

Straubing, December 14, 2007

TEST-REPORT

No. 50602-071031 (Edition 2)

for

ID CPR.M02/ANT19

Inductive Tag Reader

Applicant: FEIG ELECTRONIC GmbH

Test Specifications: FCC Code of Federal Regulations,

CFR 47, Part 15,

Sections 15.205, 15.207, 15.215 and 15.225

Industry Canada Radio Standards

Specifications

RSS-Gen Issue 2, Section 7.2.2 and RSS-210 Issue 7, Sections 2.2, 2.6, A2.6

(Category I Equipment)

Note:

The test data of this report is related only to the individual item which has been tested. This report shall not be reproduced except in full extent without the written approval of the testing laboratory.

Table of Contents

1	De	escription of the Equipment Under Test (EUT)	3
2	Ac	dministrative Data	4
3	lde	entification of the Test Laboratory	5
4	Sı	ımmary	6
5	Op	peration Mode and Configuration of EUT	7
6	Me	easurement Procedures	8
	6.1	Radiated Emission Measurement 9 kHz to 30 MHz	9
	6.2	Radiated Emission in Fully or Semi Anechoic Room	11
	6.3	Radiated Emission at Open Field Test Site	13
7	Pł	notographs Taken During Testing	14
8	Τe	est Results	19
	8.1	Radiated Emission Measurement 9 kHz to 30 MHz	21
	8.2	Radiated Emission Measurement 30 MHz to 1 GHz	24
	8.3	Exposure of Humans to RF Fields	26
9	Re	eferenced Regulations	28
10) Re	evision History	29
11	Cł	narts taken during testing	30

1 Description of the Equipment Under Test (EUT)

General data of EUT

Type designation¹: ID CPR.M02/ANT19

Parts²: Serial number(s): Test Sample 01

Manufacturer: FEIG ELECTRONIC GmbH

Type of equipment: Inductive Tag Reader

Version: As delivered

FCC ID: PJMCPRM02-ANT19

Additional parts/accessories:

Fechnical data of EUT			
Application frequency range:	13.110 - 14.010 MHz	13.110 - 14.010 MHz	
Frequency range:	13.56 MHz		
Operating frequency:	13.56 MHz		
Type of modulation:	ASK		
Pulse train:			
Pulse width:			
Number of RF-channels:	1		
Channel spacing:	Not Applicable		
Designation of emissions ³ :	10K0A1D		
Type of antenna:	Integrated loop on extra	a printed board	
Size/length of antenna:	Ø 25 mm		
Connection of antenna:	⊠ detachable	not detachable	
Type of power supply:	DC supply		
Specifications for power supply:	nominal voltage: minimum voltage: maximum voltage:	5.00 V 4.75 V 5.25 V	

¹ Type designation of the system if EUT consists of more than one part.

² Type designations of the parts of the system, if applicable.

³ Also known as "Class of Emission".

Application details

2 Administrative Data

Applicant (full address): FEIG ELECTRONIC GmbH

Lange Straße 4

D-35781 Weilburg-Waldhausen

Contact person: Mr. Bernhard Schüßler

Contract identification: EB205126 / 16483

Receipt of EUT: November 2, 2007

Dates of test: November 2007

Note: This test report intended to show compliance of the module ID

CPR.M02 with antenna ANT19. For further details please refer to

Senton Test Report No. 50602-20601-2

Report details

Report number: 50602-071031

Edition: 2

Issue date: December 14, 2007

3 Identification of the Test Laboratory

Details of the Test Laboratory

Company name: Senton GmbH EMI/EMC Test Center

Address: Aeussere Fruehlingstrasse 45

D-94315 Straubing

Germany

Laboratory accreditation: DAR-Registration No. DAT-P-171/94-02

FCC test site registration number 90926 Industry Canada test site registration: IC 3050

Contact person: Mr. Johann Roidt

Phone: (+49) (0)9421 5522-0 Fax: (+49) (0)9421 5522-99

Summary

Summary of test results

The tested sample complies with the requirements set forth in the

Code of Federal Regulations CFR 47, Part 15, Sections 15.205, 15.215 and 15.225

of the Federal Communication Commission (FCC) and the

Radio Standards Specifications RSS-210 Issue 7, Sections 2.2, 2.6, A2.6 (Category I Equipment)

of Industry Canada (IC).

Responsible for test report:

Personnel involved in this report		
Laboratory Manager:		
	He Col	
	Mr. Johann Roidt	
Responsible for testing:		
	Skinell Martin	
	Mr. Martin Steindl	
Responsible for test report:	Mr. Martin Steindl	

5 Operation Mode and Configuration of EUT

Operation Mode

Transmitting continuously

Configuration of EUT

The EUT was configured as stand alone device.

List	List of ports and cables					
Port	Description	Classification ⁴	Cable type	Cable length		
1	DC supply line	dc power	Unshielded			
2	Antenna cable	signal/control port	Unshielded			

List	List of devices connected to EUT				
Item	Description	Type Designation	Serial no. or ID	Manufacturer	
1	ANT19	Antenna		Feig Electronic	

List	List of support devices				
Item	Description	Type Designation	Serial no. or ID	Manufacturer	

_

⁴ Ports shall be classified as ac power, dc power or signal/control port

6 Measurement Procedures

6.1 Radiated Emission Measurement 9 kHz to 30 MHz

Measurement Procedure:			
Rules and specifications:	CFR 47 Part 15, sections 15.205, 15.215(b) and 15.225(a)-(d) IC RSS-210 Issue 7, sections 2.2, 2.6 and A2.6		
Guide:	ANSI C63.4		

Radiated emission in the frequency range 9 kHz to 30 MHz is measured using an active loop antenna. First the whole spectrum of emission caused by the equipment is recorded at a distance of 3 meters in a fully or semi anechoic room with the detector of the spectrum analyzer or EMI receiver set to peak. This configuration is also used for recording the spectrum of intentional radiators.


Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

If worst case emission of the EUT cannot be recorded with EUT in standard position and loop antenna in vertical polarization the EUT (or the radiating part of the EUT) is rotated by 90 degrees instead of changing the loop antenna to horizontal polarization. This procedure is selected to minimize the influence of the environment (e.g. effects caused by the floor especially with longer distances).

Final measurement is performed at a test distance D of 30 meters using an open field test site. In case the regulation requires testing at other distances, the result is extrapolated by either making measurements at an additional distance D of 10 meters to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). In cases of very low emissions measurements are performed at shorter distances and results are extrapolated to the required distance. The provisions of CFR 47 Part 15 sections 15.31(d) and (f)(2) apply. According to CFR 47 Part 15 section 15.209(d) final measurement is performed with detector function set to quasi-peak except for the frequency bands 9 to 90 kHz and 110 to 490 kHz where, for non-pulsed operation, average detector is employed.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Test instruments used:

Used	Туре	Model	Serial No. or ID	Manufacturer
\boxtimes	Spectrum Analyzer	FSP 30	100063	Rohde & Schwarz
	EMI test receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
\boxtimes	Test receiver	ESHS 10	860043/016	Rohde & Schwarz
	Preamplifier	CPA9231A	3393	Schaffner
\boxtimes	Loop antenna	HFH2-Z2	882964/1	Rohde & Schwarz
\boxtimes	Fully anechoic room	No. 2	1452	Albatross Projects
	Semi-anechoic room	No. 3	1453	Siemens
\boxtimes	Open field test site	EG 1	1450	Senton

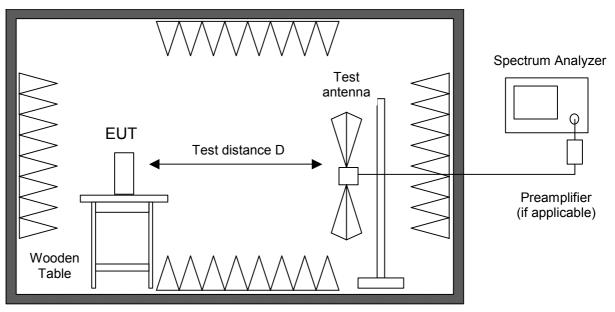
6.2 Radiated Emission in Fully or Semi Anechoic Room

Measurement Procedure:		
Rules and specifications:	CFR 47 Part 15, sections 15.205(b) and 15.225(d) IC RSS-210 Issue 7, sections 2.2(b)(c), 2.6 and A2.6	
Guide:	ANSI C63.4	

Radiated emission in fully or semi anechoic room is measured in the frequency range from 30 MHz to the maximum frequency as specified in CFR 47 Part 15 section 15.33.

Measurements are made in both the horizontal and vertical planes of polarization in a fully anechoic room using a spectrum analyzer with the detector function set to peak and resolution as well as video bandwidth set to 100 kHz (below 1 GHz) or 1 MHz (above 1 GHz).

Testing up to 1 GHz is performed with a linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna"). For testing above 1 GHz horn antennas are used.


All tests below 18 GHz are performed at a test distance D of 3 meters. For higher frequencies the test distance is reduced (e.g. to 1 meter) due to the sensitivity of the measuring instrument(s) and the test results are calculated according to CFR 47 Part 15 section 15.31(f)(1) using an extrapolation factor of 20 dB/decade. If required, preamplifiers are used for the whole frequency range. Special care is taken to avoid overload, using appropriate attenuators and filters, if necessary.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

During testing the EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

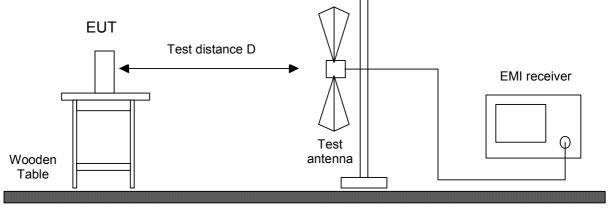
For final testing below 1 GHz an open field test-site is used and the plots recorded in the fully or semi anechoic room are indicated as prescans.

Fully or semi anechoic room

Test instruments used:

Used	Туре	Model	Serial No. or ID	Manufacturer
\boxtimes	Spectrum Analyzer	FSP 30	100063	Rohde & Schwarz
	Spectrum analyzer	R 3271	05050023	Advantest
	EMI test receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
\boxtimes	Preamplifier	CPA9231A	3393	Schaffner
	Preamplifier	R14601		Advantest
	Preamplifier 1-8 GHz	AFS3-00100800-32-LN	847743	Miteq
	Preamplifier 0.5-8 GHz	AMF-4D-005080-25-13P	860149	Miteq
	Preamplifier 8-18 GHz	ACO/180-3530	32641	CTT
	External Mixer	WM782A	845881/005	Tektronix
	Harmonic Mixer Accessories	FS-Z30	843389/007	Rohde & Schwarz
\boxtimes	Trilog broadband antenna	VULB 9163	9163-188	Schwarzbeck
	Horn antenna	3115	9508-4553	EMCO
	Horn antenna	3160-03	9112-1003	EMCO
	Horn antenna	3160-04	9112-1001	EMCO
	Horn antenna	3160-05	9112-1001	EMCO
	Horn antenna	3160-06	9112-1001	EMCO
	Horn antenna	3160-07	9112-1008	EMCO
	Horn antenna	3160-08	9112-1002	EMCO
	Horn antenna	3160-09	9403-1025	EMCO
	Horn antenna	3160-10	399185	EMCO
\boxtimes	Fully anechoic room	No. 2	1452	Albatross Projects
	Semi-anechoic room	No. 3	1453	Siemens

6.3 Radiated Emission at Open Field Test Site


Measurement Procedure:		
Rules and specifications:	CFR 47 Part 15, sections 15.205(b) and 15.225(d) IC RSS-210 Issue 7, sections 2.2(b)(c), 2.6 and A2.6	
Guide:	ANSI C63.4	

Radiated emission at open field test site is measured in the frequency range 30 MHz to 1 GHz using a biconical antenna up to 300 MHz and a logarithmic periodic antenna above. The measurement bandwidth of the test receiver is set to 120 kHz with guasi-peak detector selected.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are tested in the position producing the highest emission relative to the limit as verified by prescans in the fully anechoic room. EUT is rotated all around and receiving antenna is raised and lowered within 1 meter to 4 meters to find the maximum levels of emission. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For measuring emissions of intentional radiators and receivers a test distance D of 3 meters is selected. Testing of unintentional radiators is performed at a distance of 10 meters. If limits specified for 3 meters shall be used for measurements performed at 10 meters distance the limits are calculated according to CFR 47 Part 15 section 15.31(d) and (f)(1) using an inverse linear-distance extrapolation factor of 20 dB/decade.

Ground plane

Test instruments used:

Used	Туре		Model	Serial No. or ID	Manufacturer
\boxtimes	EMI receiver		ESVP	881120/024	Rohde & Schwarz
\boxtimes	Biconical antenna	EG 1	HK 116	842204/001	Rohde & Schwarz
\boxtimes	Log. per. antenna	EG 1	HL 223	841516/023	Rohde & Schwarz
\boxtimes	Open field test site		EG 1	1450	Senton

7 Photographs Taken During Testing

Test setup for radiated emission measurement 9 kHz - 30 MHz

Test setup for radiated emission measurement (fully anechoic room)

Test setup for radiated emission measurement (open field test site)

Test setup for radiated emission measurement (open field test site) - continued -

8 Test Results

FCC CFR 47 Parts 2 and 15					
Section(s)	Test	Page	Result		
2.1046(a)	Conducted output power		Not applicable		
2.202(a)	Occupied bandwidth		5		
15.215(c)	Bandwidth of the emission		5		
2.201, 2.202	Class of emission		5		
15.35(c)	Pulse train measurement for pulsed operation		Not applicable		
15.205(a) 15.205(d)(7)	Restricted bands of operation	6	Test passed		
15.207	Conducted AC powerline emission 150 kHz to 30 MHz		Test passed No emissions found		
15.225(a)-(d)	Spectrum Mask		5		
15.205(b) 15.215(b) 15.225(a)(d)	Radiated emission 9 kHz to 30 MHz	21	Test passed		
15.205(b) 15.225(d)	Radiated emission 30 MHz to 1 GHz	24	Test passed		
15.225(e)	Carrier frequency stability		5		

⁵ See Senton Test Report 50602-20601-2 for details.

 $^{^{6}}$ See "Spectrum Mask" for the 13.36 to 13.41 MHz band. For all other restricted bands see "Radiated Emission".

IC RSS-Gen Is	IC RSS-Gen Issue 2						
Section(s)	Test	Page	Result				
4.8	Transmitter output power (conducted)		Not applicable				
4.6.1	Occupied Bandwidth		7				
3.2(h), 8	Designation of emissions		7				
4.5	Pulsed operation		Not applicable				
7.2.2	Transmitter AC power lines conducted emissions 150 kHz to 30 MHz		Test passed No emissions found				
5.5	Exposure of Humans to RF Fields	26	Exempted from SAR and RF evaluation				

IC RSS-210 Issue 7						
Section(s)	Test	Page	Result			
2.2(a)	Restricted bands and unwanted emission frequencies	8	Test passed			
A2.6	Spectrum Mask		7			
2.2(b)(c), 2.6 A2.6	Unwanted emissions 9 kHz to 30 MHz	21	Test passed			
2.2(b)(c), 2.6 A2.6	Unwanted emissions 30 MHz to 1 GHz	24	Test passed			
A2.6	Carrier frequency stability		7			

 $^{^{7}}$ See Senton Test Report 50602-20601-2 for details. 8 See "Spectrum Mask" and "Unwanted emissions".

8.1 Radiated Emission Measurement 9 kHz to 30 MHz

Rules and specifications:	CFR 47 Part 15, sections 15.205 and 15.225(a)-(d) IC RSS-210 Issue 7, sections 2.2(b)(c), 2.6 and A2.6							
Guide:	ANSI C63.4							
Limit:	Frequency of Emission (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance d (meters)				
	0.009 - 0.490	2400/F(kHz)	67.6 - 20 · log(F(kHz))	300				
	0.490 - 1.705 24000/F(kHz) 87.6 - 20 · log(F(kHz)) 30							
	1.705 - 13.110	30						
	13.110 - 13.410	106	40.5	30				
	13.410 - 13.553	334	50.5	30				
	13.553 - 13.567	15848	84.0	30				
-	13.567 - 13.710	334	50.5	30				
	13.710 - 14.010	106	40.5	30				
	14.010 - 30.000 30 29.5							
	Additionally, the level of any unwanted emissions shall not exceed the level of the fundamental emission.							
Measurement procedure:	Radiated Emission	Measurement 9	kHz to 30 MHz (6.1)					

Test Result:

Comment:

Mode: Transmitting continuously without tag

Date of test:

November 16, 2007

Test site:

Open field test site

Test Result: Test passed

Extrapolation factor: -40 dB/decade										
Frequency	Detector	Distance Reading			Correction	Extrapolation	Pulse Train	Final	Limit	Margin
		d1	d	Value	Factor	Factor	Correction	Value		
(MHz)		(m)	(m)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
13.56000	Quasi-Peak	10	30	47.1	20.0	-19.1		48.0	84.0	36.0

Sample calculation of final values:

Extrapolation Factor (dB) = $(Log(d) - Log(d_1)) \cdot Extrapolation Factor (dB/decade)$

Final Value ($dB\mu V/m$) = Reading Value d_1 ($dB\mu V$) + Correction Factor (dB/m)

+ Extrapolation Factor (dB) + Pulse Train Correction (dB)

Note: Extrapolation factor (dB) and final value (dBµV/m) are relating to distance d.

Comment:

Mode: Transmitting continuously, reading tag

Date of test:

November 16, 2007

Test site:

Open field test site

Test Result: Test passed	Test Result:
--------------------------	--------------

Extrapolation factor: -40 dB/decade										
Frequency	Detector	Dista	ance	Reading	Correction	Extrapolation	Pulse Train	Final	Limit	Margin
		d1	d	Value	Factor	Factor	Correction	Value		
(MHz)		(m)	(m)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
13.56000	Quasi-Peak	10	30	48.2	20.0	-19.1		49.1	84.0	34.9

Sample calculation of final values:

Extrapolation Factor (dB) = $(Log(d) - Log(d_1)) \cdot Extrapolation Factor (dB/decade)$

Final Value ($dB\mu V/m$) = Reading Value d_1 ($dB\mu V$) + Correction Factor (dB/m)

+ Extrapolation Factor (dB) + Pulse Train Correction (dB)

Note: Extrapolation factor (dB) and final value (dBµV/m) are relating to distance d.

8.2 Radiated Emission Measurement 30 MHz to 1 GHz

Rules and specifications:	CFR 47 Part 15, sections 15.205(b) and 15.225(d) IC RSS-210 Issue 7, sections 2.2(b)(c), 2.6 and A2.6					
Guide:	ANSI C63.4					
Limit:	Frequency of Emission Field Strength (MHz) Field Strength $(\mu V/m)$ Field Strength $(dB\mu V/m)$					
	30 - 88 100 40.0					
	88 - 216 150 43.5					
	216 - 960	46.0				
	Above 960	54.0				
	Additionally, the level of any unwanted emissions shall not exceed the level of the fundamental emission.					
Measurement procedures:	Radiated Emission in Fully or Semi Anechoic Room (6.2) Radiated Emission at Open Field Test Site (6.3)					

Comment:	
Date of test:	November 14, 2007
Test site:	Frequencies ≤ 1 GHz: Open field test site Frequencies > 1 GHz: Fully anechoic room, cabin no. 2
Test distance:	3 meters

Test Result: Test passed	
--------------------------	--

Frequency	Antenna	Detector	Receiver	Correction	Pulse Train	Final	Limit	Margin
	Polarization		Reading	Factor	Correction	Value		
(MHz)			(dBµV)	(dB/m)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)
81.400	vertical	Quasi-Peak	25.9	9.5		35.4	40.0	4.6
108.500	horizontal	Quasi-Peak	17.8	11.3		29.1	43.5	14.4
135.600	vertical	Quasi-Peak	26.1	13.5		39.6	43.5	3.9
162.700	vertical	Quasi-Peak	23.8	14.6		38.4	43.5	5.1
189.500	vertical	Quasi-Peak	23.3	15.9		39.2	43.5	4.3
203.400	horizontal	Quasi-Peak	16.2	16.7		32.9	43.5	10.6
217.000	horizontal	Quasi-Peak	19.2	16.9		36.1	46.0	9.9
230.500	horizontal	Quasi-Peak	19.9	17.3		37.2	46.0	8.8
244.100	horizontal	Quasi-Peak	22.4	17.5		39.9	46.0	6.1
271.200	horizontal	Quasi-Peak	24.2	19.8		44.0	46.0	2.0
284.800	vertical	Quasi-Peak	17.2	21.0		38.2	46.0	7.8
298.300	vertical	Quasi-Peak	14.3	23.0		37.3	46.0	8.7
339.000	horizontal	Quasi-Peak	15.2	17.1		32.3	46.0	13.7
366.100	horizontal	Quasi-Peak	22.1	17.9		40.0	46.0	6.0

Sample calculation of final values:

Final Value (dB μ V/m) = Reading Value (dB μ V) + Correction Factor (dB/m) + Pulse Train Correction (dB)

8.3 Exposure of Humans to RF Fields

Rules and specifications:	IC RSS-Gen Issue 2, section 5.5
Guide:	IC RSS-102 Issue 2, section 2.5

	4)	Ž		_
Exposure of Humans to RF Fields	Applicable	Declared by applicant	Measured	Exemption
The antenna is				
detachable				
The conducted output power (CP in watts) is measured at the antenna connector:				
$CP = \dots$ W				
The effective isotropic radiated power (EIRP in watts) is calculated using				
the numerical antenna gain: $G = \dots$ \mathbf{W}				
\Box the field strength ⁹ in V/m: $FS = \dots V/m$				
$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = \dots $				
with:				
Distance between the antennas in m: $D = \dots $ m				
⊠ not detachable				
A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by ⁹ :				
$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = 12.22 \cdot 10^{-6} \text{ W}$				
with:				
Field strength in V/m: $FS = 6.28 \cdot 10^{-3} \text{ V/m}$				
Distance between the two antennas in m: $D = 3 \text{ m}$				
Selection of output power				
The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.):				
$TP = 12.22 \cdot 10^{-6} \text{ W}$				

Test Report No. 50602-071031 (Edition 2)

⁹ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

Exposure of Humans to RF Fields (continued)			Measured	Exemption
Separation distance between the user and the transmitting device is				
☐ less than or equal to 20 cm ☐ greater than 20 cm				
Transmitting device is				
☐ in the vicinity of the human head ☐ body-worn		\boxtimes		
SAR evaluation				
SAR evaluation is required if the separation distance between the user and the device is less than or equal to 20 cm.				
The device operates from 3 kHz up to 1 GHz inclusively and its source-based time-averaged output power is less than, or equal to 200 mW for General Public Use and 1000 mW for Controlled Use.				
☐ The device operates above 1 GHz up to 2.2 GHz inclusively and its source-based time-averaged output power is less than, or equal to 100 mW for General Public Use and 500 mW for Controlled Use.				
The device operates above 2.2 GHz up to 3 GHz inclusively and its source-based time-averaged output power is less than, or equal to 20 mW for General Public Use and 100 mW for Controlled Use.				
The device operates above 3 GHz up to 6 GHz inclusively and its source-based time-averaged output power) is less than, or equal to 10 mW for General Public Use and 50 mW for Controlled Use.				
☐ SAR evaluation is documented in test report no				
RF exposure evaluation				
RF exposure evaluation is required if the separation distance between the user and the device is greater than 20 cm.				
∑ The device operates below 1.5 GHz and its e.i.r.p. is equal to or less than 2.5 W.				
☐ The device operates at or above 1.5 GHz and the e.i.r.p. of the device is equal to or less than 5 W.				
☐ RF exposure evaluation is documented in test report no				ĺ

9 Referenced Regulations

All tests were performed with reference to the following regulations and standards:

CFR 47 Part 2	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)	October 1, 2006
CFR 47 Part 15	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)	May 4, 2007
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	December 11, 2003 (published on January 30, 2004)
RSS-Gen	Radio Standards Specification RSS-Gen Issue 2 containing General Requirements and Information for the Certification of Radiocommunication Equimpment, published by Industry Canada	June 2007
RSS-210	Radio Standards Specification RSS-210 Issue 7 for Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, published by Industry Canada	June 2007
RSS-310	Radio Standards Specification RSS-310 Issue 1 for Low Power Licence-Ecempt Radiocommunication Devices (All Frequency Bands): Category II Equipment, published by Industry Canada	September 2005
RSS-102	Radio Standards Specification RSS-102 Issue 2: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)	November 2005
ICES-003	Interference-Causing Equipment Standard ICES-003 Issue 4 for Digital Apparatus, published by Industry Canada	February 7, 2004
CISPR 22	Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment – Radio Disturbance Characteristics – Limits and Methods of Measurement"	1997
CAN/CSA- CEI/IEC CISPR 22	Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment	2002
TRC-43	Notes Regarding Designation of Emission (Including Necessary Bandwidth and Classification), Class of Station and Nature of Service, published by Industry Canada	October 9, 1982

10 Revision History

Revision History			
Edition	Date	Issued by	Modifications
1	November 16, 2007	M. Steindl (cj)	First Edition
2	December 14, 2007	C. Jäger	Edition 2: - Test Procedure for Radiated Emission 9 kHz - 30 MHz: Loop antenna marked - Table for test results: AC powerline conducted emission: note modified to "test passed, no emissions found"

11 Charts taken during testing

Radiated Emission Test 9 kHz - 30 MHz acc. to FCC Part 15 Subpart C (FAR)

Model: ID CPR.M02/ANT19		
Serial no.:		
Applicant:		
FEIG ELECTRONIC GmbH	I	
Test site:		
Fully anechoic room, cabin no. 2		
Tested on:		
Test distance 3 metres		
Date of test:	Operator:	
11/14/2007	M. Steindl	
Test performed:	File name:	
by hand	default.emi	

Comment:

- DC 5 V power supply
- transmitting continously without tag

Detector:

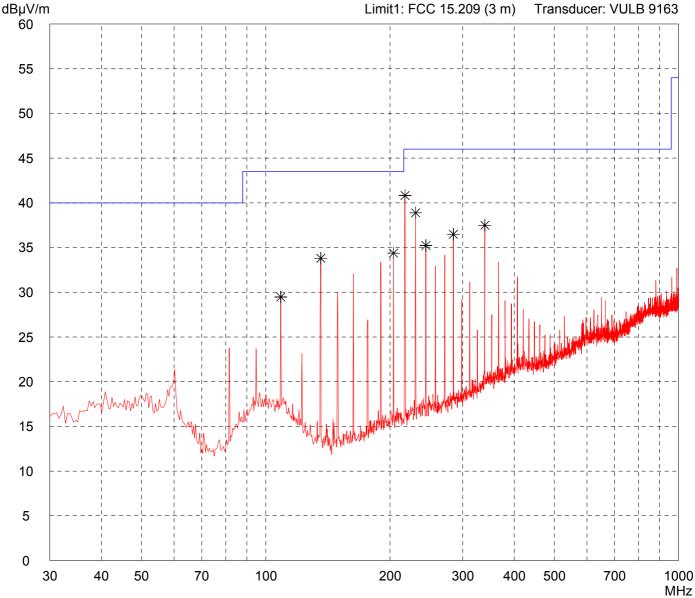
Peak

List of values:
10 dB Margin
50 Subranges

Result: Project file: 50602-71031

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: ID CPR.M02/ANT19 Serial no.: Applicant: FEIG ELECTRONIC GmbH Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Horizontal Polarization Date of test: Operator: 11/09/2007 M. Steindl Test performed: File name: automatically default.emi


Comment:

- DC 5 V power supply
- transmitting continously without tag

Detector:

Peak

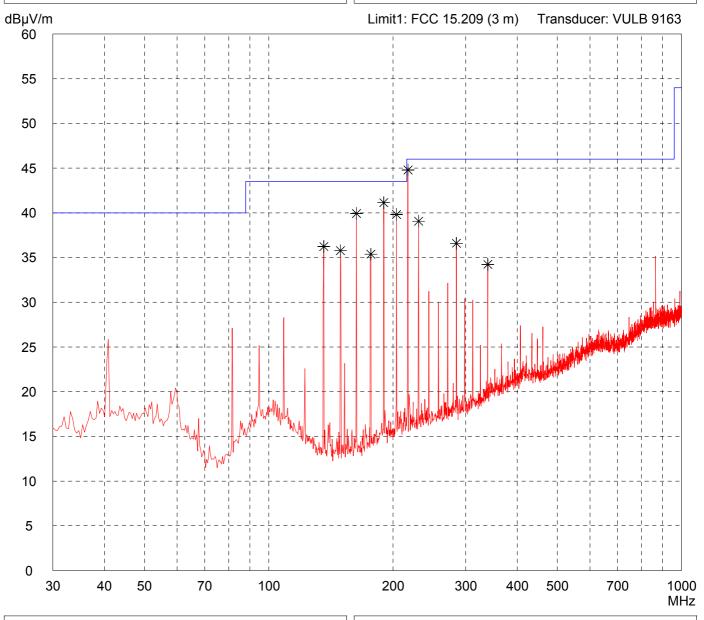
List of values:
Selected by hand

Result:
Prescan

Project file:
50602-71031

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: ID CPR.M02/ANT19	
Serial no.:	
Applicant: FEIG ELECTRONIC Gmb	Н
Test site: Fully anechoic room, cabin no. 2	
Tested on: Test distance 3 metres Vertical Polarization	
Date of test: 11/09/2007	Operator: M. Steindl
Test performed: automatically	File name: default.emi


Comment:

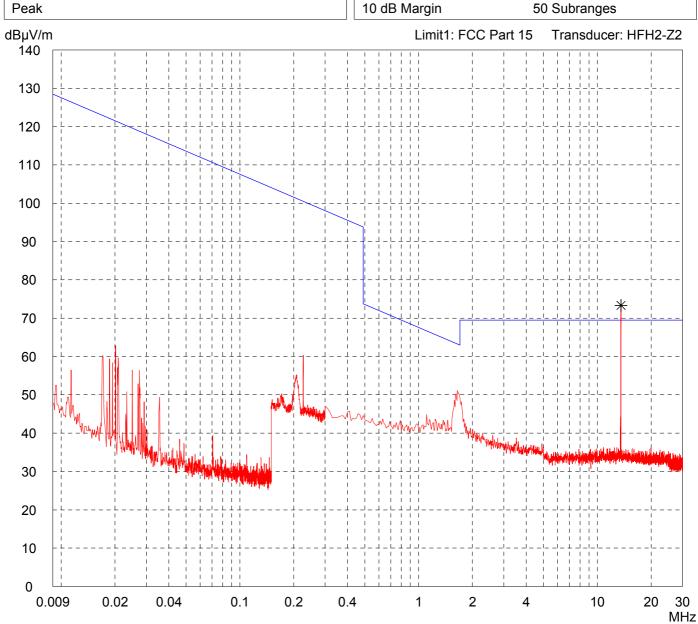
- DC 5 V power supply
- transmitting continously without tag

Detector:

Peak

List of values:
Selected by hand

Result: Prescan Project file: 50602-71031


Radiated Emission Test 9 kHz - 30 MHz acc. to FCC Part 15 Subpart C (FAR)

Model: ID CPR.M02/ANT19		
Serial no.:		
Applicant: FEIG ELECTRONIC GmbH		
Test site:		
Fully anechoic room, cabin no. 2		
Tested on:		
Test distance 3 metres		
Date of test:	Operator:	
11/14/2007	M. Steindl	
Test performed:	File name:	
by hand	default.emi	
Detector:		

Comment:

- DC 5 V power supply
- transmitting continously with tag

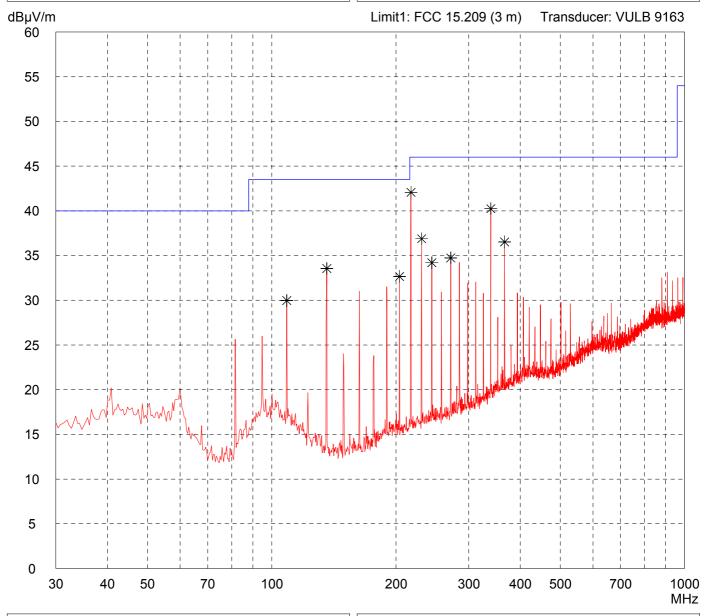
List of values:
10 dB Margin 50 Subranges

Result: Project file: 50602-71031

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: ID CPR.M02/ANT19 Serial no.: Applicant: FEIG ELECTRONIC GmbH Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Horizontal Polarization Date of test: Operator: 11/09/2007 M. Steindl Test performed: File name: automatically default.emi

Comment:


- DC 5 V power supply
- transmitting continously with tag

Detector:

Peak

List of values:

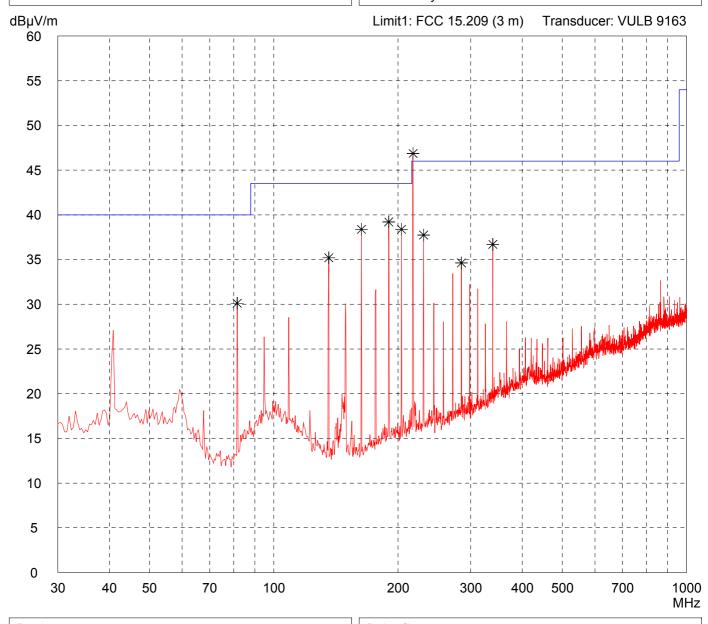
Selected by hand

Result:
Prescan

Project file: 50602-71031

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: ID CPR.M02/ANT19 Serial no.: Applicant: FEIG ELECTRONIC GmbH Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Vertical Polarization Date of test: Operator: 11/09/2007 M. Steindl Test performed: File name: automatically default.emi


Comment:

- DC 5 V power supply
- transmitting continously with tag

Detector:

Peak

List of values:
Selected by hand

Result: Prescan Project file: 50602-71031