

# RF Exposure Evaluation declaration

Product Name : IA2E DUPLEX CARDTYPE DIGITAL AUDIO

**TRANSCEIVER** 

Model No. : C2ENSCTRUI00024R1

FCC ID. : PJHC2ETRUI24R

Applicant : Syncomm Technology Corp.

Address: 6F-15, No. 81, Shui-Li Rd., Hsinchu City, Taiwan 300, R.O.C.

Date of Receipt: 2009/10/12

Issued Date : 2009/10/16

Report No. : 09A207R-RF-US-Exp

Report Version: V1.0

The declaration results relate only to the samples calculated.

The declaration shall not be reproduced except in full without the written approval of QuieTek Corporation.



## 1. RF Exposure Evaluation

#### 1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

### LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency Range                                           | Electric Field | Magnetic Field | Power Density         | Average Time |  |  |
|-----------------------------------------------------------|----------------|----------------|-----------------------|--------------|--|--|
| (MHz)                                                     | Strength (V/m) | Strength (A/m) | (mW/cm <sup>2</sup> ) | (Minutes)    |  |  |
| (A) Limits for Occupational/ Control Exposures            |                |                |                       |              |  |  |
| 300-1500                                                  |                |                | F/300                 | 6            |  |  |
| 1500-100,000                                              |                |                | 5                     | 6            |  |  |
| (B) Limits for General Population/ Uncontrolled Exposures |                |                |                       |              |  |  |
| 300-1500                                                  |                |                | F/1500                | 6            |  |  |
| 1500-100,000                                              |                |                | 1                     | 30           |  |  |

F= Frequency in MHz

Friis Formula

Friis transmission formula:  $Pd = (Pout*G)/(4*pi*r^2)$ 

Where

Pd = power density in mW/cm<sup>2</sup>

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm<sup>2</sup>. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

#### 1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.



# 1.3. Test Result of RF Exposure Evaluation

| Product        | IA2E DUPLEX CARDTYPE DIGITAL AUDIO TRANSCEIVER |  |  |
|----------------|------------------------------------------------|--|--|
| Test Mode      | Mode 1: Transmit                               |  |  |
| Test Condition | RF Exposure Evaluation                         |  |  |

#### **Antenna Gain**

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 1.2dBi or 1.32 in linear scale.

# **Output Power into Antenna & RF Exposure Evaluation Distance:**

| Channel | Channel Frequency<br>(MHz) | Output Power to Antenna (mW) | Power Density at R = 20 cm (mW/cm²) |
|---------|----------------------------|------------------------------|-------------------------------------|
| 1       | 2404                       | 35.24                        | 0.0093                              |
| 12      | 2437                       | 37.84                        | 0.0099                              |
| 25      | 2476                       | 39.45                        | 0.0104                              |

The power density Pd (4th column) at a distance of 20 cm calculated from the Friis transmission formula is far below the limit of 1 mW/cm<sup>2</sup>.