

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-0119/15-01-02

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
e-mail: ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

Applicant

FEIG ELECTRONIC GmbH

Lange Str. 4

35781 Weilburg-Waldhausen / GERMANY

Phone: +49 6471 31 09-0 Fax: +49 6471 310-999 Contact: Bernhard Schüßler

e-mail: bernhard.schuessler@feig.de

Phone: +49 6471 310-9435

Manufacturer

FEIG ELECTRONIC GmbH

Lange Str. 4

35781 Weilburg-Waldhausen / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 210 Issue 8 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

RSS - 210 Issue 8 RSS-210, Amendment 1 — Licence-Exempt, Low-Power Radio Apparatus

Amendment 1 Operating in the Television Bands (February 2015)

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: RF Reader
Model name: ID CPRPOS
FCC ID: PJMCPRPOS
IC: 6633A-CPRPOS

Frequency: 13.56 MHz
Technology tested: RFID

Antenna: Integrated antenna

Power supply: 5.00 V DC by external power supply

Temperature range: -20°C to +70°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:	Test performed:
Marco Bertolino	Andreas Luckenbill

Lab Manager Radio Communications & EMC Lab Manager Radio Communications & EMC

Table of contents

1	Table of contents2						
2	Gene	ral information	3				
	2.1	Notes and disclaimer					
	2.2	Application details					
3	Test :	standard/s					
	3.1	Measurement guidance					
4	Test	environment					
5		tem					
	5.1	Additional information					
6	Test I	aboratories sub-contracted	Ę				
7	Desci	ription of the test setup	6				
	7.1	Shielded semi anechoic chamber					
	7.2	Shielded fully anechoic chamber					
	7.3	Conducted measurements normal and extreme conditions	9				
	7.4	AC conducted	10				
8	Meas	urement uncertainty	11				
9	Sequ	ence of testing	12				
	9.1	Sequence of testing 9 kHz to 30 MHz					
	9.2	Sequence of testing 30 MHz to 1 GHz					
10	Sur	mmary of measurement results	14				
11	Add	ditional comments	14				
12	Me	asurement results	15				
	12.1	Occupied bandwidth	15				
	12.2	Field strength of the fundamental	17				
	12.3	Field strength of the harmonics and spurious					
	12.4	Conducted limits					
	12.5	Frequency error	24				
Anı	nex A	Document history	25				
Anı	nex B	Further information	25				
Δnı	nex C	Accreditation Certificate	26				

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2015-06-26
Date of receipt of test item: 2015-06-26
Start of test: 2015-06-30
End of test: 2015-07-08

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 8	December 2010	Spectrum Management and Telecommunications Radio Standards Specification - Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
RSS - 210 Issue 8 Amendment 1	February 2015	RSS-210, Amendment 1 — Licence-Exempt, Low-Power Radio Apparatus Operating in the Television Bands (February 2015)

3.1 Measurement guidance

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices
RSS-Gen Issue 4	November 2014	General Requirements for Compliance of Radio Apparatus

4 Test environment

T_{nom} +22 °C during room temperature tests

Temperature: T_{max} +70 °C during high temperature tests

T_{min} -20 °C during low temperature tests

Relative humidity content: 46 %

Barometric pressure: not relevant for this kind of testing

V_{nom} 5.00 V DC by external power supply

Power supply: V_{max} 5.75 V

 V_{min} 4.25 V

5 Test item

Kind of test item	:	RF Reader
Type identification	:	ID CPRPOS
HMN	•	- /-
PMN	•	ID CPRPOS
HVIN	•	ID CPRPOS
FVIN	•	- /-
S/N serial number	•	MAC-Adr.: 00:1C:9B:0B:00:6D
HW hardware status	:	No information available!
SW software status		No information available!
Frequency band		13.56 MHz
Type of radio transmission	:	
Use of frequency spectrum		Single modulated carrier
Antenna	:	Integrated antenna
Power supply	:	5.00 V DC by external power supply
Temperature range	:	-20°C to +70°C

5.1 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-0119/15-01-02_AnnexA

1-0119/15-01-02_AnnexB 1-0119/15-01-02_AnnexD

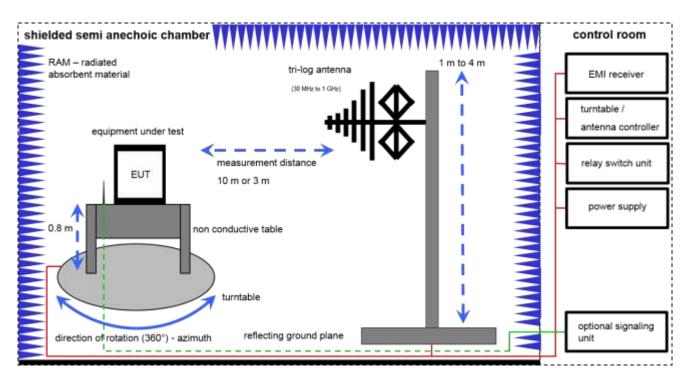
6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signalling equipment as well as measuring receivers and analysers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

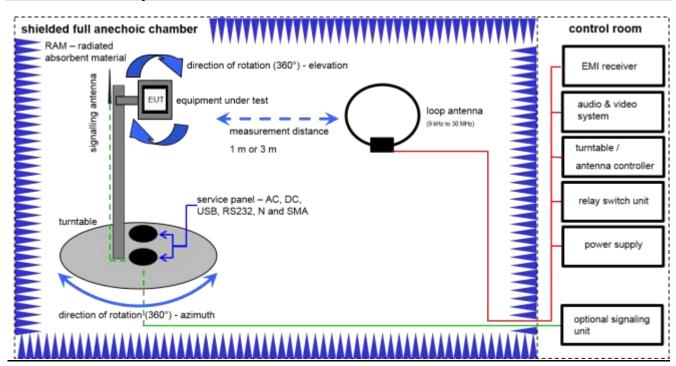
k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63.4. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.4 and ANSI C63.10.

 $SS = U_R + CL + AF$

(SS-signal strength; U_R-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

 $SS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB\mu V/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev		
2	Α	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne		
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2015	26.01.2016
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw		
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw		
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw		
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016

7.2 Shielded fully anechoic chamber

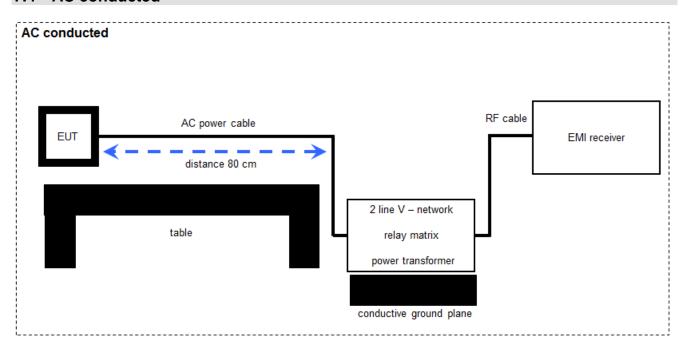
 $SS = U_R + CA + AF$

(SS-signal strength; U_R-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

SS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB\mu V/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m$)

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	Α	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
3	Α	Switch / Control Unit	3488A	HP	*	300000199	ne		
4	А	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	24.06.2015	24.06.2017
5	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	06.03.2015	06.03.2016
6	А	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne		


7.3 Conducted measurements normal and extreme conditions

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Temperature Test Chamber	VT 4002	Heraeus Voetsch	521/83761	300002326	Ve	26.09.2013	26.09.2015
2	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	22.01.2015	22.01.2016
3	А	Power Supply 0- 20V, 0-5A	6632B	Agilent Technologies	GB42110541	400000562	vIKI!	10.01.2013	10.01.2016
4	А	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 699714	400001184	ne	-/-	-/-

7.4 AC conducted

SS = UR + CF + VC

(SS-signal strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $\overline{SS[dB\mu V/m]} = 37.62[dB\mu V/m] + 9.90[dB] + 0.23[dB] = 47.75[dB\mu V/m] (244.06 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom		Last Calibration	Next Calibration
1	Α	Netznachbildung	ESH3-Z5	R&S	892475/017	300002209	k	17.06.2014	17.06.2016
2	Α	EMI-Receiver	8542E	HP	3617A00170	300000568	k	28.01.2015	28.01.2016
3	Α	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	11.02.2014	11.02.2016

8 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Occupied bandwidth	± 1 kHz				
Field strength of the fundamental	± 3 dB				
Field strength of the harmonics and spurious emissions below 30 MHz	± 3 dB				
Field strength of the harmonics and spurious emissions 30 MHz to 1 GHz	± 3 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				
Frequency error	± 10 Hz				

9 Sequence of testing

9.1 Sequence of testing 9 kHz to 30 MHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° with 45° steps.
- The antenna height is 1.5 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axces (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK (QPK / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

9.2 Sequence of testing 30 MHz to 1 GHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 10 or 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° with 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions

Final measurement

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP (Quasi-Peak / see ANSI C 63.4) detector with an EMI receiver
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
	CFR Part 15			
RF-Testing	RSS 210 Issue 8	See table!	2015-07-29	-/-
	RSS Gen Issue 4			

Test specification clause	Test case	Temperature conditions	Power source conditions	С	NC	NA	NP	Remark
RSS Gen Issue 4	Occupied bandwidth	Nominal	Nominal					for information only
§ 15.225 (a) RSS 210 (A2.6)	Field strength of the fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 & § 15.225 (b-d) RSS Gen Issue 4 (6.13)	Field strength of the harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.109 RSS Gen Issue 4 (6.13)	Receiver spurious emissions and cabinet radiations	Nominal	Nominal			\boxtimes		-/-
§15.107 §15.207	Conducted limits	Nominal	Nominal	\boxtimes				-/-
§ 15.225 (a) RSS 210 (A2.6)	Frequency tolerance	Normal & extreme conditions	Normal & extreme conditions	\boxtimes				-/-

Note: C = complain; NC = Not complain; NA = Not applicable; NP = Not performed

11 Additional comments

Reference documents: None
Special test descriptions: None

Configuration descriptions: None

12 Measurement results

12.1 Occupied bandwidth

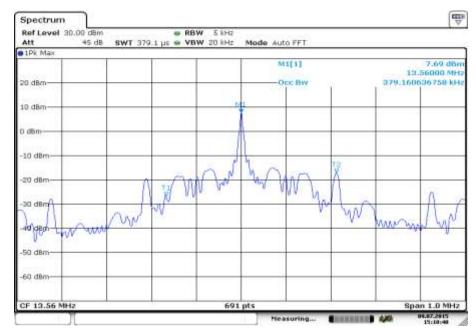
Measurement:

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

Measurement parameters				
Detector:	Peak			
Resolution bandwidth:	1 % – 5 % of the occupied bandwidth			
Video bandwidth:	≥ 3x RBW			
Trace mode:	Max hold			
Analyser function:	99 % power function			
Used equipment:	See chapter 7.3 - A			
Measuremnt uncertainty	See chapter 8			

Limit:

IC
for RSP-100 test report coversheet only


Result:

99% emission bandwidth			
379 kHz			

Plot:

Plot 1: 99 % emission bandwidth

Date: 9.JUL.2015 15:10:40

12.2 Field strength of the fundamental

Measurement:

The maximum detected field strength for the carrier signal.

Measurement parameters				
Detector:	Quasi peak / peak (worst case)			
Resolution bandwidth:	120 kHz			
Video bandwidth:	≥ 3x RBW			
Trace mode:	Max hold			
Used equipment:	See chapter 7.2 - A			
Measuremnt uncertainty	See chapter 8			

Limit:

FCC & IC				
Frequency	Field strength	Measurement distance		
(MHz)	(µV/m)	(m)		
13.553 to 13.567	15,848 (84 dBµV/m)	30		

Recalculation:

According to ANSI C63.10				
Frequency Formula Correction value				
13.56 MHz	$FS_{limit} = FS_{max} - 40 \log \left(\frac{d_{nearfield}}{d_{measure}} \right) - 20 \log \left(\frac{d_{limit}}{d_{nearfield}} \right)$	-21.39		

According to ANSI C63.10

Result:

Field strength of the fundamental					
Frequency 13.56 MHz					
Distance	@ 3 m	@ 30 m			
Measured / calculated value – without Tag	70.1 dBμV/m	48.7 dBμV/m			
Measured / calculated value – with Tag	67.8 dBµV/m	46.4 dBµV/m			

12.3 Field strength of the harmonics and spurious

Measurement:

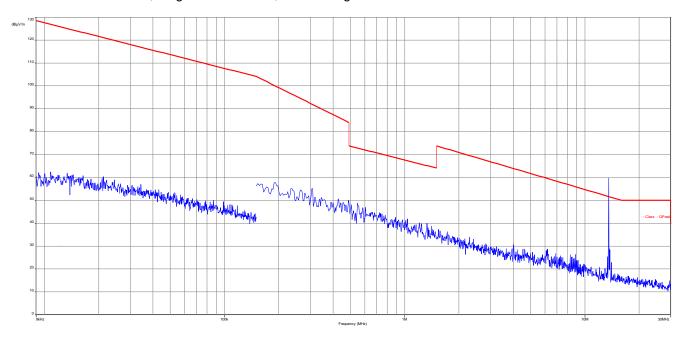
The maximum detected field strength for the harmonics and spurious.

Measurement parameters				
Detector:	Quasi peak / average or			
Detector.	peak (worst case – pre-scan)			
	F < 150 kHz: 200 Hz			
Resolution bandwidth:	150 kHz < F < 30 MHz: 9 kHz			
	30 MHz < F < 1 GHz: 120 kHz			
	F < 150 kHz: 1 kHz			
Video bandwidth:	150 kHz < F < 30 MHz: 100 kHz			
	30 MHz < F < 1 GHz: 300 kHz			
Trace mode:	Max hold			
Used equipment:	See chapter 7.1 - A, 7.2 - A, 7.3 - A			
Measuremnt uncertainty	See chapter 8			

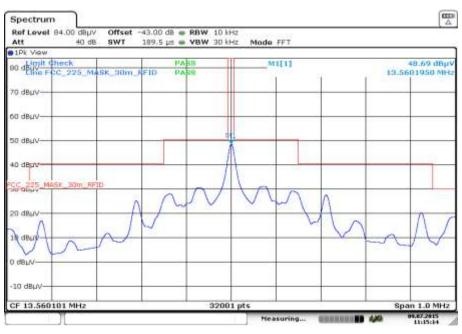
Limit:

	FCC & IC	
Frequency (MHz)	Field strength (dBµV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30	30 (29.5 dBµV/m)	30
30 – 88	100 (40 dBμV/m)	3
88 – 216	150 (43.5 dBμV/m)	3
216 – 960	200 (46 dBμV/m)	3

Note: For a reduced measurement distance, please take a look at the limit line and the ANSI C63.10-2013 sub clause 6.4 radiated emissions from unlicensed wireless devices below 30 MHz.

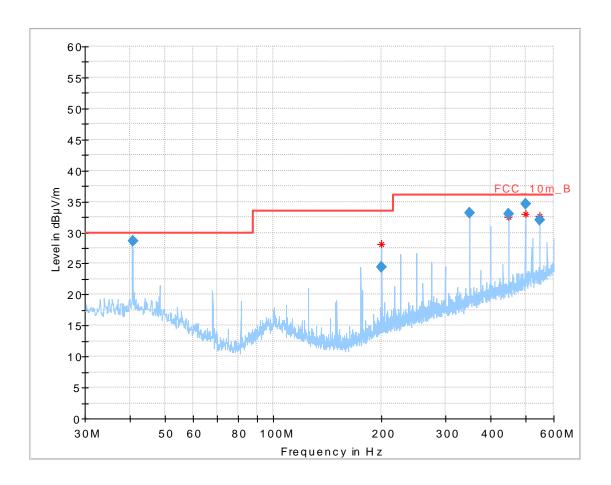

Result:

Detected emissions					
Frequency (MHz)	Detector	Resolution bandwidth (kHz)	Detected value		
40.7 MHz	QP	120	28.6 dBµV/m @ 10m		
200 MHz	QP	120	24.5 dBµV/m @ 10m		



Plots:

Plot 1: 9 kHz - 30 MHz, magnetic emissions, without Tag


Plot 2: Spectrum mask @ 30m

Date: 9.JUL.2015 11:15:14

Plot 3: 30 MHz – 1 GHz, vertical and horizontal polarisation

Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.671600	28.61	30.00	1.39	1000.0	120.000	98.0	٧	117	14.0
199.994100	24.47	33.50	9.03	1000.0	120.000	100.0	٧	297	11.7
350.002650	33.20	36.00	2.80	1000.0	120.000	200.0	Н	97	16.0
449.982900	33.01	36.00	2.99	1000.0	120.000	178.0	Н	97	17.6
499.976550	34.62	36.00	1.38	1000.0	120.000	173.0	Н	277	18.7
549.994800	32.07	36.00	3.93	1000.0	120.000	103.0	Н	97	19.3

12.4 Conducted limits

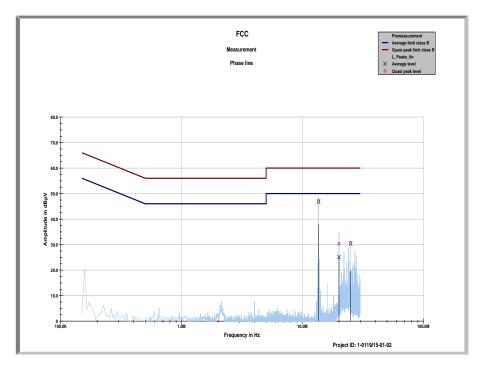
Measurement:

Measurement of the conducted spurious emissions for an intentional radiator that is designed to be connected to the public utility (AC) power line.

Measurement parameters				
Detector:	Quasi peak / average or			
Detector.	peak (worst case - pre-scan)			
Resolution bandwidth:	F < 150 kHz: 200 Hz			
Resolution bandwidth.	F > 150 kHz: 9 kHz			
Video bandwidth:	F < 150 kHz: 1 kHz			
video baridwidiri.	F > 150 kHz: 100 kHz			
Trace mode:	Max hold			
Used equipment:	See chapter 7.4 - A			
Measuremnt uncertainty	See chapter 8			

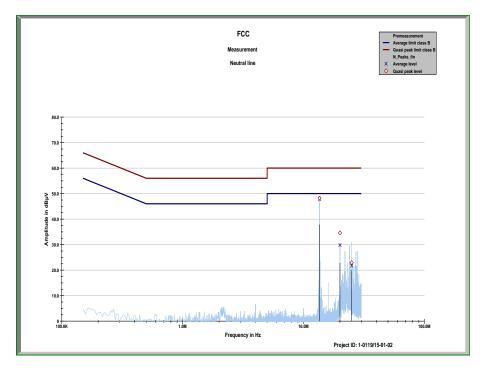
Limit:

	FCC & IC	
Frequency	Quasi-peak	Average
(MHz)	(dBµV/m)	(dBµV/m)
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30.0	60	50


Measurement arrangement:

The EUT housing was opened up and a twisted pair cable was soldered direct on V+ and GND of the soldering points of the standard connector to make sure that only the DC line is connected and no other port like serial port which is also on the standard connector.

Plots:


Plot 1: 150 kHz to 30 MHz, phase line

Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dΒμV	dΒμV	dΒμV	dΒμV
13.562	47.10	12.90	46.85	3.15
20.004	30.32	29.68	25.16	24.84
25	30.69	29.31	30.38	19.62

Plot 2: 150 kHz to 30 MHz, neutral line

Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dΒμV	dΒμV	dΒμV	dΒμV
13.56	48.21	11.79	47.89	2.11
20	34.58	25.42	29.84	20.16
25.005	22.96	37.04	21.74	28.26

12.5 Frequency error

Measurement:

The maximum detected field strength for the spurious.

Measurement parameters				
Detector:	Peak detector			
Resolution bandwidth:	10 Hz			
Video bandwidth:	> RBW			
Trace mode:	Clear Write			
Used equipment:	See chapter 7.3 - A			
Measuremnt uncertainty	See chapter 8			

Limit:

FCC

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. (±1.356 kHz)

Result: Temperature variation

Frequency tolerance				
Measured frequency (MHz)	Conditions	Result		
13.5602	-20 °C & 100% voltage	complaint		
13.5601	-10 °C & 100% voltage	complaint		
13.5601	0 °C & 100% voltage	complaint		
13.5601	+10 °C & 100% voltage	complaint		
13.5601	+20 °C & 100% voltage	complaint		
13.5601	+30 °C & 100% voltage	complaint		
13.5601	+40 °C & 100% voltage	complaint		
13.5601	+50 °C & 100% voltage	complaint		

Result: Voltage variation

Frequency tolerance					
Measured frequency (MHz)	Temperature	Result			
13.5601	+20 °C & 85% voltage	complaint			
13.5601	+20 °C & 100% voltage	complaint			
13.5601	+20 °C & 115% voltage	complaint			

Annex A **Document history**

Version	Applied changes	Date of release
	Initial release	2015-07-29

Further information Annex B

Glossary

SW

AVG Average

DUT Device under test

EMC Electromagnetic Compatibility

European Standard ΕN EUT Equipment under test

European Telecommunications Standard Institute ETSI

Federal Communication Commission FCC

FCC ID -Company Identifier at FCC

Hardware HW IC **Industry Canada** Inv. No. -Inventory number N/A Not applicable PP Positive peak QΡ Quasi peak S/N Serial number Software

PMN Product marketing name Host marketing name HMN

Hardware version identification number HVIN **FVIN** Firmware version identification number

Annex C Accreditation Certificate

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html