均
Bundesnetzagentur

Deutsche
Akkreditierungstelle
$D P L-12076-01-03$
BNetzA-CAB-02/21-102

Maximum Permissible Exposure (MPE) \& Exposure evaluation

Report identification number: 1-8602/19-01-06-A

Certification numbers and labeling requirements	
FCC ID	PJMLRU1002A
IC number	$6633 A-L R U 1002 A$
HVIN (Hardware Version Identification Number)	ID LRU1002A
PMN (Product Marketing Name)	ID ISC.LRU1002-FCC
FVIN (Firmware Version Identification Number)	$-/-$
HMN (Host Marketing Name)	$-/-$

Version -A: calculation with declared minimum safety distance of 34 cm .

This report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Document authorised:

Tornos \quad| $\mathrm{DN:} \mathrm{cn}=$ Thomas Vogler, $\mathrm{o}=\mathrm{CTC}$ advanced |
| :--- |
| GmbH, ou=VOG-161125, |
| email=thomas.vogler@ctcadvanced.com, |
| $\mathrm{C=DE}$ |
| Datum: 2019.09.05 15:37:05 +02'00' |

Thomas Vogler
Lab Manager
Radio Communications \& EMC

EUT technologies:

Technologies:	Max. power conducted: (AVG)	Max. antenna gain:	Min. pathloss:
RFID Reader ISM $902-928 \mathrm{MHz}$	Declared 30 dBm	2 different antenna types: see tables below	see tables below

See CTC advanced test report 1-8602/18-01-04 for reference

Prediction of MPE limit at given distance - FCC

Equation from page 18 of OET Bulletin 65, Edition 97-01
$S=P G / 4 \pi R^{2}$
where: $S=$ Power density
$\mathrm{P}=$ Power input to the antenna
$\mathrm{G}=$ Antenna gain
$R=$ Distance to the center of radiation of the antenna
PG = Output Power including antenna gain
The table below is excerpted from Table 1B of 47 CFR 1.1310 titled "Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure"

Frequency Range (MHz)	Power Density (mW/cm ${ }^{\mathbf{2}}$)	Averaging Time (minutes)
$300-1500$	$\mathrm{f} / 1500$	30
$1500-100000$	1.0	30

where $\mathrm{f}=$ Frequency (MHz)

Prediction for declared minimum safety distance of 34 cm :

	Technology	ISM 902-928	ISM 902-928
	Antenna	$\begin{gathered} \text { Feig ID } \\ \text { ISC.ANT.U290/290-FCC } \end{gathered}$	$\begin{gathered} \text { Feig ID } \\ \text { ISC.ANT.U580/290-FCC } \end{gathered}$
P	Maximum output power	30 dBm	30 dBm
PG	EIRP	35.2 dBm	35.9 dBm
	Distance:	34 cm	34 cm
S	MPE limit for uncontrolled exposure	$0.60 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.60 \mathrm{~mW} / \mathrm{cm}^{2}$
	Calculated Power density:	$0.228 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.268 \mathrm{~mW} / \mathrm{cm}^{2}$
	Percentage of limit:	38.0 \%	44.6 \%
	Collocation (Multiplexed use of both antennas at 50\% duty cycle each)	$0.248 \mathrm{~mW} / \mathrm{cm}^{2}$	
	Percentage of limit:	41.34 \%	

Prediction of MPE limit at given distance - IC

RSS-102, Issue 5, 2.5.2
RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm , except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4.49 / f^{0.5} \mathrm{~W}$ (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834} \mathrm{~W}$ (adjusted for tune-up tolerance), where f is in MHz; - at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

Prediction for declared minimum safety distance of 34 cm :

	Technology	ISM 902-928	ISM 902-928
	Antenna	$\begin{gathered} \text { Feig ID } \\ \text { ISC.ANT.U290/290-FCC } \end{gathered}$	$\begin{gathered} \text { Feig ID } \\ \text { ISC.ANT.U580/290-FCC } \end{gathered}$
P	Maximum output power	30 dBm	30 dBm
PG	EIRP	35.2 dBm	35.9 dBm
	Distance:	34 cm	34 cm
S	MPE limit for uncontrolled exposure	$2.73 \mathrm{~W} / \mathrm{m}^{2}$	$2.73 \mathrm{~W} / \mathrm{m}^{2}$
	Calculated Power density limit at 34 cm : $S=P G / 4 \pi R^{2}$	2.28 W/m ${ }^{2}$	2.68 W/m²
	Percentage of limit:	83.5 \%	98%
	Collocation (Multiplexed use of both antennas at 50% duty cycle each)	2.48 W/m ${ }^{2}$	
	Percentage of limit:	90.88 \%	

