

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-0421/20-01-08

Testing Laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-03

Applicant

FEIG ELECTRONIC GmbH

Lange Str. 4

35781 Weilburg/GERMANY Phone: +49 6471 31 09-0 Contact: Reinhard Monno

e-mail: reinhard.monno@feig.de Phone: +49 6471-3109.428

Manufacturer

FEIG ELECTRONIC GmbH

Lange Str. 4

35781 Weilburg/GERMANY

Test Standard/s

FCC - Title 47 CFR Part FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

15 frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: UHF RFID Reader
Model name: LRU3000A/3500A
FCC ID: PJMLRU3000A
IC ID: 6633A-LRU3000A

Frequency: DTS band 902 – 928 MHz

Technology tested: RFID

Radio Communications

Antenna: Up to 4 external antennas

Power supply: LRU3000: 24.0V DC by external power supply

LRU3500: 48.0 V DC by POE

Temperature range: -25°C to +55°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Dovid Long	Michael Derengevalri
David Lang	Michael Dorongovski
Lab Manager	Lab Manager

Radio Communications

1 Table of contents

1	Table of contents2					
2	Genera	al information	4			
	2.1	Notes and disclaimer				
	2.2	Application details				
	2.3	Test laboratories sub-contracted	4			
3	Test s	tandard/s	5			
4	Repor	ting statements of conformity – decision rule	6			
5	-	nvironment				
6		em				
	6.1	General description				
	6.2	Additional information				
7		ption of the test setup				
•						
	7.1	Shielded semi anechoic chamber				
	7.2 7.3	Conducted measurements with peak power meter & spectrum analyzer				
_						
8	Seque	nce of testing				
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz				
	8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz				
	8.3	Sequence of testing radiated spurious 1 GHz to 12.75 GHz	16			
9	Measu	rement uncertainty	17			
10	Sı	ummary of measurement results	18			
11	R	F measurements	20			
	11.1	Additional comments	20			
12	М	easurement results	21			
	12.1	Carrier Frequency Separation	21			
	12.2	Number of Hopping Channels				
	12.3	Average Time of Occupancy (dwell time)	25			
	12.4	Spectrum bandwidth of a FHSS system				
	12.5	Maximum Peak Output Power				
	12.6	Detailed spurious emissions @ the band edge – conducted and radiated				
	12.7 12.8	Spurious Emissions Conducted				
	12.8	Spurious Emissions Radiated < 30 MHz				
	12.9.1	Spurious emissions radiated 30 MHz to 1 GHz				
	12.9.2	•				
13		bservations				
14	G	lossary	57			
15		ocument history				
		•				
16	A	ccreditation Certificate - D-PL-12076-01-04	58			

17 Accreditation Certificate - D-PL-12076-01-0560

© CTC advanced GmbH Page 3 of 60

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

2.2 Application details

Date of receipt of order: 2020-06-19
Date of receipt of test item: 2020-06-22
Start of test: 2020-07-13
End of test: 2020-12-21

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

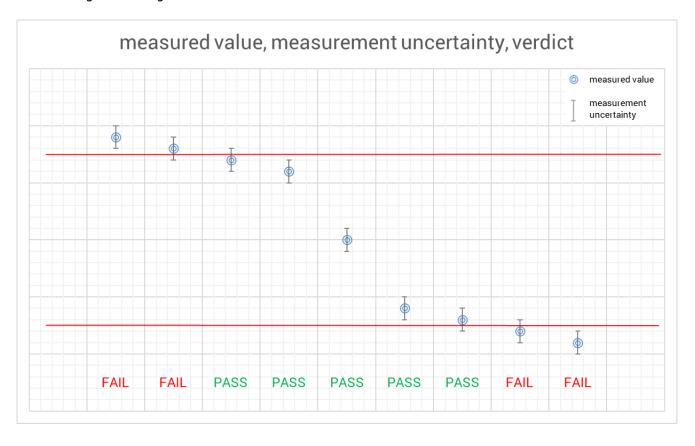
None

© CTC advanced GmbH Page 4 of 60

3 Test standard/s

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 5 incl. Amendment 1	March 2019	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices


© CTC advanced GmbH Page 5 of 60

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9 but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 6 of 60

5 Test environment

Temperature: T_{nom} +23 °C during room temperature tests

 T_{max} No tests under extreme environmental conditions required. T_{min} No tests under extreme environmental conditions required.

Relative humidity: 45 %

Air pressure: not relevant for this kind of testing

Power supply: V_{nom} 24.0 V DC by external power supply

 $\begin{array}{ll} V_{max} & \quad \text{No tests under extreme environmental conditions required.} \\ V_{min} & \quad \text{No tests under extreme environmental conditions required.} \end{array}$

© CTC advanced GmbH Page 7 of 60

6 Test item

6.1 General description

Kind of test item	:	UHF RFID Reader
Type identification	:	LRU3000A/3500A
HMN	:	n/a
DAMAL		ID ISC.LRU3000-FCC
PMN	:	ID ISC.LRU3500-FCC
HVIN	:	FE784
FVIN	:	n/a
S/N serial number	:	7243410
Hardware status	:	FE784
Software status	:	-/-
Firmware status	:	-/-
Frequency band	:	DTS band 902 - 928 MHz
Type of radio transmission	:	FHSS
Use of frequency spectrum	:	rnss
Type of modulation	:	PR-ASK
Number of channels	:	50
Antenna	:	Up to 4 external antennas
Power supply	:	LRU3000A: 24.0 V DC by external power supply
		LRU3500A: 48.0 V DC by POE
Temperature range		-25°C to +55°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-0421/20-01-01_AnnexA

1-0421/20-01-01_AnnexB 1-0421/20-01-01_AnnexD

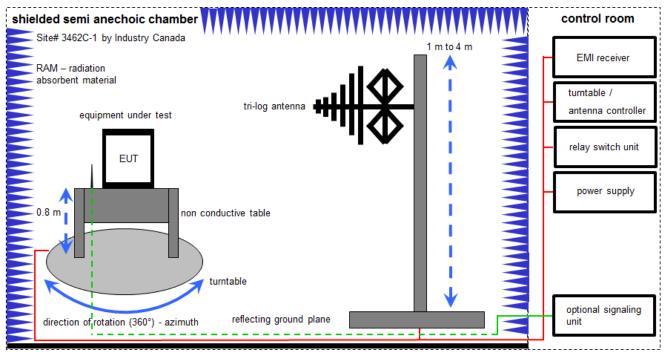
© CTC advanced GmbH Page 8 of 60

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 9 of 60

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

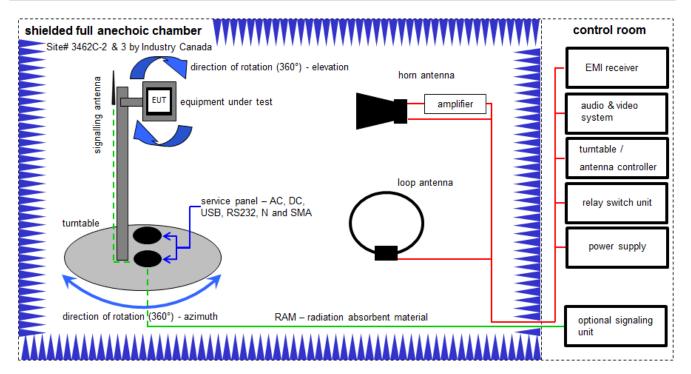
Example calculation:

 $FS \left[dB\mu V/m \right] = 12.35 \left[dB\mu V/m \right] + 1.90 \left[dB \right] + 16.80 \left[dB/m \right] = 31.05 \left[dB\mu V/m \right] (35.69 \ \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	EMI Test Receiver	ESR 3	R&S	102587	300005771	k	21.05.2019 10.12.2020	20.11.2020 09.06.2022
2	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	17.01.2020	16.01.2022
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	19.02.2019	18.02.2021

© CTC advanced GmbH Page 10 of 60


7	7 A Chastrum Analyzon	FSU26	R&S	200809	300003874	k	16.12.2019	15.12.2020	
/ A	Spectrum-Analyzer						09.12.2020	08.12.2021	
8	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
9	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
10	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-

NOTE: The tests were performed when all equipment was calibrated.

© CTC advanced GmbH Page 11 of 60

7.2 Shielded fully anechoic chamber

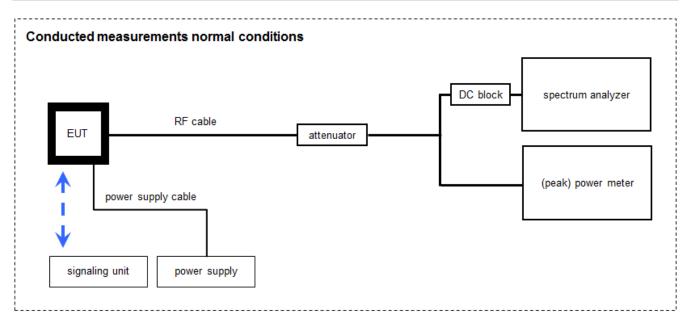
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	12.12.2017 09.12.2020	11.12.2020 08.12.2021
2	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	13.06.2019	12.06.2021
3	A, B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKI!	27.02.2019	26.02.2021
5	A, B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
6	A, B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2019 11.12.2020	10.12.2020 10.12.2021
7	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	В	High Pass Filter	VHF-3500+	Mini Circuits	-/-	400000193	ne	-/-	-/-
10	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	A, B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-

© CTC advanced GmbH Page 12 of 60

7.3 Conducted measurements with peak power meter & spectrum analyzer

WLAN tester version: 1.1.13; LabView2015

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	PC	ExOne	F+W		300004703	ne	-/-	-/-
2	В	EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059	k	09.12.2019 10.12.2020	08.12.2020 09.12.2021
3	Α	Spectrumanalyzer	FSV30	R&S	100763	300003950	k	15.01.2020	14.01.2021
4	С	Spectrum Analyzer	FSV30	Rohde & Schwarz	103809	300005359	vlKI!	08.12.2020	07.12.2021
5	A, B, C	DC Power Supply 0 – 32V	1108-32	Heiden Elektronik	001702	300001392	vlKI!	17.12.2019	16.12.2022

© CTC advanced GmbH Page 13 of 60

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 14 of 60

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 60

8.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna
 polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 16 of 60

9 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Carrier frequency separation	± 21.5 kHz					
Number of hopping channels	-/-					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum output power	± 1 dB					
Detailed conducted spurious emissions @ the band edge	± 1 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					

© CTC advanced GmbH Page 17 of 60

10 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table below	2020-12-22	Tests according to customer demand

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (d)	Antenna gain	Nominal	Nominal	-/-	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	PR-ASK	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	PR-ASK	×				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	PR-ASK	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	PR-ASK	×		0		-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	PR-ASK	×				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	PR-ASK	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	PR-ASK	×				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	PR-ASK	×				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	PR-ASK	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	PR-ASK	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	PR-ASK	×				-/-

© CTC advanced GmbH Page 18 of 60

§15.107(a) emiss below 3 (AC cond.	0 MHz Nominal	Nominal	-/-			×		-/-
------------------------------------	---------------	---------	-----	--	--	---	--	-----

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 19 of 60

11 RF measurements

11.1 Additional comments

Reference documents: None

Special test descriptions: The EUT has 4 antenna ports. These ports can be used single or in a time

division multiplexed mode where only one port is active in a time slot. All ports are equal in the RF performance (see Chapter 12.5). All measurements were

performed in single port mode on Port 1.

Configuration descriptions: The EUT is designed to be used in combination with different antennas. All

conducted measurements were performed with the highest output power supported by the EUT (1.0 Watt = 30 dBm, conducted output power limit). The maximum antenna gain of the used antennas is 6.0 dBi when used together with the applicable cable length which is ensured by the professional

installation of the devices.

The radiated tests were performed with the -Feig ID ANT.U600/270-FCC

antenna which has the highest gain.

All tests were performed on the LRU3000A with 24 V DC power supply.

Antenna configuration: - Allowed antenna configurations for the EUT are:

Antenna Type	Permitted Cable Attenuation
ID ISC.ANT.U600/270-FCC (10.5 dBic)	Min. 5,0 m of cable type Belden H155 (0,3 dB/m) or min. 3,0 m of cable type RG58 (0,5 dB/m)
ID ISC.ANT.U270/270-FCC (9.0 dBic)	No requirements.
ID ANT.U580/290-FCC (11.0 dBic)	min. 6,0 m of cable type Belden H155 (0,3 dB/m)
ID ANT.U290/290-FCC (9.0 dBic)	min. 2,0 m of cable type Belden H155 (0,3 dB/m)
IS ISC.ANT.U170/170 (4.0 dBic)	No requirements.

Test mode: Special software was used. (ISOStart)
EUT is transmitting pseudo random data by itself

© CTC advanced GmbH Page 20 of 60

12 Measurement results

12.1 Carrier Frequency Separation

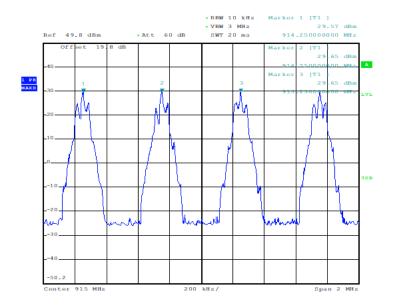
Description:

Measurement of the carrier frequency separation of a hopping system. We use PR-ASK-modulation to show compliance. EUT in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	10 kHz		
Video bandwidth	3 MHz		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 7.3 B		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC			
Carrier frequency separation				
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater. The two-thirds of the 20 dB bandwidth for IC is only valid for the ISM band 2400 – 2483.5 MHz.				


Result: The channel separation is 500 kHz.

© CTC advanced GmbH Page 21 of 60

Plots:

Plot 1: Frequency separation

© CTC advanced GmbH Page 22 of 60

12.2 Number of Hopping Channels

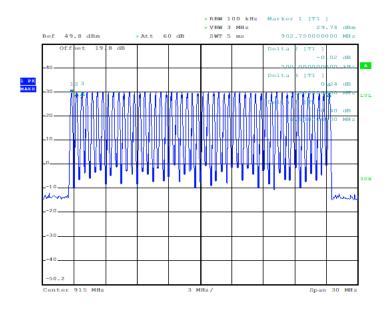
Description:

Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use PR-ASK -modulation to show compliance. EUT in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	See plots		
Video bandwidth	See plots		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 7.3 B		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC			
Number of hopping channels				
At least 25 non overlapping hopping channels. If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels.				


Result: The EUT uses 50 channels.

© CTC advanced GmbH Page 23 of 60

Plots:

Plot 1: Number of channels

© CTC advanced GmbH Page 24 of 60

12.3 Average Time of Occupancy (dwell time)

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	See plots		
Video bandwidth	See plots		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 7.3 B		
Measurement uncertainty	See sub clause 9		

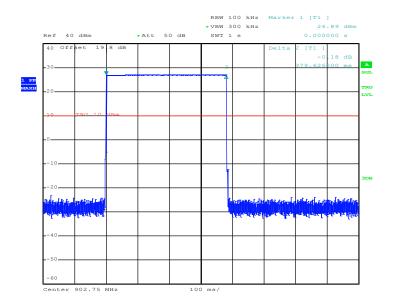
Limits:

FCC	IC		
Average time of occupancy			

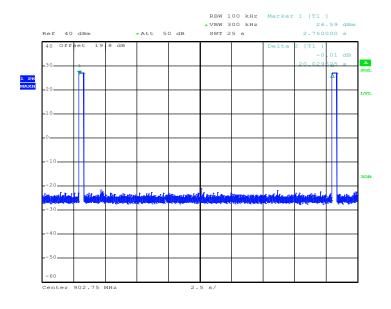
For frequency hopping systems operating in the 902-928 MHz band: If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 10 second period.

Result: The time slot length is = 380.0 ms

Number of hops / channel @ 20s = 1


Within 20 s period, the average time of occupancy in 20 s: 380.0 ms

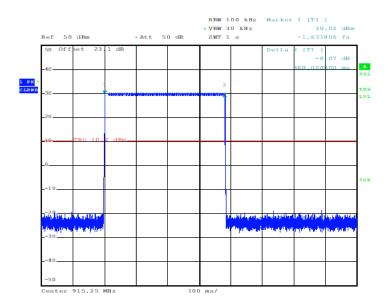
© CTC advanced GmbH Page 25 of 60


Plots:

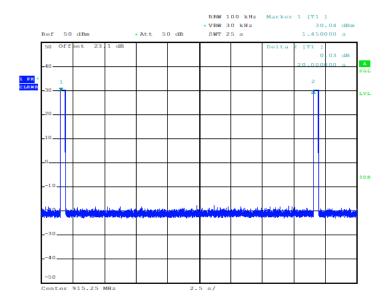
Plot 1: Time slot length = 379.6 ms

Date: 4.JAN.2003 02:32:38

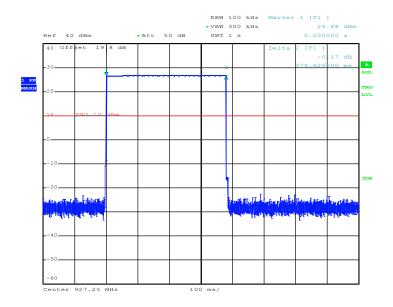
Plot 2: hops / channel @ 20s = 1



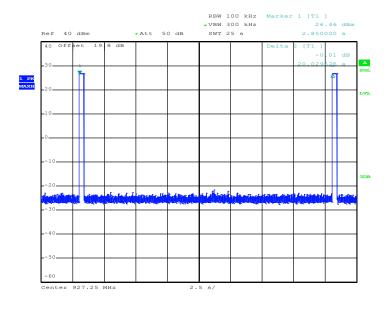
Date: 4.JAN.2003 02:40:07


© CTC advanced GmbH Page 26 of 60

Plot 3: Time slot length = 380.0 ms


Plot 4: hops / channel @ 20s = 1

© CTC advanced GmbH Page 27 of 60



Plot 5: Time slot length = 379.6 ms

Date: 4.JAN.2003 02:33:53

Plot 6: hops / channel @ 20s = 1

Date: 4.JAN.2003 02:38:18

© CTC advanced GmbH Page 28 of 60

12.4 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement:

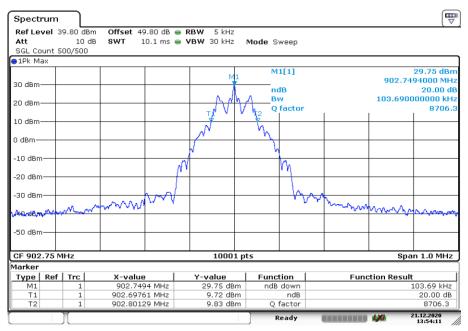
Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	5 kHz		
Video bandwidth	30 kHz		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 7.3 B		
Measurement uncertainty	See sub clause 9		

Limits:

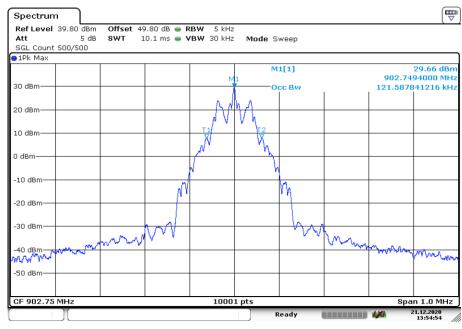
FCC	IC			
Spectrum bandwidth of a FHSS system				
The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.				

Result:

Test Conditions		20dB BANDWIDTH [kHz]		
		Low channel	Middle channel	High channel
T _{nom}	V _{nom}	103.7	104.0	103.8


Test Conditions		99% BANDWIDTH [kHz]		
		Low channel	Middle channel	High channel
T _{nom}	V _{nom}	121.6	122.3	122.2

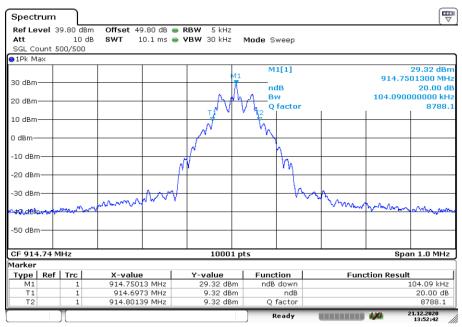
© CTC advanced GmbH Page 29 of 60


Plots:

Plot 1: Low Channel 20 dB-Bandwidth

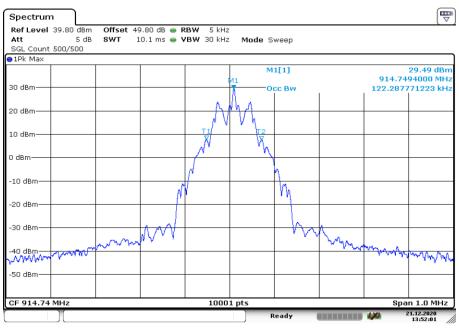
Date: 21.DEC.2020 13:54:11

Plot 2: Low Channel OBW 99



Date: 21.DEC.2020 13:54:54

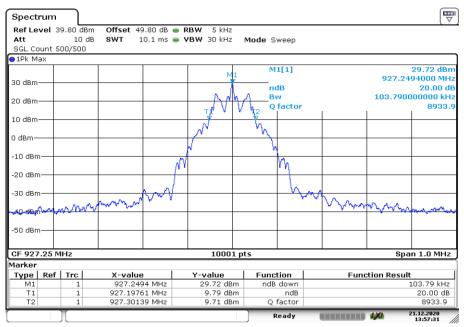
© CTC advanced GmbH Page 30 of 60



Plot 3: Mid Channel 20 dB-Bandwidth

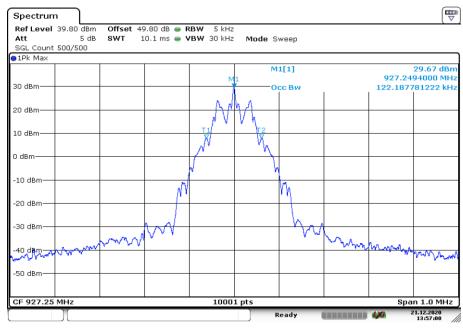
Date: 21.DEC.2020 13:52:42

Plot 4: Mid Channel OBW 99



Date: 21.DEC.2020 13:52:02

© CTC advanced GmbH Page 31 of 60



Plot 5: High Channel 20 dB-Bandwidth

Date: 21.DEC.2020 13:57:31

Plot 6: High Channel OBW 99

Date: 21.DEC.2020 13:57:00

© CTC advanced GmbH Page 32 of 60

12.5 Maximum Peak Output Power

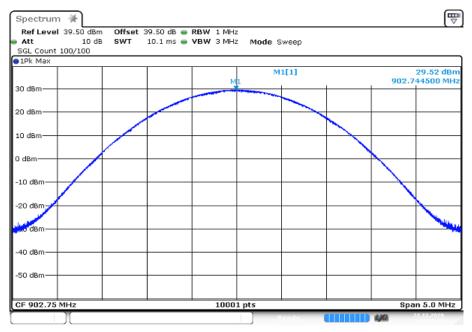
Measurement:

Measurement parameter				
Parameter	See plots			
Used equipment:	See chapter 7.3 C			
Measurement uncertainty:	See chapter 9			

Limits:

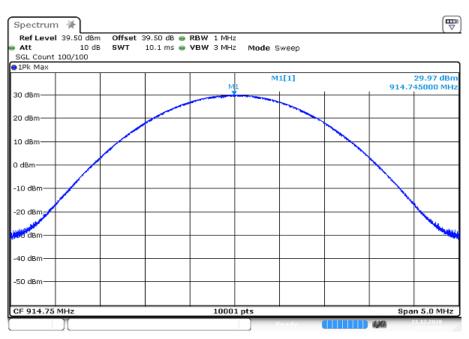
FCC	IC			
Maximum Output Power Conducted				

For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.


Result:

	Maximum Peak Output Power Conducted [dBm]		
	Low channel	Middle channel	High channel
Port 1	29.52	29.97	29.64
Port 2	29.43	29.86	29.63
Port 3	29.59	29.93	29.64
Port 4	29.99	29.78	29.52

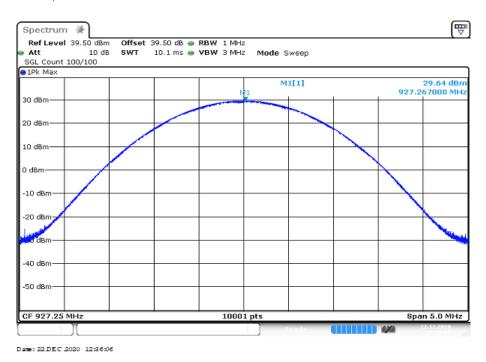
© CTC advanced GmbH Page 33 of 60



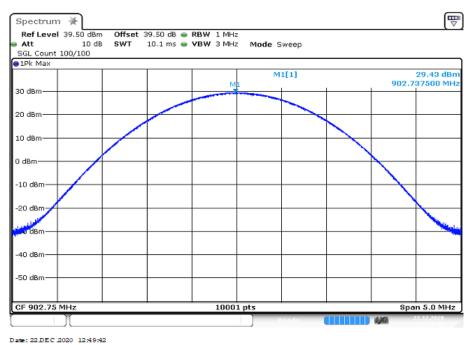
Plot 1: Lowest channel, Port 1

Date: 22 DEC 2020 12:35:23

Plot 2: Middle channel, Port 1

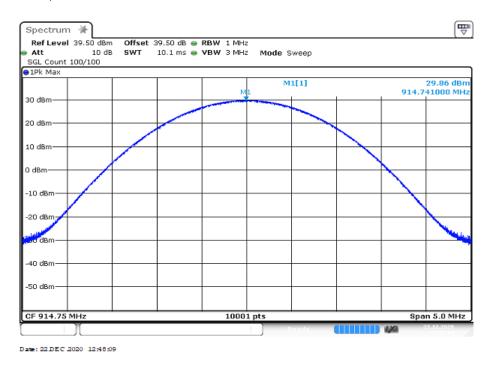


Date: 22 DEC 2020 12:34:24

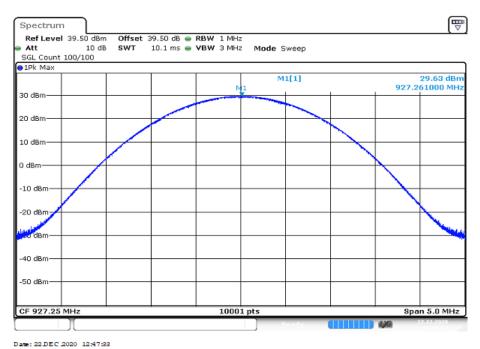

© CTC advanced GmbH Page 34 of 60

Plot 3: Highest channel, Port 1

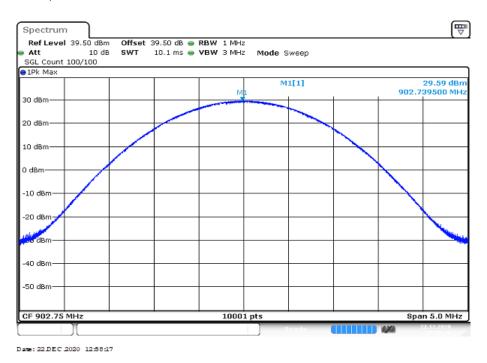
Plot 4: Lowest channel, Port 2

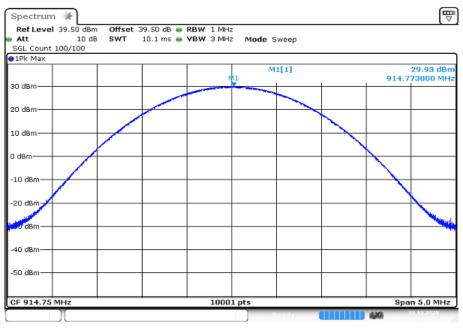


Date: 22 DEC 2020 12 9992


© CTC advanced GmbH Page 35 of 60

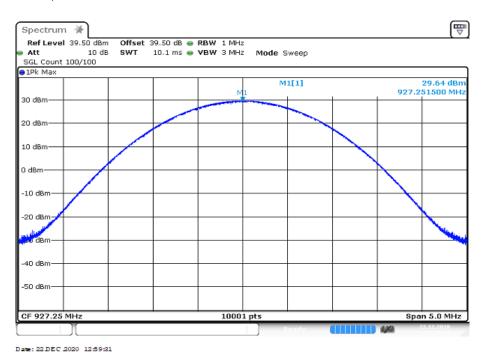
Plot 5: Middle channel, Port 2


Plot 6: Highest channel, Port 2

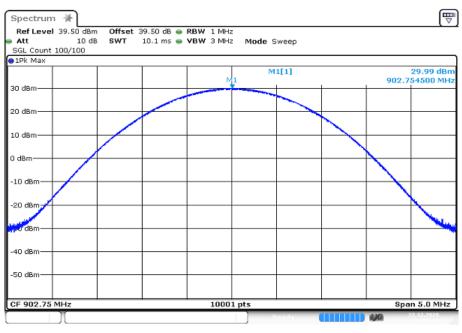

© CTC advanced GmbH Page 36 of 60

Plot 7: Lowest channel, Port 3

Plot 8: Middle channel, Port 3

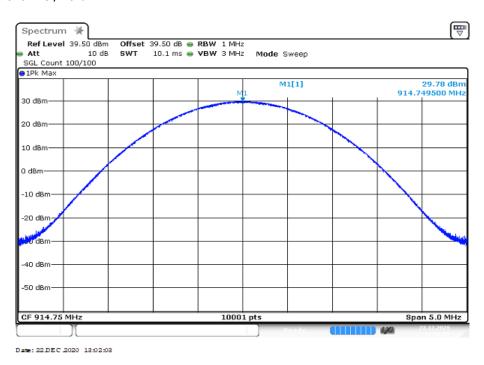


Date: 22 DEC 2020 12:58:56

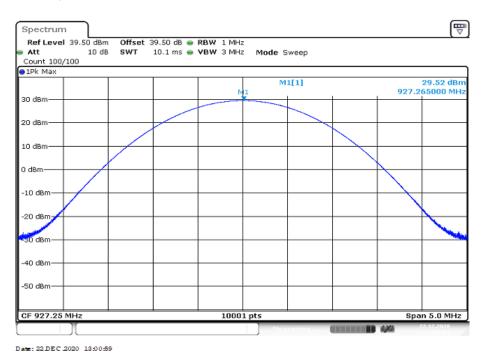

© CTC advanced GmbH Page 37 of 60

Plot 9: Highest channel, Port 3

Plot 10: Lowest channel, Port 4



Date: 22 DEC 2020 13:03:12


© CTC advanced GmbH Page 38 of 60

Plot 11: Middle channel, Port 4

Plot 12: Highest channel, Port 4

© CTC advanced GmbH Page 39 of 60

12.6 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

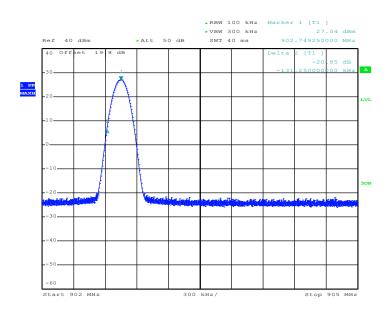
Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz / 500 kHz		
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.3 B		
Measurement uncertainty	See sub clause 9		

Limits:

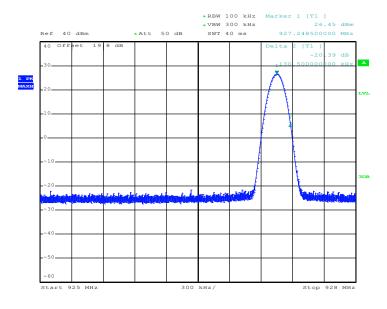
	FCC	IC
--	-----	----

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.


Results conducted:

Scenario	Spurious band ed	ge conducted [dB]
Modulation	lowest channel	highest channel
Lower band edge – hopping on	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB

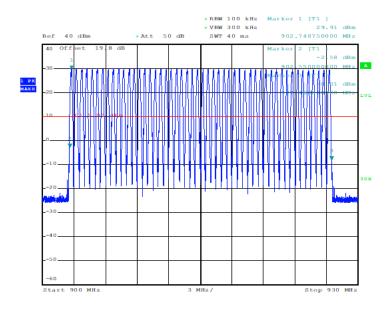
© CTC advanced GmbH Page 40 of 60



Plot 1: 20 dB - hopping off low channel

Date: 4.JAN.2003 02:20:35

Plot 2: 20 dB - hopping off high channel



Date: 4.JAN.2003 02:07:31

© CTC advanced GmbH Page 41 of 60

Plot 3: 20 dB - hopping on

Left marker frequency: 902.55 MHz Right marker frequency: '927.47 MHz

As even 30 dBc requirement is fulfilled, the 20 dBc requirement is also fulfilled.

© CTC advanced GmbH Page 42 of 60

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz MHz MHz		GHz	
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15	
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46	
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75	
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5	
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2	
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5	
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7	
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4	
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5	
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2	
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4	
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12	
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0	
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8	
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5	
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)	
13.36 - 13.41				

© CTC advanced GmbH Page 43 of 60

12.7 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

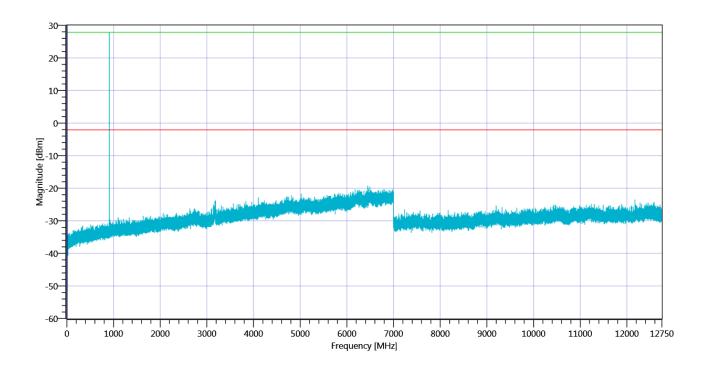
Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	F < 1 GHz: 1 MHz F > 1 GHz: 1 MHz			
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 100 kHz			
Span:	9 kHz to 12.75 GHz			
Trace-Mode:	Max Hold			
Used equipment:	See chapter 7.3 A			
Measurement uncertainty:	See chapter 9			

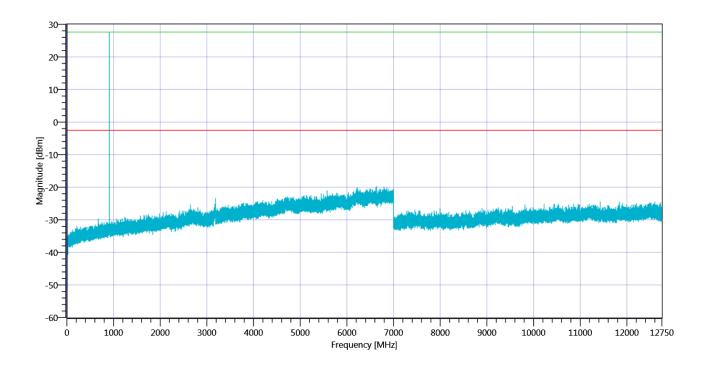
Limits:

FCC	IC			
TX spurious emissions conducted				

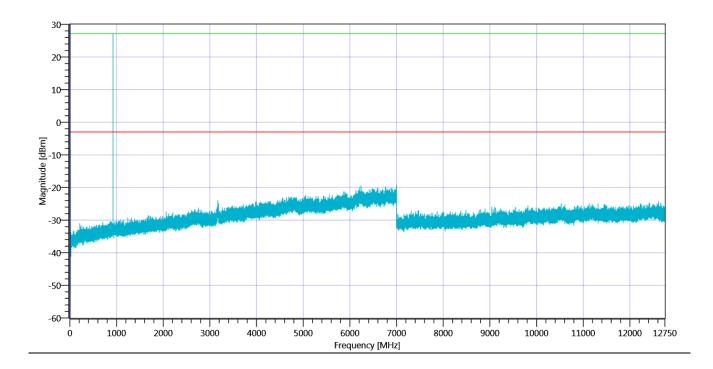
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required


Result:

Emission Limitation						
Frequency		Amplitude of	Limit max.	actual attenuation		
[MHz]		emission	allowed emission	below frequency of	Results	
[IVII IZ]		[dBm]	power	operation [dB]		
902.75 27.8		30 dBm		Operating frequency		
No emissions detected.		-20 dBc				
914.75		27.5	30 dBm		Operating frequency	
No emissions detected.		-20 dBc				
927.25		27.1	30 dBm		Operating frequency	
No emissions detected.		-20 dBc				


© CTC advanced GmbH Page 44 of 60

Plot 1: Low channel, 9 kHz - 12.75 GHz


Plot 2: Middle channel, 9 kHz - 12.75 GHz

© CTC advanced GmbH Page 45 of 60

Plot 3: High channel, 9 kHz - 12.75 GHz

© CTC advanced GmbH Page 46 of 60

12.8 Spurious Emissions Radiated < 30 MHz

Description:

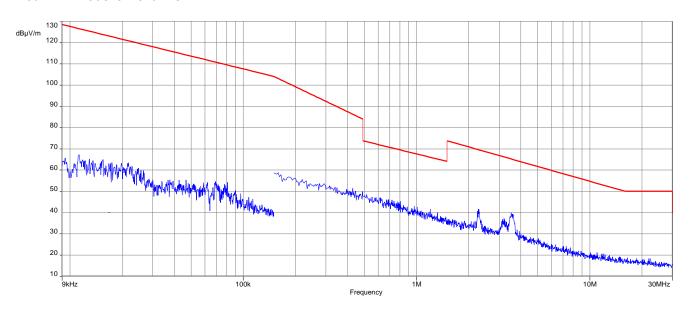
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement:

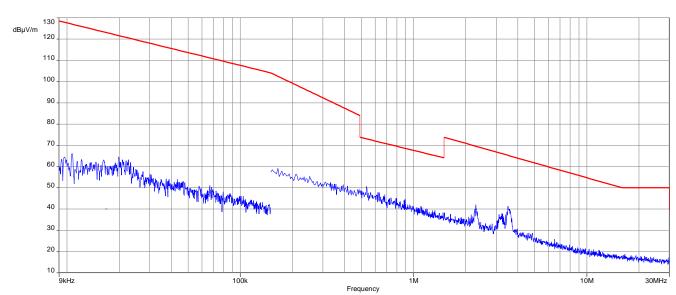
Measurement parameter				
Detector:	Peak / Quasi Peak			
Sweep time:	Auto			
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span:	9 kHz to 30 MHz			
Trace-Mode:	Max Hold			
Used equipment:	See chapter 7.2 A			
Measurement uncertainty:	See sub clause 9			

Limits:

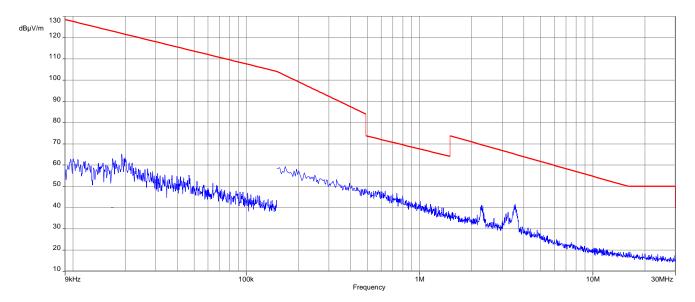
FCC			IC
	TX spurious emissio	ns radiated < 30 MHz	Z
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance
0.009 - 0.490	2400/F(kHz)		300
0.490 - 1.705	24000/F(kHz)		30
1.705 – 30.0	30		30


Result:

		SF	PURIOUS EM	ISSIONS LEV	/EL [dBµV/n	1]		
Le	Lowest channel Middle channel Highest channel							
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]
All emissions were more than 10 dB below the limit.								


© CTC advanced GmbH Page 47 of 60

Plot 1: TX-Mode low channel


Plot 2: TX-Mode mid channel

© CTC advanced GmbH Page 48 of 60

Plot 3: TX-Mode high channel

© CTC advanced GmbH Page 49 of 60

12.9 Spurious Emissions Radiated > 30 MHz

12.9.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

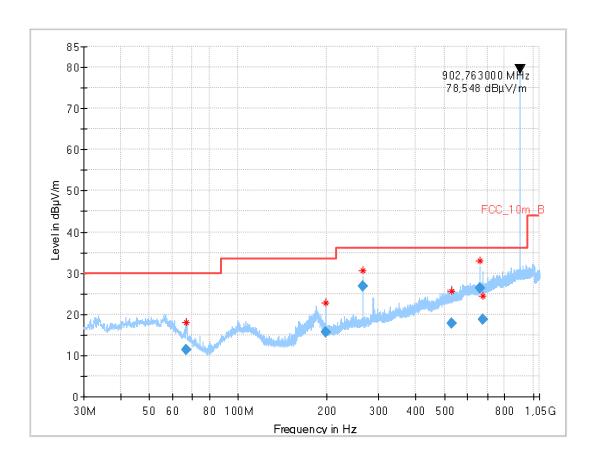
Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measurement parameters			
Detector	Peak / Quasi Peak		
Sweep time	Auto		
Resolution bandwidth	3 x VBW		
Video bandwidth	120 kHz		
Span	30 MHz to 1 GHz		
Trace mode	Max hold		
Measured modulation	PR-ASK		
Test setup	See sub clause 7.1 A		
Measurement uncertainty	See sub clause 9		

Limits:

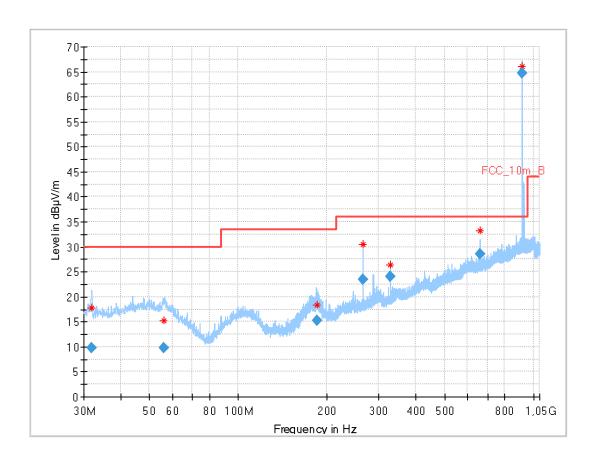
FCC	IC		
Band-edge Compliance of conducted and radiated emissions			


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

© CTC advanced GmbH Page 50 of 60

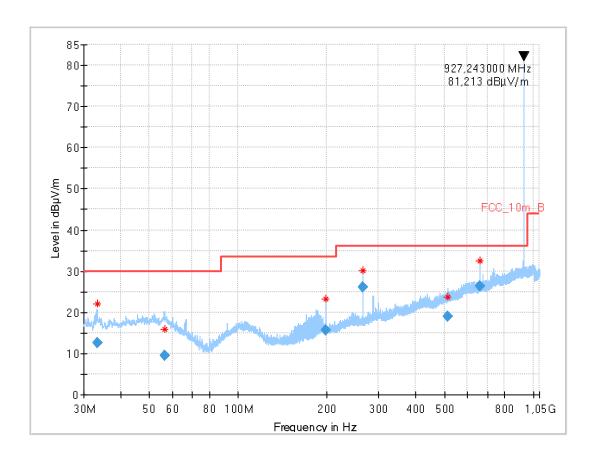
Plot 1: 30 MHz - 1 GHz, horizontal & vertical polarisation (lowest channel)


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
66.553	11.42	30.0	18.6	1000	120.0	287.0	٧	344	11
198.154	15.65	33.5	17.9	1000	120.0	142.0	٧	252	12
264.197	26.73	36.0	9.3	1000	120.0	124.0	٧	160	13
528.371	17.69	36.0	18.3	1000	120.0	400.0	٧	-45	19
660.507	26.32	36.0	9.7	1000	120.0	168.0	٧	45	21
675.822	18.75	36.0	17.3	1000	120.0	200.0	٧	-45	21

© CTC advanced GmbH Page 51 of 60

Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
31.767	9.77	30.0	20.2	1000	120.0	135.0	V	-45	12
56.156	9.82	30.0	20.2	1000	120.0	200.0	٧	225	15
184.559	15.24	33.5	18.3	1000	120.0	103.0	٧	90	11
264.234	23.46	36.0	12.5	1000	120.0	400.0	Н	166	13
327.675	24.06	36.0	11.9	1000	120.0	286.0	Н	-12	15
660.482	28.56	36.0	7.4	1000	120.0	165.0	Н	191	21
914.683	64.76	36.0	-28.8	1000	120.0	100.0	Н	0	24

© CTC advanced GmbH Page 52 of 60

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
33.386	12.54	30.0	17.5	1000	120.0	120.0	V	-38	12
56.338	9.48	30.0	20.5	1000	120.0	319.0	٧	90	15
198.150	15.74	33.5	17.8	1000	120.0	200.0	٧	321	12
264.215	26.13	36.0	9.9	1000	120.0	155.0	٧	166	13
512.009	18.92	36.0	17.1	1000	120.0	104.0	٧	180	19
660.439	26.46	36.0	9.5	1000	120.0	100.0	V	41	21

© CTC advanced GmbH Page 53 of 60

12.9.2 Spurious emissions radiated above 1 GHz

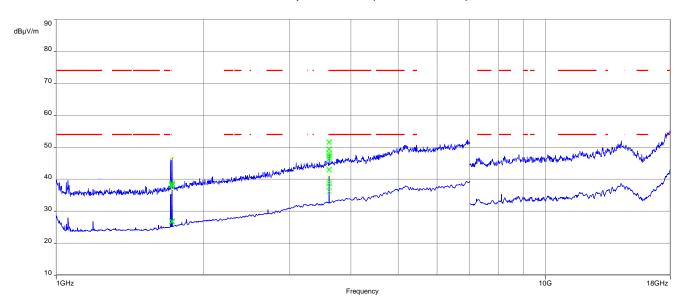
Measurement parameters				
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 x RBW			
Span	1 GHz to 12,75 GHz			
Trace mode	Max hold			
Measured modulation	PR-ASK			
Test setup	See sub clause 7.2 B (1 GHz – 12.75 GHz)			
Measurement uncertainty	See sub clause 9			

Limits:

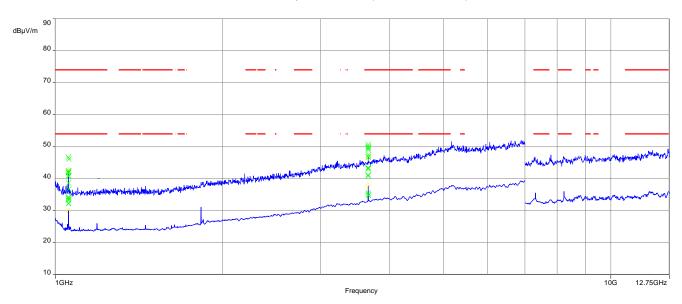
FCC	IC				
TX spurious emissions radiated					

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

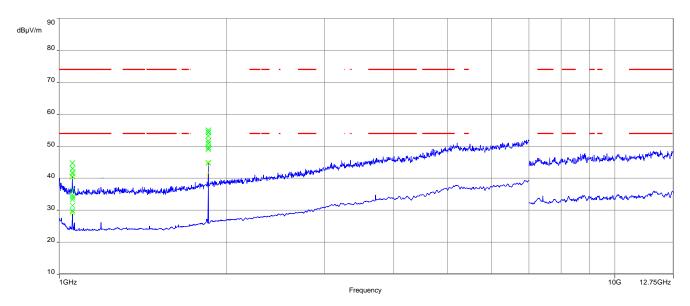
§15.209					
Frequency (MHz)	Field strength (dBµV/m)	Measurement distance			
Above 960	54.0	3			


Result:

	TX spurious emissions radiated [dBμV/m]								
L	Lowest channel			Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
3611	Peak	51.8	1056	Peak	46.7	1056	Peak	44.8	
3011	AVG	47.0	1030	AVG	38.6		AVG	33.3	
-/-	Peak	-/-	3659	Peak	50.7	1854	Peak	55.0	
-/-	AVG	-/-	3009	AVG	43.2	1004	AVG	51.7	
-/-	Peak	-/-	-/-	Peak	-/-	-/-	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-	


© CTC advanced GmbH Page 54 of 60

Plot 1: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (lowest channel)


Plot 2: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (middle channel)

© CTC advanced GmbH Page 55 of 60

Plot 3: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

© CTC advanced GmbH Page 56 of 60

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum

© CTC advanced GmbH Page 57 of 60

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2020-12-22

© CTC advanced GmbH Page 58 of 60

16 Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 3 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian	Office Berlin Spittelmarkt 10 Europa-Allee 52 Bundesaltee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-I-12076-01.1t comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.2020 Its purch placking, (If Spell Egyper Head of Devision The conficute together with its sonex reflects the stetus of the time of the date of issue. The current status of the scape of accreditation can be found at the distolose of accreditation can be found with a distolose of acc	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conforming seasonem to body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attacted by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkiStelles) of 31 July 2009 (Federal Law Sacette 1 p. 2629) and the Regulation (EC) No 765/2008 of the European Parliament and of the Gound of 9 July 2008 string out the requirements for accreditation and markets unveillance relating to the marketing of products (Official Journal of the European Union 1.218 of 9 July 2008, p. 30). DAKS is a signatory to the Multilateral Agreements for Multila Recognition of the European co-operation for Accreditation (EA), international Accreditation Forum (IAF) and international Laboratory Accreditation Cooperation (IAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: vww.european-accreditation.org. IIAC: www.european-accreditation.org. IIAC: www.european-accreditation.org.

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

© CTC advanced GmbH Page 59 of 60

17 Accreditation Certificate - D-PL-12076-01-05

Deutsche Akkreditierungsstelle GmbH Entwissel ausgestig in Section 8 suscession 3 AASStelleG in connection with Section 1 subsection 1 AASStelleG in connection with Section 1 Section 2 AASStelleG in Connection with Section 1 Section 3 AASSTELLEG in Connection with Section 1	first page	last page
The certificate logether with its onnex reflects the status at the time of the date of issue. The current status of the scope of accreditation can be found in the distatuse of accreditate badies of Devistche Akkreditierungsstelle GmbH. https://www.dakks.de/en/content/accreditate-badies-dakks he was minist.	Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBW Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (FCC Requirements) The accreditation certificate shall only apply in connection with the notice of accreditation of 09.05.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 The certificate logether with its annex reflects the stotal at the time of the date of assue. The current status of the scape of accordation can be found as the distribute of junctions the Akkredition-ungstatelic Gmbk. Attent/Power Mains Appropriate Combk.	Office Berlin Office Frankfurt am Main Office Braunschweig Bundesallee 100 10117 Berlin Office Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overled. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS. The accreditation assessment of success the Regulation (EQ No 765/2008 of the Lunopean Parliament and of (Pederal Law Gastets is 2. 3625) and the Regulation (EQ No 765/2008 of the Lunopean Parliament and of the Company to the Multilateral Agreements for screditation and successful surveillance relating to the marketing of products (Official Journal of the European Inion 1.2 is of July 2009, 30). DAkkS is a signatory to the Multilateral Agreements for Multila Recognition of the European Parliament and of Accreditation (ELAC). International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.european-accreditation.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

© CTC advanced GmbH Page 60 of 60