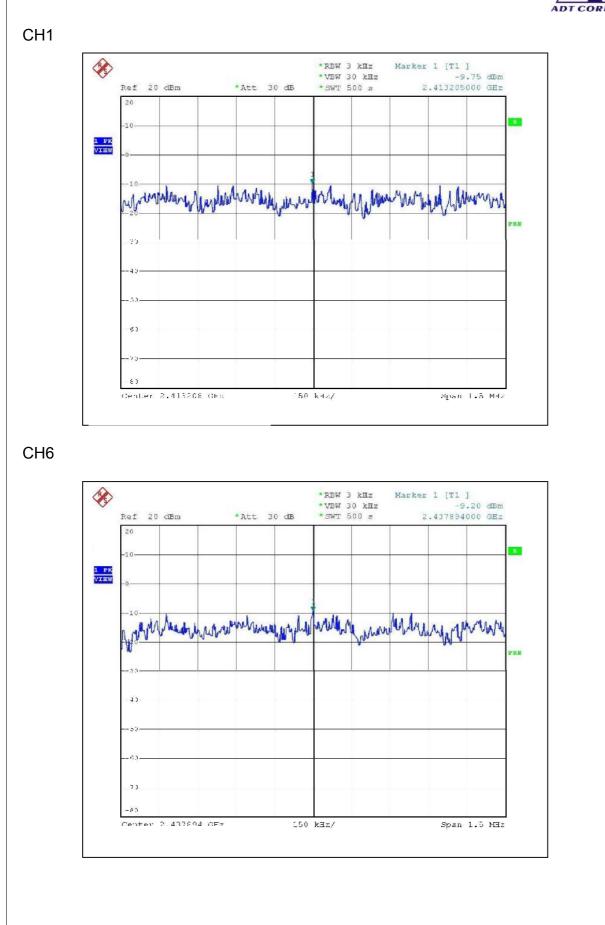

4.5.6 TEST RESULTS – DSSS

802.11b DSSS modulation

MODULATION TYPE	ССК	TRANSFER RATE	1Mbps
INPUT POWER	120Vac, 60Hz		28 deg. C, 62 %RH, 951 hPa
TESTED BY	Phoenix Huang		

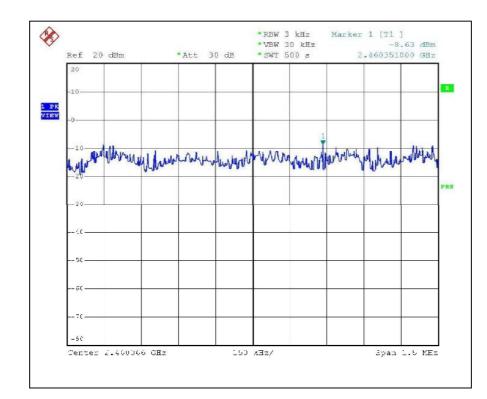

CHANNEL NUMBER	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 3 KHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	2412	-5.63	8	PASS
6	2437	-5.19	8	PASS
11	2462	-7.13	8	PASS

CH11


4.5.7 TEST RESULTS - OFDM

802.11g OFDM modulation

MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	28 deg. C, 62 %RH, 951 hPa
TESTED BY	Phoenix Huang		


CHANNEL NUMBER	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 3 KHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	2412	-9.75	8	PASS
6	2437	-9.20	8	PASS
11	2462	-8.63	8	PASS

CH11

4.6 CONDUCTED EMISSION AND BAND EDGES MEASUREMENT

4.6.1 LIMITS OF CONDTCTED EMISSION AND BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz Resolution Bandwidth).

4.6.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2007

NOTE:

1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

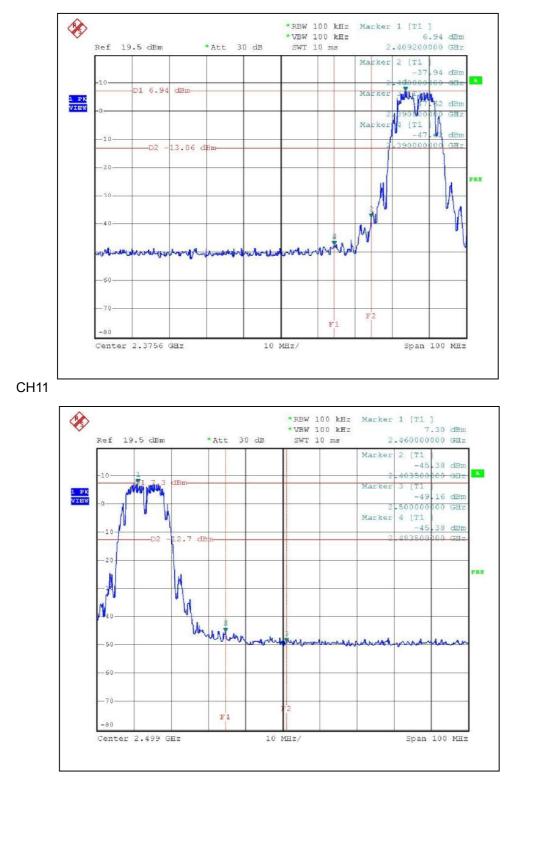
The spectrum plots (RBW = VBW = 100kHz) are attached on the following pages.

4.6.4 DEVIATION FROM TEST STANDARD

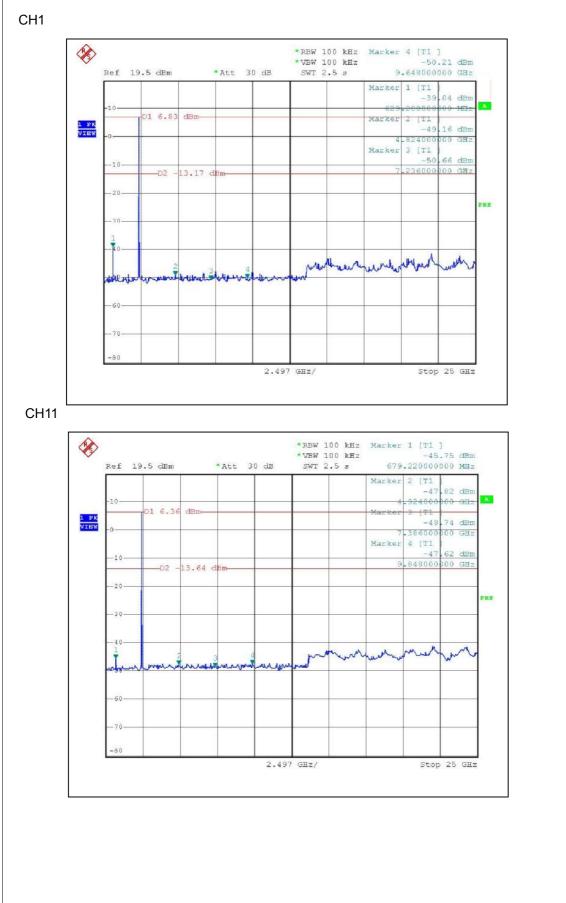
No deviation

4.6.5 EUT OPERATING CONDITION

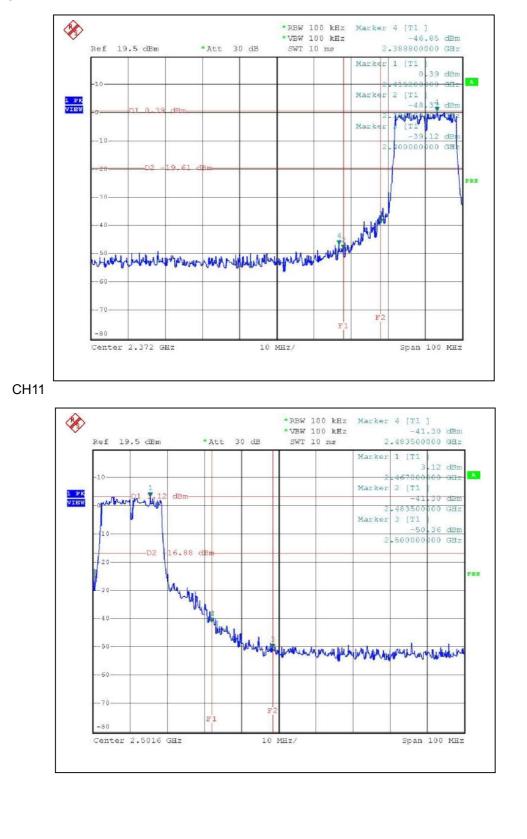
Same as Item 4.3.5

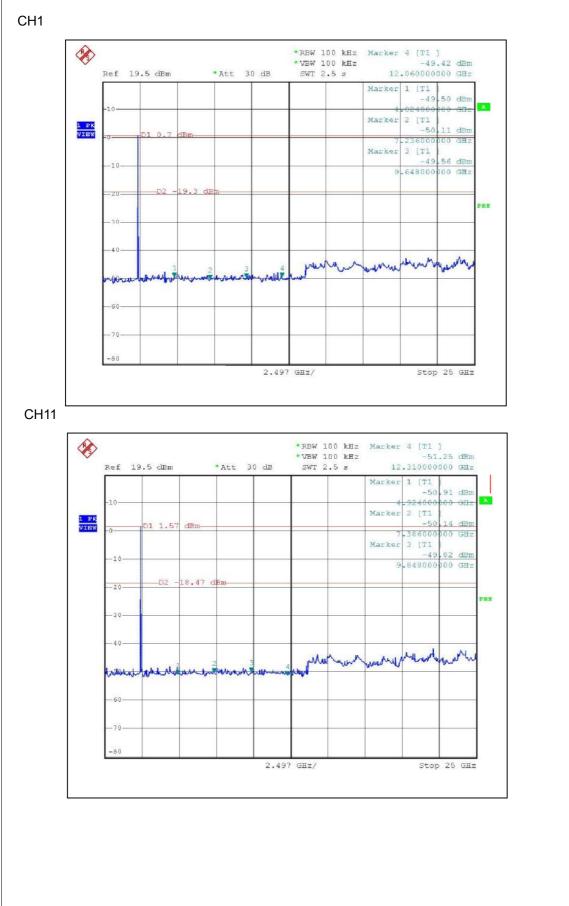

4.6.6 TEST RESULTS

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement in part 15.247(d).



802.11b DSSS MODULATION:





802.11g OFDM MODULATION: CH1

4.7 ANTENNA REQUIREMENT

4.7.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.7.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is Dipole antenna with Reversed-SMA connector and could be equipped an extend antenna cable 200cm. The maximum Gain of the antenna is 4.5dBi

5 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025:

USA	FCC, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
Netherlands	Telefication
Singapore	PSB, GOST-ASIA (MOU)
Russia	CERTIS (MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26052943 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Email: <u>service@adt.com.tw</u> Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

6 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.