CETECOM ICT Services GmbH

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-8412

Test report no.: 2-4765-01-03/07

Date: 2007-12-20

Page 23 of 73

Fax: -9075

Fax: -8484

MPE calculation

These equations are generally accurate in the far field of an antenna but will over predict power density in the near field, where they could be used for making a "worst case" prediction.

$S = PG/4\pi R^2$

where S = power density (in appropriate units, e.g. mW/cm^2)

- P = power input to the antenna (in appropriate units e.g. mW)
- G = power gain of the antenna in the direction of interest relative to the isotropic radiator
- $\mathbf{R}=$ distance to the center of radiation of the antenna (appropriate units e.g. cm)

Or

$S = EIRP/4\pi R^2$

where EIRP = equivalent isotropically radiated power

Calculation:

(Calculated for max. EIRP)

EIRP: 30.9 dBm = 1230 mW

calculated at distance of 20 cm:

power density = $1230 / 4\pi 20^2 = 0.245 \text{ mW} / \text{cm}^2$

Limit:

1mW/ cm² is the reference level for general public exposure according to the OET Bulletin 65, Edition 97-01 Table 1.