Page 1 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

Test Report acc. to FCC Title 47 CFR Part 15 relating to FEIG ELECTRONIC GmbH ID ISC.MRU102

> Title 47 - Telecommunication Part 15 - Radio Frequency Devices Subpart C – Intentional Radiators Measurement Procedure: ANSI C63.4-2009

Date: 2012-02-14

Fax +49 2207-968920

Page 2 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

Manufacturer's details	
Manufacturer	FEIG ELECTRONIC GmbH
Manufacturer's grantee code	РЈМ
Manufacturer's address	FEIG ELECTRONIC GmbH
	Lange. Str. 4
	35781 Weilburg
	Germany
	Phone: +49 (0) 6471 31 09 0
	Fax: +49 (0) 6471 31 09 99
	Email: elmar.reichwein@feig.de
Relevant standard used	47 CFR Part 15C - Intentional Radiators
	ANSI C63.4-2009

Test Report prepared by				
Technical engineer	Ralf Trepper			
	m. dudde hochfrequenz-technik (laboratory)			
	Rottland 5a			
	51429 Bergisch Gladbach			
	Germany			
	Phone: +49 2207 96890			
	Fax: +49 2207 968920			
	Email: m.duddelabor@dudde.com			

Equipment Under Test (EUT)		
Equipment category	FHSS Transceiver	
Trade name	FEIG	
Type designation	ID ISC.MRU102	
Serial no.		
Variants	ID ISC.MRMU102-A	
	ID ISC.MRU102-PoE	
	ID ISC.MRU102-USB	

Date: 2012-02-14

Fax +49 2207-968920

Page 3 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

1. Test result summary

Clause	e Requirements headline		Test result		Report page number	
8.1	Antenna requirement	Pass	Fail	N.t.*	9	
8.2	Conducted limits	Pass	Fail	N.t.*	10 to 13	
8.3	Restricted bands of operation	Pass	Fail	N.t.*	14 to 16	
8.4	Radiated emission limits, general requirements	Pass	Fail	N.t.*	17 to 25	
8.5	Bandwidth	Pass	Fail	N.t.*	26 to 27	
8.6	Peak output power	Pass	Fail	N.t.*	28 to 32	
8.7	Out of band emissions	Pass	Fail	N.t.*	33 to 44	
8.8	Radio frequency hazard	Pass	Fail	N.t.*	45	

Not tested

The equipment meets the requirements

Yes

No

Date: 2012-02-14

Fax +49 2207-968920 m. dudde hochfrequenz-technik **Rottland 5a** D-51429 Bergisch Gladbach/ Germany Tel: +49 2207-96890

⁽Manager)

Test report no. 12008135

Page 4 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

Table of contents

1. Test result summary	3
2. Introduction	5
3. Testing laboratory	5
4. Applicant	6
5. Product and product documentation	6
6. Conclusions, observations and comments	7
7. Operational description	8
8.1 Antenna requirement.	9
8.1.1 Regulation	9
8.1.2 Result	9
8.2 Conducted limits	10
8.2.1 Regulation	10
8.1.2 Test equipment	11
8.2.3 Test procedures	11
8.2.4 Result	12
8.3 Restricted bands of operation	14
8.3.1 Regulation	14
8.3.2 Result	16
8.4 Radiated emission limits, general requirements	17
8.4.1 Regulation	17
8.4.2 Test equipment	18
8.4.3 Test procedure	19
8.4.4 Calculation of the field strength	20
8.4.5 Result	21
8.5 Bandwidth	30
8.5.1 Regulation	30
8.6 Peak output power	32
8.6.1 Regulation	32
8.6.2 Test equipment	34
8.6.3 Test procedure	34
8.6.4 Calculation of the peak power (radiated)	35
8.6.7 Result	36
8.7 Out of band emission	
8.7.1 Regulation	
8.7.2 Calculation of the "Out of band emissions"	
8.7.3 Test equipment	38
8.7.4 Test procedure	
8.7.5 Result	40
8.8 Radio frequency hazard	
8.8.1 Regulation	
8.8.2 Result	
9. Additional information to the test report	

Date: 2012-02-14

Fax +49 2207-968920

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

2. Introduction

This test report consists of:

- Test result summary
- List of contents
- Introduction and further information
- Performance assessment
- Detailed test information

All pages have been numbered consecutively and bear the m. dudde hochfrequenz-technik logo, the test report number, the date, the test specification in its current version as well as the type designation of the EUT. The total number of pages in this report is **51**.

The tests were carried out at:

- m. dudde hochfrequenz-technik, D-51429 Bergisch Gladbach

in a representative assembly and in accordance with the test methods and/or requirements stated in:

FCC Title 47 CFR Part 15 Subpart C & ANSI C63.4-2009

The sample of the product was received on:

- 2012-04-11

The tests were carried out in the following period of time:

- 2012-04-11 - 2012-05-25

3. Testing laboratory

m. dudde hochfrequenz-technik Rottland 5a, 51429 Bergisch Gladbach, Germany

Phone: +49 - (0) 22 07 / 96 89-0 Fax: +49 - (0) 22 07 / 96 89-20

- FCC Registration Number: 699717

Accredited by:

DAkkS Deutsche Akkreditierungsstelle GmbH DAkkS accreditation number: D-PL-12053-01

Date: 2012-02-14

Page 6 of 51

Date of issue: 2012-08-06

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

4. Applicant

Company name	: FEIG ELECTRONIC GmbH
Address	: Lange Str. 4
	35781 Weilburg
Country	: Germany
Telephone	: +49 (0) 6471 31 09 0
Fax	: +49 (0) 6471 31 09 99
Email	: elmar.reichwein@feig.de
Date of order	: 2012-03-15
References	: Mr. Elmar Reichwein

5. Product and product documentation

Samples of the following apparatus were submitted for testing:

Manufacturer	: FEIG ELECTRONIC GmbH
Trademark	: FEIG
Type designation	: ID ISC.MRMU102-A / ID ISC.MRU102-PoE / ID ISC.MRU102-USB
Hardware version	: ID ISC.MRMU102-A / ID ISC.MRU102-PoE / ID ISC.MRU102-USB
Serial number	:
Software release	:
Type of equipment	: RFID-Equipment
Power used	: 12.0 to 24.0 V DC
Frequency used	: 902.750 MHz – 927.250 MHz (50 channels with 500 kHz channel spacing)
Generated or used frequencies	: 902.750 MHz – 927.250 MHz (Carrier), 20.0 MHz, 25.0 MHz (Crystals)
ITU emission class	: 106KA7D
FCC ID	: PJMMRU102

Test report no. 12008135

Page 7 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

For issuing this report the following product documentation was used:

Description	Date	Identifications
External photographs of the Equipment Under Test (EUT)	2012-08-06	Annex no. 1
Internal photographs of the Equipment Under Test (EUT)	2012-08-06	Annex no. 2
Channel occupancy / bandwidth	2012-08-06	Annex no. 3
Label sample	2012-08-06	Annex no. 4
Functional description / User manual	2012-08-06	Annex no. 5
Test setup photos	2012-08-06	Annex no. 6
Block diagram	2012-08-06	Annex no. 7
Operational description	2012-08-06	Annex no. 8
Schematics	2012-08-06	Annex no. 9
Parts list	2012-08-06	Annex no. 10
Periodic operation characteristics	2012-08-06	Annex no. 11
Antenna characteristics / Antenna description	2012-08-06	Annex no. 12

6. Conclusions, observations and comments

The test report will be filed at m. dudde hochfrequenz-technik for a period of 10 years following the issue of this report. It may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of m. dudde hochfrequenz-technik.

The results of the tests as stated in this report are exclusively applicable to the EUT as identified in this report. m. dudde hochfrequenz-technik cannot be held liable for properties of the EUT that have not been observed during these tests.

m. dudde hochfrequenz-technik assumes the sample to comply with the requirements of FCC Title 47 CFR Part 15 for the respective test sector, if the test results turn out positive.

Comments: There are three versions. ID ISC.MRMU102-A with plastic housing and PoE or USB connection (ID ISC.MRU102-USB, ID ISC.MRU102-PoE). ID ISC.MRMU102-A without housing and RS-232 or USB connection (module version, ID ISC.MRMU102-A). All versions use the same PCB. The only differences are the number of assembled antenna ports and interfaces (see also equality declaration).

Additional equipment for carrying out the tests on ID ISC.MRU102: HP Laptop, Type: compaq nx6325, SN: CNU64907YN

PoE Switching adapter, Model: SL POWER ELECTRONICS PW183RD48000F07 (UL: 2L85 / E136791) Input: 110-250 V AC / 50-60 Hz / 1.0 A max. Output: +48 V DC / 0.625 A / 30 W max.

Date	: 2012-08-06	Date	: 2012-08-06
Name	: Ralf Trepper	Name	: Manfried Dudde
Function	: Technician	Function	: Manager
Signature	. A. G. Trippe	Signature	. M. Anh

Page 8 of 51

Date of issue: 2012-08-06

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

7. Operational description

The ID ISC.MRU102-A readers are long range readers (up to 6), operating at UHF (902-928 MHz), in a Frequency Hopping Mode. The readers have an RF output level of 0.5 W and can be supplied with 12.0 VDC. The ID ISC.MRU102-A readers contain a LINUX operating system. The system is capable of using channels which are separated by a frequency spacing of 500 kHz, starting at a centre frequency of 902.7 MHz (channel 1). The transmitter and receiver parts each have a hop time (time for switching from one hopping channel to the next), determined by the settling time of the on-chip frequency synthesizer. Of all available channels are used for TX hopping. During each transmission all hopping channels (1-50) are used. Thereby it is inherently ensured that the hopping channels are used equally often for TX. The sequence of hopping channels during a transmission and exact timing for TX on each hopping channel is determined by a pseudo-random algorithm.

7.2 EUT configuration

Testing was carried out using software control implemented in the EUT with the following settings:

- Output power: maximum, +27 dBm
- Frequency hopping in the band: 902 928 MHz
- Frequency hopping using a pseudo random sequence in the band: 902 928 MHz.
- Changes in modulation: None,
- Single frequency operation
- Channel spacing: 500 kHz
- 50 Channels

7.3 EUT measurement description

Radiated emission test

One configuration will be tested as standalone device. In order to establish the maximum radiation, firstly, there have been viewed all orthogonal adjustments and all antenna ports of the test sample. Secondly the test samples have been rotated at all adjustments around the own axis between 0° and 360°, and thirdly, the antenna polarization between horizontal and vertical has been varied. All generated frequencies, the lowest, middle and the highest frequency of the UHF Long Range Reader ID ISC.MRU102-A Reader, have been viewed.

Conducted measurements

1.) The UHF Long Range Reader ID ISC.MRU102-POE was connected via external PoE supply to the artificial mains network. It has been tested only in continuous transmit mode. L1 and N have been viewed.

2.) The UHF Long Range Reader ID ISC.MRU102-USB was connected to the USB port on a laptop and turns it to the artificial mains network. It has been tested only in continuous transmit mode. L1 and N have been viewed.

2.) The UHF Long Range Reader ID ISC.MRU102-A was connected to the serial port on a laptop and turns it to the artificial mains network. It has been tested only in continuous transmit mode. L1 and N have been viewed.

Page 9 of 51

Date of issue: 2012-08-06

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

8.1 Antenna requirement

8.1.1 Regulation

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

8.1.2 Result

The equipment meets the requirements		Yes	No No	N.t.
Further test results are attached	Yes	No		

Integrated antenna (Antenna is part of the PCB).

External antennas:

ID ISC.ANT.U170/170 ID ISC.ANT.U270/270 ID ISC.ANT.U600/270

Attention: Antennas must be installed by professionals!

N.t.* See page no. 50

Date: 2012-02-14

Page 10 of 51

Date of issue: 2012-08-06

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

8.2 Conducted limits

8.2.1 Regulation

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission(MHz)	Conducted limit (dBµV)			
	Quasi-peak	Average		
0.15 - 0.5	66 to 56*	56 to 46*		
0.5 - 5	56	46		
5 -30	60	50		

*Decreases with the logarithm of the frequency

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:

1) For carrier current system containing their fundamental emission within the frequency band 535–1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μ V within the frequency band 535–1705 kHz, as measured using a 50 μ H/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

Page 11 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

8.1.2 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
Receiver (9 kHz - 30MHz)	Schwarzbeck FMLK 1518 (428)	1518294 9360	08/2010	08/2013	
Panorama- Monitor FMLK / VUMA	PAZ1550 (429)				
Protector limiter 9 kHz - 30MHz 10 dB	Rhode & Schwarz ESH 3Z2 (272)	357,881052	09/2011	09/2013	Dudde
V-LISN 50 ohms//(50 uH+5 ohms)	RFT NNB 11 (72)	13835240	07/2010	07/2013	Dudde
V-LISN 50 ohms//(50 uH+5 ohms)	EMCO (49b)	9512-1227	07/2011	07/2014	Dudde
RF- cable	Aircell 1.5m [BNC/N]	K30	09/2011	09/2012	Dudde

8.2.3 Test procedures

The EUT and the additional equipment (if required) are connected to the main power through a line impedance stabilization network (LISN). The LISN must be appropriate to ANSI C63.4-2009 Section 7. Additional equipment must also be connected to a second LISN with the same specifications described in the above sentence (if required).

Date: 2012-02-14

Page 12 of 51

Date of issue: 2012-08-06

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

8.2.4 Result

Tested with external PoE power supply

CONDUCTED EMISSIONS (Section 15.107)								
Tested	Emission	Receiver	Result	Spec. limit	Margin	Remarks		
line	frequency	bandwidth	quasi-peak	(average)				
	[MHz]	[kHz]	[dBµV]	[dBµV]	[dB]			
L1	1503	9	20	46	26	*2		
Ν	1503	9	20	46	26	*2		
L1	1766	9	25	46	21	*2		
Ν	1766	9	25	46	21	*2		
L1	2092	9	28	46	18	*2		
Ν	2092	9	28	46	18	*2		
L1	2499	9	30	46	16	*2		
Ν	2499	9	30	46	16	*2		
L1	4000	9	25	46	21	*2		
Ν	4000	9	25	46	21	*2		
L1	5000	9	23	46	23	*2		
Ν	5000	9	23	46	23	*2		
L1	5532	9	27	50	23	*2		
Ν	5532	9	27	50	23	*2		
L1	12581	9	26	50	24	*2		
Ν	12581	9	26	50	24	*2		
L1	25000	9	31	50	19	*2		
Ν	25000	9	31	50	19	* ²		

Remark: *¹ Noise level of the measuring instrument \leq -2dBµV (0.009 – 30MHz) Remark: *² Quasi peak measurements lower than "Specified Average Limit"

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

Page 13 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

	CONDUCTED EMISSIONS (Section 15.107)								
Tested	Emission	Receiver	Result	Spec. limit	Margin	Remarks			
line	frequency	bandwidth	quasi-peak	(average)					
	[MHz]	[kHz]	[dBµV]	[dBµV]	[dB]				
L1	0.189	9	53	55.2	2.2	*2			
Ν	0.189	9	53	55.2	2.2	*2			
L1	0.253	9	49	54.7	5.7	*2			
Ν	0.253	9	49	54.7	5.7	*2			
L1	0.296	9	42	54.5	12.5	*2			
Ν	0.296	9	42	54.5	12.5	*2			
L1	0.505	9	40	46	6	*2			
Ν	0.505	9	40	46	6	*2			

Tested with USB connection to an HP Laptop (Type: compaq nx6325 / SN CNU64907YN)

Remark: *¹ Noise level of the measuring instrument $\leq -2dB\mu V (0.009 - 30MHz)$ Remark: *² Quasi peak measurements lower than "Specified Average Limit"

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

Tested with RS232 connection to an HP Laptop (Type: compaq nx6325 / SN CNU64907YN)

CONDUCTED EMISSIONS (Section 15.107)								
Tested	Emission	Receiver	Result	Spec. limit	Margin	Remarks		
line	frequency	bandwidth	quasi-peak	(average)				
	[MHz]	[kHz]	[dBµV]	[dBµV]	[dB]			
L1	0.186	9	51	55.2	4.2	*2		
Ν	0.186	9	51	55.2	4.2	*2		
L1	0.256	9	46	54.7	8.7	*2		
Ν	0.256	9	46	54.7	8.7	*2		
L1	0.262	9	49	54.6	5.6	*2		
Ν	0.262	9	49	54.6	5.6	*2		
L1	0.890	9	38	46	8	*2		
Ν	0.890	9	38	46	8	*2		

Remark: *¹ Noise level of the measuring instrument $\leq -2dB\mu V (0.009 - 30MHz)$ Remark: *² Quasi peak measurements lower than "Specified Average Limit"

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 50

Date: 2012-02-14

Page 14 of 51

Date of issue: 2012-08-06

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

8.3 Restricted bands of operation

8.3.1 Regulation

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

Test report no. 12008135

Page 15 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102 Date of issue: 2012-08-06

(d) The following devices are exempt from the requirements of this Section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a), the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a), and the fundamental emission is outside of the bands listed in paragraph (a) more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to Section 15.213.

(4) Any equipment operated under the provisions of § 15.253, § 15.255 or § 15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of Section 15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of Subpart D or F of this part.

(7) Devices operated pursuant to § 15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under § 15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § 15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under § 15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in § 15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of Section 15.245 shall not exceed the limits specified in Section 15.245(b).

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator. (d) The following devices are exempt from the requirements of this Section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a), the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a), and the fundamental emission is outside of the bands listed in paragraph (a) more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

Test report no. 12008135

Page 16 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

Vers. no. 1.12

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to Section 15.213.

(4) Any equipment operated under the provisions of § 15.253, § 15.255 or § 15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of Section 15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of Subpart D or F of this part.

(7) Devices operated pursuant to § 15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under § 15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § 15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under § 15.249 are exempt from 83 complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in § 15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of Section 15.245 shall not exceed the limits specified in Section 15.245(b).

8.3.2 Result

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

8.4 Radiated emission limits, general requirements

8.4.1 Regulation

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement distance (meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

(b) In the emission table above, the tighter limit applies at the band edges.

(c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.

(d) The emission limits shown in the above table are based on measurements employing a CISPR quasi peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

(e) The provisions in §§ 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

(f) In accordance with Section 15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in Section 15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in Section 15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in Section 15.109 that are applicable to the incorporated digital device.

Page 18 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

8.4.2 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
OATS	Dudde (104)		08/2010	08/2012	Dudde
Digital Multimeter	GW GDM-8045G (144)	0090256	08/2011	08/2014	Dudde
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	11/2010	11/2012	Rohde & Schwarz
Pre-amplifier (100kHz - 1.3GHz)	Hewlett Packard 8447 E (166a)	1726A00705	01/2012	01/2014	Dudde
Pre-amplifier (1GHz - 18GHz)	Narda (345)		01/2012	01/2014	Dudde
Magnetic loop antenna (9 kHz - 30 MHz)	Schwarzbeck FMZB 1516 (23)		05/2010	05/2013	Dudde
Bilog antenna (30- 1000 MHz)	Schwarzbeck VULP 9168 (406)		04/2011	04/2014	Schwazbeck
Bilog antenna (1- 18 GHz)	Schwarzbeck STLP 9148 (445)		09/2009	09/2012	Schwazbeck
Horn antenna (2.0-14.0 GHz)	Schwarzbeck BBHA 9120 C (169)	305	03/2011	03/2013	Dudde
RF- cable	Kabelmetal 18m [N]	K1	09/2011	09/2012	Dudde
RF- cable	Aircell 0.5m [BNC]	K40	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1 m [N]	K52	09/2011	09/2012	Dudde
RF- cable	Aircell 1m [BNC/N]	K56	09/2011	09/2012	Dudde
RF- cable	RF- cable Sucoflex 100 Suhner 1 m [N] (09/2011	09/2012	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K74	09/2011	09/2012	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K75	09/2011	09/2012	Dudde

Fax +49 2207-968920

Page 19 of 51

Date of issue: 2012-08-06

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

8.4.3 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8 m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna is changed in horizontal and vertical polarization; the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4: 2009 Section 8 "Radiated Emissions Testing"

Measurement procedures for electric field radiated emissions above 1 GHz are covered in Clause 8 of ANSI C63.4-2009. The C63.4-2009 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Subclause 8.3.1.2 of C63.4-2009 states that the measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." We consider the "cone of radiation" to be the 3 dB beamwidth of the measurement antenna.

While the "bore-sighting" technique is not explicitly mentioned in C63.4-2009, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beamwidth of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTS, measuring system sensitivity, etc.

C63.4-2009 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

Date: 2012-02-14

Vers. no. 1.12

Page 20 of 51

hochfrequenz-technik

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

Radiated emissions test characteristics	
Frequency range	30 MHz - 4,000 MHz
Test distance	3 m*
Test instrumentation resolution bandwidth	120 kHz (30 MHz - 1,000 MHz)
	1 MHz (1000 MHz - 4,000 MHz)
Receive antenna scan height	1 m - 4 m
Receive antenna polarization	Vertical/horizontal

* According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

8.4.4 Calculation of the field strength

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-amplifier (with the use of a pre-amplifier)

Receiver Level: Receiver reading without correction factorsCorrection Factor: Antenna factor + cable loss

For example:

The receiver reading is 32.7 dB μ V. The antenna factor for the measured frequency is +2.5 dB (1/m) and the cable factor for the measured frequency is 0.71 dB, giving a field strength of 35.91dB μ V/m. The 35.91dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in $\mu V/m$ = Common Antilogarithm (35.91/20) = 39.8

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements).

Page $\mathbf{21} \text{ of } \mathbf{51}$

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

8.4.5 Result

	TRANSMITTER SPURIOUS RADIATION BELOW 30 MHz (Section 15.205, 15.209)								
f (MHz)	Bandwidth (kHz)	Noted receiver level	Test distance	Correction factor	Distance extrapol.	Level corrected	Limit	Margin	Polarisation EUT /
	Type of detector	dBµV	m	dB	factor dB	dBµV/m	dBµV/m	dBµV/m	antenna orientation
	No emissions detected								
Measu	rement unco	ertainty				4 c	lB		

Remark: *¹ Noise level of the measuring instrument ≤ 4.0 dB μ V @ 10m distance (0.009 MHz -30 MHz) Remark: * Peak Limit according to Section 15.35 (b).

The equipment meets the requirements			Yes	No	N.t.
Further test results are attached	Yes	N	0]	Page no.	

N.t.* See page no. 50

Date: 2012-02-14

Test report no. 12008135

Page $\mathbf{22} \text{ of } \mathbf{51}$

hochfrequenz-technik

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

	TRAN	SMITTE	R SPURI	OUS RAD	IATION	ABOVE 30	MHz (Se	ection 15.2	205, 15.20	9)	
f (MHz)	Bandwidth (kHz)	Noted receiver	Test distance	Correction factor	Distance extrapol.	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT /	Antenn height
	Type of detector	level dBµV	m	dB	factor dB	dB	dBµV/m	dBµV/m	dBµV/m	antenna	cm
483.55	100 / QPK	55.2	3	19.5* ⁵	0	0	35.7	46.0	10.3	H/V	139
508.07	100 / QPK	51.7	3	19.5* ⁵	0	0	32.2	46.0	13.8	H/H	125
2708.3	1000 / PK	40.5	3	10.7* ⁶	0	6.0	45.2	54.0	8.8	H/H	202
3610.9	1000 / PK	30.9	3	14.7* ⁶	0	6.0	39.6	54.0	14.4	H/H	160
4513.7	1000 / PK	35.2	3	19.0* ⁶	0	6.0	48.2	54.0	5.8	H/H	210
			All other em	issions lower th	nan the noise	level of the mea	asuring equip	oment!			

With integral antenna (highest frequency 914.75 MHz)

	TRAN	SMITTE	R SPURI	OUS RAD	IATION .	ABOVE 30	MHz (Se	ection 15.	205, 15.20	9)	
f (MHz)	Bandwidth (kHz)	Noted receiver	Test distance	Correction factor	Distance extrapol.	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT /	Antenna height
	Type of detector	level dBµV	m	dB	factor dB	dB	dBµV/m	dBµV/m	dBµV/m	antenna	cm
483.55	100 / QPK	55.2	3	19.5* ⁵	0	0	35.7	46.0	10.3	H/V	139
508.07	100 / QPK	51.7	3	19.5* ⁵	0	0	32.2	46.0	13.8	H/H	125
2744.250	1000 / PK	41.0	3	11.3*6	0	6.0	46.3	54.0	7.7	H/H	105
3659.000	1000 / PK	32.1	3	16.1* ⁶	0	6.0	42.2	54.0	11.8	H/V	119
4573.750	1000 / PK	33.1	3	19.7* ⁶	0	6.0	46.8	54.0	7.2	H/H	148
			All other em	issions lower th	an the noise	level of the me	asuring equip	pment!			
Measure	Measurement uncertainty 4 dB										

Bandwidth = the measuring receiver bandwidth

Date: 2012-02-14

Fax +49 2207-968920

٦

Page 23 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

	TRAN	SMITTE	R SPURI	OUS RAD	IATION	ABOVE 30	MHz (Se	ection 15.2	205, 15.20	9)		
f (MHz)	Bandwidth (kHz)	Noted receiver	Test distance	Correction factor	Distance extrapol.	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT /	Antenna height	
	Type of detector	level dBµV	m	dB	factor dB	dB	dBµV/m	dBµV/m	dBµV/m	antenna	cm	
483.55	100 / QPK	55.2	3	19.5* ⁵	0	0	35.7	46.0	10.3	H/V	139	
508.07	100 / QPK	51.7	3	19.5* ⁵	0	0	32.2	46.0	13.8	H/H	125	
2781.7	1000 / PK	43.0	3	11.3* ⁶	0	6.0	48.3	54.0	5.7	H/H	100	
3709.0	1000 / PK	34.5	3	16.1* ⁶	0	6.0	44.6	54.0	9.4	H/V	111	
4636.3	1000 / PK	34.9	3	19.7* ⁶	0	6.0	48.6	54.0	5.4	H/H	122	
			All other em	issions lower th	nan the noise	level of the mea	asuring equip	oment!				
Measure	Measurement uncertainty 4 dB											

With integral antenna (highest frequency 927.25 MHz)

Bandwidth = the measuring receiver bandwidth

Remark: *¹ noise floor noise level of the measuring instrument $\leq 3.5 dB\mu V$ @ 3m distance (30 – 1,000 MHz) Remark: *² noise floor noise level of the measuring instrument $\leq 4.5 dB\mu V$ @ 3m distance (1,000 – 2,000 MHz) Remark: *³ noise floor noise level of the measuring instrument $\leq 10 dB\mu V$ @ 3m distance (2,000 – 5,500 MHz) Remark: *⁴ noise floor noise level of the measuring instrument $\leq 14 dB\mu V$ @ 3m distance (5,500 – 14,500 MHz) Remark: *⁵ for using a pre-amplifier in the range between 100 kHz and 1,000 MHz Remark: *⁶ for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 50

Page $\mathbf{24} \text{ of } \mathbf{51}$

hochfrequenz-technik

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

	TRAN	SMITTE	R SPURI	OUS RAD	IATION	ABOVE 30) MHz (Se	ection 15.	205, 15.20	9)	
f (MHz)	Bandwidth (kHz)	Noted receiver	Test distance	Correction factor	Distance extrapol.	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT /	Antenna height
	Type of detector	level dBµV	m	dB	factor dB	dB	dBµV/m	dBµV/m	dBµV/m	antenna	cm
483.55	100 / QPK	55.2	3	19.5* ⁵	0	0	35.7	46.0	10.3	H/V	139
508.07	100 / QPK	51.7	3	19.5* ⁵	0	0	32.2	46.0	13.8	H/H	125
2708.3	1000 / PK	40.1	3	10.7* ⁶	0	6.0	44.8	54.0	9.2	H/V	116
3610.9	1000 / PK	36.0	3	14.7* ⁶	0	6.0	44.7	54.0	9.3	H/V	100
4513.7	1000 / PK	32.4	3	19.0* ⁶	0	6.0	45.4	54.0	8.6	H/V	168
			All other em	issions lower th	nan the noise	level of the me	asuring equip	oment!			
Measure	Measurement uncertainty 4 dB										

With antenna IS ISC.ANT.U170/170 (lowest frequency 902.75 MHz)

With antenna IS ISC.ANT.U170/170 (highest frequency 914.75 MHz)

	TRAN	SMITTE	R SPURI	OUS RAD	IATION	ABOVE 30) MHz (Se	ection 15.2	205, 15.20	9)		
f (MHz)	Bandwidth (kHz)	Noted receiver	Test distance	Correction factor	Distance extrapol.	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT	Antenna height	
	Type of detector	level dBµV	m	dB	factor dB	dB	dBµV/m	dBµV/m	dBµV/m	antenna	cm	
483.55	100 / QPK	55.2	3	19.5* ⁵	0	0	35.7	46.0	10.3	H/V	139	
508.07	100 / QPK	51.7	3	19.5* ⁵	0	0	32.2	46.0	13.8	H/H	125	
2744.250	1000 / PK	39.5	3	11.3*6	0	6.0	44.8	54.0	9.2	H/V	117	
3659.000	1000 / PK	36.5	3	16.1* ⁶	0	6.0	46.6	54.0	7.4	H/V	124	
4573.750	1000 / PK	32.7	3	19.7* ⁶	0	6.0	46.4	54.0	7.6	H/H	197	
			All other em	issions lower tl	han the noise	level of the me	asuring equij	oment!				
Measure	Measurement uncertainty 4 dB											

Bandwidth = the measuring receiver bandwidth

Date: 2012-02-14

Fax +49 2207-968920

Page 25 of 51

hochfrequenz-technik

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

TRANSMITTER SPURIOUS RADIATION ABOVE 30 MHz (Section 15.205, 15.209) AV Polaris. Antenna Bandwidth Correction Distance Level f Noted Test Limit Margin Correction EUT height (MHz) (kHz) receiver distance factor extrapol. corrected factor factor Type level antenna dB dBµV/m dBµV/m dBµV/m of detector dBµV m dB dR cm 483.55 100 / OPK 19.5*5 10.3 55.2 0 0 35.7 46.0 H/V 139 3 508.07 100 / QPK 51.7 3 19.5*⁵ 0 0 32.2 46.0 13.8 H/H 125 2781.7 1000 / PK 42.6 3 11.3*6 0 6.0 47.9 54.0 6.1 H/V 128 3709.0 35.7 16.1*⁶ 1000 / PK 3 0 6.0 45.8 54.0 8.2 H/V 121 4636.3 1000 / PK 35.5 19.7*6 49.2 54.0 4.8 H/H 102 3 0 6.0 All other emissions lower than the noise level of the measuring equipment! Measurement uncertainty $4 \, \mathrm{dB}$

With antenna IS ISC.ANT.U170/170 (highest frequency 927.25 MHz)

Bandwidth = the measuring receiver bandwidth

Remark: *¹ noise floor noise level of the measuring instrument ≤ 3.5 dB μ V @ 3m distance (30 – 1,000 MHz) Remark: *² noise floor noise level of the measuring instrument ≤ 4.5 dB μ V @ 3m distance (1,000 – 2,000 MHz) Remark: *³ noise floor noise level of the measuring instrument ≤ 10 dB μ V @ 3m distance (2,000 – 5,500 MHz) Remark: *⁴ noise floor noise level of the measuring instrument ≤ 14 dB μ V @ 3m distance (5,500 – 14,500 MHz) Remark: *⁵ for using a pre-amplifier in the range between 100 kHz and 1,000 MHz Remark: *⁶ for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 50

Page $\mathbf{26}$ of $\mathbf{51}$

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

	TRAN			· · ·	1 /	ABOVE 30	,	ection 15.2	205, 15.20	19)	
f (MHz)	Bandwidth (kHz) Type	Noted receiver level	Test distance	Correction factor	Distance extrapol. factor	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT /	Antenna height
	of detector	dBμV	m	dB	dB	dB	dBµV/m	dBµV/m	dBµV/m	antenna	cm
483.55	100 / QPK	55.2	3	19.5* ⁵	0	0	35.7	46.0	10.3	H/V	139
508.07	100 / QPK	51.7	3	19.5* ⁵	0	0	32.2	46.0	13.8	H/H	125
2708.3	1000 / PK	37.0	3	10.7* ⁶	0	6.0	41.7	54.0	12.3	H/H	107
3610.9	1000 / PK	31.7	3	14.7* ⁶	0	6.0	40.4	54.0	13.6	H/V	119
4513.7	1000 / PK	34.0	3	19.0* ⁶	0	6.0	47.0	54.0	7.0	H/H	148
			All other em	issions lower tl	nan the noise	level of the me	asuring equip	oment!			
Measure	ement uncer	rtainty					4 dB				

With antenna IS ISC.ANT.U270/270 (lowest frequency 902.75 MHz)

With antenna IS ISC.ANT.U270/270 (highest frequency 914.75 MHz)

f (MHz)	Bandwidth (kHz)	Noted receiver	Test distance	Correction factor	Distance extrapol.	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT /	Antenna height
	Type of detector	level dBµV	m	dB	factor dB	dB	dBµV/m	dBµV/m	dBµV/m	antenna	cm
483.55	100 / QPK	55.2	3	19.5* ⁵	0	0	35.7	46.0	10.3	H/V	139
508.07	100 / QPK	51.7	3	19.5* ⁵	0	0	32.2	46.0	13.8	H/H	125
2744.250	1000 / PK	40.1	3	11.3* ⁶	0	6.0	45.4	54.0	8.6	H/V	115
3659.000	1000 / PK	36.4	3	16.1* ⁶	0	6.0	46.5	54.0	7.5	H/V	145
4573.750	1000 / PK	34.9	3	19.7* ⁶	0	6.0	48.6	54.0	5.4	H/H	185
			All other em	issions lower th	nan the noise	level of the mea	asuring equip	oment!			
Measure	ement uncer	tainty					4 dB				

Bandwidth = the measuring receiver bandwidth

Date: 2012-02-14

Fax +49 2207-968920

Page 27 of 51

hochfrequenz-technik

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

TRANSMITTER SPURIOUS RADIATION ABOVE 30 MHz (Section 15.205, 15.209) AV Polaris. Antenna f Bandwidth Noted Test Correction Distance Level Limit Margin EUT Correction height (MHz) corrected (kHz) receiver distance factor extrapol. factor Type level factor antenna dB dBµV/m of detector dBµV dB dBµV/m dBµV/m m dB cm 100 / QPK 19.5*⁵ 483.55 55.2 3 0 0 35.7 46.0 10.3 H/V 139 508.07 100 / QPK 51.7 3 19.5*5 46.0 13.8 125 0 0 32.2 H/H 2781.7 1000 / PK 43.7 11.3*6 0 6.0 49.0 54.0 5.0 H/V 3 113 3709.0 1000 / PK 34.8 3 16.1*⁶ 44.9 54.0 H/V 0 6.0 9.1 121 4636.3 1000 / PK 33.8 19.7*6 47.5 54.0 H/H 3 0 6.0 6.5 117 All other emissions lower than the noise level of the measuring equipment! Measurement uncertainty $4 \, \mathrm{dB}$

With antenna IS ISC.ANT.U270/270 (highest frequency 927.25 MHz)

Bandwidth = the measuring receiver bandwidth

Remark: *¹ noise floor noise level of the measuring instrument ≤ 3.5 dB μ V @ 3m distance (30 – 1,000 MHz) Remark: *² noise floor noise level of the measuring instrument ≤ 4.5 dB μ V @ 3m distance (1,000 – 2,000 MHz) Remark: *³ noise floor noise level of the measuring instrument ≤ 10 dB μ V @ 3m distance (2,000 – 5,500 MHz) Remark: *⁴ noise floor noise level of the measuring instrument ≤ 14 dB μ V @ 3m distance (5,500 – 14,500 MHz) Remark: *⁵ for using a pre-amplifier in the range between 100 kHz and 1,000 MHz Remark: *⁶ for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	

N.t.* See page no. 50

Page 28 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

TRANSMITTER SPURIOUS RADIATION ABOVE 30 MHz (Section 15.205, 15.209) AV Polaris. Antenna Bandwidth Limit f Noted Test Correction Distance Level Margin EUT Correction height (MHz) (kHz) receiver distance factor extrapol. corrected factor Туре level factor antenna dB dBµV/m of detector dBµV dB dBµV/m dBµV/m m dB cm 19.5*5 483.55 100 / QPK 55.2 0 35.7 46.0 10.3 H/V 139 3 0 19.5*5 508.07 100 / QPK 51.7 13.8 H/H 125 3 0 0 32.2 46.0 2708.3 1000 / PK 32.5 3 10.7*⁶ 0 6.0 37.2 54.0 16.8 H/H 103 14.7*⁶ 3610.9 1000 / PK 31.7 3 0 40.4 54.0 13.6 H/V 204 6.0 4513.7 19.0*⁶ 1000 / PK 34.2 3 0 6.0 47.2 54.0 6.8 H/V 172 All other emissions lower than the noise level of the measuring equipment! Measurement uncertainty $4 \, \mathrm{dB}$

With antenna IS ISC.ANT.U600/270 (lowest frequency 902.75 MHz)

With antenna IS ISC.ANT.U600/270 (highest frequency 914.75 MHz)

	TRAN	SMITTE	R SPURI	OUS RAD	IATION .	ABOVE 30	MHz (Se	ection 15.	205, 15.20	9)			
f (MHz)	Bandwidth (kHz)	Noted receiver	Test distance	Correction factor	Distance extrapol.	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT /	Antenna height		
	Type of detector	level dBµV	m	dB	factor dB	dB	dBµV/m	dBµV/m	dBµV/m	antenna	cm		
483.55	100 / QPK	55.2	3	19.5* ⁵	0	0	35.7	46.0	10.3	H/V	139		
508.07	100 / QPK	51.7	3	19.5* ⁵	0	0	32.2	46.0	13.8	H/H	125		
2744.250	1000 / PK	39.5	3	11.3* ⁶	0	6.0	44.8	54.0	9.2	H/V	196		
3659.000	1000 / PK	34.7	3	16.1* ⁶	0	6.0	44.8	54.0	9.2	H/V	156		
4573.750	1000 / PK	36.8	3	19.7* ⁶	0	6.0	50.5	54.0	3.5	H/H	120		
	All other emissions lower than the noise level of the measuring equipment!												
Measure	ement uncer	rtainty					4 dB						

Bandwidth = the measuring receiver bandwidth

Page 29 of 51

hochfrequenz-technik

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

TRANSMITTER SPURIOUS RADIATION ABOVE 30 MHz (Section 15.205, 15.209) AV Polaris. Antenna Bandwidth Correction Distance Level f Noted Test Limit Margin Correction EUT height (MHz) (kHz) receiver distance factor extrapol. corrected factor factor Type level antenna dB dBµV/m dBµV/m dBµV/m of detector dBµV m dB dR cm 483.55 100 / OPK 19.5*5 10.3 55.2 0 0 35.7 46.0 H/V 139 3 508.07 100 / QPK 51.7 3 19.5*⁵ 0 0 32.2 46.0 13.8 H/H 125 2781.7 1000 / PK 42.2 3 11.3*6 0 6.0 47.5 54.0 6.5 H/V 196 3709.0 33.5 16.1*⁶ 1000 / PK 3 0 6.0 43.6 54.0 10.4 H/V 156 4636.3 1000 / PK 34.7 19.7*6 48.4 54.0 5.6 H/H 120 3 0 6.0 All other emissions lower than the noise level of the measuring equipment! Measurement uncertainty $4 \, \mathrm{dB}$

With antenna IS ISC.ANT.U600/270 (highest frequency 927.25 MHz)

Bandwidth = the measuring receiver bandwidth

Remark: *¹ noise floor noise level of the measuring instrument $\leq 3.5 dB\mu V$ @ 3m distance (30 – 1,000 MHz) Remark: *² noise floor noise level of the measuring instrument $\leq 4.5 dB\mu V$ @ 3m distance (1,000 – 2,000 MHz) Remark: *³ noise floor noise level of the measuring instrument $\leq 10 dB\mu V$ @ 3m distance (2,000 – 5,500 MHz) Remark: *⁴ noise floor noise level of the measuring instrument $\leq 14 dB\mu V$ @ 3m distance (5,500 – 14,500 MHz) Remark: *⁵ for using a pre-amplifier in the range between 100 kHz and 1,000 MHz Remark: *⁶ for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	¥es	No	Page no.	

N.t.* See page no. 50

Page 30 of 51

Date of issue: 2012-08-06

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

8.5 Bandwidth

8.5.1 Regulation

Section 15.247 (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

(2) Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.5.2 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
Attenuator 30 dB, DC-18GHz	Weinschel Corp. Model. 6312-30 (377)	BL2463	02/210	02/2013	Dudde
Digital Multimeter	GW GDM-8045G (144)	0090256	08/2011	08/2014	Dudde
Receiver (9 kHz –30.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSV 30 (502)	100932	02/2010	02/2013	Rohde & Schwarz
RF- cable	Sucoflex 100 Suhner 1 m [N]	K116	09/2011	09/2012	Dudde

Date: 2012-02-14

Page 31 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

8.5.3 Test procedures

Testing was carried out in accordance with the less than 250 kHz requirements. Measurements were carried out on 3 single frequencies across the operating range. Measurements were carried out with different tags, the worst case measurement were documented.

There are 50 hopping frequencies in use, the maximum 20 dB bandwidth is 105.9 kHz and the average time of occupancy is 397.3 msec.

In addition the average time of occupancy on any frequency shall not exceed 400 milliseconds in any 20 second period.

Using a spectrum analyser with a Zero span, the "on frequency time" was determined to be maximal 298 msec. With the spectrum analyser still operating with a Zero span the transmitter was observed to be "on frequency", on average, 1 time in any 15 second period.

Therefore 298 msec * 4/3 time = 397.3 msec.

8.5.4 Result

The equipment meets the requirements		Ye	s No	N.t.
Further test results are attached	Yes	No	Annex	no. 3

Page 32 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

Vers. no. 1.12

8.6 Peak output power

8.6.1 Regulation

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

(iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

Date: 2012-02-14

m. dudde hochfrequenz-technik Rottland 5a D-51429 Bergisch Gladbach/ Germany Tel: +49 2207-96890 Fax +49 2207-968920

Test report no. 12008135

Page 33 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

(2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do [the word "do" should be deleted from this sentence] emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

(iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Page 34 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

Vers. no. 1.12

8.6.2 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
Attenuator 30 dB, DC-18GHz	Weinschel Corp. Model. 6312-30 (377)	BL2463	02/210	02/2013	Dudde
Digital Multimeter	GW GDM-8045G (144)	0090256	08/2011	08/2014	Dudde
Receiver (9 kHz –30.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSV 30 (502)	100932	02/2010	02/2013	Rohde & Schwarz
RF- cable	Sucoflex 100 Suhner 1 m [N]	K116	09/2011	09/2012	Dudde

8.6.3 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna are changed in horizontal and vertical polarization, the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4: 2009 Section 8 "Radiated emission measurements"

Measurement procedures for electric field radiated emissions above 1 GHz are covered in Clause 8 of ANSI C63.4-2009. The C63.4-2009 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Subclause 8.3.1.2 of C63.4-2009 states that the measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." We consider the "cone of radiation" to be the 3 dB beamwidth of the measurement antenna.

While the "bore-sighting" technique is not explicitly mentioned in C63.4-2009, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beamwidth of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTS, measuring system sensitivity, etc.

C63.4-2009 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

Date: 2012-02-14

Page 35 of 51

hochfrequenz-technik

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

Radiated emissions test characteristics	
Frequency range	30 MHz - 12,000 MHz
Test distance	10m, 3 m*
Test instrumentation resolution bandwidth	9 kHz (20 kHz – 30 MHz)
	120 kHz (30 MHz - 1,000 MHz)
	1 MHz (1000 MHz - 25,000 MHz)
Receive antenna height	1 m (20 kHz – 30 MHz)
Receive antenna polarization	0° - 90° (20 kHz – 30 MHz)
Receive antenna scan height	1 m - 4 m (30 MHz - 25,000 MHz)
Receive antenna polarization	vertical/horizontal (30 MHz - 25,000 MHz)

*According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

8.6.4 Calculation of the peak power (radiated)

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-Amplifier (with the use of a pre-amplifier)

Receiver Level	: Receiver reading without correction factors
Correction Factor	: field attenuation + cable loss

For example:

The receiver reading is +1.0 dBm. The field attenuation for the measured frequency is +19.5 dB and the cable factor for the measured frequency is 2.1 dB, giving a power of +22.6 dBm. The +22.6 dBm value can be mathematically converted to its corresponding level in W.

+22.6 dBm = 0.182 W = 182 mW

Page 36 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

8.6.7 Result

	PEAK OUTPUT POWER AT ANTENNA PORT(Section 15.247 (b)(2))							
f (GHz)	Bandwidth (kHz)	Noted receiver	Correction factor	Level corrected	Limit	Margin		
	Туре	level						
	of detector	dBm	dB	dBm	dBm	dB		
902.750	100, PK	-3.0	30.2	27.2	30	2.8		
914.750	100, PK	-3.0	30.2	27.2	30	2.8		
927.250	100, PK	-3.3	30.2	26.9	30	3.1		
Measure	Measurement uncertainty $\pm 3 \text{ dB}$							

* Bandwidth = the measuring receiver bandwidth

Max. peak output power (radiated) § 15.247 (b)(2)

Max. rad	iated peak ou	tput power e.i	.r.p. Calculat	ed(Section 15.	247 (b)(2))	
Antenna	f (GHz)	Noted receiver level dBm	Antenna gain dBi	Level corrected e.i.r.p. dBm	Limit e.i.r.p. dBm	Margin dB
Internal	902.750	27.2	-4.2	23.0	36*	13.0
antenna	914.750	27.2	-4.2	23.0	36*	13.0
	927.250	26.9	-4.2	22.7	36*	13.3
ID ISC.ANTU170/170	902.750	27.2	1	28.2	36*	7.8
	914.750	27.2	1	28.2	36*	7.8
	927.250	26.9	1	27.9	36*	8.1
ID ISC.ANTU270/270	902.750	27.2	6	33.2	36*	2.8
	914.750	27.2	6	33.2	36*	2.8
	927.250	26.9	6	32.9	36*	3.1
ID ISC.ANTU600/270	902.750	27.2	8	35.2	36*	0.8
	914.750	27.2	8	35.2	36*	0.8
	927.250	26.9	8	34.9	36*	1.1
Measurement unce	ertainty			$\pm 0.5 \text{ dB}$		

* Limit = 30 dBm + 6 dBi (antenna gain) = 4 Watt

Max. peak output power (radiated) = Noted receiver level + Antenna gain - Coax cable attenuation Coax cable attenuation min. = 0.6 dB

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No		
Turtier test results are attached	105	140		

N.t.* See page no. 50

Date: 2012-02-14

Fax +49 2207-968920

Page 37 of 51

Date of issue: 2012-08-06

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

8.7 Out of band emission

8.7.1 Regulation

Section 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

8.7.2 Calculation of the "Out of band emissions"

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-Amplifier (with the use of a pre-amplifier)

Receiver Level	: Receiver reading without correction factors
Correction Factor	: field attenuation + cable loss

For example:

The receiver reading in a 100 kHz bandwidth is -45.0 dBm. The field attenuation for the measured frequency is +10.5 dB and the cable factor for the measured frequency is 1.5 dB, giving a power of -33.0 dBm. The measured peak power in a 100 kHz bandwidth is +3.6dBm. Therefore the Attenuation can be calculated as follows:

Attenuation = measured peak power – out of band emission receiver reading = +3.6 dbm - (-33.0 dBm) = 36.6 dB

Page 38 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

8.7.3 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
OATS	Dudde (104)		08/2010	08/2012	Dudde
Digital Multimeter	GW GDM-8045G (144)	0090256	08/2011	08/2014	Dudde
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	11/2010	11/2012	Rohde & Schwarz
Pre-amplifier (100kHz - 1.3GHz)	Hewlett Packard 8447 E (166a)	1726A00705	01/2012	01/2014	Dudde
Pre-amplifier (1GHz - 18GHz)	Narda (345)		01/2012	01/2014	Dudde
Magnetic loop antenna (9 kHz - 30 MHz)	Schwarzbeck FMZB 1516 (23)		05/2010	05/2013	Dudde
Bilog antenna (30- 1000 MHz)	Schwarzbeck VULP 9168 (406)		04/2011	04/2014	Schwazbeck
Bilog antenna (1- 18 GHz)	Schwarzbeck STLP 9148 (445)		09/2009	09/2012	Schwazbeck
Horn antenna (2.0-14.0 GHz)	Schwarzbeck BBHA 9120 C (169)	305	03/2011	03/2013	Dudde
RF- cable	Kabelmetal 18m [N]	K1	09/2011	09/2012	Dudde
RF- cable	Aircell 0.5m [BNC]	K40	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1 m [N]	K52	09/2011	09/2012	Dudde
RF- cable	Aircell 1m [BNC/N]	K56	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1 m [N] (K61	09/2011	09/2012	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K74	09/2011	09/2012	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K75	09/2011	09/2012	Dudde

Fax +49 2207-968920

Page 39 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

8.7.4 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna are changed in horizontal and vertical polarization, the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4: 2009 Section 8 "Radiated emission measurements"

Measurement procedures for electric field radiated emissions above 1 GHz are covered in Clause 8 of ANSI C63.4-2009. The C63.4-2009 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Subclause 8.3.1.2 of C63.4-2009 states that the measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." We consider the "cone of radiation" to be the 3 dB beamwidth of the measurement antenna.

While the "bore-sighting" technique is not explicitly mentioned in C63.4-2009, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beamwidth of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTS, measuring system sensitivity, etc.

C63.4-2009 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

Page 40 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

8.7.5 Result

(lowest frequency, 902.750 MHz)

f (GHz)	Bandwidth (kHz)	Noted receiver	Correction factor	Level corrected	Limit	Margin
	Type of detector	level dBm	dB	dBm		dB
902.750	100, PK	27.2	= Analyzer offset	27.2	30 dBm	2.8
1805.500	100, PK	-22.5		-22.5	-20 dBc	32.5
2708.250	100, PK	-31.5		-31.5	-20 dBc	41.5
3611.000	100, PK	-38.7		-38.7	-20 dBc	48.7
4513.750	100, PK	-30.7		-30.7	-20 dBc	40.7
5416.500	100, PK	-41.6	= Analyzer offset	-41.6	-20 dBc	51.6
6319.250	100, PK	<-32.5	+ transducer factors	-32.5	-20 dBc	42.5
7222.000	100, PK	-43.8		-43.8	-20 dBc	53.8
8124.750	100, PK	-44.4		-44.4	-20 dBc	54.4
9027.500	100, PK	-41.4	7 [-41.4	-20 dBc	51.4
9930.250	100, PK	<-32.5		-32.5	-20 dBc	42.5

* Bandwidth = the measuring receiver bandwidth	L
--	---

	ctrum									V
Ref	Level 30.	00 dBi	m Offset	30.00 dB	🔵 RBW 100 kHz					
Att		10 d	B 👄 SWT	500 ms	VBW 100 kHz	Mode	Auto Sw	зер		
TDF										
)1Pk	Max e 2Pk (
	D1 2	27/000	dBm			Me	5[1]		-41.64 d	
20 dB	m——		-						5.41650 0	
						M1	1[1]		27.06 d	
10 dB	m	D2 7.	000 dBm					1	902.75 M	IHz
0 dBm	n									
-10 dB	Bm									
-20 d£	Bm		M2	1						
20 41			I I		M3			MS		
-30 dB	3m 🚽				7.	M	1	Th		
					1	111		1 1/1	M6	
40 dr	3 69					7	1			
-40 dB	Bm	66				الم الموجعة من ما الم		Alagan Marine Land	even un ale all the worker	-
-40 di 150 di	Bm	where the second	a la contra da da como da la	define which the	a and a second		Hut way and the	autoput taulogali (larve)	Martin State	***
150 de	towage and the second	with the test				Hip to produce and		ningelik i ningelik (herver)	an a	***
50 de	towage and the second	hill Trifferin	AF 10-4440-0-1-11-11-11-14-1-1-14-14-14-14-14-14-14-	n ha far an		Hip to Hindu				
150 de 160 de	an <u>i an</u> ilan Ka le kanalin Bm		4-h-444+4	n a hanna taran san Mala ka kita sa ana sa		Alle Antipal and				
150 de 160 de CF 3.	Bm 05 GHz		Al herditarioni histori a di seconda di se Seconda di seconda di se		4	STEP ANTINE			Span 5.9 G	
60 de	Bm 05 GHz		4. for up to a start of the sta		หาะ ระบาง - ระบ สีนาร (ระบาง - ระบาง - ร	alian and a second a				
150 de 160 de CF 3.	Bm 05 GHz	Trc	Stimu		Response	Function				
60 de CF 3.	Bm Bm 05 GHz ker		Stimu						Span 5.9 G	
-60 di CF 3. Mark	Bm 05 GHz Cer Type	Trc	Stimul 902	lus	Response				Span 5.9 G	
50 df -60 df CF 3. Mark No	Bm OS GHz cer Type 1N	Trc 1	Stimu 902 1.8	lus 2.75 MHz	Response 27.06 dBm				Span 5.9 G	
-60 dE CF 3. Mark No 1	Bm 05 GHz ter Type 1N 2N	Trc 1 1	Stimu 902 1.8 2.7	lus 2.75 MHz 055 GHz	Response 27.06 dBm -22.52 dBm				Span 5.9 G	
-60 df CF 3. Mark No 1 2 3	Bm 05 GHz Cos GHz 1N 2N 3N	Trc 1 1 1	Stimu 902 1.8 2.7 3.6	lus 2.75 MHz 2055 GHz 112 GHz	Response 27.06 dBm -22.52 dBm -31.49 dBm				Span 5.9 G	

Page 41 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

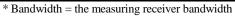
Date of issue: 2012-08-06

Spe	ctrum	1	ſ									
Ref Att TDF	Leve	 30.0		n Offset 3 e SWT	30.00 dB 500 ms	RBW 100 VBW 100		Mode 4	luto Swe	ер		
1Pk	Maxe	2Pk C	Clrw									
20 dB		D1 2	27.000	dBm				M3[:	1]			-41.43 dBm 127500 GHz
								M1[:	1]			-43.79 dBm 222000 GHz
0 dB			D2 7.0	000 dBm								
) dBn	n											
10 d	Bm—											
20 d	Bm—											
30 d	Bm—											
40 d			M1		M2	Ma				an address of the first state		Linkley
n y yr	¹ nj'maluty Sundarki yl _a u	mentet. Minnett		n in te li _{te d} a en li nel _{la} i	Algebrah Augebrah	an dia mandri di di Antonia Jawa Manana Manana Manana Manana Manana Manana		and a second	, hills be all fully	In the standing of the second	i fil a miliandina (mana (s))	and the selection of th
50 d			i nami	all and a start of a	بديامكما أيتقاسين	ad specification and	ידייוי	ىرى، مىردىر ايدىل ىسى	all in the second	ويعبر فليطالب مرور المرا	والمقتا يقتر يتجر الراب	بالشريب الشأسي
							6					
tart ⁄Iarl	: 6.0 G ker	iHz									Stop	12.75 GHz
No	Тур)e	Trc	Stimu	lus	Response		Functior	1	Funct	ion Result	
1		1N	1		222 GHz	-43.79 de						
2		2N	1		475 GHz	-44.43 dE						
3		ЗN	1	9.0	1275 GHz	-41.43 dE	3m					

The equipment meets the requirements			Yes	No	N.t.
					_
Further test results are attached	Yes	N	0		

¥es

Page 42 of 51



EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

middle *frequency*, 914.750 MHz)

	Spurious Er	nissions - cond	ucted (Transmi	tter) (Section 1	5.247 (c)(1))	
f (GHz)	Bandwidth (kHz)	Noted receiver	Correction factor	Level corrected	Limit	Margin
	Type of detector	level dBm	dB	dBm		dB
914.750	100, PK	27.2	= Analyzer offset	27.2	30 dBm	2.8
1829.500	100, PK	-32.3		-32.3	-20 dBc	42.3
2744.250	100, PK	-33.7		-33.7	-20 dBc	43.7
3659.000	100, PK	-30.7		-30.7	-20 dBc	40.7
4573.750	100, PK	-30.9		-30.9	-20 dBc	40.9
5488.500	100, PK	-39.3	= Analyzer offset	-39.3	-20 dBc	49.3
6403.250	100, PK	<-32.5	+ transducer factors	<-32.5	-20 dBc	42.5
7318.000	100, PK	-42.9		-42.9	-20 dBc	52.9
8232.750	100, PK	-42.9		-42.9	-20 dBc	42.9
9147.500	100, PK	-37.8]	-37.8	-20 dBc	47.8
10062.250	100, PK	<-32.5		<-32.5	-20 dBc	42.5
Measurer	nent uncertainty	7		$\pm 3 \text{ dB}$		

	ectrum	٦									
Re	f Level	I 30.	00 dBm	0ffset	30.00 dB	🔵 RBW 100 k	Ηz				· · · ·
At	t		10 dB	SWT 🥃	500 ms	VBW 100 k	Hz Mode /	Auto Sweep)		
TDF											
●1Pk	< Maxe										
		D1 .	27,000	dBm		_	M6[1]		1	-39.33 dBm
20 d	Bm—									5	i.48850 GHz
10 d	Den.						M1[1]			27.04 dBm
10 u	вш		D2 7.0	00 dBm				Ĩ		T	914.75 MHz
0 dB	m										
28	10										
-10 0	звт—										
-20 0	dBm —					-			Landar .		
	10			N		M3	M4		M5		
-30 0	JBW-			i i i i i i i i i i i i i i i i i i i		M	ň.				M6
-40 c	dBm-			ľ			n		- MI		NT.
	1200100	ليت بال		and the state of the	Jakingeventions	International and the second	enabeline monitored by	alista de riblio de Lade			All the said of the statistic second
A Prophylic and						facula is a state commitment when					
a lill to a set		Ht LANN	ull and manife	harry hud which has been a stress	- CITAL MARKAN AND AND AND AND AND AND AND AND AND A	his along to the second se	a (Mithelik) is a manufactor of some a	Relieved of a second		1 1	
-60 c		┝┍╪┿╪┿┙	uller handfille		r fin the states of	Manakow La uw. Jelefiliwa w wa se	afilitidati u a mandri a cara c	Number of the second			· · · · · · · · · · · · · · · · · · ·
		┝┿╅┸╄┽┺┯┙	ullers much	ġĂĠPŦŦŊĬŔIJŎĸŔŔĹĬĊŧġŔĬŔſĸĊĬŤĬĸ	e an	Manakona ta una ana finana ana ar	af di hel de la constante de la	Horizofte din			
-60 0			ulters weath	harran Hayakan da kana kana kana kana kana kana ka	r e l'Inuititier d'Arter de	ALL ALL OF LE O	af di telev itu za mandu na sene u				ban 5.9 GHz
-60 0	dBm 3.05 G⊦		ult for a second to be	friðandi kviði kviði að skriði skr Líke skriði sk	r e l'Inui Allerni e l'Angle	ALLER ON LE LEV. MURILIOU AL CO. LE	Lindied at Live Annual Inc. Annual L	1 1 1 1 1 1 1 1			
-60 0 CF 3	dBm 3.05 G⊦	Ηz	Trc	۲۳۳۵ Stimu		Response	Function				
-60 c CF 3 Mar	dBm 3.05 G⊦ 'ker	Ηz		Stimu			Function			Sp	
-60 o CF 3 Mar No	dBm 3.05 G⊦ 'ker	lz De	Trc	Stimu 914	lus	Response	Function			Sp	
-60 0 CF 3 Mar No 1	dBm 3.05 G⊦ 'ker	Hz De 1N	Trc 1	Stimu 914 1.8	lus 4.75 MHz	Response 27.04 dB	Function			Sp	
-60 c CF 3 Mar No 1 2	dBm 3.05 G⊦ 'ker	Hz De 1N 2N	Trc 1 1	Stimu 914 1.8 2.74	lus 4.75 MHz 8295 GHz	Response 27.04 dB -32.29 dB	Function n n n			Sp	
-60 (CF 3 Mar No 1 2 3	dBm 3.05 G⊦ 'ker	iz 1N 2N 3N	Trc 1 1 1	Stimu 914 1.8 2.74 3	lus 1.75 MHz 1295 GHz 1425 GHz	Response 27.04 dBi -32.29 dBi -33.72 dBi	n n n n			Sp	

Date: 2012-02-14

Fax +49 2207-968920

Page 43 of 51

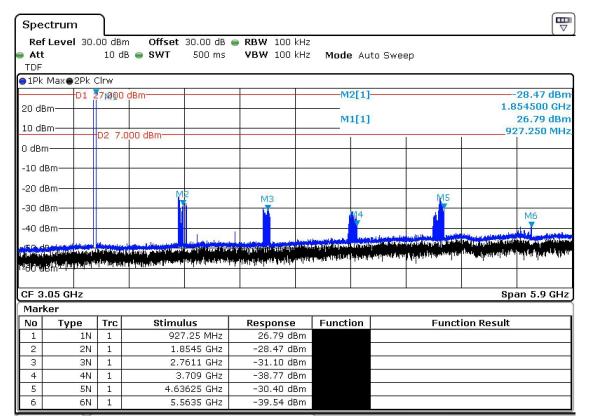
EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

Spect	rum	ſ								
Ref L	evel 30.	oo dBi	m Offset 30.0)0 dB 😑 F	RBW 100 k	Hz				
🔵 Att		10 d	B 🔵 SWT 👘 50	0 ms 🔥	/BW 100 k	Hz Mode	Auto) Sweep		
TDF										
😑 1Pk M	ax⊜2Pk (Clrw								
	D1 2	27.000	dBm			M	1[1]—			42.91 dBm
20 dBm										18000 GHz
20 0.0111						M:	2[1]			42.94 dBm
10 dBm	_								8.2	32750 GHz
		D2 7.	000 dBm							
0 dBm-										
-10 dBm	י									
-20 dBm	2									
-30 dBm										
-30 001					MЗ					
-40 dBm		N	11. M	2						
	ware 1100011	1 march	1 and the second state	a shine har late	and the second	المستعلية بالمساللي	-	Hard Low Profester, 1994, Bullet	Bar Lo and Louis and	And the Party of t
	المراجعة والمراجع		La ^{di} n (i, l _{a di} n (i, l _{a di} n (i, la din	AND THE PROPERTY OF		In the local states of the second	and the second s	n e v gryn i viji i v ruggin Herrin	and the second secon	Alteriation of the second s
The second		d.dijit.	h a tha an	a ana ang mang mang mang mang mang mang	ile also de la segura de la segur	and of the family of	Lind Chi	a the second to be a to be	والالمرامين والمعين	tale
-60 dBm	۱ 				-					
Start 6	.0 GHz							1	Stop	12.75 GHz
Marke	r									
No	Туре	Trc	Stimulus		Response	Functi	on	Funct	ion Result	
1	1N	1	7.318		-42.91 dB					
2	2N	1	8.23275	GHz	-42.94 dB					
3	ЗN	1	9.1475		-37.77 dB					

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No		

Page 44 of 51


EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

highest frequency, 927.250 MHz)

			ducted (Transmi			
f (GHz)	Bandwidth (kHz)	Noted receiver	Correction factor	Level corrected	Limit	Margin
	Type of detector	level dBm	dB	dBm		dB
927.250	100, PK	26.9	= Analyzer offset	26.9	30 dBm	3.1
1854.500	100, PK	-28.5		-28.5	-20 dBc	38.5
2781.750	100, PK	-31.1		-31.1	-20 dBc	41.1
3709.000	100, PK	-38.8		-38.8	-20 dBc	48.8
4636.250	100, PK	-30.4		-30.4	-20 dBc	40.4
5563.500	100, PK	-39.5	= Analyzer offset	-39.5	-20 dBc	49.5
6490.750	100, PK	-32.5	+ transducer factors	-32.5	-20 dBc	42.5
7418.000	100, PK	-42.0		-42.0	-20 dBc	52.0
8345.250	100, PK	-43.1		-43.1	-20 dBc	53.1
9272.500	100, PK	-41.7		-41.7	-20 dBc	51.7
10199.750	100, PK	-32.5		-32.5	-20 dBc	42.5
Maggurar	nent uncertainty	7		$\pm 3 dB$		

* Bandwidth = the measuring receiver bandwidth

Page 45 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

Spe	ctrun	ı	ר										
Ref Att		I 30.		n Offset B 🖷 SWT	30.00 dB (500 ms	RBW 100 VBW 100		Mode	Auto Swei	эр		()	
)1Pk	Max 🔵	2Pk (Clrw										
		D1 2	27.000	dBm				M3	[1]			41.73 dBm 72500 GHz	
20 de								M1	[1]			41.96 dBm 18000 GHz	
.O de			D2 7.0	000 dBm									
) dBr	<u> </u>	ic.											
10 d	dBm—												
20 d	dBm—												
30 d	dBm—												
40 d			4		M2	- M3				estados (s. e			
(12) (13)	ana kuna uu Markuna uu	10 - 13 ¹⁴	Line and	en al a del litte en litte	internancia disertitation Jacob college facalitat	in pieren senten en prosten inde den nämlige, ander en briten den nämlige, senten och senten inde		an a	er i direct de la calendaria La filipada de la calendaria	۲۰۱، ۲۹۳ و ۲۰۱۹ (۲۰۱۹) ۱۹۰۰ - ۲۰۱۹ (۲۰۱۹) ۱۹۰۰ - ۲۰۱۹ (۲۰۱۹) (۲۰۱۹)	a and the second se	⁽ ati pici (^{dent} e l ^{an} egine t ati di seconda da di seconda di s	
60 d	dBm—				er Mir Artin	4 1 11 12				231			
tar	t 6.0 C	Hz									Stop	12.75 GHz	
Marl	ker												
٧o	Тур		Trc			Response		Function		Function Result			
1		1N	1		418 GHz	-41.96 dE							
2		2N	1		525 GHz	-43.06 dB							
3		ЗN	1	9.2	725 GHz	-41.73 dE	۳n						

The equipment meets the requirements	Yes No N.t				

Further test results are attached

Yes

No

N.t.* See page no. 50

Page 46 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

(lowest frequency, 902.750MHz)

worst case

		Spuri	ous emiss	ions - radi	ated (Tra	nsmitter)	(Section	15.247 (c)(1))		
f (MHz)	Bandwidth (kHz)	Noted receiver level	Test distance	Correction factor	Distance extrapol. factor	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT /	Antenna height
	Type of detector	dBm	m	dB	dB	dB	dBm	dBm	dB	antenna	cm
1805.500	100, PK	-59.5	3	20.1 * ⁶	0	0	-39.4	10	49.4	V,0°/H	146
2708.250	Measured acc. to Section 15.205(a) and section 15.209(a)										
3611.000	Measured acc. to Section 15.205(a) and section 15.209(a)										
4513.750	Measured acc. to Section 15.205(a) and section 15.209(a)										
5416.500				Measured	d acc. to Secti	on 15.205(a) an	d section 15.2	09(a)			
6319.250	100, PK	≤-92	3	23.1* ⁶	0	0	-68.9	10	78.9	H,V/H,V	100-400
7222.000		Measured acc. to Section 15.205(a) and section 15.209(a)									
8124.750	Measured acc. to Section 15.205(a) and section 15.209(a)										
9027.500	Measured acc. to Section 15.205(a) and section 15.209(a)										
9930.250	100, PK	≤ -92	3	25.3* ⁶	0	0	-66.7	10	76.7	H,V/H,V	100-400
Measur	ement unce	ertainty		1			$\pm 4 \text{ dB}$	1			

* Bandwidth = the measuring receiver bandwidth

Page 47 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

(middle frequency, 914.750MHz)

worst case

		Spuri	ous emiss	ions - radi	ated (Tra	nsmitter)	(Section	15.247 (c)(1))		
f (MHz)	Bandwidth (kHz)	Noted receiver	Test distance	Correction factor	Distance extrapol.	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT /	Antenna height
	Type of detector	level dBm	m	dB	factor dB	dB	dBm	dBm	dB	antenna	cm
1829.500	100, PK	-56.7	3	20.1* ⁶	0	0	-36.6	10	46.6	V,0°/H	150
2744.250	Measured acc. to Section 15.205(a) and section 15.209(a)										
3659.000	Measured acc. to Section 15.205(a) and section 15.209(a)										
4573.750	Measured acc. to Section 15.205(a) and section 15.209(a)										
5488.500	100, PK	≤ -92	3	21.2* ⁶	0	0	-70.8	10	80.8	H,V/H,V	100-400
6403.250	100, PK	≤ -92	3	23.1* ⁶	0	0	-68.9	10	78.9	H,V/H,V	100-400
7318.000				Measured	l acc. to Secti	on 15.205(a) and	d section 15.2	09(a)			
8232.750	Measured acc. to Section 15.205(a) and section 15.209(a)										
9147.500	Measured acc. to Section 15.205(a) and section 15.209(a)										
10062.250	100, PK	≤ -92	3	25.3* ⁶	0	0	-66.7	10	76.7	H,V/H,V	100-400
Measur	Measurement uncertainty				•		$\pm 4 \text{ dB}$	<u>.</u>	<u>.</u>		<u>.</u>

* Bandwidth = the measuring receiver bandwidth

Page 48 of 51

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

Date of issue: 2012-08-06

(highest frequency, 927.250MHz)

worst case

		Spuri	ous emiss	ions - radi	ated (Tra	nsmitter)	(Section	15.247 (c)(1))		
f (GHz)	Bandwidth (kHz)	Noted receiver	Test distance	Correction factor	Distance extrapol.	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT /	Antenna height
	Type of detector	level dBm	m	dB	factor dB	dB	dBm	dBm	dB	antenna	cm
1854.500	100, PK	-53.7	3	20.1 * ⁶	0	0	-33.6	10	43.6	V,0°/H	162
2781.750	Measured acc. to Section 15.205(a) and section 15.209(a)										
3709.000	Measured acc. to Section 15.205(a) and section 15.209(a)										
4636.250	Measured acc. to Section 15.205(a) and section 15.209(a)										
5563.500	100, PK	≤ -92	3	21.2* ⁶	0	0	70.8	10	80.8	H,V/H,V	100-400
6490.750	100, PK	≤ -92	3	23.1* ⁶	0	0	68.9	10	78.9	H,V/H,V	100-400
7418.000	Measured acc. to Section 15.205(a) and section 15.209(a)										
8345.250	Measured acc. to Section 15.205(a) and section 15.209(a)										
9272.500	100, PK	≤ -92	3	24.6* ⁶	0	0	-67.4	10	77.4	H,V/H,V	100-400
10199.750	100, PK	≤ -92	3	25.3* ⁶	0	0	-66.7	10	76.7	H,V/H,V	100-400
Measur	Measurement uncertainty						$\pm 4 \text{ dB}$				

* Bandwidth = the measuring receiver bandwidth

Remark: *1 noise floor
Remark: *2 noise floor
Remark: *3 noise floor
Remark: *4 noise floornoise level of the measuring instrument \leq -103 dBm @ 3
noise level of the measuring instrument \leq -102 dBm @ 3
noise level of the measuring instrument \leq -96 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3
noise level of the measuring instrument \leq -92 dBm @ 3 noise level of the measuring instrument \leq -103 dBm @ 3m distance (30 – 1,000 MHz) noise level of the measuring instrument \leq -102 dBm @ 3m distance (1,000 – 2,000 MHz) noise level of the measuring instrument \leq -96 dBm @ 3m distance (2,000 – 5,500 MHz) noise level of the measuring instrument \leq -92 dBm @ 3m distance (5,500 – 14,500 MHz) Remark: *6 for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

The equipment meets the requirements	Yes	No	N.t.	
Further test results are attached	Yes	No		

Page 49 of 51

Date of issue: 2012-08-06

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

8.8 Radio frequency hazard

8.8.1 Regulation

15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

8.8.2 Result

MPE calculation to the FCC ID:

These equations are generally accurate in the far field of an antenna but will over predict power density in the near field, where they could be used for making a "worst case" prediction.

 $S = PG/4\pi R^2$

where S = power density (in appropriate units, e.g. mW/cm^2) P = power input to the antenna (in appropriate units e.g. mW) G = power gain of the antenna in the direction of interest relative to the isotropic radiator R = distance to the center of radiation of the antenna (appropriate units e.g. cm)

Or

 $S = EIRP/(4\pi R^2)$

where EIRP = equivalent isotropically radiated power

Calculation: (Calculated for max. EIRP) EIRP: 27.2 dBm = 524.8 mW calculated at distance of 20 cm (see User Manual): **power density** = 524.8 /(4* π *20²) = **0.10 mW/ cm²**

Limit:

 0.60 mW/ cm^2 is the reference level for general public exposure according to the OET Bulletin 65, Edition 97-01 Table 1.

The equipment meets the requirements	Yes	No	N.t.			
Further test results are attached	Yes	1	No			
N.t.* See page no. 50						
D - 0010 00 14					* 7	1 1/

Page 50 of 51

Date of issue: 2012-08-06

EUT: ID ISC.MRU102 FCC ID: PJMMRU102

9. Additional information to the test report

Remarks

N.t. ¹	Not tested, because the antenna is part of the PCB
N.t. ²	Not tested, because the EUT is directly battery powered
N.t. ³	Not tested, because not applicable for this type of equipment

Date: 2012-02-14

Fax +49 2207-968920

EUT: ID ISC.MRU102 FCC ID: PJMMRU102 Date of issue: 2012-08-06

End of test report

Page 51 of 51

Date: 2012-02-14

m. dudde hochfrequenz-technik

Rottland 5a D-51429

D-51429 Bergisch Gladbach/ Germany

Vers. no. 1.12

Tel: +49 2207-96890

