

HYUNDAI CALIBRATION & CERTIFICATION TECH. CO., LTD.

Product Compliance Division, EMC Team SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNKI-DO, 467-701, KOREA

TEL: +82 31 639 8518 FAX: +82 31 639 8525

CERTIFICATION

Manufacture;

HYUNDAI IMAGEQUEST CO., LTD.

SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNKI-DO, 467-701, KOREA

HYUNDAI IMAGEQUEST FRN: 0005-8664-39

Date of Issue: September 05, 2005

Test Report No.: HCT-F05-0806

Test Site: HYUNDAI CALIBRATION & CERTIFICATION

TECHNOLOGIES CO., LTD.

HCT FRN: 0005-8664-21

FCC ID:

MODEL/TYPE:

PJIL17C00000

Q70U/L17C00000

Rule Part(s): Part 15 & 2

Equipment Class: FCC Class B Peripheral Device(JBP)

Standard(s): FCC Class B: (CISPR 22)
EUT Type: 17" LCD Monitor

Max. Resolution(s): Analog:1280 X 1024(@75Hz), Digital: 1280 X 1024(@60Hz)

Model(s): Q70U

Port/Connector(s) 15-pinD-sub(Analog RGB),DVI-D (Digital TMDS) connector, AUDIO IN/OUT,

USB 2 downstream ports

LCD Panel Samsung Electronics (LTM170EU-L21)

This equipment has been shown to be in compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2003

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Report prepared by : Ki-Soo Kim

Manager of EMC Tech. Part

HYUNDAI CALIBRATION & CERTIFICATION TECH. CO., LTD.

444

PAGE

TABLE OF CONTENTS

REPORT COVER	1
TABLE OF CONTENTS	2
1.1 SCOPE	3
2.1 INTRODUCTION (SITE DESCRIPTION)	4
3.1 PRODUCTION INFORMATION	5-6
4.1 DESCRIPTION OF TESTS (CONDUCTED)	7
4.3 DESCRIPTION OF TESTS (RADIATED)	8
5.1 LIST OF SUPPORT EQUIPMENT	9-11
6.1 TEST DATA (CONDUCTED)	12-20
7.1 TEST DATA (RADIATED)	21-22
8.1 SAMPLE CALCULATIONS	23
9.1 TEST EQUIPMENT	24
10.1 TEST SOFTWARE USED	25
11.1 CONCLUSION	26

ATTACHMENT A: EXTERNAL PHOTOGRAPHS

ATTACHMENT B: TEST SETUP PHOTOGRAPHS

ATTACHMENT C: INTERNAL PHOTOGRAPHS

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

Applicant Name: HYUNDAI IMAGEQUEST

Address: SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI,

KYOUNKI-DO, 467-701, KOREA

• FCC ID: PJIL17C00000

• Equipment Class: FCC Class B Peripheral Device (JBP)

• EUT Type: 17" LCD MONITOR

• Model(s): Q70U

• LCD Panel: Samsung Electronics (LTM170EU-L21)

• Max. Resolution: Analog:1280 X 1024(@75Hz), Digital: 1280 X 1024(@60Hz)

• Frequency Range: V-Sync: 56Hz – 75Hz, H-Sync: 31KHz – 80KHz

• Cable(s): Shielded D-Sub (with ferrite on both ends), Shielded DVI-D (with ferrite on both ends), Shielded AUDIO (with ferrite on both ends), Shielded USB

• Power Cord: Unshielded

• Rule Part(s): FCC Part 15 Subpart B

• Test Procedure(s): ANSI C63.4 (2003)

• Dates of Tests: July 24, 2005 ~ July 26, 2005

• Place of Tests: 254-1,MAEKOK-RI,HOBUP-MYUN,ICHON-SI,KYOUNGKI-DO,467-701,KOREA

REPORT NO.: HCT-F05-0806 HCT 3/26

2.1 INTRODUCTION

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSIC63.4-2001) was used in determining radiated and conducted emissions emanating from HYUNDAI IMAGEQUEST CO.,LTD. 17-inch LCD Monitor FCC ID: PJIL17C00000

The open area test site and conducted measurement facility used to collect the radiated data are located at the 254-1, MAEKOK-RI,HOBUP-MYUN,ICHON-SI,KYOUNGKI-DO, 467-701,KOREA. The site is constructed in conformance with the requirements of ANSI C63.4and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 23,2003 (Confirmation Number: EA90661)

REPORT NO.: HCT-F05-0806 HCT 4/26

3.1 PRODUCT INFORMATION

3.2 Equipment Description

Equipment Under Test (EUT) is the $HYUNDAI\ IMAGEQUEST\ CO.,Ltd.\ (Model:Q70U)\ 17-inch\ LCD\ Monitor$

FCC ID: : PJIL17C00000

Maximum Resolution(s): Analog:1280×1024(@75Hz),

Digital: $1280 \times 1024 (@60 \text{Hz})$

Frequency Range(s): H-Sync: 31KHz – 80KHz

V-Sync: 56Hz – 75 Hz

Pixel Pitch: 0.264×0.264 mm

Power Supply: AC 100-240V, 1.0A

Power Cord: Unshielded AC power cord

Port(s)/Input Connector(s): 15-pin D-sub RGB connector, DVI-D TMDS connector, AUDIO IN/OUT,

USB port

Cable(s): Shielded D-Sub (with ferrite on both ends), Shielded DVI-D (with ferrite on both ends),

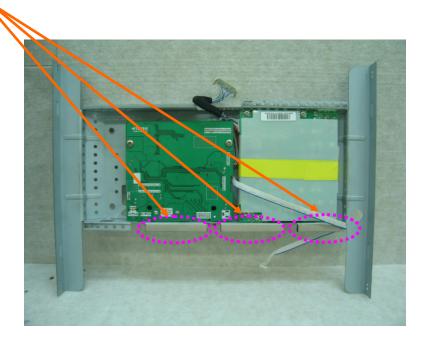
Shielded AUDIO (with ferrite on both ends), Shielded USB

Dimensions (W \times H \times D): 373 \times 420 \times 200mm(W \times H \times D)

Weight (Net): 4.4Kg unpacked

EMI Suppression Devices:

Modifications were made to the device. Please refer to the next page.


REPORT NO.: HCT-F05-0806 HCT 5/26

1. Attach a gasket on the main frame to contact the lcd panel.

4.1 Description of Tests(Conducted)

4.2 Powerline Conducted RFI (150kHz- 30MHz)

The power line conducted RFI measurements were performed according to CISPR 22.

The EUT was placed on a non-conducting 1.0 by 1.5 meter table which is 0.8 meters in height and 0.40 meters away from the vertical wall of the shielded enclosure. Power to the EUT is provided through a Rohde & Schwarz 50 Ω / 50 uH Line Impedance Stabilization Network (LISN) and the support equipment through a separate Solar 50 Ω / 50 uH Line- Conducted Test Facility LISN. Sufficient time for the EUT, support equipment, and test equipment were allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME. The spectrum was scanned from 150kHz to 30 MHz. Each maximum EME was remeasured using an EMI receiver. The detector function of the receiver was set to CISPR quasi- peak and average mode with the bandwidth set to 9 kHz. Each emission was maximized consistent with the typical applications by varying the configuration of the test sample. Interface cables were connected to the available interface ports of the test unit. The effect of varying the position of cables was investigated to find the configuration that produces maximum Diagram emission. Excess cable lengths were bundled at the center with 30- 40cm. in length. The worst-case configuration is noted in the test report and the photographs are attached. Each EME reported was calibrated using the Rohde & Schwarz SMX signal generator and are listed on Table 1. RFI Conducted FCC Class B

RFI CONDUCTED	CISPR 22 Limits	CLASS B B(uV/m)					
Freq. Range	CISPR 22 Quasi-Peak	CISPR 22 Average					
150kHz - 0.5MHz	66-56**	56-46**					
0.5MHz - 5MHz	56	46					
5MHz - 30MHz	60	50					
**Limi	**Limits decreases linearly with the logarithm of frequency						

Table 1. RFI Conducted Limits

REPORT NO.: HCT-F05-0806 HCT 7/26

4.3 Description of Tests(Radiated)

Radiated Emissions

Preliminary measurements were made indoors at 1 meter using broadband antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The spectrum was scanned from 30 to 300 MHz using biconical antenna, 300 to 1000 MHz using log-periodic antenna, and above 1 GHz using linearly polarized horn antennas. Final measurements were made outdoors at 10meter test range using Dipole antennas and EMI receiver. For frequencies above 1 GHz, horn antennas were used. Sufficient time for the EUT, support equipment, and test equipment were allowed in order for them to warm up to their normal operating condition. The EMI receiver detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 120 kHz. The EUT, support equipment, and interconnecting cables were arranged to the configuration that produces the maximum EME emission found during preliminary scan. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Horizontal and vertical antenna polarizations were checked. Each emission was maximized by: varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and/ or support equipment, and powering the monitor the computer aux AC outlet, if applicable; and changing the polarity of the antenna, whichever determined the worst-case emission.

	ITE Radia	ated Limits	
Frequency (MHz)	FCC Limit @ 3m. Quasi- Peak dB[µV/m]	FCC Limit @ 10m.* Quasi – Peak dB [µV/m]	CISPR Limit @ 10m. Quasi-Peak dB [µV/m]
30-88	40.0	29.5	30.0
88-216	43.5	33.0	30.0
216-230	46.0	35.6	30.0
230-960	46.0	35.6	37.0
960-1000	54.0	43.5	37.0
> 1000	54.0	43.5	No Specified Limit
	* Limit extrapola	ated 20 dB/decade	1

Table 2. Radiated Class B limits @ 10-meters

REPORT NO.: HCT-F05-0806 HCT 8/26

5.1 Support Equipment Used

DEVICE TYPE	DEVICE TYPE MANUFACTURER		FCC ID / DoC	CONNECTED TO	
LCD MONITOR (EUT)	HYUNDAI IMAGEQUEST CO., LTD.	Q70U	PJIL17C00000	P.C	
P.C	H/P	HP Pavilion 8921	DoC	EUT	
KEY BOARD	H/P	5181	DoC	P.C	
MOUSE	MOUSE Microsoft		DoC	P.C	
SERIAL MOUSE	Logitech	M-M28	DoC	P.C	
PRINTER	H/P	C4569A	DoC	P.C	
Headset	Headset HYUNDAI		DoC	EUT	
USB Memory	USB Memory UNIWIDE		DoC	EUT	

5.2 Cable Description

		Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (M)
	Power	N	N/A	1.8(P)
	D Sub	N/A	Y	1.8(D)
LCD Monitor	DVI	N/A	Y	1.8(D)
(EUT)	Audio in	N/A	Y	1.8(D)
	Audio out	N/A	Y	2.7(D)
	USB interface cable	N/A	Y	1.8(D)
PC		N	N/A	1.8(P)
Key Board	d	N/A	Y	1.8(D)
Mouse		N/A	Y	1.8(D)
Serial Mou	Serial Mouse Printer		Y	1.8(D)
Printer			Y	1.8(P,D)
Headset		N/A	Y	2.7(D)

The marked "(D)" means the Data Cable and "(P)" means the Power Cable.

5.3 Noise Suppression Parts on Cable. (I/O CABLE)

		Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
	D Sub	Y	BOTH END	Y	BOTH END
	DVI	Y	BOTH END	Y	BOTH END
LCD Monitor (EUT)	Audio in	Y	BOTH END	Y	BOTH END
	Audio out	Y	EUT END	Y	EUT END
	USB interface cable	Y	BOTH END	Y	BOTH END
PC		N	N/A	N	N/A
Key Boar	·d	N	N/A Y		PC END
Mouse		Y	PC END	Y	PC END
Serial Mouse		N	N/A	Y	PC END
Printer		nter N N/A		Y	BOTH END
Headse	t	Y	EUT END	Y	EUT END

REPORT NO.: HCT-F05-0806 HCT 11/26

6.1 LINE-CONDUCTED TEST DATA

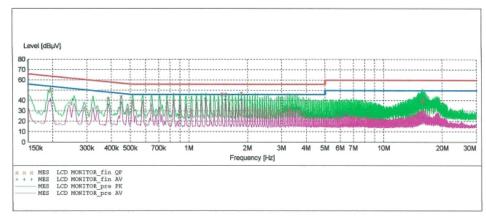
HCT

EMC TEST LAB

EUT: Manufacturer:

Q70U HYUNDAI IMAGEQUEST

Operating Condition: 1280 X 1024 75Hz Test Site: SHIELD ROOM Test Site:


Operator: Test Specification: CISPR 22 CLASS B

GS, KIM

Comment:

H

SCAN TABLE: "CISPR 22 Voltage"
Short Description: CISPR 22 Voltage
Start Stop Step Detector Meas Start Stop Step
Frequency Frequency Width
150.1 kHz 500.0 kHz 2.5 kHz Detector Meas. IF Transducer Time Bandw. MaxPeak 10.0 ms 9 kHz None Average 500.0 kHz 5.0 MHz 5.0 kHz MaxPeak 10.0 ms 9 kHz None Average MaxPeak 10.0 ms 9 kHz 5.0 MHz 30.0 MHz 5.0 kHz None Average

MEASUREMENT RESULT: "LCD MONITOR fin QP"

7/24/2005	8:33	AM					
Frequen	су	Level	Transd	Limit	Margin	Line	PE
M	Hz	dBµV	dB	dBµV	dB		
0.1951	00	50.50	10.1	64	13.3		
0.3851	00	41.50	10.1	58	16.7		
0.4501	00	43.70	10.1	57	13.2		
1.4800	00	46.30	10.2	56	9.7		
1.5450	00	46.10	10.2	56	9.9		
1.8650	00	47.10	10.3	56	8.9		
15.8650	00	40.20	10.5	60	19.8		
15.9300	00	40.40	10.5	60	19.6		
15.9950	00	41.30	10.5	60	18.7		
	0.1951 0.3851 0.4501 1.4800 1.5450 1.8650 15.8650	7/24/2005 8:33 Frequency MHz 0.195100 0.385100 0.450100 1.480000 1.545000 1.865000 15.865000 15.9950000	Frequency MHz dBμV 0.195100 50.50 0.385100 41.50 0.450100 43.70 1.480000 46.30 1.545000 46.10 1.865000 47.10 15.865000 40.20 15.930000 40.40	Frequency MHz dB Transd dB	Frequency MHz dBμV dB dBμV 0.195100 50.50 10.1 64 0.385100 41.50 10.1 58 0.450100 43.70 10.1 57 1.480000 46.30 10.2 56 1.545000 46.10 10.2 56 1.865000 47.10 10.3 56 15.865000 40.20 10.5 60 15.930000 40.40 10.5 60	Frequency MHz dBμV dB Limit Margin dB dBμV dB dBμγ dBμγ	Frequency MHz dBµV dB Limit Margin Line dBµV dB dBµV dB dBµV dB dBµV dB dBµV dB dBµV dB dB dBµV dB dB dBµV dB dB

Page 1/2 7/24/2005 8:33AM HCT EMC LAB

REPORT NO.: HCT-F05-0806 HCT 12/26

MEASUREMENT RESULT: "LCD MONITOR_fin AV"

7/24/2005 8:33AM								
Frequency	Level	Transd	Limit	Margin	Line	PE		
MHz	dBµV	dB	dBµV	dB				
0.195100	40.00	10.1	54	13.9				
0.387600	36.10	10.1	48	12.0				
0.450100	38.00	10.1	47	8.9				
1.220000	41.90	10.2	46	4.1				
1.545000	40.90	10.2	46	5.1				
1.865000	40.90	10.3	46	5.1				
5.335000	24.00	10.3	50	26.0				
6.425000	25.70	10.3	50	24.3				
15.995000	23.70	10.5	50	26.3				

Page 2/2 7/24/2005 8:33AM HCT EMC LAB

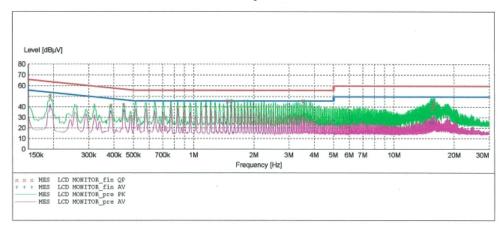
HCT

EMC TEST LAB

EUT:

Q70U

Manufacturer: HYUNDAI IMAGEQUEST
Operating Condition: 1280 X 1024 75Hz
Test Site: SHIELD ROOM


Operator:

Test Specification: CISPR 22 CLASS B Comment: N

GS, KIM

SCAN TABLE: "CISPR 22 Voltage"

Short Desc:	ription:	C	ISPR 22 Vol	tage		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.1 kHz	500.0 kHz	2.5 kHz	MaxPeak	10.0 ms	9 kHz	None
			Average			
500.0 kHz	5.0 MHz	5.0 kHz	MaxPeak	10.0 ms	9 kHz	None
			Average			
5.0 MHz	30.0 MHz	5.0 kHz	MaxPeak	10.0 ms	9 kHz	None
			Average			

MEASUREMENT RESULT: "LCD MONITOR fin QP"

7/24/2005 8:3	7AM					
Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dΒμV	dB	dBµV	dB		
0.192600	50.70	10.1	64	13.2		
0.387600	41.00	10.1	58	17.1		
0.447600	42.30	10.1	57	14.6		
1.475000	45.90	10.2	56	10.1		
1.540000	46.00	10.2	56	10.0		
3.525000	46.10	10.2	56	9.9		
15.505000	39.00	10.5	60	21.0		
15.760000	41.70	10.5	60	18.3		
15.950000	44.50	10.5	60	15.5		

Page 1/2 7/24/2005 8:37AM HCT EMC LAB

MEASUREMENT RESULT: "LCD MONITOR_fin AV"

7/2	4/2005	8:	37AM					
	Frequen M	cy Hz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
	0.1926	00	40.50	10.1	54	13.4		
	0.3876	00	35.70	10.1	48	12.4		
	0.4501	00	36.30	10.1	47	10.6		
	1.1550	00	40.90	10.1	46	5.1		
	1.4750	00	40.20	10.2	46	5.8		
	1.5400	00	40.80	10.2	46	5.2		
	5.0000	00	27.00	10.3	46	19.0		
	15.3750	00	25.40	10.5	50	24.6		
	15.7600	00	25.20	10.5	50	24.8		

Page 2/2 7/24/2005 8:37AM HCT EMC LAB

(Analog Mode)

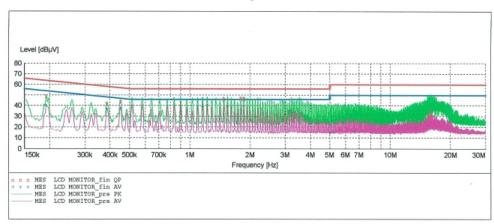
REPORT NO.: HCT-F05-0806 HCT 15/26

HCT

EMC TEST LAB

EUT:

Q70U


Manufacturer: HYUNDAI IMAGEQUEST
Operating Condition: 1280 X 1024 60Hz
Test Site: SHIELD ROOM

Operator: Test Specification: CISPR 22 CLASS B Comment:

GS, KIM

SCAN TABLE: "CISPR 22 Voltage"

Short Desc:	ription:	C	SISPR 22 Vol	.tage		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.1 kHz	500.0 kHz	2.5 kHz	MaxPeak	10.0 ms	9 kHz	None
			Average			
500.0 kHz	5.0 MHz	5.0 kHz	MaxPeak	10.0 ms	9 kHz	None
			Average			
5.0 MHz	30.0 MHz	5.0 kHz	MaxPeak	10.0 ms	9 kHz	None
			Average			

MEASUREMENT RESULT: "LCD MONITOR fin QP"

7/24/2005 9:17AM							
Freq	quency	Level	Transd	Limit	Margin	Line	PE
	MHz	dΒμV	dB	dΒμV	dB		
0.1	92600	49.30	10.1	64	14.7		
0.3	885100	41.80	10.1	58	16.3		
0.4	52600	43.50	10.1	57	13.3		
1.4	180000	46.20	10.2	56	9.8		
1.8	00000	46.80	10.3	56	9.2		
1.8	65000	46.50	10.3	56	9.5		
15.6	550000	32.70	10.5	60	27.3		
15.7	715000	30.90	10.5	60	29.1		
16.0	030000	36.10	10.5	60	23.9		

Page 1/2 7/24/2005 9:17AM HCT EMC LAB

MEASUREMENT RESULT: "LCD MONITOR_fin AV"

7/24/2005 9:	17AM					
Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dΒμV	dB	dBμV	dB		
0.192600	39.80	10.1	54	14.2		
0.387600	36.90	10.1	48	11.2		
0.452600	37.50	10.1	47	9.3		
1.160000	39.00	10.1	46	7.0		
1.545000	39.60	10.2	46	6.4		
1.865000	39.90	10.3	46	6.1		
5.010000	14.90	10.3	50	35.1		
5.265000	15.20	10.3	50	34.8		
6.675000	15.40	10.3	50	34.6		

Page 2/2 7/24/2005 9:17AM HCT EMC LAB

HCT

EMC TEST LAB

EUT:

Q70U Manufacturer: HYUNDAI IMAGEQUEST
Operating Condition: 1280 X 1024 60Hz
Test Site: SHIELD ROOM Operator: GS, KIM
Test Specification: CISPR 22 CLASS B

Comment:

SCAN TABLE: "CISPR 22 Voltage"

Short Desci	ription:	(CISPR 22 Vol	tage		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.1 kHz	500.0 kHz	2.5 kHz	MaxPeak Average	10.0 ms	9 kHz	None
500.0 kHz	5.0 MHz	5.0 kHz	MaxPeak	10.0 ms	9 kHz	None
5.0 MHz	30.0 MHz	5.0 kHz	Average MaxPeak Average	10.0 ms	9 kHz	None

MEASUREMENT RESULT: "LCD MONITOR fin QP"

7/2	4/2005 9: Frequency	21AM Level	Transd	Limit	Margin	Line	PE
	MHZ	dBµV	dB	dBμV	dB	22110	
	0.192600	48.80	10.1	64	15.1		
	0.385100	41.00	10.1	58	17.2		
	0.447600	43.60	10.1	57	13.4		
	0.830000	46.90	10.1	56	9.1		
	1.150000	46.70	10.1	56	9.3		
	1,215000	45.40	10.2	56	10.6		
	15.945000	38.30	10.5	60	21.7		
	16.390000	38.50	10.5	60	21.5		
	16.710000	39.10	10.5	60	20.9		

Page 1/2 7/24/2005 9:21AM HCT EMC LAB

MEASUREMENT RESULT: "LCD MONITOR fin AV"

7	/24/2005 9:2	1AM					
	Frequency	Level	Transd	Limit	Margin	Line	PE
	MHz	dBuV	dB	dBuV	dB		
	0.192600	39.60	10.1	54	14.3		
	0.385100	36.40	10.1	48	11.8		
	0.447600	37.30	10.1	47	9.6		
	0.575000	40.70	10.1	46	5.3		
	1.150000	41.70	10.1	46	4.3		
	1.215000	40.20	10.2	46	5.8		
	5.550000	27.30	10.3	50	22.7		
	15.685000	25.80	10.5	50	24.2		
	16.390000	22.90	10.5	50	27.1		
	15.685000	25.80	10.5	50	24.2		

Page 2/2 7/24/2005 9:21AM HCT EMC LAB

(Digital Mode)

REPORT NO.: HCT-F05-0806 HCT 19/26

NOTES:

- 1. All modes of operation were investigated and the worst-case emissions are reported.
- 2. The CISPR RFI conducted limits are listed on Table 1 (Page 7).
- 3. Line H = Phase Line N = Neutral Line

REPORT NO.: HCT-F05-0806 HCT 20/26

^{**} Measurements using CISPR quasi-peak mode.

7.1 RADIATED TEST DATA

- Analog mode(D-Sub)

Frequency	Reading	Ant. Factor	Cable Loss	ANT POL	Total	Limit	Margin
MHz	dBuV	dB/m	dB	(H/V)	dBuV/m	dBuV/m	dB
38.2	7.3	11.5	1.3	٧	20.1	30.0	9.9
74.1	9.2	8.9	1.9	٧	20.0	30.0	10.0
118.8	8.0	11.3	2.4	٧	21.7	30.0	8.3
128.3	3.7	12.0	2.6	٧	18.3	30.0	11.7
142.7	4.0	12.8	2.6	٧	19.4	30.0	10.6
211.3	6.5	10.0	3.3	Н	19.8	30.0	10.2
264.1	6.7	11.8	3.7	٧	22.2	37.0	14.8
328.6	3.9	13.5	4.2	٧	21.6	37.0	15.4
384.1	6.3	14.7	4.5	Н	25.5	37.0	11.5
458.7	2.5	16.9	4.9	Н	24.3	37.0	12.7
532.4	5.9	17.8	5.3	٧	29.0	37.0	8.0
622.2	4.6	20.1	5.7	Н	30.4	37.0	6.6

Radiated Measurements at 10-meters.

1280 X 1024 (@75Hz)

- Digital mode(DVI)

Frequency	Reading	Ant. Factor	Cable Loss	ANT POL	Total	Limit	Margin
MHz	dBuV	dB/m	dB	(H/V)	dBuV/m	dBuV/m	dB
38.2	6.5	11.5	1.3	٧	19.3	30.0	10.7
74.2	8.2	8.9	1.9	٧	19.0	30.0	11.0
118.8	7.0	11.3	2.4	٧	20.7	30.0	9.3
167.2	5.6	12.3	2.9	٧	20.8	30.0	9.2
182.3	5.7	11.0	3.0	٧	19.7	30.0	10.3
218.1	5.4	10.2	3.3	Н	18.9	30.0	11.1
273.6	3.5	12.1	3.8	٧	19.4	37.0	17.6
384.1	4.4	14.7	4.5	٧	23.6	37.0	13.4
417.6	3.3	15.7	4.7	٧	23.7	37.0	13.3
501.7	3.3	16.9	5.1	Н	25.3	37.0	11.7
623.3	6.1	20.1	5.7	Н	31.9	37.0	5.1
657.1	3.9	21.0	5.9	Н	30.8	37.0	6.2

Radiated Measurements at 10-meters.

1280 X 1024 (@60Hz)

REPORT NO.: HCT-F05-0806 HCT 21/26

NOTES:

- 1. All modes of operation were investigated, and the worst-case emissions are reported.
- 2. The radiated limits are listed on Table 2 (Page 8).

REPORT NO.: HCT-F05-0806 HCT 22/26

^{**} AFCL = Antenna Factor (Roberts dipole) and Cable Loss.

^{***} Measurements using CISPR quasi-peak mode. Above 1GHz, peak detector function mode is used using a resolution bandwidth of 1MHz and a video bandwidth of 1MHz. The peak level complies with the average limit. Peak mode is used with linearly polarized horn antenna and low-loss microwave cable.

8.1 Sample Calculations

 $dB \mu V = 20 \log_{10} (mV/m)$

8.2 Example 1:

@ 186.5 KHz

Class B limit = $56.0 \text{ dB } \mu\text{V}$

Reading = $47.1 \text{ dB } \mu V$ (calibrated level)

Margin = $47.1 - 56.0 = -8.9 \text{dB} \, \mu \text{V}$

= 8.9 dB below limit

8.3 Example 2:

@ 623.3 MHz

Class B limit = $37.0 \text{ dB}\mu\text{V/m}$

Reading = $6.1 \text{ dB}_{\mu}\text{V/m}$ (calibrated level)

Antenna Factor + Cable Loss = 25.8 dBTotal = $31.9 \text{ dB}_{\mu}\text{V/m}$

Margin = 31.9 - 37.0 = -5.1

= 5.1 dB below limit

9.1 Test Equipment

Type	<u>Manufacture</u>	Model Number	CAL Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI40	2005.11.16
EMI Test Receiver	Rohde & Schwarz	ESVS30	2006.07.01
EMI Test Receiver	Rohde & Schwarz	ESCI	2006.09.13
LISN	Rohde & Schwarz	ESH2-Z5	2006.04.26
Attenuator	Rohde & Schwarz	ESH3-Z2	2005.11.16
TRILOG Antenna	Schwarzbeck	9160	2006.03.31
Antenna Position Tower	HD	MA240	N/A
Turn Table	EMCO	1050	N/A
Power Analyzer	Voltech	PM 3300	2006.03.22
Reference Network Impedance	Voltech	IEC 555	N/A
AC Power Source	PACIFIC	Magnetic Module	N/A
AC Power Source	PACIFIC	360-AMX	2005.11.25
Controller	HD GmbH	HD 100	N/A
SlideBar	HD GmbH	KMS 560	N/A
PULSE LIMITER	Rohde & Schwarz	ESH3-Z2	2005.11.16

REPORT NO.: HCT-F05-0806 HCT 24/26

10.1 Test Software Used

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software, contained on a 3-1/2 inch disc, was inserted into drive A and is auto starting on power-up. Once loaded, the program sequentially exercises each system component in turn. The sequence used is :(1) Display test, (2) RS 232 test (3) Key board test,(4) Printer test,(5) FDD test,(6) HDD test. The complete cycle takes about 20 seconds and is repeated continuously. As the keyboard and mouse are strictly input devices, no data is transmitted to them during test. They are however, continuously scanned for data input activity. The video resolution modes setup and change program was used during the radiated and conducted emission testing.

NOTE: This is a sample of the basic program used during the test. However, during testing, a different software program may be used; whichever determines the worst-case condition. In addition, the program used also depends on the number and type of devices being tested.

Actual program used is the "H" pattern in Notepad under Windows environment. All resolution modes (1280×1024 , 1152×864 , 1024×768 , 832×624 , 800×600 , 640x480, 720x400) were investigated and tested

REPORT NO.: HCT-F05-0806 HCT 25/26

11.1 Conclusion

The data collected shows that the HYUNDAI IMAGEQUEST CO., LTD. 17-inch LCD Monitor FCC ID:PJIL17C00000

complies with §15.107 and §15.109 of the FCC Rules.

REPORT NO.: HCT-F05-0806 HCT 26/26