



#### ZHONE TECHNOLOGIES, INC. ADDENDUM TO FC01-007

## FOR THE

### SKYZHONE 45, SZ-045-N-5G-LNK-X

FCC PART 15 SUBPARTS C & D SECTIONS 15.207, 15.209 & 15.407

## COMPLIANCE

## DATE OF ISSUE: APRIL 16, 2001

## **PREPARED FOR:**

Zhone Technologies, Inc. 7100 Oakport Street, Bld. 1 Oakland, CA 94621

P.O. No: 800393 W.O. No: 75966

## **PREPARED BY:**

Joyce Walker CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

Date of test: January 16-18, 2001

## Report No: FC01-007A

This report contains a total of 69 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

## TABLE OF CONTENTS

| Administrative Information                                                              | 4                |
|-----------------------------------------------------------------------------------------|------------------|
| Summary of Results                                                                      | 5                |
| Frequency Range Tested                                                                  | 5                |
| EUT Operating Frequency                                                                 | 5                |
| Approvals                                                                               | 5                |
| Equipment Under Test (EUT) Description                                                  | 6                |
| Peripheral Devices                                                                      | 7                |
| Report Of Measurements                                                                  | 8                |
| Table 1: FCC 15.407(a)(3) Power Output (E.I.R.P.)                                       | 8                |
| Table 2: FCC 15.407(a)(3) Peak Power Spectral Density                                   | 11               |
| Table 3: FCC 15.407(b)/15.209Six Highest Spurious Emission Levels - ODU-A               | 13               |
| Table 5: FCC 15 207 Six Highest Conducted Emission Levels - ODU-A (INITZ-400HZ)         | . 14             |
| Table 6: FCC 15.407(b)/15.209 Six Highest Spurious Emission Levels - ODU-B              | 16               |
| Table 7: FCC 15.407(b)/15.209 Six Highest Radiated Emission Levels - ODU-B (1MHz-40GHz) | 17               |
| Table 8:FCC 15.207 Six Highest Conducted Emission Levels - ODU-B                        | 18               |
| Table A : List Of Test Equipment                                                        | 19               |
| Measurement Uncertainty                                                                 | 20               |
| Temperature And Humidity During Testing                                                 | 20               |
| EUT Setup                                                                               | 20               |
| Test Instrumentation And Analyzer Settings                                              | 21               |
| Table B : 15.35 Analyzer Bandwidth Settings Per Frequency Range                         | 21               |
| Spectrum Analyzer Detector Functions                                                    | 21               |
| Peak                                                                                    | 22               |
| Quasi-Peak                                                                              | 22               |
| Average                                                                                 | 22               |
| Test Methods                                                                            | 22               |
| 15.203 Antenna Requirements                                                             | 23               |
| Radiated Emissions Testing                                                              | 23               |
| Conducted Emissions Testing                                                             | 23               |
| FCC 15.407(a)(6) Peak Excursion                                                         | 24               |
| FCC 15.407(a) Peak Power Density and Output Power at Antenna Terminal.                  | 24               |
| Occupied Bandwidth                                                                      | 24               |
| E.I.R.P. Testing                                                                        | 25               |
| Sample Calculations                                                                     | 25               |
| Appendix A: Information About The Equipment Under Test                                  | 26               |
| SZ-045-N-5G-IDU                                                                         | 20               |
| I/O Ports                                                                               | 27               |
| Crystal Oscillators                                                                     | <u>-</u> 7<br>27 |
| Printed Circuit Boards                                                                  | <u>-</u> 7<br>27 |
| Cable Information                                                                       | <i>21</i><br>27  |
|                                                                                         | ••               |

| SZ-045-N-5G-ODU-B                                        |    |
|----------------------------------------------------------|----|
| I/O Ports                                                |    |
| Crystal Oscillators                                      | 28 |
| Printed Circuit Boards                                   |    |
| Cable Information                                        |    |
| SZ-045-N-5G-ODU-B                                        | 29 |
| I/O Ports                                                | 29 |
| Crystal Oscillators                                      | 29 |
| Printed Circuit Boards                                   | 29 |
| Cable Information                                        | 29 |
| Photograph Showing Dirtect Connect Testing - ODU-A       | 30 |
| Photograph Showing Radiated & E.R.I.P. Emissions - ODU-A | 31 |
| Photograph Showing Radiated & E.R.I.P. Emissions - ODU-A | 32 |
| Photograph Showing E.R.I.P. Emissions - ODU-A            | 33 |
| Photograph Showing Conducted Emissions - ODU-A           | 34 |
| Photograph Showing Dirtect Connect Testing - ODU-B       | 35 |
| Photograph Showing Radiated & E.R.I.P. Emissions - ODU-B | 36 |
| Photograph Showing Radiated & E.R.I.P. Emissions - ODU-B | 37 |
| Photograph Showing E.R.I.P. Emissions - ODU-B            | 38 |
| Photograph Showing Conducted Emissions - ODU-B           |    |
| Photograph Showing Conducted Emissions - ODU-B           | 40 |
| Appendix B : Measurement Data Sheets                     | 41 |

**CKC Laboratories, Inc. has Certificates of Accreditation from the following agencies**: DATech (Germany); A2LA (USA); FCC (USA); VCCI (Japan); BSMI (Taiwan); HOKLAS (Hong Kong). **CKC Laboratories, Inc. has Letters of Acceptance through an MRA for the following agencies**: ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); TUV Rheinland-Germany; TUV Rheinland-Korea; TUV Rheinland-Russia; Radio Communications Agency (RA); NEMKO (Norway).

### **ADMINISTRATIVE INFORMATION**

| DATE OF TEST:          | January 16-18, 2001                                                                                                                                                                                                                                                                                            |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE OF RECEIPT:       | January 16, 2001                                                                                                                                                                                                                                                                                               |
| PURPOSE OF TEST:       | To demonstrate the compliance of the<br>SkyZhone 45, SZ-045-N-5G-LNK-X, with<br>the requirements for FCC Part 15 Subparts<br>C & D for Sections 15.207, 15.209 &<br>15.407 devices.<br>Purpose of the addendum is to add<br>clarifications to data in tables and include<br>additional test method paragraphs. |
| MANUFACTURER:          | Zhone Technologies, Inc.<br>7100 Oakport Street, BLD 1<br>Oakland, CA 94621                                                                                                                                                                                                                                    |
| <b>REPRESENTATIVE:</b> | Rich Synder                                                                                                                                                                                                                                                                                                    |
| TEST LOCATION:         | CKC Laboratories, Inc.<br>480 Los Viboras Road<br>Hollister, CA 95023                                                                                                                                                                                                                                          |

#### SUMMARY OF RESULTS

As received, the Zhone Technology, Inc. SkyZhone 45, SZ-045-N-5G-LNK-X was found to be fully compliant with the following standards and specifications:

#### **United States**

- FCC Part 15 Subpart C Section 15.207
- ➢ FCC Part 15 Subpart C Section 15.209
- ▶ FCC Part 15 Subpart D Section 15.407
- > ANSI C63.4 1992 method

The results in this report apply only to the items tested, as identified herein.

## FREQUENCY RANGE TESTED:

Conducted = 450 kHz - 30 MHzRadiated = 1 MHZ - 40 GHz

**EUT OPERATING FREQUENCY:** The SZ-045-N-5G-ODU-A was operating at 5.725-5.825 GHz and the SZ-045-N-5G-ODU-B was operating at 5.25-5.35 GHz.

## APPROVALS

**QUALITY ASSURANCE:** 

DannisWard

Dennis Ward, Quality Manager

Christine Nicklas, EMC/Lab Manager

**TEST PERSONNEL:** 

Conan 7. Boyle

Conan Boyle, EMC/Lab Supervisor

Duatin Oaks

Dustin Oaks, EMC/Evaluation Engineer

## EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The SkyZhone 45 is a point-to-point U-NII wireless transport comprised of two indoor components, part number SZ-045-N-5G-IDU, two outdoor components, part numbers SZ-045-N-5G-ODU-A, and SZ-045-N-5G-ODU-B. One indoor unit mated with outdoor unit A will transmit in the 5.7GHz Band and receive in the 5.25GHz Band. Another indoor unit will mate with outdoor unit B and will transmit in the 5.25GHz Band and receive in the 5.75GHz Band. The two halves, when place a distance apart, allow two way point to point communication. The entire system is part number SZ-045-N-5G-LNK-X, where the X signifies a 2, 4 or 6 foot circular antennas.

During CKC Laboratories testing, the SZ-045-N-5G-ODU-A and SZ-045-N-5G-ODU-B were referred to as the Radio Up-Converter/Diplexer. The SZ-045-N-5G-IDU was referred to as the DS3 Data Interface. The two models (ODU A and ODU B) are identical electrically to the one. The difference between the units is in the transmit and receive frequency. The differences between them do not affect their EMC characteristics, and therefore comply with the level of testing equivalent to the tested models. The SkyZhone 45, SZ-045-N-5G-LNK-X that was tested is representative of a production unit produced by Zhone Technology, Inc.

### **EQUIPMENT UNDER TEST:**

#### SYSTEM: SKYZHONE 45, SZ-045-N-5G-LNK-X

#### Radio Up-Converter/Diplexer

Manuf: Zhone Technologies, Inc. Model: SZ-045-N56-ODU-A Serial: 02 FCC ID: (pending)

#### Radio Up-Converter/Diplexer

Manuf: Zhone Technologies, Inc. Model: SZ-045-N56-ODU-B Serial: 01 FCC ID: (pending)

#### Antenna Feedhorn, 2-ft

Manuf: Gabriel Electronics Model: 118047 Serial: 90483 FCC ID: N/A

#### **DS3 Data Interface**

Manuf: Zhone Technologies, Inc. Model: Sky Zhone 45 Serial: 3 FCC ID: (pending)

#### **DS3 Data Interface**

Manuf: Zhone Technologies, Inc. Model: Sky Zhone 45 Serial: 4 FCC ID: (pending)

#### Antenna, 2ft

Manuf: Gabriel Electronics Model: SSP2-52B Serial: T92209 FCC ID: N/A

#### Antenna, 4-ft

Manuf: Gabriel Electronics Model: SSP4-52B Serial: 493350 FCC ID: N/A

#### Antenna, 6-ft

Manuf: Gabriel Electronics Model: SSP6-52A Serial: 692828 FCC ID: N/A

#### Antenna Feedhorn, 4-ft

Manuf: Gabriel Electronics Model: 90703 Serial: 118045 FCC ID: N/A

#### Antenna Feedhorn, 6-ft

Manuf: Gabriel Electronics Model: 91240 Serial: 118046 FCC ID: N/A

#### Coaxial Cable, 6-ft

Manuf: Times Microwave Systems Model: LMR-600 Serial: None FCC ID: N/A

### **PERIPHERAL DEVICES**

The EUT was tested with the following peripheral device(s):

#### Notebook PC

Manuf: Dell Model: Inspiron 3500 Serial: 0009653D FCC ID: DoC

#### AC-DC Adapter

Manuf: IBM Model: P/N 02K6657 Serial: 1Z0ZA022ZM8 FCC ID: N/A

## AC-DC Adapter

Manuf: Dell Model: P/N 7832D Serial: 17972-94Q-1QZ1 FCC ID: N/A

#### Notebook PC

Manuf: IBM Model: Thinkpad T20 Serial: Zhone Tech. Inc. Asset #11057 FCC ID: DoC

#### **REPORT OF MEASUREMENTS**

The following tables report the highest worst case levels recorded during the tests performed on the SkyZhone 45, SZ-045-N-5G-LNK-X.

#### Table 1: FCC 15.407(a)(3) Power Output (E.I.R.P.)

#### FCC 15.407(a)(3) Power output

EUT: ODU-A

Test Condistion:

The ODU-A was directly connected to the Spectrum Analyzer via a Coax Cable. The RBW and VBW of the spectrum analyzer were set to 1MHz. The loss of this cable was measured to be 8.14dB between 5.0GHz and 6.0GHz. This cable factor was accounted for in the measured values listed on this data sheet. The unit was tested with 3 antennas (28.5dBi, 34.2dBi, and 37.5dBi).

#### BW Correction Calcultion:

Due to the bandwidth limitations of the measuring analyzer, a bandwidth correction factor was used. =10LOG(20/1) = 13dB

| Measured 26dB Bandwidth : |          |  |  |  |
|---------------------------|----------|--|--|--|
| 5.741GHz                  | 23.2MHz  |  |  |  |
| 5.774GHz                  | 24.75MHz |  |  |  |
| 5.805GHz                  | 24.0MHz  |  |  |  |
|                           |          |  |  |  |

| Antenna: 28.5   | dBi Gain     |                     |              |                 |                    |                  |         |
|-----------------|--------------|---------------------|--------------|-----------------|--------------------|------------------|---------|
| Channel         | Recorded     | <b>Power Output</b> | Margin       | Results         | Measured           | Defacto Limt     | Margin  |
|                 | Reading      | Limit (dBm)         | _            |                 | Output +           |                  |         |
|                 | (dBm)        |                     |              |                 | Antenna Gain       |                  |         |
| 5.741GHz        | 0.3          | 24.50               | -24.20       | PASS            | 28.8               | 53               | -24.2   |
| 5.774GHz        | 0.6          | 24.50               | -23.90       | PASS            | 29.1               | 53               | -23.9   |
| 5.805GHz        | -1.4         | 24.50               | -25.90       | PASS            | 27.1               | 53               | -25.9   |
|                 |              |                     |              |                 |                    |                  |         |
| Limit Calculati | on = 17 dBm  | +10Log(B) = 30      | .65dBm, The  | refore must use | 1Watt = 30dBm      |                  |         |
| The Limit was   | then Correct | ed for EACH ante    | nna based or | the amount in d | IB exceeding 23dBi | i, IAW 15.407(a) | (3) for |
| Direction gain  | UNII devices | S.                  |              |                 | -                  |                  |         |

Limit = 30.0 - (28.5-23) = 24.5dBm

Defacto Limit = 30dBm + 23dB (Allowed Antenna Gain) = 53dBm

| Antenna: 34.2 dBi Gain |                              |                             |        |         |                                      |              |        |  |  |
|------------------------|------------------------------|-----------------------------|--------|---------|--------------------------------------|--------------|--------|--|--|
| Channel                | Recorded<br>Reading<br>(dBm) | Power Output<br>Limit (dBm) | Margin | Results | Measured<br>Output +<br>Antenna Gain | Defacto Limt | Margin |  |  |
| 5.741GHz               | -6.23                        | 18.80                       | -25.03 | PASS    | 27.97                                | 53           | -25.03 |  |  |
| 5.774GHz               | -5.07                        | 18.80                       | -23.87 | PASS    | 29.13                                | 53           | -23.87 |  |  |
| 5.805GHz               | -5.4                         | 18.80                       | -24.20 | PASS    | 28.8                                 | 53           | -24.2  |  |  |
|                        |                              |                             |        |         |                                      |              |        |  |  |

Limit Calculation = 17dBm + 10Log(B) = 30.93dBm, Therefore must use 1Watt = 30dBmThe Limit was then Corrected for EACH antenna based on the amount in dB exceeding 23dBi, IAW 15.407(a)(3) for Direction gain UNII devices.

Limit = 30 - (34.2-23) = 18.8 dBm

Defacto Limit = 30dBm + 23dB (Allowed Antenna Gain) = 53dBm

#### Antenna: 37.5 dBi Gain

| Channel  | Recorded | Power Output | Margin | Results | Measured                 | Defacto Limt | Margin |
|----------|----------|--------------|--------|---------|--------------------------|--------------|--------|
|          | (dBm)    | Limit (dBm)  |        |         | Output +<br>Antenna Gain |              |        |
| 5.741GHz | -8.9     | 15.00        | -23.90 | PASS    | 28.6                     | 53           | -24.4  |
| 5.774GHz | -9.4     | 15.00        | -24.40 | PASS    | 28.1                     | 53           | -24.9  |
| 5.805GHz | -9.73    | 15.00        | -24.73 | PASS    | 27.77                    | 53           | -25.23 |

#### Limit Calculation = 17dBm + 10Log(B) = 29.5dBm

The Limit was then Corrected for EACH antenna based on the amount in dB exceeding 23dBi, IAW 15.407(a)(3) for Direction gain UNII devices.

Limit = 29.5 - (37.5-23) = 15.0dBm

Defacto Limit = 30dBm + 23dB (Allowed Antenna Gain) = 53dBm

#### FCC 15.407(a)(2) Power output

EUT: ODU-B

Test Condistion:

The ODU-B was directly connected to the Spectrum Analyzer via a Coax Cable. The RBW and VBW of the spectrum analyzer were set to 1MHz. The loss of this cable was measured to be 8.14dB between 5.0GHz and 6.0GHz. This cable factor was accounted for in the measured values listed on this data sheet. The unit was tested with 3 antennas (28.5dBi, 34.2dBi, and 37.5dBi).

BW Correction Calcultion:

Due to the bandwidth limitations of the measuring analyzer, a bandwidth correction factor was used. =10LOG(20/1) = 13dB

| Measured 26dB | 3 Bandwidth |
|---------------|-------------|
| 5.265GHz      | 19.7MHz     |
| 5.301GHz      | 19.8MHz     |
| 5.331GHz      | 19.83MHz    |
|               |             |

| Antenna:      | 28.5 | dBi | Gain |
|---------------|------|-----|------|
| 1 MILLOUILIU. |      | upi | Jum  |

| Channel  | Recorded | Power               | Margin | Results | Measured     | Defacto Limt | Margin |  |  |  |
|----------|----------|---------------------|--------|---------|--------------|--------------|--------|--|--|--|
|          | Reading  | <b>Output Limit</b> |        |         | Output +     |              |        |  |  |  |
|          | (dBm)    | (dBm)               |        |         | Antenna Gain |              |        |  |  |  |
| 5.265GHz | 0.3      | 1.40                | -1.10  | PASS    | 28.8         | 30           | -1.2   |  |  |  |
| 5.301GHz | 0.6      | 1.40                | -0.80  | PASS    | 29.1         | 30           | -0.9   |  |  |  |
| 5.331GHz | -1.4     | 1.40                | -2.80  | PASS    | 27.1         | 30           | -2.9   |  |  |  |
|          |          |                     |        |         |              |              |        |  |  |  |

Limit Calculation = 11dBm + 10Log(B) = 23.9dBm

The Limit was then Corrected for EACH antenna based on the amount in dB exceeding 6dBi, IAW 15.407(a)(2) Limit = 23.9 - (28.5-6) = 1.4dBm

Defacto Limit = 24dBm + 6dB (Allowed antenna gain) = 30dBm

| Antenna: 34 | 4.2 dBi | Gain |
|-------------|---------|------|
|-------------|---------|------|

| Channel                                                 | Deserved                          | D                   | M             | D14              | Mananal          | D.C              | N <b>!</b> |  |  |
|---------------------------------------------------------|-----------------------------------|---------------------|---------------|------------------|------------------|------------------|------------|--|--|
| Channel                                                 | Recorded                          | Power Output        | Margin        | Results          | Measured         | Defacto Limi     | Margin     |  |  |
|                                                         | Reading                           | Limit (dBm)         |               |                  | Output +         |                  |            |  |  |
|                                                         | (dBm)                             |                     |               |                  | Antenna Gain     |                  |            |  |  |
| 5.265GHz                                                | -6.23                             | -4.20               | -2.03         | PASS             | 27.97            | 30               | -2.03      |  |  |
| 5.301GHz                                                | -5.07                             | -4.20               | -0.87         | PASS             | 29.13            | 30               | -0.87      |  |  |
| 5.331GHz                                                | -5.4                              | -4.20               | -1.20         | PASS             | 28.8             | 30               | -1.2       |  |  |
|                                                         |                                   |                     |               |                  |                  |                  |            |  |  |
| Limit Calculation = 11dBm + 10Log(B) = 23.96dBm = 24dBm |                                   |                     |               |                  |                  |                  |            |  |  |
| The Limit wa                                            | s then Corre                      | cted for EACH an    | tenna based c | on the amount in | dB exceeding 6dB | i, IAW 15.407(a) | (2)        |  |  |
| Limit = 24.0                                            | - (34.2-6) =                      | -4.2dBm             |               |                  |                  |                  |            |  |  |
| Defacto Lim                                             | it = 24dBm                        | + 6dB (Allowed a    | ntenna gain)  | ) = <b>30dBm</b> |                  |                  |            |  |  |
|                                                         |                                   |                     |               |                  |                  |                  |            |  |  |
| Antenna: 37                                             | .5 dBi Gain                       |                     |               |                  |                  |                  |            |  |  |
| Channel                                                 | Recorded                          | <b>Power Output</b> | Margin        | Results          | Measured         | Defacto Limt     | Margin     |  |  |
|                                                         | Reading                           | Limit (dBm)         | C             |                  | Output +         |                  | U          |  |  |
|                                                         | (dBm)                             | Ň,                  |               |                  | Antenna Gain     |                  |            |  |  |
| 5.265GHz                                                | -8.9                              | -7.50               | -1.40         | PASS             | 28.6             | 30               | -1.4       |  |  |
| 5.301GHz                                                | -9.4                              | -7.50               | -1.90         | PASS             | 28.1             | 30               | -1.9       |  |  |
| 5.331GHz                                                | -9.73                             | -7.50               | -2.23         | PASS             | 27.77            | 30               | -2.23      |  |  |
|                                                         |                                   |                     |               |                  |                  |                  |            |  |  |
| Limit Calcula                                           | ation $= 11$ dB                   | m + 10Log(B) = 2    | 3.97dBm = $2$ | 4dBm             |                  |                  |            |  |  |
| The Limit wa                                            | s then Corre                      | cted for EACH an    | tenna based c | on the amount in | dB exceeding 6dB | i, IAW 15.407(a) | (2)        |  |  |
| Limit = 24.0                                            | Limit = 24.0 - (37.5-6) = -7.5dBm |                     |               |                  |                  |                  |            |  |  |

Defacto Limit = 24dBm + 6dB (Allowed antenna gain) = 30dBm

#### Table 2: FCC 15.407(a)(3) Peak Power Spectral Density

#### FCC 15.407(a)(3) Peak Power Spectral Density

EUT: ODU-A

Test Condistion:

The ODU-A was directly connected to the Spectrum Analyzer via a Coax Cable. The RBW and VBW of the spectrum analyzer was set to 1MHz. The loss of this cable was measured to be 8.14dB between 5.0GHz and 6.0GHz. This cable factor was accounted for in the measured values listed on this data sheet. The unit was tested with 3 antennas (28.5dBi, 34.2dBi, and 37.5dBi).

#### Antenna: 28.5 dBi Gain

| mittennia. 2010 abi O | 4111     |                     |        |         |  |
|-----------------------|----------|---------------------|--------|---------|--|
| Channel               | Recorded | <b>Power Output</b> | Margin | Results |  |
|                       | Reading  | Limit (dBm)         |        |         |  |
|                       | (dBm)    |                     |        |         |  |
| 5.741GHz              | -9.9     | 11.50               | -21.40 | PASS    |  |
| 5.774GHz              | -10.07   | 11.50               | -21.57 | PASS    |  |
| 5.805GHz              | -10.9    | 11.50               | -22.40 | PASS    |  |
|                       |          |                     |        |         |  |

#### Limit Calculation = 17dBm

The Limit was then Corrected for EACH antenna based on the amount in dB exceeding 23dBi, IAW 15.407(a)(3) for Direction gain UNII devices.

#### Limit = 17 - (28.5 - 23) = 11.5 dBm

| Antenna: 34.2 dBi Gain |          |              |        |         |  |  |  |  |  |  |  |
|------------------------|----------|--------------|--------|---------|--|--|--|--|--|--|--|
| Channel                | Recorded | Power Output | Margin | Results |  |  |  |  |  |  |  |
|                        | Reading  | Limit (dBm)  |        |         |  |  |  |  |  |  |  |
|                        | (dBm)    |              |        |         |  |  |  |  |  |  |  |
| 5.741GHz               | -16.07   | 5.80         | -21.87 | PASS    |  |  |  |  |  |  |  |
| 5.774GHz               | -15.9    | 5.80         | -21.70 | PASS    |  |  |  |  |  |  |  |
| 5.805GHz               | -16.9    | 5.80         | -22.70 | PASS    |  |  |  |  |  |  |  |

Limit Calculation = 17dBm

The Limit was then Corrected for EACH antenna based on the amount in dB exceeding 23dBi, IAW 15.407(a)(3) for Direction gain UNII devices.

#### Limit = 17.0 - (34.2-23) = 5.8 dBm

The Limit was then Corrected for EACH antenna based on the amount in dB exceeding 23dBi, IAW 15.407(a)(3) for Direction gain UNII devices.

 $Limit = \overline{17.0 - (37.5 - 23)} = \overline{2.5}dBm$ 

| Antenna: 37.5 dBi Gain |                              |                             |        |         |  |  |  |  |  |  |  |
|------------------------|------------------------------|-----------------------------|--------|---------|--|--|--|--|--|--|--|
| Channel                | Recorded<br>Reading<br>(dBm) | Power Output<br>Limit (dBm) | Margin | Results |  |  |  |  |  |  |  |
| 5.741GHz               | -19.07                       | 2.50                        | -21.57 | PASS    |  |  |  |  |  |  |  |
| 5.774GHz               | -18.9                        | 2.50                        | -21.40 | PASS    |  |  |  |  |  |  |  |
| 5.805GHz               | -20.07                       | 2.50                        | -22.57 | PASS    |  |  |  |  |  |  |  |

Limit Calculation = 17dBm

#### FCC 15.407(a)(2) Peak Power Spectral Density

#### EUT: ODU-B

#### Test Condistion:

The ODU-B was directly connected to the Spectrum Analyzer via a Coax Cable. The RBW and VBW of the spectrum analyzer was set to 1MHz. The loss of this cable was measured to be 8.14dB between 5.0GHz and 6.0GHz. This cable factor was accounted for in the measured values listed on this data sheet. The unit was tested with 3 antennas (28.5dBi, 34.2dBi, and 37.5dBi).

#### Antenna: 28.5 dBi Gain

| Channel  | Recorded<br>Reading<br>(dBm) | Density Limit<br>(dBm) | Margin | Results |  |
|----------|------------------------------|------------------------|--------|---------|--|
| 5.265GHz | -12.7                        | -11.50                 | -1.20  | PASS    |  |
| 5.301GHz | -12.4                        | -11.50                 | -0.90  | PASS    |  |
| 5.331GHz | -14.4                        | -11.50                 | -2.90  | PASS    |  |

Limit = 11 dBm in any 1 MHz

The Limit was then Corrected for EACH antenna based on the amount in dB exceeding 6dBi, IAW 15.407(a)(2)

#### Limit = 11.0 - (28.5-6) = -11.5dBm

| Antenna: 34.2 dBi Gain |          |              |        |         |  |  |  |  |  |  |  |
|------------------------|----------|--------------|--------|---------|--|--|--|--|--|--|--|
| Channel                | Recorded | Power Output | Margin | Results |  |  |  |  |  |  |  |
|                        | (dPm)    | Limit (dBm)  |        |         |  |  |  |  |  |  |  |
|                        | (udiii)  |              |        |         |  |  |  |  |  |  |  |
| 5.265GHz               | -19.23   | -17.20       | -2.03  | PASS    |  |  |  |  |  |  |  |
| 5.301GHz               | -18.07   | -17.20       | -0.87  | PASS    |  |  |  |  |  |  |  |
| 5.331GHz               | -18.4    | -17.20       | -1.20  | PASS    |  |  |  |  |  |  |  |

Limit = 11 dBm in any 1 MHz

The Limit was then Corrected for EACH antenna based on the amount in dB exceeding 6dBi, IAW 15.407(a)(2)

#### Limit = 11.0 - (34.2-6) = -17.2dBm

| Antenna: 37.5 dBi G     | ain             |                     |                    |                       |                |
|-------------------------|-----------------|---------------------|--------------------|-----------------------|----------------|
| Channel                 | Recorded        | <b>Power Output</b> | Margin             | Results               |                |
|                         | Reading         | Limit (dBm)         |                    |                       |                |
|                         | (dBm)           |                     |                    |                       |                |
| 5.265GHz                | -21.9           | -20.50              | -1.40              | PASS                  |                |
| 5.301GHz                | -22.4           | -20.50              | -1.90              | PASS                  |                |
| 5.331GHz                | -22.73          | -20.50              | -2.23              | PASS                  |                |
| Limit = 11dBm in any    | / 1MHz          |                     |                    |                       |                |
| The Limit was then C    | orrected for EA | ACH antenna based   | on the amount in c | IB exceeding 6dBi, IA | W 15.407(a)(2) |
| Limit = 11.0 - (37.5-6) | 5) = -20.5 dBm  |                     |                    |                       |                |

|                  | Table 3: FCC 15.407(b)/15.209 Six Highest Spurious Emission Levels - ODU-A |                  |                     |                               |                   |                                |                         |              |       |  |  |  |  |
|------------------|----------------------------------------------------------------------------|------------------|---------------------|-------------------------------|-------------------|--------------------------------|-------------------------|--------------|-------|--|--|--|--|
| FREQUENCY<br>MHz | METER<br>READING<br>dBµV                                                   | COR<br>Ant<br>dB | RECTIC<br>Amp<br>dB | <u>ON FACT</u><br>Cable<br>dB | ORS<br>Dist<br>dB | CORRECTED<br>READING<br>dBµV/m | SPEC<br>LIMIT<br>dBµV/m | MARGIN<br>dB | NOTES |  |  |  |  |
| 15374.980        | 35.5                                                                       | 0.0              |                     | 14.7                          |                   | 50.2                           | 54.0                    | -3.8         | NA    |  |  |  |  |
| 15479.980        | 32.4                                                                       | 0.0              |                     | 15.3                          |                   | 47.7                           | 54.0                    | -6.3         | NA    |  |  |  |  |
| 17419.500        | 36.0                                                                       | 0.0              |                     | 11.1                          |                   | 47.1                           | 54.0                    | -6.9         | Ν     |  |  |  |  |
| 20639.970        | 26.3                                                                       | 0.0              |                     | 21.5                          |                   | 47.8                           | 54.0                    | -6.2         | NA    |  |  |  |  |
| 23094.500        | 12.3                                                                       | 0.0              |                     | 39.4                          |                   | 51.7                           | 54.0                    | -2.3         | NA    |  |  |  |  |
| 23226.980        | 13.0                                                                       | 0.0              |                     | 38.7                          |                   | 51.7                           | 54.0                    | -2.3         | Ν     |  |  |  |  |

Test Method: Spec Limit : Test Distance:

ANSI C63.4 1992 FCC Part 15.407(b)/15.209 Direct Connect NOTES:

N = No Polarization A = Average Reading

COMMENTS: Frequency range tested: 1MHz – 40GHz. The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-A S/N 02 and IDU S/N 3 - is tested for direct power out. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is also connected to the IBM notebook via a 6-ft serial cable and a 12-in RG-58 cable connects DS3 IN and DS3 OUT in loopback. The units are constantly transmitting and receiving autonomously. The RF signal port of the IDU is connected to the RF Input of a spectrum analyzer. The table represents the results of readings from the low, middle and high channels.

| Table 4: FCC 15.407(b)/15.209 Six Highest Radiated Emission Levels - ODU-A (1MHz-40GHz) |                          |                  |                     |                        |                    |                                |                         |              |       |  |  |  |
|-----------------------------------------------------------------------------------------|--------------------------|------------------|---------------------|------------------------|--------------------|--------------------------------|-------------------------|--------------|-------|--|--|--|
| FREQUENCY<br>MHz                                                                        | METER<br>READING<br>dBµV | COR<br>Ant<br>dB | RECTIC<br>Amp<br>dB | ON FACT<br>Cable<br>dB | TORS<br>Dist<br>dB | CORRECTED<br>READING<br>dBµV/m | SPEC<br>LIMIT<br>dBµV/m | MARGIN<br>dB | NOTES |  |  |  |
| 40.047                                                                                  | 43.7                     | 13.6             | -27.9               | 1.6                    |                    | 31.0                           | 40.0                    | -9.0         | VQ    |  |  |  |
| 60.058                                                                                  | 53.6                     | 5.4              | -27.9               | 2.0                    |                    | 33.1                           | 40.0                    | -6.9         | V     |  |  |  |
| 80.033                                                                                  | 51.6                     | 6.8              | -27.8               | 2.4                    |                    | 33.0                           | 40.0                    | -7.0         | HQ    |  |  |  |
| 400.055                                                                                 | 45.1                     | 16.4             | -27.5               | 6.1                    |                    | 40.1                           | 46.0                    | -5.9         | VQ    |  |  |  |
| 1112.967                                                                                | 21.7                     | 23.5             |                     | 3.4                    |                    | 48.6                           | 54.0                    | -5.4         | V     |  |  |  |
| 2746.608                                                                                | 10.8                     | 27.5             |                     | 6.1                    |                    | 44.4                           | 54.0                    | -9.6         | V     |  |  |  |

Test Method: Spec Limit : Test Distance:

ANSI C63.4 1992 FCC Part 15.407(b)/15.209 3 Meters

NOTES:

H = Horizontal Polarization V = Vertical Polarization Q = Quasi Peak Reading

COMMENTS: Frequency range tested: 1MHz – 40GHz. This data sheet comprises the following configuration: ODU-A operating on its LOW channel, which is the highest output power channel for that set. The set was tested using the highest and lowest gain antennas on the channels listed above. The lowest gain antenna represents the highest output power of the device and the highest gain antenna represents the lowest output power of the device. Test Setup: The EUT is comprised of a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit), coaxial cable, and either a 2-ft (highest gain) or 6-ft (lowest gain) antenna, along with support equipment that includes two notebook PC's. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is also connected to the IBM notebook via a 6-ft serial cable. On the IDU, an RG-58 cable connects DS3 IN and DS3 OUT in loopback. The set is constantly transmitting and receiving autonomously. The RF signal port of the ODU is connected to the antenna connector port of either the 2-ft (high gain) or 6-ft (low gain) antenna via a 6-ft coaxial cable. The unit was tested with both antennas and the data sheet comprises the highest readings from both antenna configurations.

|                  | Table 5: FCC 15.207 Six Highest Conducted Emission Levels - ODU-A |                   |    |               |            |                              |                       |              |       |  |  |  |  |  |
|------------------|-------------------------------------------------------------------|-------------------|----|---------------|------------|------------------------------|-----------------------|--------------|-------|--|--|--|--|--|
| FREQUENCY<br>MHz | METER<br>READING<br>dBµV                                          | COR<br>Lisn<br>dB | dB | ON FACT<br>dB | TORS<br>dB | CORRECTED<br>READING<br>dBµV | SPEC<br>LIMIT<br>dBµV | MARGIN<br>dB | NOTES |  |  |  |  |  |
| 0.751189         | 40.2                                                              | 0.3               |    | 0.1           |            | 40.6                         | 48.0                  | -7.4         | В     |  |  |  |  |  |
| 0.789675         | 41.5                                                              | 0.3               |    | 0.1           |            | 41.9                         | 48.0                  | -6.1         | В     |  |  |  |  |  |
| 2.932000         | 39.7                                                              | 0.5               |    | 0.3           |            | 40.5                         | 48.0                  | -7.5         | В     |  |  |  |  |  |
| 3.716000         | 40.9                                                              | 0.6               |    | 0.3           |            | 41.8                         | 48.0                  | -6.2         | В     |  |  |  |  |  |
| 4.042000         | 39.8                                                              | 0.6               |    | 0.4           |            | 40.8                         | 48.0                  | -7.2         | В     |  |  |  |  |  |
| 27.169670        | 35.0                                                              | 4.7               |    | 1.0           |            | 40.7                         | 48.0                  | -7.3         | В     |  |  |  |  |  |

Test Method: Spec Limit : ANSI C63.4 1992 FCC Part 15.207 NOTES: B = I

B = Black Lead

COMMENTS: The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-A S/N 02 and IDU S/N 3 - is tested for conducted emissions. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is connected to the IBM notebook via a 6-ft serial cable. The units are constantly transmitting and receiving autonomously. An RG-58 cable connects DS3 IN and DS3 OUT in loopback. A 6-ft coaxial cable is connected to the IDU RF connector port and is terminated with a 50-ohm dummy load. The units are constantly transmitting and receiving autonomously transmitting and receiving autonomously. AC Power = 120vac, 60-Hz

|                  | Table 6: FCC 15.407(b)/15.209 Six Highest Spurious Emission Levels - ODU-B |                  |                     |                        |                   |                                |                         |              |       |  |  |  |
|------------------|----------------------------------------------------------------------------|------------------|---------------------|------------------------|-------------------|--------------------------------|-------------------------|--------------|-------|--|--|--|
| FREQUENCY<br>MHz | METER<br>READING<br>dBµV                                                   | COR<br>Ant<br>dB | RECTIO<br>Amp<br>dB | ON FACT<br>Cable<br>dB | ORS<br>Dist<br>dB | CORRECTED<br>READING<br>dBµV/m | SPEC<br>LIMIT<br>dBµV/m | MARGIN<br>dB | NOTES |  |  |  |
| 15900.830        | 25.2                                                                       | 0.0              |                     | 16.2                   |                   | 41.4                           | 54.0                    | -12.6        | Н     |  |  |  |
| 15991.860        | 28.3                                                                       | 0.0              |                     | 16.4                   |                   | 44.7                           | 54.0                    | -9.3         | V     |  |  |  |
| 17744.970        | 32.8                                                                       | 0.0              |                     | 13.4                   |                   | 46.2                           | 54.0                    | -7.8         | Н     |  |  |  |
| 21001.670        | 24.2                                                                       | 0.0              |                     | 19.3                   |                   | 43.5                           | 54.0                    | -10.5        | Ν     |  |  |  |
| 21200.830        | 22.3                                                                       | 0.0              |                     | 18.5                   |                   | 40.8                           | 54.0                    | -13.2        | Н     |  |  |  |
| 21345.030        | 24.8                                                                       | 0.0              |                     | 18.0                   |                   | 42.8                           | 54.0                    | -11.2        | V     |  |  |  |

Test Method: Spec Limit : Test Distance: ANSI C63.4 1992 FCC Part 15.407(b)/15.209 Direct Connect

NOTES:

H = Horizontal Polarization V = Vertical Polarization

COMMENTS: Frequency range tested: 1MHz - 40GHz. The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-B S/N 01 and IDU S/N 4 - is tested for direct power out. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is also connected to the IBM notebook via a 6-ft serial cable and a 12-in RG-58 cable connects DS3 IN and DS3 OUT in loopback. The units are constantly transmitting and receiving autonomously. The RF signal port of the IDU is connected to the RF Input of a spectrum analyzer. The table represents the results of readings from the low, middle and high channels.

| Table 7: FCC 15.407(b)/15.209 Six Highest Radiated Emission Levels - ODU-B (IMHz-40GHz) |                          |                  |                     |                        |                    |                                |                         |              |       |  |  |  |
|-----------------------------------------------------------------------------------------|--------------------------|------------------|---------------------|------------------------|--------------------|--------------------------------|-------------------------|--------------|-------|--|--|--|
| FREQUENCY<br>MHz                                                                        | METER<br>READING<br>dBµV | COR<br>Ant<br>dB | RECTIO<br>Amp<br>dB | ON FACT<br>Cable<br>dB | TORS<br>Dist<br>dB | CORRECTED<br>READING<br>dBµV/m | SPEC<br>LIMIT<br>dBµV/m | MARGIN<br>dB | NOTES |  |  |  |
| 40.047                                                                                  | 43.7                     | 13.6             | -27.9               | 1.6                    |                    | 31.0                           | 40.0                    | -9.0         | VQ    |  |  |  |
| 60.058                                                                                  | 53.6                     | 5.4              | -27.9               | 2.0                    |                    | 33.1                           | 40.0                    | -6.9         | V     |  |  |  |
| 80.033                                                                                  | 51.6                     | 6.8              | -27.8               | 2.4                    |                    | 33.0                           | 40.0                    | -7.0         | HQ    |  |  |  |
| 400.055                                                                                 | 45.1                     | 16.4             | -27.5               | 6.1                    |                    | 40.1                           | 46.0                    | -5.9         | VQ    |  |  |  |
| 1112.967                                                                                | 21.7                     | 23.5             |                     | 3.4                    |                    | 48.6                           | 54.0                    | -5.4         | V     |  |  |  |
| 2746.608                                                                                | 10.8                     | 27.5             |                     | 6.1                    |                    | 44.4                           | 54.0                    | -9.6         | V     |  |  |  |

Test Method: Spec Limit : Test Distance: ANSI C63.4 1992 FCC Part 15.407(b)/15.209 3 Meters

NOTES:

H = Horizontal Polarization V = Vertical Polarization Q = Quasi Peak Reading

Frequency range tested: 1MHz – 40GHz. This data sheet comprises the COMMENTS: following configuration: ODU-B operating on its MID channel, which is the highest output power channel for that set. The set was tested using the highest and lowest gain antennas on the channels listed above. The lowest gain antenna represents the highest output power of the device and the highest gain antenna represents the lowest output power of the device. Test Setup: The EUT is comprised of a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit), coaxial cable, and either a 2-ft (highest gain) or 6-ft (lowest gain) antenna, along with support equipment that includes two notebook PC's. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is also connected to the IBM notebook via a 6-ft serial cable. On the IDU, an RG-58 cable connects DS3 IN and DS3 OUT in loopback. The set is constantly transmitting and receiving autonomously. The RF signal port of the ODU is connected to the antenna connector port of either the 2-ft (high gain) or 6-ft (low gain) antenna via a 6-ft coaxial cable. The unit was tested with both antennas and the data sheet comprises the highest readings from both antenna configurations.

|                  | Table 8: FCC 15.207 Six Highest Conducted Emission Levels - ODU-B |                   |    |               |            |                              |                       |              |       |  |  |  |  |
|------------------|-------------------------------------------------------------------|-------------------|----|---------------|------------|------------------------------|-----------------------|--------------|-------|--|--|--|--|
| FREQUENCY<br>MHz | METER<br>READING<br>dBµV                                          | COR<br>Lisn<br>dB | dB | ON FACT<br>dB | TORS<br>dB | CORRECTED<br>READING<br>dBµV | SPEC<br>LIMIT<br>dBµV | MARGIN<br>dB | NOTES |  |  |  |  |
| 0.721200         | 41.2                                                              | 0.2               |    | 0.2           |            | 41.6                         | 48.0                  | -6.4         | W     |  |  |  |  |
| 1.884000         | 41.6                                                              | 0.3               |    | 0.2           |            | 42.1                         | 48.0                  | -5.9         | W     |  |  |  |  |
| 3.442132         | 40.8                                                              | 0.6               |    | 0.3           |            | 41.7                         | 48.0                  | -6.3         | В     |  |  |  |  |
| 3.549840         | 44.0                                                              | 0.5               |    | 0.3           |            | 44.8                         | 48.0                  | -3.2         | WQ    |  |  |  |  |
| 6.920000         | 40.4                                                              | 0.7               |    | 0.5           |            | 41.6                         | 48.0                  | -6.4         | W     |  |  |  |  |
| 20.014170        | 38.2                                                              | 3.1               |    | 0.9           |            | 42.2                         | 48.0                  | -5.8         | WQ    |  |  |  |  |

Test Method: Spec Limit : ANSI C63.4 1992 FCC Part 15.207 NOTES:

Q = Quasi Peak Reading W = White Lead B = Black Lead

COMMENTS: The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-B S/N 01 and IDU S/N 4 - is tested for conducted emissions. The fundamental frequency is 5.300GHz. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is connected to the IBM notebook via a 6-ft serial cable. The units are constantly transmitting and receiving autonomously. An RG-58 cable connects DS3 IN and DS3 OUT in loopback. A 6-ft coaxial cable is connected to the IDU RF connector port and is terminated with a 50-ohm dummy load. The units are constantly transmitting and receiving autonomously. AC Power = 120vac, 60-Hz

## TABLE A

# LIST OF TEST EQUIPMENT

## **Hollister Site D**

| Equipment                 | Mfg.      | Model #           | Asset<br># | Serial #           | Cal Date | Cal Due  |
|---------------------------|-----------|-------------------|------------|--------------------|----------|----------|
| Spectrum<br>Analyzer      | HP        | 8564E             | 01406      | 3623A00539         | 12/12/00 | 12/12/01 |
| Horn Ant., 1-18           | EMCO      | 3115              | 02157      | 9901-5655          | 10/20/00 | 10/20/01 |
| Horn Ant., 18-<br>26.5    | HP        | 84125-80008       | 01413      | 942126-003         | 2/2/00   | 2/2/01   |
| Horn Ant., 26.5-<br>40    | HP        | 84125-80001       | 01414      | 951559-008         | 2/2/00   | 2/2/01   |
| Mag Loop                  | EMCO      | 6502              | 0432       | 2078               | 8/17/00  | 8/17/01  |
| 50-Ft High Freq.<br>Cable | Andrews   | None              | None       | Hol-hf-050-08      | 9/21/00  | 9/21/01  |
| Spec. An.                 | HP        | 85680A            | 00446      | 2237A02391         | 9/17/00  | 9/17/01  |
| Spec. An. Display         | HP        | 85662A            | 00446      | 2235A02391         | 9/17/00  | 9/17/01  |
| QPA                       | HP        | 85650A            | 00445      | 2043A00286         | 9/17/00  | 9/17/01  |
| Preamplifier              | HP        | 8447D             | 00705      | 2944A06739         | 12/15/00 | 12/15/01 |
| Bilog Ant.                | Schaffner | CBL6111C          | 01995      | 2451               | 10/12/00 | 10/12/00 |
| 10-M Radiated<br>Cable    | Andrews   | None              | None       | rad cable_10M      | 8/11/00  | 8/11/01  |
| LISN a                    | Solar     | 8616-50-TS-24-BNC | 33204      | 905814             | 9/8/00   | 9/8/01   |
| LISN b                    | Solar     | 8616-50-TS-24-BNC | 33204      | 905815             | 9/8/00   | 9/8/01   |
| Conducted Cable           | Andrews   | None              | None       | cond_cbl_hd_<br>00 | 11/13/00 | 11/13/01 |

## **MEASUREMENT UNCERTAINTY**

Associated with data in this report is  $a \pm 4dB$  measurement uncertainty.

## TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within  $+15^{\circ}$ C and  $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

## EUT SETUP

The equipment under test (EUT) and the peripheral(s) listed were set up in a manner that represented their normal use. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the Tables for emissions. Additionally, a complete description of all the ports and I/O cables is included on the information sheets contained in Appendix A.

During radiated emissions testing, the EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters. This configuration is typical for radiated emissions testing of table top devices.

I/O cables were connected to the EUT and peripherals in the manner required for normal operation of the system. Excess cabling was bundled in the center in a serpentine fashion using 30-40 centimeter lengths.

During conducted emissions testing, the EUT was located 80 centimeters above the conducting ground plane on the same nonconducting table as was used for radiated testing. The metal plane was grounded to the earth through the green wire safety ground. Power to the EUT was provided via 3 meters of shielded power cable from a filter grounded to the metal plane to a LISN. The LISN was also grounded to the plane and attached to the LISN was a 4 ganged grounded outlet whose source was also shielded and 60 cm in length. All other objects were kept a minimum of 1 meter away from the EUT during the conducted test.

## TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the SkyZhone 45, SZ-045-N-5G-LNK-X. For radiated measurements from 30 to 1000 MHz, the bilog antenna was used. For frequencies above 1000 MHz, the horn antenna was used. All antennas were located at a distance of 3 meters from the edge of the EUT. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB $\mu$ V, and a vertical scale of 10 dB per division.

| TABLE B : 15.35 A      | NALYZER BANDWIDT    | H SETTINGS PER FRE | QUENCY RANGE      |
|------------------------|---------------------|--------------------|-------------------|
| TEST                   | BEGINNING FREQUENCY | ENDING FREQUENCY   | BANDWIDTH SETTING |
| CONDUCTED EMISSIONS    | 450 kHz             | 30 MHz             | 9 kHz             |
| RADIATED EMISSIONS     | 1MHz                | 30 MHz             | 9 kHz             |
| RADIATED EMISSIONS     | 30 MHz              | 1000 MHz           | 120 kHz           |
| RADIATED EMISSIONS     | 1000 MHz            | 40 GHz             | 1 MHz             |
| 15.407(a) POWER LIMITS | 5GHz                | 6 GHz              | 1 MHz             |

## SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in Tables 1-8 indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the SkyZhone 45, SZ-045-N-5G-LNK-X.

## Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

## Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

## <u>Average</u>

When the frequencies exceed 1 GHz, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

## **TEST METHODS**

The radiated and conducted emissions data of the SkyZhone 45, SZ-045-N-5G-LNK-X, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the "Sample Calculations". The corrected data was then compared to the FCC Part 15 Subparts C & D for Sections 15.209 & 15.407 emissions limits to determine compliance.

Preliminary and final measurements were taken in order to better ensure that all emissions from the EUT were found and maximized.

## **15.203 Antenna Requirements**

The EUT system is comprised of three antennas. The antennas have different gains but are the same type of antenna. The EUT's output power is adjusted to comply with the power requirements for each antenna. Power output testing was performed using all three power settings. Spurious emissions testing was performed using the lowest and highest gain antennas, representing the lowest and highest power settings.

### **Radiated Emissions Testing**

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode with the I/O cables and line cords facing the antenna. The frequency range of 30 - 1000 MHz was then scanned with the bilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks, which were at or near the limit, were recorded. Lastly, a scan of the FM band from 88 - 110 MHz was made, using a reduced resolution bandwidth and a reduced frequency span. The bilog antenna was changed to the horizontal polarity and the above steps were repeated. The horn antenna was used to scan for frequencies above 1000 MHz. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

For the final radiated scan, the equipment was again positioned with its I/O and power cables facing the antenna. A thorough scan of all frequencies was manually made using a small frequency span, rotating the turntable as needed. Comparison with the previously recorded measurements was then made.

Using the peak readings from both scans as a guide, the test engineer then maximized the readings with respect to the table rotation, antenna height and configuration of the peripherals and cables. Maximizing of the cables was achieved by monitoring the spectrum analyzer on a closed circuit television monitor while the EUT cables were being moved and rearranged on the EUT table for maximum emissions. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

#### **Conducted Emissions Testing**

For conducted emissions testing, a 30 to 50 second sweep time was used for automated measurements in the frequency bands of 450 kHz to 1.705 MHz, 1.705 MHz to 3 MHz, and 3 MHz to 30 MHz. All readings within 20 dB of the limit were recorded. At frequencies where the recorded emissions were close to the limit, further investigation was performed manually at a slower sweep rate.

## FCC 15.407(a)(6) – Peak Excursion

In accordance with Part 15.407(a)(6), the ratio of the peak excursion of the modulation envelope to the peak transmit power did not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

## FCC 15.407(a) Peak Power Density and Output Power at Antenna Terminal

The RF output of the EUT was connected directly to the RF input of the spectrum analyzer. The spectrum analyzer bandwidth settings were set to 1 MHz as per FCC Part 15.407(a)(5) and the center frequency was adjusted to the fundamental frequency of the EUT. The peak power spectral density was recorded. The output power was also recorded and adjusted for bandwidth limitations of the spectral analyzer.

## **Occupied Bandwidth (Used for calculations only)**

EUT was directly connected to the spectrum analyzer via coax cable. Spectrum analyzer bandwidth setting was set to 1 MHz and the center frequency adjusted to find the frequency of the EUT. The 26dB bandwidth was recorded and a plot captured.

### E.I.R.P. Testing

The spectrum analyzer was set to the fundamental frequency of the EUT. The signal was maximized by table rotation and antenna height adjustment. The maximum level was recorded and adjusted for bandwidth limitations of the spectrum analyzer, cable losses, and amplifier gain and antenna factor. The corrected reading was in the following formula to obtain E.I.R.P.:

| $P = (Ed)^2$ | Where:                         |
|--------------|--------------------------------|
| 30G          | P = power in watts             |
|              | E = corrected reading in volts |
|              | d = distance                   |
|              | G = gain of antenna            |

## SAMPLE CALCULATIONS

The basic spectrum analyzer reading was converted using correction factors as shown in the emissions readings in Tables 1-8. For radiated emissions in  $dB\mu V/m$ , the spectrum analyzer reading in  $dB\mu V$  was corrected by using the following formula:

Meter reading (dBµV) + Antenna Factor (dB) + Cable Loss (dB) - Distance Correction (dB) - Pre-amplifier Gain (dB) = Corrected Reading (dBµV/m)

This reading was then compared to the applicable specification limit to determine compliance.

A typical data sheet will display the following in column format:

| # | Freq<br>MHz | Rdng<br>dBuV | Cable | HP-84 | CHASE | Horn | Dist | Corr<br>dBuV/m | Spec | Margin | Polar |
|---|-------------|--------------|-------|-------|-------|------|------|----------------|------|--------|-------|
|   |             | Hol-h        | con_  | rad_c | WHT-L | LISN |      | BLK-L          |      |        |       |

# means reading number

Freq MHz is the frequency in MHz of the obtained reading.

Rdng dBuV is the reading obtained on the spectrum analyzer in  $dB\mu V$ .

HP-84 is short for the preamplifier factor or gain in dB.

**CHASE** is the biconical antenna factor in dB.

**Horn** is the horn antenna factor in dB.

Hol-h, rad\_c & con\_ are the cable losses in dB of the coaxial cables on the OATS.

**Dist** is the distance factor (in dB). It is used when testing at a different test distance than the one stated in the spec.

**Corr**  $dB\mu V/m$  is the corrected reading which is now in  $dB\mu V/m$  (field strength).

**Spec** is the specification limit (dB) stated in the regulations.

**Margin** is the closeness to the specified limit in dB; + is over and - is under the limit.

**Polar** is the Polarity of the antenna with respect to earth.

LISN, BLK-L & WHT-L are the line impedance stabilization network factor in dB.

# APPENDIX A

# INFORMATION ABOUT THE EQUIPMENT UNDER TEST

## SZ-045-N-5G-IDU

| INFORMATION ABOUT THE EQUIPMENT UNDER TEST |                |  |
|--------------------------------------------|----------------|--|
| Test Software/Firmware:                    | V 1.1          |  |
| CRT was displaying:                        | Not Applicable |  |
| Power Supply Manufacturer:                 | Condor         |  |
| Power Supply Part Number:                  | 100-41935      |  |
| AC Line Filter Manufacturer:               | Not Applicable |  |
| AC Line Filter Part Number:                |                |  |
| Line voltage used during testing:          | 120V 60Hz      |  |

| I/O PORTS                    |   |  |
|------------------------------|---|--|
| Туре                         | # |  |
| DS-3 payload in (BNC)        | 1 |  |
| DS-3 payload out (BNC)       | 1 |  |
| 10baseT (RJ-45)              | 1 |  |
| Craft (DB-9 carrying RS-232) | 1 |  |
| IF (TNC)                     | 1 |  |
| Alarms (Form C dry contact)  | 3 |  |

| CRYSTAL OSCILLATORS |             |  |
|---------------------|-------------|--|
| Туре                | Freq In MHz |  |
| Master Clock        | 40          |  |
| DS-3 reference      | 44.736      |  |
|                     |             |  |
|                     |             |  |
|                     |             |  |
|                     |             |  |

| PRINTED CIRCUIT BOARDS |                     |                |        |           |
|------------------------|---------------------|----------------|--------|-----------|
| Function               | Model & Rev         | Clocks, MHz    | Layers | Location  |
| System                 | 800-00183-01 Rev 5  | 40 MHz, 44.736 | 8      | IDU       |
|                        |                     | MHz            |        |           |
| Modem                  | 800-00281-01 Rev Z2 | None           | 8      | Mezzanine |

## **CABLE INFORMATION**

| Cable #:                                                                           | 1           | Cable(s) of this type:  | 1              |
|------------------------------------------------------------------------------------|-------------|-------------------------|----------------|
|                                                                                    |             |                         |                |
| Cable Type:                                                                        | RG-6        | Shield Type:            | Braided + foil |
| Construction:                                                                      | Coaxial     | Length In Meters:       | 100            |
| Connected To End (1):                                                              | IDU IF port | Connected To End (2):   | ODU IF port    |
| Connector At End (1):                                                              | TNC         | Connector At End (2):   | TNC            |
| Shield Grounded At (1):                                                            | Yes         | Shield Grounded At (2): | Yes            |
| Part Number:                                                                       | N/A         | Number of Conductors:   | 2              |
| Notes and/or description: Cable furnished by professional installer, Zhone P/N N/A |             |                         |                |

# SZ-045-<u>N-5G-ODU-A</u>

| INFORMATION ABOUT THE EQUIPMENT UNDER TEST |                |  |
|--------------------------------------------|----------------|--|
| Test Software/Firmware:                    | V 1.1          |  |
| CRT was displaying:                        | Not Applicable |  |
| Power Supply Manufacturer:                 | Not Applicable |  |
| Power Supply Part Number:                  | Not Applicable |  |
| AC Line Filter Manufacturer:               | Not Applicable |  |
| AC Line Filter Part Number:                | Not Applicable |  |
| Line voltage used during testing:          | 120V 60Hz      |  |

| I/O PORTS                    |   |  |
|------------------------------|---|--|
| Туре                         | # |  |
| Antenna (N-F)                | 1 |  |
| Craft (DB-9 carrying RS-232) | 1 |  |
| IF (TNC)                     | 1 |  |

| CRYSTAL OSCILLATORS |             |  |
|---------------------|-------------|--|
| Туре                | Freq In MHz |  |
| Crystal Resonator   | 5.0688      |  |
|                     |             |  |
|                     |             |  |

| PRINTED CIRCUIT BOARDS |                    |             |        |               |  |  |
|------------------------|--------------------|-------------|--------|---------------|--|--|
| Function               | Model & Rev        | Clocks, MHz | Layers | Location      |  |  |
| CPU                    | 800-00185-01 Rev 6 | None        | 8      | Upper stack   |  |  |
| IF-A                   | 800-00187-01 Rev 8 | None        | 8      | Within shield |  |  |
| Duplexer               | 800-00186          | None        | 1      | Within shield |  |  |

## CABLE INFORMATION

| Cable #:                  | 1            | Cable(s) of this type:  | 1       |
|---------------------------|--------------|-------------------------|---------|
| Cable Type:               | LMR-600      | Shield Type:            |         |
| Construction:             |              | Length In Meters:       | 2       |
| Connected To End (1):     | ODU Ant Port | Connected To End (2):   | Antenna |
| Connector At End (1):     | N-F          | Connector At End (2):   | N-F     |
| Shield Grounded At (1):   | Yes          | Shield Grounded At (2): | Yes     |
| Part Number:              | TBD          | Number of Conductors:   | 2       |
| Notes and/or description: |              |                         |         |

## SZ-045-N-5G-ODU-B

| INFORMATION ABOUT THE EQUIPMENT UNDER TEST |                |  |  |  |  |
|--------------------------------------------|----------------|--|--|--|--|
| Test Software/Firmware:                    | V 1.1          |  |  |  |  |
| CRT was displaying:                        | Not Applicable |  |  |  |  |
| Power Supply Manufacturer:                 | Not Applicable |  |  |  |  |
| Power Supply Part Number:                  | Not Applicable |  |  |  |  |
| AC Line Filter Manufacturer:               | Not Applicable |  |  |  |  |
| AC Line Filter Part Number:                | Not Applicable |  |  |  |  |
| Line voltage used during testing:          | 120V 60Hz      |  |  |  |  |

| I/O PORTS                    |   |  |  |  |
|------------------------------|---|--|--|--|
| Туре                         | # |  |  |  |
| Antenna (N-F)                | 1 |  |  |  |
| Craft (DB-9 carrying RS-232) | 1 |  |  |  |
| IF (TNC)                     | 1 |  |  |  |

| CRYSTAL OSCILLATORS |        |  |  |  |  |
|---------------------|--------|--|--|--|--|
| Type Freq In MHz    |        |  |  |  |  |
| Crystal Resonator   | 5.0688 |  |  |  |  |
|                     |        |  |  |  |  |
|                     |        |  |  |  |  |

| PRINTED CIRCUIT BOARDS |                    |             |        |               |  |  |
|------------------------|--------------------|-------------|--------|---------------|--|--|
| Function               | Model & Rev        | Clocks, MHz | Layers | Location      |  |  |
| CPU                    | 800-00185-01 Rev 6 | None        | 8      | Upper stack   |  |  |
| IF-A                   | 800-00290-01 Rev 8 | None        | 8      | Within shield |  |  |
| Duplexer               | 800-00289-01       | None        | 1      | Within shield |  |  |

## CABLE INFORMATION

| Cable #:                  | 1            | Cable(s) of this type:  | 1       |
|---------------------------|--------------|-------------------------|---------|
|                           |              |                         |         |
| Cable Type:               | LMR-600      | Shield Type:            |         |
| Construction:             |              | Length In Meters:       | 2       |
| Connected To End (1):     | ODU Ant Port | Connected To End (2):   | Antenna |
| Connector At End (1):     | N-F          | Connector At End (2):   | N-F     |
| Shield Grounded At (1):   | Yes          | Shield Grounded At (2): | Yes     |
| Part Number:              | TBD          | Number of Conductors:   | 2       |
| Notes and/or description: |              |                         |         |

# PHOTOGRAPH SHOWING DIRECT CONNECT TESTING - ODU-A



Front View

## PHOTOGRAPH SHOWING RADIATED & E.R.I.P EMISSIONS- ODU-A



## PHOTOGRAPH SHOWING RADIATED & E.R.I.P EMISSIONS- ODU-A



# PHOTOGRAPH SHOWING E.R.I.P EMISSIONS - ODU-A



# PHOTOGRAPH SHOWING CONDUCTED EMISSIONS - ODU-A



Front View

## PHOTOGRAPH SHOWING DIRECT CONNECT TESTING - ODU-B



Front View

## PHOTOGRAPH SHOWING RADIATED & E.R.I.P EMISSIONS- ODU-B



## PHOTOGRAPH SHOWING RADIATED & E.R.I.P EMISSIONS- ODU-B



## PHOTOGRAPH SHOWING E.R.I.P EMISSIONS - ODU-B



# PHOTOGRAPH SHOWING CONDUCTED EMISSIONS - ODU-B



Front View

## PHOTOGRAPH SHOWING CONDUCTED EMISSIONS - ODU-B



Side View

# **APPENDIX B**

# MEASUREMENT DATA SHEETS







# Title: Hi-Chan, 26dB BW = 24.0MHz, Zhone Technologies Corp., 01-16-01, ODU-A Ref Level 107 dBuV ATTEN 10 dB Marker: 24.0MHz -0.5 dBuV







# Page 47 of 69 Report No: FC01-007A

| Customer:      | Zhone Technologies, Inc. |            |             |
|----------------|--------------------------|------------|-------------|
| Specification: | FCC15.209 Direct         |            |             |
| Work Order #:  | 75966                    | Date:      | 02/23/2001  |
| Test Type:     | Radiated Scan            | Time:      | 10:28:00    |
| Equipment:     | Digital Microwave System | Sequence#: | 2           |
| Manufacturer:  | Zhone Technologies, Inc. | Tested By: | Conan Boyle |
| Model:         | SZ-045-N5G-LNK           | ·          | 2           |
| S/N:           | 02                       |            |             |

#### Equipment Under Test (\* = EUT):

| Function                    | Manufacturer             | Model #          | S/N |
|-----------------------------|--------------------------|------------------|-----|
| Radio Up-Converter/Diplexer | Zhone Technologies, Inc. | SZ-045-N56-ODU-A | 02  |
| DS3 Data Interface          | Zhone Technologies, Inc. | Sky Zhone 45     | 3   |
|                             |                          |                  |     |

#### Support Devices:

| Function      | Manufacturer | Model #       | S/N                           |
|---------------|--------------|---------------|-------------------------------|
| Notebook PC   | IBM          | Thinkpad T20  | Zhone Tech. Inc. Asset #11057 |
| AC-DC Adapter | IBM          | P/N 02K6657   | 1Z0ZA022ZM8                   |
| AC-DC Adapter | Dell         | P/N 7832D     | 17972-94Q-1QZ1                |
| Notebook PC   | Dell         | Inspiron 3500 | 0009653D                      |

#### Test Conditions / Notes:

The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-A S/N 02 and IDU S/N 3 - is tested for direct power out. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is also connected to the IBM notebook via a 6-ft serial cable and a 12-in RG-58 cable connects DS3 IN and DS3 OUT in loopback. The units are constantly transmitting and receiving autonomously. The RF signal port of the IDU is connected to the RF Input of a spectrum analyzer. The EUT is transmitting on low-channel.

| Mea | surement Data: | Re   | eading lis | ted by r | nargin. |    | Te    | est Distance | e: None |        |       |
|-----|----------------|------|------------|----------|---------|----|-------|--------------|---------|--------|-------|
|     |                |      | hol-h      |          |         |    |       |              |         |        |       |
| #   | Freq           | Rdng |            |          |         |    | Dist  | Corr         | Spec    | Margin | Polar |
|     | MHz            | dBµV | dB         | dB       | dB      | dB | Table | DBµV/m       | dBµV/m  | dB     | Ant   |
| 1   | 15374.980M     | 35.5 | +14.7      |          |         |    | +0.0  | 50.2         | 54.0    | -3.8   | None  |
|     | Ave            |      |            |          |         |    |       |              |         |        |       |
| ^   | 15374.970M     | 37.8 | +14.7      |          |         |    | +0.0  | 52.5         | 54.0    | -1.5   | None  |
|     |                |      |            |          |         |    |       |              |         |        |       |
| 3   | 11481.080M     | 35.8 | +9.2       |          |         |    | +0.0  | 45.0         | 54.0    | -9.0   | None  |
|     |                |      |            |          |         |    |       |              |         |        |       |
| 4   | 17214.000M     | 31.5 | +12.2      |          |         |    | +0.0  | 43.7         | 54.0    | -10.3  | None  |
|     |                |      |            |          |         |    |       |              |         |        |       |
| 5   | 22952.330M     | 4.0  | +38.0      |          |         |    | +0.0  | 42.0         | 54.0    | -12.0  | None  |
|     | Ave            |      |            |          |         |    |       |              |         |        |       |
| ^   | 22952.330M     | 15.0 | +38.0      |          |         |    | +0.0  | 53.0         | 54.0    | -1.0   | None  |
|     |                |      |            |          |         |    |       |              |         |        |       |
| 7   | 34428.340M     | 15.0 | +0.0       |          |         |    | +0.0  | 15.0         | 54.0    | -39.0  | None  |
|     |                |      |            |          |         |    |       |              |         |        |       |
| 8   | 28690.330M     | 11.8 | +0.0       |          |         |    | +0.0  | 11.8         | 54.0    | -42.2  | None  |
|     |                |      |            |          |         |    |       |              |         |        |       |

| Customer:      | Zhone Technologies, Inc. |            |             |
|----------------|--------------------------|------------|-------------|
| Specification: | FCC15.209 Direct         |            |             |
| Work Order #:  | 75966                    | Date:      | 02/23/2001  |
| Test Type:     | Radiated Scan            | Time:      | 10:25:00    |
| Equipment:     | Digital Microwave System | Sequence#: | 3           |
| Manufacturer:  | Zhone Technologies, Inc. | Tested By: | Conan Boyle |
| Model:         | SZ-045-N5G-LNK           | •          | -           |
| S/N:           | 02                       |            |             |

#### Equipment Under Test (\* = EUT):

| Function                    | Manufacturer             | Model #          | S/N |
|-----------------------------|--------------------------|------------------|-----|
| Radio Up-Converter/Diplexer | Zhone Technologies, Inc. | SZ-045-N56-ODU-A | 02  |
| DS3 Data Interface          | Zhone Technologies, Inc. | Sky Zhone 45     | 3   |
| Support Devices:            |                          |                  |     |

#### Function Manufacturer Model # S/N Notebook PC Thinkpad T20 Zhone Tech. Inc. Asset #11057 IBM AC-DC Adapter IBM P/N 02K6657 1Z0ZA022ZM8 AC-DC Adapter Dell P/N 7832D 17972-94Q-1QZ1 Notebook PC Dell Inspiron 3500 0009653D

#### Test Conditions / Notes:

The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-A S/N 02 and IDU S/N 3 - is tested for direct power out. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is also connected to the IBM notebook via a 6-ft serial cable and a 12-in RG-58 cable connects DS3 IN and DS3 OUT in loopback. The units are constantly transmitting and receiving autonomously. The RF signal port of the IDU is connected to the RF Input of a spectrum analyzer. The EUT is transmitting on mid channel.

| Meas | surement Data: | Re   | eading lis | ted by 1 | nargin. | Test Distance: None |       |        |        |        |       |
|------|----------------|------|------------|----------|---------|---------------------|-------|--------|--------|--------|-------|
|      |                |      | hol-h      |          |         |                     |       |        |        |        |       |
| #    | Freq           | Rdng |            |          |         |                     | Dist  | Corr   | Spec   | Margin | Polar |
|      | MHz            | dBµV | dB         | dB       | dB      | dB                  | Table | dBµV/m | dBµV/m | dB     | Ant   |
| 1    | 23094.500M     | 12.3 | +39.4      |          |         |                     | +0.0  | 51.7   | 54.0   | -2.3   | None  |
|      | Ave            |      |            |          |         |                     |       |        |        |        |       |
| ۸    | 23094.500M     | 23.3 | +39.4      |          |         |                     | +0.0  | 62.7   | 54.0   | +8.7   | None  |
|      |                |      |            |          |         |                     |       |        |        |        |       |
| 3    | 20639.970M     | 26.3 | +21.5      |          |         |                     | +0.0  | 47.8   | 54.0   | -6.2   | None  |
|      | Ave            |      |            |          |         |                     |       |        |        |        |       |
| ^    | 20639.970M     | 31.7 | +21.5      |          |         |                     | +0.0  | 53.2   | 54.0   | -0.8   | None  |
|      |                |      |            |          |         |                     |       |        |        |        |       |
| 5    | 15479.980M     | 32.4 | +15.3      |          |         |                     | +0.0  | 47.7   | 54.0   | -6.3   | None  |
|      | Ave            |      |            |          |         |                     |       |        |        |        |       |
| ۸    | 15479.980M     | 35.3 | +15.3      |          |         |                     | +0.0  | 50.6   | 54.0   | -3.4   | None  |
|      |                |      |            |          |         |                     |       |        |        |        |       |
| 7    | 11551.130M     | 35.0 | +9.4       |          |         |                     | +0.0  | 44.4   | 54.0   | -9.6   | None  |
|      |                |      |            |          |         |                     |       |        |        |        |       |
| 8    | 17318.500M     | 28.2 | +11.6      |          |         |                     | +0.0  | 39.8   | 54.0   | -14.2  | None  |
|      |                |      |            |          |         |                     |       |        |        |        |       |

| Customer:      | Zhone Technologies, Inc. |            |             |
|----------------|--------------------------|------------|-------------|
| Specification: | FCC15.209 Direct         |            |             |
| Work Order #:  | 75966                    | Date:      | 01/17/2001  |
| Test Type:     | Radiated Scan            | Time:      | 10:29:10    |
| Equipment:     | Digital Microwave System | Sequence#: | 4           |
| Manufacturer:  | Zhone Technologies, Inc. | Tested By: | Conan Boyle |
| Model:         | SZ-045-N5G-LNK           | ·          | -           |
| S/N:           | 02                       |            |             |

#### Equipment Under Test (\* = EUT):

| Function                    | Manufacturer             | Model #          | S/N |
|-----------------------------|--------------------------|------------------|-----|
| Radio Up-Converter/Diplexer | Zhone Technologies, Inc. | SZ-045-N56-ODU-A | 02  |
| DS3 Data Interface          | Zhone Technologies, Inc. | Sky Zhone 45     | 3   |
|                             |                          |                  |     |

#### Support Devices:

| Function      | Manufacturer | Model #       | S/N                           |
|---------------|--------------|---------------|-------------------------------|
| Notebook PC   | IBM          | Thinkpad T20  | Zhone Tech. Inc. Asset #11057 |
| AC-DC Adapter | IBM          | P/N 02K6657   | 1Z0ZA022ZM8                   |
| AC-DC Adapter | Dell         | P/N 7832D     | 17972-94Q-1QZ1                |
| Notebook PC   | Dell         | Inspiron 3500 | 0009653D                      |

#### Test Conditions / Notes:

The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one se ODU-A S/N 02 and IDU S/N 3 - is tested for direct power out. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is also connected to the IBM notebook via a 6-ft serial cable and a 12-in RG-58 cable connects DS3 IN and DS3 OUT in loopback. The units are constantly transmitting and receiving autonomously. The RF signal port of the IDU is connected to the RF Input of a spectrum analyzer. The EUT is transmitting on high channel.

| Meas      | urement Data: | Re   | eading lis | ted by r | nargin. | Test Distance: None |       |        |        |        |       |
|-----------|---------------|------|------------|----------|---------|---------------------|-------|--------|--------|--------|-------|
|           |               |      | hol-h      |          |         |                     |       |        |        |        |       |
| #         | Freq          | Rdng |            |          |         |                     | Dist  | Corr   | Spec   | Margin | Polar |
|           | MHz           | dBµV | dB         | dB       | dB      | dB                  | Table | dBµV/m | dBµV/m | dB     | Ant   |
|           | 1 15569.950M  | 23.2 | +15.5      |          |         |                     | +0.0  | 38.7   | 54.0   | -15.3  | None  |
|           | Ave           |      |            |          |         |                     |       |        |        |        |       |
| /         | √ 15569.980M  | 45.3 | +15.5      |          |         |                     | +0.0  | 60.8   | 54.0   | +6.8   | None  |
|           |               |      |            |          |         |                     |       |        |        |        |       |
| · · · · · | 2 23226.500M  | 2.0  | +38.7      |          |         |                     | +0.0  | 40.7   | 54.0   | -13.3  | None  |
|           | Ave           |      |            |          |         |                     |       |        |        |        |       |
| /         | √ 23226.980M  | 13.0 | +38.7      |          |         |                     | +0.0  | 51.7   | 54.0   | -2.3   | None  |
|           |               |      |            |          |         |                     |       |        |        |        |       |
|           | 3 17419.500M  | 36.0 | +11.1      |          |         |                     | +0.0  | 47.1   | 54.0   | -6.9   | None  |
|           |               |      |            |          |         |                     |       |        |        |        |       |
| 4         | 4 11611.330M  | 37.5 | +9.5       |          |         |                     | +0.0  | 47.0   | 54.0   | -7.0   | None  |
|           |               |      |            |          |         |                     |       |        |        |        |       |
|           | 7 34841.610M  | 17.2 | +0.0       |          |         |                     | +0.0  | 17.2   | 54.0   | -36.8  | None  |
|           |               |      |            |          |         |                     |       |        |        |        |       |
| 8         | 8 29033.980M  | 11.3 | +0.0       |          |         |                     | +0.0  | 11.3   | 54.0   | -42.7  | None  |
| 1         |               |      |            |          |         |                     |       |        |        |        |       |

| Customer:      | Zhone Technologies, Inc. |            |             |
|----------------|--------------------------|------------|-------------|
| Specification: | FCC15.209                |            |             |
| Work Order #:  | 75966                    | Date:      | 01/18/2001  |
| Test Type:     | Radiated Scan            | Time:      | 12:19:05    |
| Equipment:     | Digital Microwave System | Sequence#: | 16          |
| Manufacturer:  | Zhone Technologies, Inc. | Tested By: | Conan Boyle |
| Model:         | SZ-045-N5G-LNK           | -          | -           |
| S/N:           | 02                       |            |             |

#### Equipment Under Test (\* = EUT):

| Function                    | Manufacturer             | Model #          | S/N    |
|-----------------------------|--------------------------|------------------|--------|
| Radio Up-Converter/Diplexer | Zhone Technologies, Inc. | SZ-045-N56-ODU-A | 02     |
| DS3 Data Interface          | Zhone Technologies, Inc. | Sky Zhone 45     | 3      |
| Coaxial Cable, 6-ft         | Times Microwave Systems  | LMR-600          | None   |
| Antenna, 2ft                | Gabriel Electronics      | SSP2-52B         | T92209 |
| Antenna Feedhorn, 2-ft      | Gabriel Electronics      | 118047           | 90483  |
| Antenna, 6-ft               | Gabriel Electronics      | SSP6-52A         | 692828 |
| Antenna Feedhorn, 6-ft      | Gabriel Electronics      | 91240            | 118046 |

#### Support Devices:

| Support Derteest |              |               |                               |
|------------------|--------------|---------------|-------------------------------|
| Function         | Manufacturer | Model #       | S/N                           |
| Notebook PC      | Dell         | Inspiron 3500 | 0009653D                      |
| AC-DC Adapter    | Dell         | P/N 7832D     | 17972-94Q-1QZ1                |
| AC-DC Adapter    | IBM          | P/N 02K6657   | 1Z0ZA022ZM8                   |
| Notebook PC      | IBM          | Thinkpad T20  | Zhone Tech. Inc. Asset #11057 |

#### Test Conditions / Notes:

This data sheet comprises the following configuration: ODU-A operating on its LOW channel, which is the highest output power channel for that set. The set was tested using the highest and lowest gain antennas on the channels listed above. The lowest gain antenna represents the highest output power of the device and the highest gain antenna represents the lowest output power of the device. Test Setup: The EUT is comprised of a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit), coaxial cable, and either a 2-ft (highest gain) or 6-ft (lowest gain) antenna, along with support equipment that includes two notebook PC's. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is also connected to the IBM notebook via a 6-ft serial cable. On the IDU, an RG-58 cable connects DS3 IN and DS3 OUT in loopback. The set is constantly transmitting and receiving autonomously. The RF signal port of the ODU is connected to the antenna connector port of either the 2-ft (high gain) or 6-ft (low gain) antenna via a 6-ft coaxial cable. The unit was tested with both antennas and the data sheet comprises the highest readings from both antenna configurations.

| Meas | urement Data: | R    | eading lis | sted by m | nargin. | Test Distance: 3 Meters |       |        |        |        |       |
|------|---------------|------|------------|-----------|---------|-------------------------|-------|--------|--------|--------|-------|
|      |               |      | hol-h      | Horn      | HP-84   | rad_c                   |       |        |        |        |       |
| #    | Freq          | Rdng | Chase      |           |         |                         | Dist  | Corr   | Spec   | Margin | Polar |
|      | MHz           | dBµV | dB         | dB        | dB      | dB                      | Table | dBµV/m | dBµV/m | dB     | Ant   |
| 1    | 1112.967M     | 21.7 | +3.4       | +23.5     | +0.0    | +0.0                    | +0.0  | 48.6   | 54.0   | -5.4   | Vert  |
|      |               |      | +0.0       |           |         |                         |       |        |        |        |       |
| 2    | 400.055M      | 45.1 | +0.0       | +0.0      | -27.5   | +6.1                    | +0.0  | 40.1   | 46.0   | -5.9   | Vert  |
|      | QP            |      | +16.4      |           |         |                         |       |        |        |        |       |
| ^    | 400.036M      | 47.7 | +0.0       | +0.0      | -27.5   | +6.1                    | +0.0  | 42.7   | 46.0   | -3.3   | Vert  |
|      |               |      | +16.4      |           |         |                         |       |        |        |        |       |
| 4    | 60.058M       | 53.6 | +0.0       | +0.0      | -27.9   | +2.0                    | +0.0  | 33.1   | 40.0   | -6.9   | Vert  |
|      |               |      | +5.4       |           |         |                         |       |        |        |        |       |

| 5 | 80.033M   | 51.6 | +0.0  | +0.0  | -27.8 | +2.4 | +0.0 | 33.0 | 40.0 | -7.0 | Horiz |
|---|-----------|------|-------|-------|-------|------|------|------|------|------|-------|
|   | QP        |      | +6.8  |       |       |      |      |      |      |      |       |
| ^ | 80.055M   | 54.5 | +0.0  | +0.0  | -27.8 | +2.4 | +0.0 | 35.9 | 40.0 | -4.1 | Horiz |
|   |           |      | +6.8  |       |       |      |      |      |      |      |       |
| 7 | 40.047M   | 43.7 | +0.0  | +0.0  | -27.9 | +1.6 | +0.0 | 31.0 | 40.0 | -9.0 | Vert  |
|   | QP        |      | +13.6 |       |       |      |      |      |      |      |       |
| ^ | 40.049M   | 46.9 | +0.0  | +0.0  | -27.9 | +1.6 | +0.0 | 34.2 | 40.0 | -5.8 | Vert  |
|   |           |      | +13.6 |       |       |      |      |      |      |      |       |
| 9 | 2746.608M | 10.8 | +6.1  | +27.5 | +0.0  | +0.0 | +0.0 | 44.4 | 54.0 | -9.6 | Vert  |
|   |           |      | +0.0  |       |       |      |      |      |      |      |       |

| Customer:      | Zhone Technologies, Inc. |            |             |
|----------------|--------------------------|------------|-------------|
| Specification: | FCC 15.207               |            |             |
| Work Order #:  | 75966                    | Date:      | 01/18/2001  |
| Test Type:     | Conducted Emissions      | Time:      | 15:25:34    |
| Equipment:     | Digital Microwave System | Sequence#: | 22          |
| Manufacturer:  | Zhone Technologies, Inc. | Tested By: | Conan Boyle |
| Model:         | SZ-045-N5G-LNK           | ·          |             |
| S/N:           | 02                       |            |             |

#### *Equipment Under Test* (\* = EUT):

| Function                    | Manufacturer             | Model #          | S/N  |
|-----------------------------|--------------------------|------------------|------|
| Radio Up-Converter/Diplexer | Zhone Technologies, Inc. | SZ-045-N56-ODU-A | 02   |
| DS3 Data Interface          | Zhone Technologies, Inc. | Sky Zhone 45     | 3    |
| Coaxial Cable, 6-ft         | Times Microwave Systems  | LMR-600          | None |

#### Support Devices:

| Function      | Manufacturer | Model #       | S/N                           |
|---------------|--------------|---------------|-------------------------------|
| Notebook PC   | IBM          | Thinkpad T20  | Zhone Tech. Inc. Asset #11057 |
| AC-DC Adapter | IBM          | P/N 02K6657   | 1Z0ZA022ZM8                   |
| Notebook PC   | Dell         | Inspiron 3500 | 0009653D                      |
| AC-DC Adapter | Dell         | P/N 7832D     | 17972-94Q-1QZ1                |

#### Test Conditions / Notes:

The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-A S/N 02 and IDU S/N 3 - is tested for conducted emissions. The fundamental frequency is 5.775GHz. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is connected to the IBM notebook via a 6-ft serial cable. The units are constantly transmitting and receiving autonomously. An RG-58 cable connects DS3 IN and DS3 OUT in loopback. A 6-ft coaxial cable is connected to the IDU RF connector port and is terminated with a 50-ohm dummy load. The units are constantly transmitting and receiving autonomously. AC Power = 120vac, 60-Hz

| Measur | rement Data: | F    | Reading lis | ted by | margin. |    |       | Test Lea | d: Black  |        |       |
|--------|--------------|------|-------------|--------|---------|----|-------|----------|-----------|--------|-------|
|        |              |      | cond_       |        | LISN    |    |       |          |           |        |       |
| #      | Freq         | Rdng | BLK-L       |        |         |    | Dist  | Corr     | Spec      | Margin | Polar |
|        | MHz          | dBµV | dB          | dB     | dB      | dB | Table | dBµV     | dBµV      | dB     | Ant   |
| 1      | 451.673k     | 45.2 | +0.0        |        | +0.5    |    | +0.0  | 45.5     | 48.0      | -2.5   | Black |
|        |              |      | -0.2        |        |         |    |       |          | Ambient s | pike.  |       |
| 2      | 22.446M      | 38.0 | +1.0        |        | +1.1    |    | +0.0  | 42.9     | 48.0      | -5.1   | Black |
|        |              |      | +2.8        |        |         |    |       |          | Ambient s | pike.  |       |
| 3      | 789.675k     | 41.5 | +0.1        |        | +0.4    |    | +0.0  | 41.9     | 48.0      | -6.1   | Black |
|        |              |      | -0.1        |        |         |    |       |          |           |        |       |
| 4      | 3.716M       | 40.9 | +0.3        |        | +0.5    |    | +0.0  | 41.8     | 48.0      | -6.2   | Black |
|        |              |      | +0.1        |        |         |    |       |          |           |        |       |
| 5      | 4.042M       | 39.8 | +0.4        |        | +0.5    |    | +0.0  | 40.8     | 48.0      | -7.2   | Black |
|        |              |      | +0.1        |        |         |    |       |          |           |        |       |
| 6      | 27.170M      | 35.0 | +1.0        |        | +1.3    |    | +0.0  | 40.7     | 48.0      | -7.3   | Black |
|        |              |      | +3.4        |        |         |    |       |          |           |        |       |
| 7      | 751.189k     | 40.2 | +0.1        |        | +0.4    |    | +0.0  | 40.6     | 48.0      | -7.4   | Black |
|        |              |      | -0.1        |        |         |    |       |          |           |        |       |
| 8      | 2.932M       | 39.7 | +0.3        |        | +0.5    |    | +0.0  | 40.5     | 48.0      | -7.5   | Black |
|        |              |      | +0.0        |        |         |    |       |          |           |        |       |

| 9  | 13.818M  | 37.7 | +0.7 | +0.8 | +0.0 | 40.4 | 48.0 | -7.6 | Black |
|----|----------|------|------|------|------|------|------|------|-------|
|    |          |      | +1.2 |      |      |      |      |      |       |
| 10 | 23.500M  | 34.9 | +1.0 | +1.2 | +0.0 | 40.1 | 48.0 | -7.9 | Black |
|    |          |      | +3.0 |      |      |      |      |      |       |
| 11 | 718.560k | 39.7 | +0.2 | +0.4 | +0.0 | 40.1 | 48.0 | -7.9 | Black |
|    |          |      | -0.2 |      |      |      |      |      |       |



| Customer:      | Zhone Technologies, Inc. |            |             |
|----------------|--------------------------|------------|-------------|
| Specification: | FCC 15.207               |            |             |
| Work Order #:  | 75966                    | Date:      | 01/18/2001  |
| Test Type:     | Conducted Emissions      | Time:      | 14:54:21    |
| Equipment:     | Digital Microwave System | Sequence#: | 21          |
| Manufacturer:  | Zhone Technologies, Inc. | Tested By: | Conan Boyle |
| Model:         | SZ-045-N5G-LNK           | •          | 2           |
| S/N:           | 02                       |            |             |

#### Equipment Under Test (\* = EUT):

| Function                    | Manufacturer             | Model #          | S/N  |
|-----------------------------|--------------------------|------------------|------|
| Radio Up-Converter/Diplexer | Zhone Technologies, Inc. | SZ-045-N56-ODU-A | 02   |
| DS3 Data Interface          | Zhone Technologies, Inc. | Sky Zhone 45     | 3    |
| Coaxial Cable, 6-ft         | Times Microwave Systems  | LMR-600          | None |

#### Support Devices:

| Function      | Manufacturer | Model #       | S/N                           |
|---------------|--------------|---------------|-------------------------------|
| Notebook PC   | IBM          | Thinkpad T20  | Zhone Tech. Inc. Asset #11057 |
| AC-DC Adapter | IBM          | P/N 02K6657   | 1Z0ZA022ZM8                   |
| Notebook PC   | Dell         | Inspiron 3500 | 0009653D                      |
| AC-DC Adapter | Dell         | P/N 7832D     | 17972-94Q-1QZ1                |

#### Test Conditions / Notes:

The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-A S/N 02 and IDU S/N 3 - is tested for conducted emissions. The fundamental frequency is 5.775GHz. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is connected to the IBM notebook via a 6-ft serial cable. The units are constantly transmitting and receiving autonomously. An RG-58 cable connects DS3 IN and DS3 OUT in loopback. A 6-ft coaxial cable is connected to the IDU RF connector port and is terminated with a 50-ohm dummy load. The units are constantly transmitting and receiving autonomously. AC Power = 120vac, 60-Hz

| Measur | ement Data: | R    | eading lis | sted by m | argin. |       |       | Test Lea | ad: White |        |       |
|--------|-------------|------|------------|-----------|--------|-------|-------|----------|-----------|--------|-------|
|        |             |      | cond_      | LISN      |        | WHT-L |       |          |           |        |       |
| #      | Freq        | Rdng |            |           |        |       | Dist  | Corr     | Spec      | Margin | Polar |
|        | MHz         | dBµV | dB         | dB        | dB     | dB    | Table | dBµV     | dBµV      | dB     | Ant   |
| 1      | 523.624k    | 50.6 | +0.0       | +0.4      |        | -0.4  | +0.0  | 50.6     | 48.0      | +2.6   | White |
|        |             |      |            |           |        |       |       |          | Ambient s | pike.  |       |
| 2      | 508.565k    | 47.4 | +0.0       | +0.4      |        | -0.4  | +0.0  | 47.4     | 48.0      | -0.6   | White |
|        |             |      |            |           |        |       |       |          | Ambient s | pike.  |       |
| 3      | 493.505k    | 46.9 | +0.0       | +0.4      |        | -0.4  | +0.0  | 46.9     | 48.0      | -1.1   | White |
|        |             |      |            |           |        |       |       |          | Ambient s | pike.  |       |
| 4      | 22.446M     | 41.6 | +1.0       | +0.9      |        | +2.9  | +0.0  | 46.4     | 48.0      | -1.6   | White |
|        |             |      |            |           |        |       |       |          | Ambient s | pike.  |       |
| 5      | 3.554M      | 34.8 | +0.3       | +0.5      |        | +0.0  | +0.0  | 35.6     | 48.0      | -12.4  | White |
|        |             |      |            |           |        |       |       |          |           |        |       |
| 6      | 3.730M      | 34.8 | +0.3       | +0.5      |        | +0.0  | +0.0  | 35.6     | 48.0      | -12.4  | White |
|        |             |      |            |           |        |       |       |          |           |        |       |
| 7      | 4.030M      | 33.5 | +0.4       | +0.5      |        | +0.0  | +0.0  | 34.4     | 48.0      | -13.6  | White |
|        |             |      |            |           |        |       |       |          |           |        |       |
| 8      | 2.512M      | 31.6 | +0.3       | +0.5      |        | -0.1  | +0.0  | 32.3     | 48.0      | -15.7  | White |
|        |             |      |            |           |        |       |       |          |           |        |       |

| I | 9  | 1.123M   | 31.6 | +0.1 | +0.4 | -0.2 | +0.0 | 31.9 | 48.0 | -16.1 | White |
|---|----|----------|------|------|------|------|------|------|------|-------|-------|
|   |    |          |      |      |      |      |      |      |      |       |       |
| ſ | 10 | 975.300k | 30.1 | +0.1 | +0.4 | -0.2 | +0.0 | 30.4 | 48.0 | -17.6 | White |
|   |    |          |      |      |      |      |      |      |      |       |       |
| I | 11 | 7.054M   | 28.5 | +0.5 | +0.5 | +0.2 | +0.0 | 29.7 | 48.0 | -18.3 | White |
|   |    |          |      |      |      |      |      |      |      |       |       |
| I | 12 | 596.900k | 29.1 | +0.1 | +0.4 | -0.4 | +0.0 | 29.2 | 48.0 | -18.8 | White |
|   |    |          |      |      |      |      |      |      |      |       |       |
| ľ | 13 | 514.420k | 22.4 | +0.0 | +0.4 | -0.4 | +0.0 | 22.4 | 48.0 | -25.6 | White |
|   |    |          |      |      |      |      |      |      |      |       |       |
|   |    |          |      |      |      |      |      |      |      |       |       |



| Customer:      | Zhone Technologies, Inc. |            |             |
|----------------|--------------------------|------------|-------------|
| Specification: | FCC15.209 Direct         |            |             |
| Work Order #:  | 75966                    | Date:      | 01/16/2001  |
| Test Type:     | Radiated Scan            | Time:      | 11:07:26    |
| Equipment:     | Digital Microwave System | Sequence#: | 6           |
| Manufacturer:  | Zhone Technologies, Inc. | Tested By: | Conan Boyle |
| Model:         | SZ-045-N5G-LNK           | ·          |             |
| S/N:           | 01                       |            |             |

#### Equipment Under Test (\* = EUT):

| Function                    | Manufacturer             | Model #          | S/N |
|-----------------------------|--------------------------|------------------|-----|
| Radio Up-Converter/Diplexer | Zhone Technologies, Inc. | SZ-045-N56-ODU-B | 01  |
| DS3 Data Interface          | Zhone Technologies, Inc. | Sky Zhone 45     | 4   |
| Support Devices:            |                          |                  |     |

| Function      | Manufacturer | Model #       | S/N                           |
|---------------|--------------|---------------|-------------------------------|
| Notebook PC   | IBM          | Thinkpad T20  | Zhone Tech. Inc. Asset #11057 |
| AC-DC Adapter | IBM          | P/N 02K6657   | 1Z0ZA022ZM8                   |
| AC-DC Adapter | Dell         | P/N 7832D     | 17972-94Q-1QZ1                |
| Notebook PC   | Dell         | Inspiron 3500 | 0009653D                      |

#### Test Conditions / Notes:

The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-B S/N 01 and IDU S/N 4 - is tested for direct power out. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is also connected to the IBM notebook via a 6-ft serial cable and a 12-in RG-58 cable connects DS3 IN and DS3 OUT in loopback. The units are constantly transmitting and receiving autonomously. The RF signal port of the IDU is connected to the RF Input of a spectrum analyzer. The EUT is transmitting on low channel.

| Meas | surement Data: | Reading listed by margin. |       |    |    | Test Distance: None |       |        |        |        |       |
|------|----------------|---------------------------|-------|----|----|---------------------|-------|--------|--------|--------|-------|
|      |                |                           | hol-h |    |    |                     |       |        |        |        |       |
| #    | Freq           | Rdng                      |       |    |    |                     | Dist  | Corr   | Spec   | Margin | Polar |
|      | MHz            | dBµV                      | dB    | dB | dB | dB                  | Table | dBµV/m | dBµV/m | dB     | Ant   |
| 1    | 21001.670M     | 24.2                      | +19.3 |    |    |                     | +0.0  | 43.5   | 54.0   | -10.5  | None  |
| 2    | 15751.670M     | 23.0                      | +15.9 |    |    |                     | +0.0  | 38.9   | 54.0   | -15.1  | None  |
| 3    | 10501.670M     | 21.5                      | +8.8  |    |    |                     | +0.0  | 30.3   | 54.0   | -23.7  | None  |
| 4    | 36751.670M     | 28.7                      | +0.0  |    |    |                     | +0.0  | 28.7   | 54.0   | -25.3  | None  |
| 5    | 26251.670M     | 25.3                      | +0.0  |    |    |                     | +0.0  | 25.3   | 54.0   | -28.7  | None  |
| 6    | 31501.670M     | 24.3                      | +0.0  |    |    |                     | +0.0  | 24.3   | 54.0   | -29.7  | None  |

| Customer:      | Zhone Technologies, Inc.    |            |             |
|----------------|-----------------------------|------------|-------------|
| Specification: | FCC15.209 Direct            |            |             |
| Work Order #:  | 75966                       | Date:      | 01/16/2001  |
| Test Type:     | Radiated Scan               | Time:      | 11:42:16    |
| Equipment:     | Radio Up-Converter/Diplexer | Sequence#: | 7           |
| Manufacturer:  | Zhone Technologies, Inc.    | Tested By: | Conan Boyle |
| Model:         | SZ-045-N5G-LNK              |            | -           |
| S/N:           | 01                          |            |             |

#### Equipment Under Test (\* = EUT):

Dell

| Function           | Manufacturer             | Model #          | S/N                           |
|--------------------|--------------------------|------------------|-------------------------------|
| Radio Up-          | Zhone Technologies, Inc. | SZ-045-N56-ODU-B | 01                            |
| Converter/Diplexer |                          |                  |                               |
| DS3 Data Interface | Zhone Technologies, Inc. | Sky Zhone 45     | 4                             |
| Support Devices:   |                          |                  |                               |
| Function           | Manufacturer             | Model #          | S/N                           |
| Notebook PC        | IBM                      | Thinkpad T20     | Zhone Tech. Inc. Asset #11057 |
| AC-DC Adapter      | IBM                      | P/N 02K6657      | 1Z0ZA022ZM8                   |
| AC-DC Adapter      | Dell                     | P/N 7832D        | 17972-94Q-1QZ1                |

Inspiron 3500

0009653D

#### Test Conditions / Notes:

Notebook PC

The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-B S/N 01 and IDU S/N 4 - is tested for direct power out. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is also connected to the IBM notebook via a 6-ft serial cable and a 12-in RG-58 cable connects DS3 IN and DS3 OUT in loopback. The units are constantly transmitting and receiving autonomously. The RF signal port of the IDU is connected to the RF Input of a spectrum analyzer. The EUT is transmitting on mid channel.

| Meas | <i>Ieasurement Data:</i> Reading listed by margin. |      |       |    | nargin. | . Test Distance: None |       |        |        |        |       |
|------|----------------------------------------------------|------|-------|----|---------|-----------------------|-------|--------|--------|--------|-------|
|      |                                                    |      | hol-h |    |         |                       |       |        |        |        |       |
| #    | Freq                                               | Rdng |       |    |         |                       | Dist  | Corr   | Spec   | Margin | Polar |
|      | MHz                                                | dBµV | dB    | dB | dB      | dB                    | Table | dBµV/m | dBµV/m | dB     | Ant   |
| 1    | 17744.970M                                         | 32.8 | +13.4 |    |         |                       | +0.0  | 46.2   | 54.0   | -7.8   | Horiz |
| 2    | 15900.830M                                         | 25.2 | +16.2 |    |         |                       | +0.0  | 41.4   | 54.0   | -12.6  | Horiz |
| 3    | 21200.830M                                         | 22.3 | +18.5 |    |         |                       | +0.0  | 40.8   | 54.0   | -13.2  | Horiz |
| 4    | 10600.830M                                         | 27.0 | +7.6  |    |         |                       | +0.0  | 34.6   | 54.0   | -19.4  | Horiz |
| 5    | 37100.840M                                         | 27.8 | +0.0  |    |         |                       | +0.0  | 27.8   | 54.0   | -26.2  | Horiz |
| 6    | 31800.830M                                         | 26.0 | +0.0  |    |         |                       | +0.0  | 26.0   | 54.0   | -28.0  | Horiz |
| 7    | 26500.830M                                         | 24.7 | +0.0  |    |         |                       | +0.0  | 24.7   | 54.0   | -29.3  | Horiz |

| Customer:      | Zhone Technologies, Inc. |            |             |
|----------------|--------------------------|------------|-------------|
| Specification: | FCC15.209 Direct         |            |             |
| Work Order #:  | 75966                    | Date:      | 01/17/2001  |
| Test Type:     | Radiated Scan            | Time:      | 09:04:48    |
| Equipment:     | Digital Microwave System | Sequence#: | 8           |
| Manufacturer:  | Zhone Technologies, Inc. | Tested By: | Conan Boyle |
| Model:         | SZ-045-N5G-LNK           | •          | -           |
| S/N:           | 01                       |            |             |

#### Equipment Under Test (\* = EUT):

|                             | ,                        |                  |     |
|-----------------------------|--------------------------|------------------|-----|
| Function                    | Manufacturer             | Model #          | S/N |
| Radio Up-Converter/Diplexer | Zhone Technologies, Inc. | SZ-045-N56-ODU-B | 01  |
| DS3 Data Interface          | Zhone Technologies, Inc. | Sky Zhone 45     | 4   |
| Support Devices:            |                          |                  |     |

| Function      | Manufacturer | Model #       | S/N                           |
|---------------|--------------|---------------|-------------------------------|
| Notebook PC   | IBM          | Thinkpad T20  | Zhone Tech. Inc. Asset #11057 |
| AC-DC Adapter | IBM          | P/N 02K6657   | 1Z0ZA022ZM8                   |
| AC-DC Adapter | Dell         | P/N 7832D     | 17972-94Q-1QZ1                |
| Notebook PC   | Dell         | Inspiron 3500 | 0009653D                      |
|               |              |               |                               |

#### Test Conditions / Notes:

The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-B S/N 01 and IDU S/N 4 - is tested for direct power out. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is also connected to the IBM notebook via a 6-ft serial cable and a 12-in RG-58 cable connects DS3 IN and DS3 OUT in loopback. The units are constantly transmitting and receiving autonomously. The RF signal port of the IDU is connected to the RF Input of a spectrum analyzer. The EUT is transmitting on high channel.

| Mea | <i>Ieasurement Data:</i> Reading listed by margin. |      |       | margin. | Test Distance: None |    |       |        |        |        |       |
|-----|----------------------------------------------------|------|-------|---------|---------------------|----|-------|--------|--------|--------|-------|
|     |                                                    |      | hol-h |         |                     |    |       |        |        |        |       |
| #   | Freq                                               | Rdng |       |         |                     |    | Dist  | Corr   | Spec   | Margin | Polar |
|     | MHz                                                | dBµV | dB    | dB      | dB                  | dB | Table | dBµV/m | dBµV/m | dB     | Ant   |
| 1   | 15991.860M                                         | 28.3 | +16.4 |         |                     |    | +0.0  | 44.7   | 54.0   | -9.3   | Vert  |
| 2   | 21345.030M                                         | 24.8 | +18.0 |         |                     |    | +0.0  | 42.8   | 54.0   | -11.2  | Vert  |
| 3   | 10657.530M                                         | 26.8 | +6.9  |         |                     |    | +0.0  | 33.7   | 54.0   | -20.3  | Vert  |
| 4   | 37301.190M                                         | 29.5 | +0.0  |         |                     |    | +0.0  | 29.5   | 54.0   | -24.5  | Vert  |
| 5   | 31972.190M                                         | 28.2 | +0.0  |         |                     |    | +0.0  | 28.2   | 54.0   | -25.8  | Vert  |
| 6   | 26674.030M                                         | 23.7 | +0.0  |         |                     |    | +0.0  | 23.7   | 54.0   | -30.3  | Vert  |

| Test Location: | CKC Laboratories, Inc. | • | 480 Los Viboras Rd. | • | Hollister, CA 95023 • | 831-637-8176 |
|----------------|------------------------|---|---------------------|---|-----------------------|--------------|
|----------------|------------------------|---|---------------------|---|-----------------------|--------------|

| Customer:      | Zhone Technologies, Inc. |            |             |
|----------------|--------------------------|------------|-------------|
| Specification: | FCC15.209                |            |             |
| Work Order #:  | 75966                    | Date:      | 01/18/2001  |
| Test Type:     | Radiated Scan            | Time:      | 12:19:05    |
| Equipment:     | Digital Microwave System | Sequence#: | 18          |
| Manufacturer:  | Zhone Technologies, Inc. | Tested By: | Conan Boyle |
| Model:         | SZ-045-N5G-LNK           | ·          |             |
| S/N:           | 01                       |            |             |

#### Equipment Under Test (\* = EUT):

| Function                    | Manufacturer             | Model #          | S/N    |
|-----------------------------|--------------------------|------------------|--------|
| Radio Up-Converter/Diplexer | Zhone Technologies, Inc. | SZ-045-N56-ODU-B | 01     |
| DS3 Data Interface          | Zhone Technologies, Inc. | Sky Zhone 45     | 4      |
| Coaxial Cable, 6-ft         | Times Microwave Systems  | LMR-600          | None   |
| Antenna, 2ft                | Gabriel Electronics      | SSP2-52B         | T92209 |
| Antenna Feedhorn, 2-ft      | Gabriel Electronics      | 118047           | 90483  |
| Antenna, 6-ft               | Gabriel Electronics      | SSP6-52A         | 692828 |
| Antenna Feedhorn, 6-ft      | Gabriel Electronics      | 91240            | 118046 |

## Support Devices:

| Support Devices. |              |               |                               |
|------------------|--------------|---------------|-------------------------------|
| Function         | Manufacturer | Model #       | S/N                           |
| Notebook PC      | Dell         | Inspiron 3500 | 0009653D                      |
| AC-DC Adapter    | Dell         | P/N 7832D     | 17972-94Q-1QZ1                |
| AC-DC Adapter    | IBM          | P/N 02K6657   | 1Z0ZA022ZM8                   |
| Notebook PC      | IBM          | Thinkpad T20  | Zhone Tech. Inc. Asset #11057 |

#### Test Conditions / Notes:

This data sheet comprises the following configuration: ODU-B operating on its MID channel, which is the highest output power channel for that set. The set was tested using the highest and lowest gain antennas on the channels listed above. The lowest gain antenna represents the highest output power of the device and the highest gain antenna represents the lowest output power of the device. Test Setup: The EUT is comprised of a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit), coaxial cable, and either a 2-ft (highest gain) or 6-ft (lowest gain) antenna, along with support equipment that includes two notebook PC's. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is also connected to the IBM notebook via a 6-ft serial cable. On the IDU, an RG-58 cable connects DS3 IN and DS3 OUT in loopback. The set is constantly transmitting and receiving autonomously. The RF signal port of the ODU is connected to the antenna connector port of either the 2-ft (high gain) or 6-ft (low gain) antenna via a 6-ft coaxial cable. The unit was tested with both antennas and the data sheet comprises the highest readings from both antenna configurations.

| Measurement Data: Reading listed by margin. |           |      |       |       |       | Test Distance: 3 Meters |       |        |        |        |       |
|---------------------------------------------|-----------|------|-------|-------|-------|-------------------------|-------|--------|--------|--------|-------|
|                                             |           |      | hol-h | Horn  | HP-84 | rad_c                   |       |        |        |        |       |
| #                                           | Freq      | Rdng | Chase |       |       |                         | Dist  | Corr   | Spec   | Margin | Polar |
|                                             | MHz       | dBµV | dB    | dB    | dB    | dB                      | Table | dBµV/m | dBµV/m | dB     | Ant   |
| 1                                           | 1112.967M | 21.7 | +3.4  | +23.5 | +0.0  | +0.0                    | +0.0  | 48.6   | 54.0   | -5.4   | Vert  |
|                                             |           |      | +0.0  |       |       |                         |       |        |        |        |       |
| 2                                           | 400.055M  | 45.1 | +0.0  | +0.0  | -27.5 | +6.1                    | +0.0  | 40.1   | 46.0   | -5.9   | Vert  |
|                                             | QP        |      | +16.4 |       |       |                         |       |        |        |        |       |
| ^                                           | 400.036M  | 47.7 | +0.0  | +0.0  | -27.5 | +6.1                    | +0.0  | 42.7   | 46.0   | -3.3   | Vert  |
|                                             |           |      | +16.4 |       |       |                         |       |        |        |        |       |
| 4                                           | 60.058M   | 53.6 | +0.0  | +0.0  | -27.9 | +2.0                    | +0.0  | 33.1   | 40.0   | -6.9   | Vert  |
|                                             |           |      | +5.4  |       |       |                         |       |        |        |        |       |

| 5 | 80.033M   | 51.6 | +0.0  | +0.0  | -27.8 | +2.4 | +0.0 | 33.0 | 40.0 | -7.0 | Horiz |
|---|-----------|------|-------|-------|-------|------|------|------|------|------|-------|
|   | QP        |      | +6.8  |       |       |      |      |      |      |      |       |
| ^ | 80.055M   | 54.5 | +0.0  | +0.0  | -27.8 | +2.4 | +0.0 | 35.9 | 40.0 | -4.1 | Horiz |
|   |           |      | +6.8  |       |       |      |      |      |      |      |       |
| 7 | 40.047M   | 43.7 | +0.0  | +0.0  | -27.9 | +1.6 | +0.0 | 31.0 | 40.0 | -9.0 | Vert  |
|   | QP        |      | +13.6 |       |       |      |      |      |      |      |       |
| ^ | 40.049M   | 46.9 | +0.0  | +0.0  | -27.9 | +1.6 | +0.0 | 34.2 | 40.0 | -5.8 | Vert  |
|   |           |      | +13.6 |       |       |      |      |      |      |      |       |
| 9 | 2746.608M | 10.8 | +6.1  | +27.5 | +0.0  | +0.0 | +0.0 | 44.4 | 54.0 | -9.6 | Vert  |
|   |           |      | +0.0  |       |       |      |      |      |      |      |       |

| Customer:      | Zhone Technologies, Inc. |            |             |
|----------------|--------------------------|------------|-------------|
| Specification: | FCC 15.207               |            |             |
| Work Order #:  | 75966                    | Date:      | 01/18/2001  |
| Test Type:     | Conducted Emissions      | Time:      | 14:12:47    |
| Equipment:     | Digital Microwave System | Sequence#: | 19          |
| Manufacturer:  | Zhone Technologies, Inc. | Tested By: | Conan Boyle |
| Model:         | SZ-045-N5G-LNK           | •          | 2           |
| S/N:           | 01                       |            |             |

#### *Equipment Under Test* (\* = EUT):

| Function                    | Manufacturer             | Model #          | S/N  |
|-----------------------------|--------------------------|------------------|------|
| Radio Up-Converter/Diplexer | Zhone Technologies, Inc. | SZ-045-N56-ODU-B | 01   |
| DS3 Data Interface          | Zhone Technologies, Inc. | Sky Zhone 45     | 4    |
| Coaxial Cable, 6-ft         | Times Microwave Systems  | LMR-600          | None |

#### Support Devices:

| Function      | Manufacturer | Model #       | S/N                           |
|---------------|--------------|---------------|-------------------------------|
| Notebook PC   | IBM          | Thinkpad T20  | Zhone Tech. Inc. Asset #11057 |
| AC-DC Adapter | IBM          | P/N 02K6657   | 1Z0ZA022ZM8                   |
| Notebook PC   | Dell         | Inspiron 3500 | 0009653D                      |
| AC-DC Adapter | Dell         | P/N 7832D     | 17972-94Q-1QZ1                |

#### Test Conditions / Notes:

The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-B S/N 01 and IDU S/N 4 - is tested for conducted emissions. The fundamental frequency is 5.300GHz. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is connected to the IBM notebook via a 6-ft serial cable. The units are constantly transmitting and receiving autonomously. An RG-58 cable connects DS3 IN and DS3 OUT in loopback. A 6-ft coaxial cable is connected to the IDU RF connector port and is terminated with a 50-ohm dummy load. The units are constantly transmitting and receiving autonomously. AC Power = 120vac, 60-Hz

| Measur | rement Data: Reading listed by margin. Test Lead: Black |      |       |    |      |    |       |      |      |        |       |
|--------|---------------------------------------------------------|------|-------|----|------|----|-------|------|------|--------|-------|
|        |                                                         |      | cond_ |    | LISN |    |       |      |      |        |       |
| #      | Freq                                                    | Rdng | BLK-L |    |      |    | Dist  | Corr | Spec | Margin | Polar |
|        | MHz                                                     | dBµV | dB    | dB | dB   | dB | Table | dBµV | dBµV | dB     | Ant   |
| 1      | 3.442M                                                  | 40.8 | +0.3  |    | +0.5 |    | +0.0  | 41.7 | 48.0 | -6.3   | Black |
|        |                                                         |      | +0.1  |    |      |    |       |      |      |        |       |
| 2      | 15.575M                                                 | 38.6 | +0.7  |    | +0.8 |    | +0.0  | 41.6 | 48.0 | -6.4   | Black |
|        |                                                         |      | +1.5  |    |      |    |       |      |      |        |       |
| 3      | 3.650M                                                  | 40.7 | +0.3  |    | +0.5 |    | +0.0  | 41.6 | 48.0 | -6.4   | Black |
|        |                                                         |      | +0.1  |    |      |    |       |      |      |        |       |
| 4      | 13.584M                                                 | 38.7 | +0.7  |    | +0.8 |    | +0.0  | 41.4 | 48.0 | -6.6   | Black |
|        |                                                         |      | +1.2  |    |      |    |       |      |      |        |       |
| 5      | 3.729M                                                  | 40.5 | +0.3  |    | +0.5 |    | +0.0  | 41.4 | 48.0 | -6.6   | Black |
|        |                                                         |      | +0.1  |    |      |    |       |      |      |        |       |
| 6      | 3.566M                                                  | 40.5 | +0.3  |    | +0.5 |    | +0.0  | 41.4 | 48.0 | -6.6   | Black |
|        |                                                         |      | +0.1  |    |      |    |       |      |      |        |       |
| 7      | 3.523M                                                  | 40.5 | +0.3  |    | +0.5 |    | +0.0  | 41.4 | 48.0 | -6.6   | Black |
|        |                                                         |      | +0.1  |    |      |    |       |      |      |        |       |

| 8  | 3.394M    | 40.5 | +0.3         | +0.5      | +0.0      | 41.4 | 48.0 | -6.6  | Black       |
|----|-----------|------|--------------|-----------|-----------|------|------|-------|-------------|
|    |           |      | +0.1         |           |           |      |      |       |             |
| 9  | 3.770M    | 40.4 | +0.3         | +0.5      | +0.0      | 41.3 | 48.0 | -6.7  | Black       |
| 10 | 2 6003 6  | 10.4 | +0.1         | 0.7       |           | 11.0 | 40.0 |       | <b>D1 1</b> |
| 10 | 3.609M    | 40.4 | +0.3         | +0.5      | +0.0      | 41.3 | 48.0 | -6.7  | Black       |
| 11 | 2 27014   | 40.2 | +0.1         | .0.5      | .0.0      | 41.1 | 40.0 | ( )   | D1. 1       |
| 11 | 3.270M    | 40.3 | +0.3         | +0.5      | +0.0      | 41.1 | 48.0 | -6.9  | Віаск       |
| 12 | 2 212M    | 40.2 | +0.0         | 10.5      | +0.0      | 41.0 | 48.0 | 7.0   | Plack       |
| 12 | 5.515141  | 40.2 | +0.3         | $\pm 0.5$ | $\pm 0.0$ | 41.0 | 40.0 | -7.0  | DIACK       |
| 13 | 3 947M    | 39.8 | +0.4         | +0.5      | +0.0      | 40.8 | 48.0 | -7.2  | Black       |
| 15 | 5.9 17101 | 57.0 | +0.1         | 10.5      | 10.0      | 10.0 | 10.0 | 7.2   | Ditter      |
| 14 | 17.566M   | 37.3 | +0.8         | +0.8      | +0.0      | 40.7 | 48.0 | -7.3  | Black       |
|    |           |      | +1.8         |           |           |      |      |       |             |
| 15 | 3.899M    | 39.7 | +0.4         | +0.5      | +0.0      | 40.7 | 48.0 | -7.3  | Black       |
|    |           |      | +0.1         |           |           |      |      |       |             |
| 16 | 3.189M    | 39.9 | +0.3         | +0.5      | +0.0      | 40.7 | 48.0 | -7.3  | Black       |
|    |           |      | +0.0         |           |           |      |      |       |             |
| 17 | 20.026M   | 36.7 | +0.9         | +0.8      | +0.0      | 40.6 | 48.0 | -7.4  | Black       |
|    |           |      | +2.2         |           |           |      |      |       |             |
| 18 | 3.480M    | 39.6 | +0.3         | +0.5      | +0.0      | 40.5 | 48.0 | -7.5  | Black       |
| 10 | 2 22214   | 20.7 | +0.1         | .0.5      | .0.0      | 10.5 | 40.0 | 7.5   | D1 1        |
| 19 | 3.232M    | 39.7 | +0.3         | +0.5      | +0.0      | 40.5 | 48.0 | -7.5  | Black       |
| 20 | 15 107M   | 37.5 | +0.0         | +0.8      | +0.0      | 40.4 | 48.0 | 7.6   | Black       |
| 20 | 13.107101 | 57.5 | +0.7<br>+1.4 | +0.0      | +0.0      | 40.4 | 40.0 | -7.0  | DIACK       |
| 21 | 2.935M    | 39.6 | +0.3         | +0.5      | +0.0      | 40.4 | 48.0 | -7.6  | Black       |
| 21 | 2.755111  | 27.0 | +0.0         | 10.0      | 10.0      | 10.1 | 10.0 | 7.0   | Diater      |
| 22 | 3.865M    | 39.3 | +0.4         | +0.5      | +0.0      | 40.3 | 48.0 | -7.7  | Black       |
|    |           |      | +0.1         |           |           |      |      |       |             |
| 23 | 3.694M    | 39.4 | +0.3         | +0.5      | +0.0      | 40.3 | 48.0 | -7.7  | Black       |
|    |           |      | +0.1         |           |           |      |      |       |             |
| 24 | 3.356M    | 39.4 | +0.3         | +0.5      | +0.0      | 40.3 | 48.0 | -7.7  | Black       |
|    |           |      | +0.1         |           |           |      |      |       |             |
| 25 | 4.070M    | 39.1 | +0.4         | +0.5      | +0.0      | 40.1 | 48.0 | -7.9  | Black       |
| 26 | 2 00111   | 20.1 | +0.1         | .0.5      | .0.0      | 40.1 | 40.0 | 7.0   | D1 1        |
| 26 | 3.981M    | 39.1 | +0.4         | +0.5      | +0.0      | 40.1 | 48.0 | -7.9  | Black       |
| 27 | 2 146M    | 20.2 | +0.1         | 10.5      | +0.0      | 40.1 | 48.0 | 7.0   | Dlaak       |
| 27 | 5.140M    | 39.3 | +0.3         | $\pm 0.3$ | +0.0      | 40.1 | 40.0 | -7.9  | DIACK       |
| 28 | 3 824M    | 39.0 | +0.0         | ±0 5      | +0.0      | 40.0 | 48.0 | -8.0  | Black       |
| 20 | 5.024141  | 57.0 | +0.1         | 10.5      | 10.0      | 40.0 | 40.0 | 0.0   | Didek       |
| 29 | 3.021M    | 39.2 | +0.3         | +0.5      | +0.0      | 40.0 | 48.0 | -8.0  | Black       |
| -  |           |      | +0.0         |           |           |      |      |       |             |
| 30 | 22.441M   | 27.7 | +1.0         | +1.1      | +0.0      | 32.6 | 48.0 | -15.4 | Black       |
|    | QP        |      | +2.8         |           |           |      |      |       |             |
| ^  | 22.446M   | 38.6 | +1.0         | +1.1      | +0.0      | 43.5 | 48.0 | -4.5  | Black       |
|    |           |      | +2.8         |           |           |      |      |       |             |



| Customer:      | Zhone Technologies, Inc. |            |             |
|----------------|--------------------------|------------|-------------|
| Specification: | FCC 15.207               |            |             |
| Work Order #:  | 75966                    | Date:      | 01/18/2001  |
| Test Type:     | Conducted Emissions      | Time:      | 14:31:53    |
| Equipment:     | Digital Microwave System | Sequence#: | 20          |
| Manufacturer:  | Zhone Technologies       | Tested By: | Conan Boyle |
| Model:         | SZ-045-N5G-LNK           | ·          | ·           |
| S/N:           | 01                       |            |             |

#### *Equipment Under Test* (\* = EUT):

| Function                    | Manufacturer             | Model #          | S/N  |
|-----------------------------|--------------------------|------------------|------|
| Radio Up-Converter/Diplexer | Zhone Technologies, Inc. | SZ-045-N56-ODU-B | 01   |
| DS3 Data Interface          | Zhone Technologies, Inc. | Sky Zhone 45     | 4    |
| Coaxial Cable, 6-ft         | Times Microwave Systems  | LMR-600          | None |

#### Support Devices:

| Function      | Manufacturer | Model #       | S/N                           |
|---------------|--------------|---------------|-------------------------------|
| Notebook PC   | IBM          | Thinkpad T20  | Zhone Tech. Inc. Asset #11057 |
| AC-DC Adapter | IBM          | P/N 02K6657   | 1Z0ZA022ZM8                   |
| Notebook PC   | Dell         | Inspiron 3500 | 0009653D                      |
| AC-DC Adapter | Dell         | P/N 7832D     | 17972-94Q-1QZ1                |

#### Test Conditions / Notes:

The EUT is comprised of two identical sets of equipment. Each set includes a Radio Up-Converter/Diplexer ODU (Outdoor Unit) and a DS3 Data Interface IDU (Indoor Unit) and support equipment that includes two notebook PC's. Test Setup: For this test, one set - ODU-B S/N 01 and IDU S/N 4 - is tested for conducted emissions. The fundamental frequency is 5.300GHz. The ODU is connected to the IDU via a single 50-ft, RG-6, 75-ohm, coaxial cable. The IDU is connected to the Dell PC via a 6-ft, Cat 5, Ethernet cable. The IDU is connected to the IBM notebook via a 6-ft serial cable. The units are constantly transmitting and receiving autonomously. An RG-58 cable connects DS3 IN and DS3 OUT in loopback. A 6-ft coaxial cable is connected to the IDU RF connector port and is terminated with a 50-ohm dummy load. The units are constantly transmitting and receiving autonomously. AC Power = 120vac, 60-Hz

| Measurement Data: Reading listed by marg |         |      |       |      | argin. |       |       | Test Lea | ad: White |        |       |
|------------------------------------------|---------|------|-------|------|--------|-------|-------|----------|-----------|--------|-------|
|                                          |         |      | cond_ | LISN |        | WHT-L |       |          |           |        |       |
| #                                        | Freq    | Rdng |       |      |        |       | Dist  | Corr     | Spec      | Margin | Polar |
|                                          | MHz     | dBµV | dB    | dB   | dB     | dB    | Table | dBµV     | dBµV      | dB     | Ant   |
| 1                                        | 27.131M | 43.5 | +1.0  | +1.2 |        | +3.6  | +0.0  | 49.3     | 48.0      | +1.3   | White |
|                                          |         |      |       |      |        |       |       |          | Ambient s | pike.  |       |
| 2                                        | 22.446M | 41.8 | +1.0  | +0.9 |        | +2.9  | +0.0  | 46.6     | 48.0      | -1.4   | White |
|                                          |         |      |       |      |        |       |       |          | Ambient s | pike.  |       |
| 3                                        | 3.550M  | 44.0 | +0.3  | +0.5 |        | +0.0  | +0.0  | 44.8     | 48.0      | -3.2   | White |
| (                                        | QP      |      |       |      |        |       |       |          |           |        |       |
| ^                                        | 3.549M  | 45.6 | +0.3  | +0.5 |        | +0.0  | +0.0  | 46.4     | 48.0      | -1.6   | White |
|                                          |         |      |       |      |        |       |       |          |           |        |       |
| 5                                        | 20.014M | 38.2 | +0.9  | +0.7 |        | +2.4  | +0.0  | 42.2     | 48.0      | -5.8   | White |
| (                                        | QP      |      |       |      |        |       |       |          |           |        |       |
| ^                                        | 20.015M | 41.8 | +0.9  | +0.7 |        | +2.4  | +0.0  | 45.8     | 48.0      | -2.2   | White |
|                                          |         |      |       |      |        |       |       |          |           |        |       |
| 7                                        | 1.884M  | 41.6 | +0.2  | +0.4 |        | -0.1  | +0.0  | 42.1     | 48.0      | -5.9   | White |
|                                          |         |      |       |      |        |       |       |          |           |        |       |

| 8  | 6.920M       | 40.4 | +0.5 | +0.5 | +0.2 | +0.0 | 41.6 | 48.0 | -6.4 | White     |
|----|--------------|------|------|------|------|------|------|------|------|-----------|
| 9  | 721.200k     | 41.2 | +0.2 | +0.4 | -0.2 | +0.0 | 41.6 | 48.0 | -6.4 | White     |
| 10 | 972.500k     | 41.2 | +0.1 | +0.4 | -0.2 | +0.0 | 41.5 | 48.0 | -6.5 | White     |
| 11 | 4 4 6 4 7 4  | 40.2 | .0.1 | .0.5 | .0.0 | .0.0 | 41.1 | 40.0 | 6.0  | XX 71 • / |
| 11 | 4.464M<br>QP | 40.2 | +0.4 | +0.5 | +0.0 | +0.0 | 41.1 | 48.0 | -6.9 | White     |
| ^  | 4.464M       | 42.5 | +0.4 | +0.5 | +0.0 | +0.0 | 43.4 | 48.0 | -4.6 | White     |
| 13 | 10.150M      | 36.7 | +0.6 | +0.6 | +0.4 | +0.0 | 38.3 | 48.0 | -9.7 | White     |

