





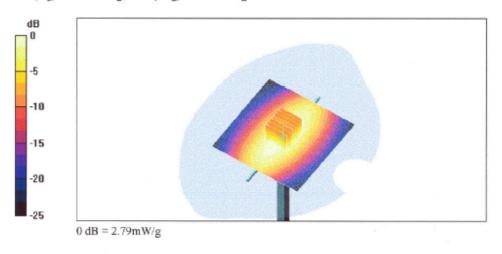

Page 1 of 1 Date/Time: 02/10/04 15:14:12

Test Laboratory: SPEAG, Zurich, Switzerland

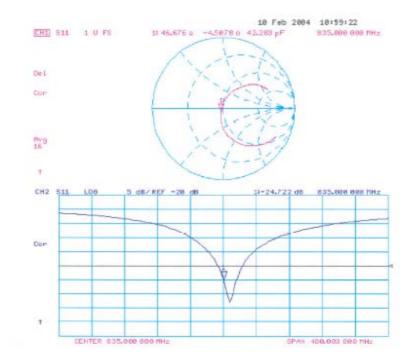
## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN499

Communication System: CW-835; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: Muscle 835 MHz; Medium parameters used: f = 835 MHz;  $\sigma$  = 0.99 mho/m;  $\epsilon_r$  = 55.5;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.13, 6.13, 6.13); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- · Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101


Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 54.7 V/m; Power Drift = 0.002 dB Maximum value of SAR (interpolated) = 2.79 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.7 V/m; Power Drift = 0.002 dB

Maximum value of SAR (measured) = 2.79 mW/gPeak SAR (extrapolated) = 3.82 W/kgSAR(1 g) = 2.58 mW/g; SAR(10 g) = 1.69 mW/g











Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

# Client Sproton Int. (Auden)

| Object(s)                                                          | D1900V2 - SM                   | V.5d041                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------|--------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)                                           | QA CAL-05 v<br>Calibration pro | 2<br>ocedure for dipole validation kits                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Calibration date:                                                  | February 17, 1                 | 2004:                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Condition of the calibrated item                                   | In Tolerance (                 | according to the specific calibration                  | i document)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| This calibration statement docume<br>17025 International standard. | ents traceability of M&TE      | used in the calibration procedures and conformity of   | the procedures with the ISO/IEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| All calibrations have been conduct                                 |                                | ory facility: environment temperature 22 +/- 2 degrees | Celsius and humidity < 75%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Model Type                                                         | ID#                            | Cal Date (Calibrated by, Certificate No.)              | Scheduled Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ower meter EPM E442                                                | GB37480704                     | 6-Nov-03 (METAS, No. 252-0254)                         | Nov-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ower sensor HP 8481A                                               | US37292783                     | 6-Nov-03 (METAS, No. 252-0254)                         | Nov-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ower sensor HP 8481A                                               | MY41092317                     | 18-Oct-02 (Agilent, No. 20021018)                      | Oct-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| F generator R&S SML-03                                             | 100698                         | 27-Mar-2002 (R&S, No. 20-92389)                        | In house check: Mar-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| letwork Analyzer HP 8753E                                          | US37390585                     | 18-Oct-01 (SPEAG, In house check Nov-03)               | In house check: Oct 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                    | Name                           | Function                                               | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Calibrated by:                                                     | Judith Mueller                 | Technician                                             | Amidat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                    | Katja Poković                  | Laboratory Director                                    | Un lite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Approved by:                                                       |                                | · · · · · · · · · · · · · · · · · · ·                  | and the second |
| \pproved by:                                                       |                                |                                                        | Date issued: February 18, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

880-KP0301061-A

Page 1 (1)



Schmid & Partner Engineering AG

#### S p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

# DASY

# Dipole Validation Kit

# Type: D1900V2

# Serial: 5d041

Manufactured: July 4, 2003

Calibrated: February 17, 2004

#### 1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with **head simulating liquid** of the following electrical parameters at 1900 MHz:

| Relative Dielectricity | 38.8       | ±5%  |
|------------------------|------------|------|
| Conductivity           | 1.47 mho/m | ± 5% |

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.96 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was  $250 \text{mW} \pm 3$  %. The results are normalized to 1W input power.

# 2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm<sup>3</sup> (1 g) of tissue:

averaged over 10 cm<sup>3</sup> (10 g) of tissue: **21.6 mW/g**  $\pm$  16.2 % (k=2)<sup>1</sup>

41.6 mW/g  $\pm$  16.8 % (k=2)<sup>1</sup>

1 validation uncertainty



# 3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

| Electrical delay:    | 1.200 ns | (one direction)                       |
|----------------------|----------|---------------------------------------|
| Transmission factor: | 0.993    | (voltage transmission, one direction) |

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

| Feedpoint impedance at 1900 MHz: | $Re\{Z\} = 51.2 \Omega$ |
|----------------------------------|-------------------------|
|                                  | Im $\{Z\} = 4.9\Omega$  |
| Return Loss at 1900 MHz          | -26.1 dB                |

### 4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating tissue of the following electrical parameters at 1900 MHz:

| Relative Dielectricity | 52.5       | $\pm 5\%$ |
|------------------------|------------|-----------|
| Conductivity           | 1.58 mho/m | $\pm 5\%$ |

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.57 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was  $250 \text{mW} \pm 3$  %. The results are normalized to 1W input power.

# 5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

| averaged over $1 \text{ cm}^3$ (1 g) of tissue: | <b>42.0 mW/g</b> $\pm$ 16.8 % (k=2) <sup>2</sup> |
|-------------------------------------------------|--------------------------------------------------|
| averaged over 10 cm3 (10 g) of tissue:          | <b>22.0 mW/g</b> $\pm$ 16.2 % (k=2) <sup>2</sup> |

# 6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

| Feedpoint impedance at 1900 MHz: | $\operatorname{Re}\{Z\} = 46.6 \ \Omega$ |
|----------------------------------|------------------------------------------|
|                                  | Im $\{Z\} = 5.1 \Omega$                  |
| Return Loss at 1900 MHz          | -24.0 dB                                 |

### 7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

#### 8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

## 9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

<sup>2</sup> validation uncertainty



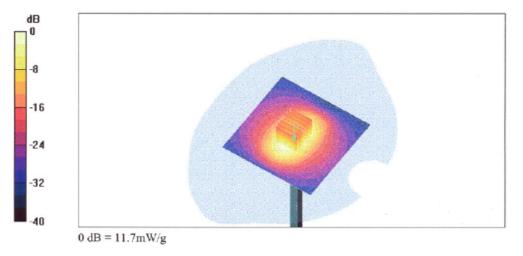
Page 1 of 1 Date/Time: 02/17/04 14:13:01

Test Laboratory: SPEAG, Zurich, Switzerland

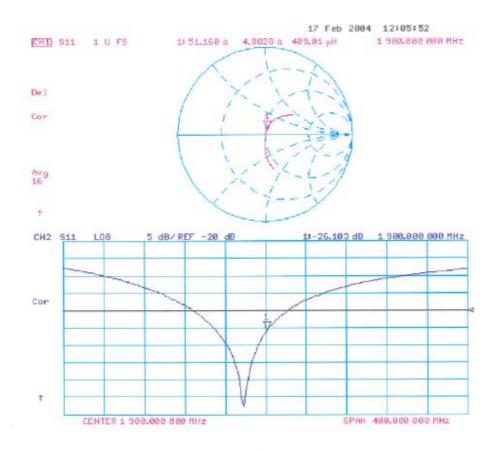
# DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f = 1900 MHz;  $\sigma = 1.47$  mho/m;  $\varepsilon_r = 38.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 98


**Pin = 250 mW; d = 10 mm/Area Scan (81x81x1):** Measurement grid: dx=15mm, dy=15mm Reference Value = 93.8 V/m Power Drift = 0.002 dB Maximum value of SAR = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.39 mW/g Reference Value = 93.8 V/m Power Drift = 0.002 dB Maximum value of SAR = 11.7 mW/g









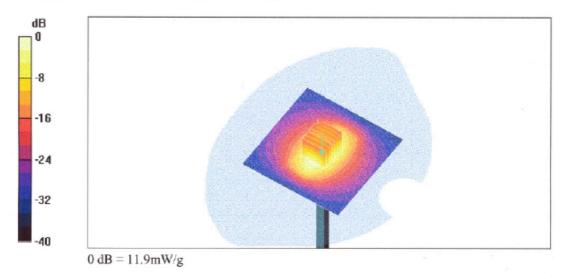


Page 1 of 1 Date/Time: 02/09/04 15:58:45

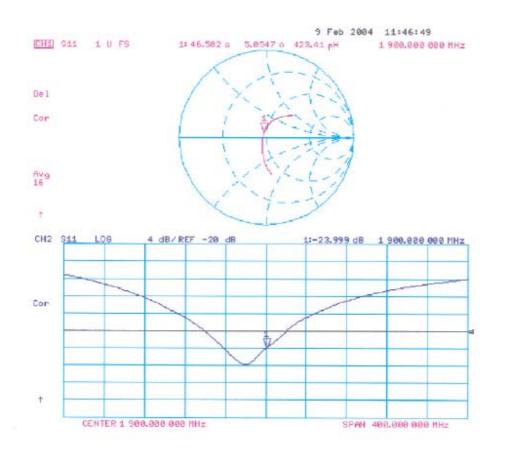
Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: Muscle 1900 MHz; Medium parameters used: f = 1900 MHz;  $\sigma = 1.58$  mho/m;  $\epsilon_r = 52.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.6 V/m; Power Drift = 0.0 dBMaximum value of SAR (measured) = 11.9 mW/gPeak SAR (extrapolated) = 18.8 W/kgSAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.49 mW/g









: Client

# Test Report No : FA491608-1-2-01

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Auden > Sporton Int. Inc.

| Ibject(s)                                                                    | ET3DV6 - SN:                    | 1787                                                  |                                   |
|------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------|-----------------------------------|
| Calibration procedure(s)                                                     | QA CAL-01.v2<br>Calibration pro | cedure for dosimetric E-field probe                   | 2 <b>5</b>                        |
| Calibration date:                                                            | August 29, 200                  | 13                                                    |                                   |
| Condition of the calibrated item                                             |                                 | according to the specific calibration                 | n-document)                       |
| Calibration Equipment used (M&TE<br>Model Type                               | critical for calibration)       | Cal Date (Calibrated by, Dersficate No.)              | Scheduled Calibration             |
| RF generator HP 8684-C                                                       | US3642U01700                    | 4-Aug-99 (SPEAG, in house check Aug-02)               | In house check: Aug-05            |
| Power sensor E4412A                                                          | MY41495277                      | 2-Apr-03 (METAS, No 252-0250)                         | Apr-D4                            |
| Power sensor HP 8481A                                                        | MY41092180                      | 18-Sep-02 (Agilent, No. 20020918)                     | Sep-03                            |
| Power meter EPM E44198                                                       | GB41293874                      | 2-Apr-03 (METAS, No 252-0250)                         | Apr-04                            |
| Network Analyzer HP 8753E                                                    | US37390585                      | 18+Oct-01 (Aglent, No. 24BR1033101)                   | In house check: Oct 03            |
| luke Process Calibrator Type 702                                             | SN: 6295603                     | 3-Sep-01 (ELCAL, No.2360)                             | Sep-03                            |
|                                                                              | Name                            | Function                                              | Signature                         |
| Calibrated by:                                                               | Nico Vetteri                    | Technician                                            | - Notor                           |
|                                                                              |                                 |                                                       | NRANG                             |
| Approved by:                                                                 | Katja Pekovic                   | Caboratory Director                                   | How My                            |
|                                                                              |                                 |                                                       | Date issued: August 28, 2000      |
|                                                                              |                                 | tion until the anneditation archerer (haved on ISO/JE | C 17025 International Standard) I |
| This calibration certificate is issued<br>Calibration Laboratory of Schmid 8 |                                 |                                                       |                                   |



Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

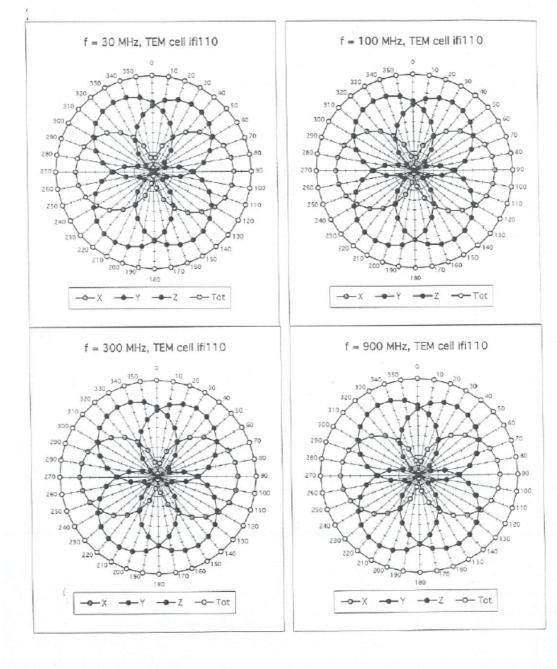
# Probe ET3DV6

# SN:1787

Manufactured: Last calibration: May 28, 2003 August 29, 2003

Calibrated for DASY Systems

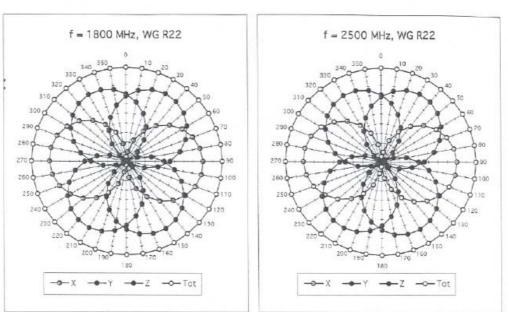
(Note: non-compatible with DASY2 system!)




| ET3DV6 S      | N:1787                                         |              |                                |               |              | Augus       | st 29, 20 |
|---------------|------------------------------------------------|--------------|--------------------------------|---------------|--------------|-------------|-----------|
| DASY          | - Parame                                       | eters o      | of Probe: ET3D                 | V6 SN:1       | 787          |             |           |
| Constitution  | to in Franci                                   | Casas        |                                | Diada Ca      | morecele     | -           |           |
| Sensitivi     | ty in Free                                     | Space        |                                | Diode Co      | mpressio     | n           |           |
| r             | NormX                                          | 1.           | 62 μV/(V/m) <sup>2</sup>       |               | DCP X        | 94          | mV        |
|               | NormY                                          | 1.           | 63 μV/(V/m) <sup>2</sup>       |               | DCP Y        | 94          | mV        |
|               | NormZ                                          |              | 96 μV/(V/m) <sup>2</sup>       |               | DCP Z        | 94          | mV        |
| Sensitivit    | ty in T <b>i</b> ssue                          | Simulat      | ing Liquid                     |               |              |             |           |
| Head          | -                                              | MHz          | ε,= 41.5 ± 5%                  | σ =           | 0.97 ± 5%    | mho/m       |           |
| Valid for f=8 | 00-1000 MHz w                                  | ith Head Tis | sue Simulating Liquid accordir | ig to EN 5036 | , P1528-200  | X           |           |
|               | ConvF X                                        | 6            | 5.5 ± 9.5% (k=2)               |               | Boundary el  | ffect:      |           |
|               | ConvF Y                                        | e            | 5.5 ± 9.5% (k=2)               |               | Alpha        | 0.41        |           |
|               | ConvF Z                                        | e            | 5.5 ±9.5% (k=2)                |               | Depth        | 2.23        |           |
| Head          | 1800                                           | ) MHz        | εr = 40.0 ± 5%                 | σ÷            | = 1.40 ± 5%  | mho/m       |           |
| Valid for f=1 | 710-1910 MHz                                   | with Head T  | issue Simulating Liquid accord | ing to EN 503 | 61, P1528-20 | XOX         |           |
|               | ConvF X                                        | 5            | 5.3 ± 9.5% (k=2)               |               | Boundary e   | ffect:      |           |
|               | ConvF Y                                        | 5            | 5.3 ± 9.5% (k=2)               |               | Alpha        | 0.43        |           |
|               | ConvF Z                                        |              | 5.3 ± 9.5% (k=2)               |               | Depth        | 2.90        |           |
| Rounda        | ry Effect                                      |              |                                |               |              |             |           |
| Head          | · · · · · · · · · · · · · · · · · · ·          | 0 MHz        | Typical SAR gradient:          | 5 % per mm    |              |             |           |
|               |                                                |              |                                |               |              |             |           |
|               | Probe Tip to<br>SAR <sub>be</sub> [%]          |              | Correction Algorithm           |               | 1 mm<br>8.6  | 2 mm<br>4.8 |           |
|               |                                                |              | rection Algorithm              |               | 0.2          | 0.4         |           |
| Head          | 180                                            | 0 MHz        | Typical SAR gradient:          | 10 % per mm   |              |             |           |
|               |                                                |              |                                |               |              |             |           |
|               | Probe Tip to                                   |              | 11                             |               | 1 mm         | 2 mm<br>9.3 |           |
|               | SAR <sub>be</sub> [%]<br>SAR <sub>be</sub> [%] |              | Correction Algorithm           |               | 13.3         | 0.1         |           |
|               | SARbe [70]                                     | With Cor     | rection Algorithm              |               | 0.2          | 0.1         |           |
| Sensor        | Offset                                         |              |                                |               |              |             |           |
|               | Probe Tip to                                   | Sensor Cer   | nter                           | 2.7           |              | mm          |           |
|               | Optical Surfa                                  | ice Detectio | 'n                             | 1.4 ± 0.2     |              | mm          |           |
|               |                                                |              |                                |               |              |             |           |
|               |                                                |              | Page 2 of 10                   |               |              |             |           |



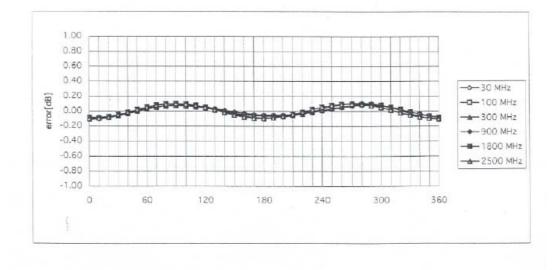
ET3DV6 SN:1787


August 29, 2003



# Receiving Pattern ( $\phi$ ), $\theta$ = 0°

Page 3 of 10






ET3DV6 SN:1787

August 29, 2003

Isotropy Error ( $\phi$ ),  $\theta = 0^{\circ}$ 



Page 4 of 10

©2004 SPORTON International Inc..SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton. **Rev.01** 

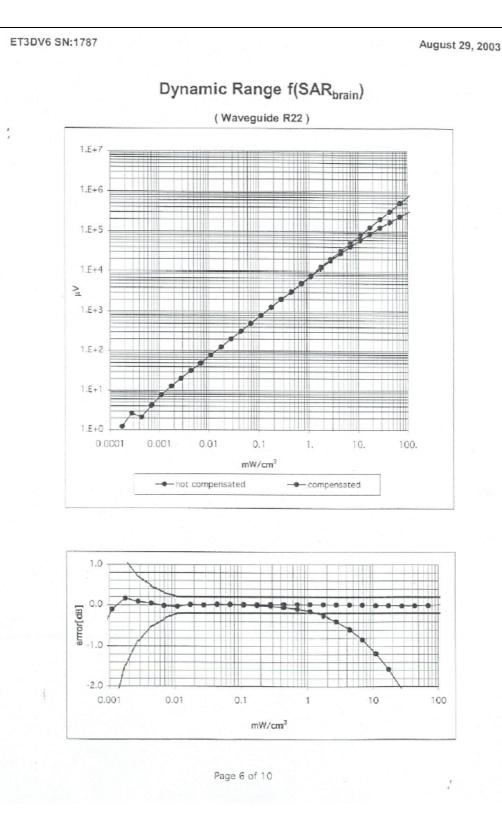


•

Test Report No : FA491608-1-2-01

ET3DV6 SN:1787

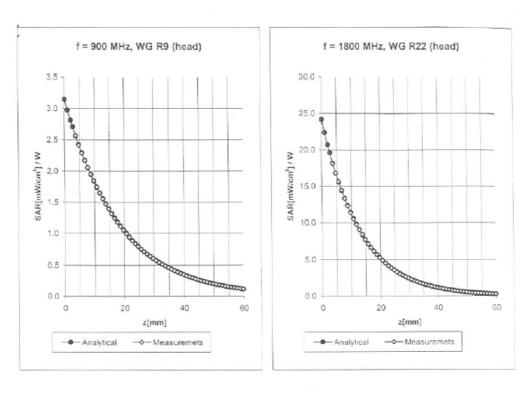
August 29, 200;


# Frequency Response of E-Field

1.50 1.40 1.30 1.20 frequency response 1.10 1.00 0.90 0.80 0.70 0.60 0.50 0 500 1000 1500 2000 2500 3000 f[MHz] --- TEM 

(TEM-Cell:ifi110, Waveguide R22)

Page 5 of 10








ET3DV6 SN:1787

August 29, 2003



# **Conversion Factor Assessment**

 Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

 ConvF X
 6.5
 ± 9.5% (k=2)
 Boundary effect:

 ConvF Y
 6.5
 ± 9.5% (k=2)
 Alpha
 0.41

 ConvF Z
 6.5
 ± 9.5% (k=2)
 Depth
 2.23

 $\epsilon_r = 41.5 \pm 5\%$ 

 $\sigma = 0.97 \pm 5\%$  mho/m

r T

Head 1800 MHz  $\epsilon_r = 40.0 \pm 5\%$   $\sigma = 1.40 \pm 5\%$  mho/m

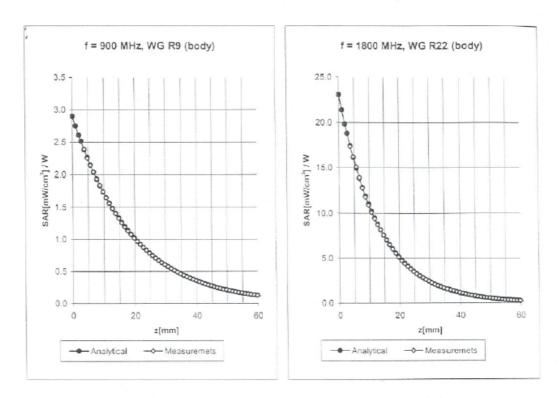
Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

| ConvF X | 5.3 ± 9.5% (k=2)      | Boundary eff | ect: |
|---------|-----------------------|--------------|------|
| ConvF Y | 5.3 $\pm 9.5\%$ (k=2) | Alpha        | 0.43 |
| ConvF Z | 5.3 $\pm 9.5\%$ (k=2) | Depth        | 2.90 |

Page 7 of 10

©2004 SPORTON International Inc..SAR Testing Lab

Head


This report shall not be reproduced except in full, without the written approval of Sporton. Rev.01

900 MHz



ET3DV6 SN:1787

August 29, 2003



# **Conversion Factor Assessment**

Body 900 MHz  $e_r = 55.0 \pm 5\%$   $\sigma = 1.05 \pm 5\%$  mho/m

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

c .

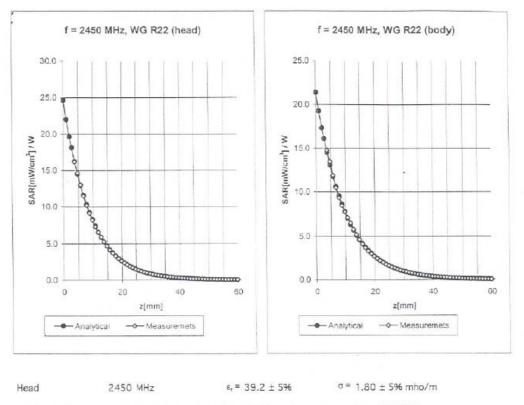
| ConvF X | 6.4 | ± 9.5% (K=2) | Boundary effect: |      |
|---------|-----|--------------|------------------|------|
| ConvF Y | 6.4 | ± 9.5% (k=2) | Alpha            | 0.34 |
| ConvF Z | 6.4 | ± 9.5% (k=2) | Depth            | 2.70 |
|         |     |              |                  |      |

Body 1800 MHz ε<sub>r</sub> = 53.3 ± 5% σ = 1.52 ± 5% mho/m

Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

| С | ConvF X | 4.9 | ± 9.5% (k=2) | Boundary effect: |      |
|---|---------|-----|--------------|------------------|------|
| с | onvF Y  | 4.9 | ± 9.5% (k=2) | Alpha            | 0.51 |
| с | ConvF Z | 4.9 | ± 9.5% (k=2) | Depth            | 2.79 |

Page 8 of 10


©2004 SPORTON International Inc..SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.01



# ET3DV6 SN:1787

### August 29, 2003



# **Conversion Factor Assessment**

Valid for f=2400-2500 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

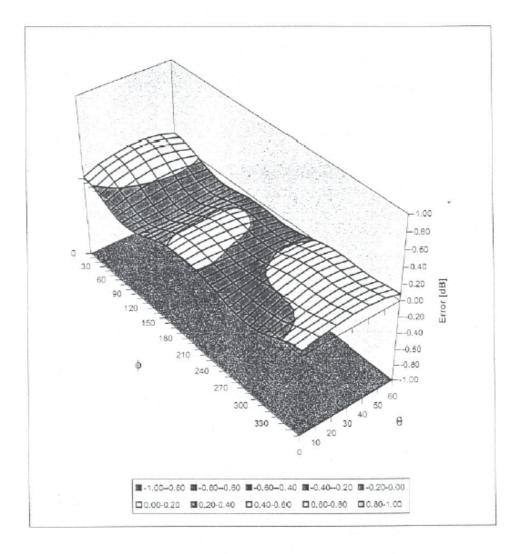
| ConvF X | 4.8 ± 8.9% (k=2) | Boundary effe | ect: |
|---------|------------------|---------------|------|
| ConvF Y | 4.8 ± 8.9% (k=2) | Alpha         | 0.95 |
| ConvF Z | 4.8 ± 8.9% (k=2) | Depth         | 1.86 |

2450 MHz  $e_r = 52.7 \pm 5\%$  $\sigma = 1.95 \pm 5\%$  mhc/m Body Valid for f=2400-2500 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C ConvF X 4.5 ± 8.9% (k=2) Boundary effect: 1.21 ConvF Y 4.5 ± 8.9% (k=2) Alpha 1.55 4.5 ± 8.9% (k=2) Depth ConvF Z

Page 9 of 10

©2004 SPORTON International Inc..SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.01




ET3DV6 SN:1787

August 29, 2003

# Deviation from Isotropy in HSL

Error  $(\theta, \phi)$ , f = 900 MHz





| Calibration Laboratory of                    |
|----------------------------------------------|
| Schmid & Partner                             |
| Engineering AG                               |
| Zeughausstrasse 43, 8004 Zurich, Switzerland |

| С | li | e | n | t |  |
|---|----|---|---|---|--|
|   |    |   |   |   |  |

Sporton (Auden)

| Object(s)                                                           | DAE3 - SD 000 D03 AA - SN:577        |                                  |                                               |  |  |
|---------------------------------------------------------------------|--------------------------------------|----------------------------------|-----------------------------------------------|--|--|
| Calibration procedure(s)                                            | QA CAL-06.v4<br>Calibration procedur | re for the data acquisi          | tion unit (DAE)                               |  |  |
| Calibration date:                                                   | 21.11.2003                           |                                  |                                               |  |  |
| Condition of the calibrated item                                    | In Tolerance (accord                 | ding to the specific ca          | libration document)                           |  |  |
| This calibration statement documer<br>17025 international standard. | nts traceability of M&TE used in     | the calibration procedures and o | conformity of the procedures with the ISO/IEC |  |  |
| All calibrations have been conducte                                 | ed in the closed laboratory facilit  | ly: environment temperature 22 - | +/- 2 degrees Celsius and humidity < 75%.     |  |  |
| Calibration Equipment used (M&TE                                    | eritical for calibration)            |                                  |                                               |  |  |
| Model Type                                                          | ID #                                 | Cal Date                         | Scheduled Calibration                         |  |  |
|                                                                     |                                      |                                  | Scheduled Calibration                         |  |  |
| Fluke Process Calibrator Type 702                                   | SN: 6295803                          | 8-Sep-03                         | Sep-05                                        |  |  |
| Fluke Process Calibrator Type 702                                   | SN. 6295803                          | 8-Sep-03                         |                                               |  |  |
| Fluke Process Calibrator Type 702                                   | SN: 6295803                          | 8-Sep-03                         |                                               |  |  |
| Fluke Process Calibrator Type 702                                   | SN: 6295803                          | 8-Sep-03                         |                                               |  |  |
| Fluke Process Calibrator Type 702                                   | SN: 6295803                          | 8-Sep-03                         |                                               |  |  |
| Fluke Process Calibrator Type 702                                   |                                      |                                  | Sep-05                                        |  |  |
|                                                                     | Name                                 | Function                         | Sep-05                                        |  |  |
| Fluke Process Calibrator Type 702                                   |                                      | Function                         | Sep-05                                        |  |  |
| Calibrated by:                                                      | Name                                 | Function                         | Sep-05                                        |  |  |
|                                                                     | Name<br>Philipp Storchenegger        | Function                         | Sep-05                                        |  |  |
| Calibrated by:                                                      | Name<br>Philipp Storchenegger        | Function                         | Sep-05<br>Signature<br>F. Brushalf            |  |  |



# DAE3 SN: 577 1. Cal Lab. Incoming Inspection & Pre Test

DATE: 21.11.2003

| Modification Status   | Note Status here $\rightarrow \rightarrow \rightarrow \rightarrow$ | BC     |
|-----------------------|--------------------------------------------------------------------|--------|
| Visual Inspection     | Note anomalies                                                     | None   |
|                       |                                                                    |        |
| Pre Test              | Indication                                                         | Yes/No |
| Probe Touch           | Function                                                           | Yes    |
| Probe Collision       | Function                                                           | Yes    |
| Probe Touch&Collision | Function                                                           | Yes    |

# 2. DC Voltage Measurement

A/D - Converter Resolution nominal

| High Range: | 1LSB = | 6.1µV, | full range = | 400 mV |
|-------------|--------|--------|--------------|--------|
| Low Range:  | 1LSB = | 61nV,  | full range = | 4 mV   |

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors        | X              | Y       | Z       |
|----------------------------|----------------|---------|---------|
| High Range                 | 404.434        | 403.889 | 404.352 |
| Low Range                  | 3.94303        | 3.94784 | 3.9501  |
| Connector Angle to be used | in DASY System | 127 °   |         |

| High Range        | Input | Reading in µV | % Error |
|-------------------|-------|---------------|---------|
| Channel X + Input | 200mV | 200000.6      | 0.00    |
|                   | 20mV  | 20000.9       | 0.00    |
| Channel X - Input | 20mV  | -19992.7      | -0.04   |
| Channel Y + Input | 200mV | 200000.6      | 0.00    |
|                   | 20mV  | 19999.1       | 0.00    |
| Channel Y - Input | 20mV  | -19994.7      | -0.03   |
| Channel Z + Input | 200mV | 199999.8      | 0.00    |
|                   | 20mV  | 19998.1       | -0.01   |
| Channel Z - Input | 20mV  | -19999.2      | 0.00    |

| Low Range         | Input | Reading in µV | % Error |
|-------------------|-------|---------------|---------|
| Channel X + Input | 2mV   | 1999.94       | 0.00    |
|                   | 0.2mV | 199.08        | -0.46   |
| Channel X - Input | 0.2mV | -200.24       | 0.12    |
| Channel Y + Input | 2mV   | 1999.98       | 0.00    |
|                   | 0.2mV | 199.50        | -0.25   |
| Channel Y - Input | 0.2mV | -200.80       | 0.40    |
| Channel Z + Input | 2mV   | 1999.98       | 0.00    |
|                   | 0.2mV | 199.11        | -0.44   |
| Channel Z - Input | 0.2mV | -201.12       | 0.56    |

Page 2 of 4



# DAE3 SN: 577

# 3. Common mode sensitivity

High/Low Range

DATE: 21.11.2003

DASY measurement parameters: Auto Zero Time: 3 sec,

Measuring time: 3 sec

| in μV     | Common mode<br>Input Voltage | High Range<br>Reading | Low Range<br>Reading |
|-----------|------------------------------|-----------------------|----------------------|
| Channel X | 200mV                        | 12.00                 | 11.9                 |
|           | - 200mV                      | -10.76                | -12.44               |
| Channel Y | 200mV                        | -8.55                 | -8.51                |
|           | - 200mV                      | 7.58                  | 6.67                 |
| Channel Z | 200mV                        | -0.86                 | -0.58                |
|           | - 200mV                      | -0.85                 | -0.77                |

# 4. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec, High Range

Measuring time: 3 sec

| in μV     | Input Voltage | Channel X | Channel Y | Channel Z |
|-----------|---------------|-----------|-----------|-----------|
| Channel X | 200mV         | -         | 1.96      | 0.28      |
| Channel Y | 200mV         | 0.66      | -         | 3.59      |
| Channel Z | 200mV         | -0.89     | -0.11     | -         |

# 5.1 AD-Converter Values with Input Voltage set to 2.0 VDC

| in Zero Low | Low Range<br>Max - Min | Max.  | Min   |
|-------------|------------------------|-------|-------|
| Channel X   | 17                     | 16137 | 16120 |
| Channel Y   | 27                     | 16767 | 16740 |
| Channel Z   | 8                      | 15103 | 15077 |

# 5.2 AD-Converter Values with inputs shorted

| in LSB    | Low Range | High Range |
|-----------|-----------|------------|
| Channel X | 16134     | 15955      |
| Channel Y | 16740     | 15960      |
| Channel Z | 15093     | 16252      |

# 6. Input Offset Measurement

Page 3 of 4



DAE3 SN: 577

DATE: 21.11.2003

DASY measurement parameters: Auto Zero Time: 3 sec, Number of measurements:

Measuring time: 3 sec 100, Low Range

Input 10MΩ

| in μV     | Average | min. Offset | max. Offset | Std. Deviation |
|-----------|---------|-------------|-------------|----------------|
| Channel X | -0.64   | -1.84       | 0.71        | 0.49           |
| Channel Y | -1.77   | -3.93       | 0.94        | 0.58           |
| Channel Z | -2.21   | -3.14       | -0.81       | 0.34           |

# Input shorted

| in µV     | Average | min. Offset | max. Offset | Std. Deviation |
|-----------|---------|-------------|-------------|----------------|
| Channel X | 0.12    | -1.34       | 1.45        | 0.69           |
| Channel Y | -0.69   | -1.39       | 0.30        | 0.26           |
| Channel Z | -0.94   | -1.58       | -0.30       | 0.23           |

# 7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

# 8. Input Resistance

| In MOhm   | Calibrating | Measuring |
|-----------|-------------|-----------|
| Channel X | 0.2000      | 197.1     |
| Channel Y | 0.1999      | 200.3     |
| Channel Z | 0.2001      | 198.3     |

# 9. Low Battery Alarm Voltage

| in V           | Alarm Level |  |
|----------------|-------------|--|
| Supply (+ Vcc) | 7.58        |  |
| Supply (- Vcc) | -7.65       |  |

# 10. Power Consumption

| in mA          | Switched off | Stand by | Transmitting |
|----------------|--------------|----------|--------------|
| Supply (+ Vcc) | 0.00         | 5.65     | 13.7         |
| Supply (- Vcc) | -0.01        | -7.69    | -8.97        |

Page 4 of 4