

FCC PART 15.247

TEST REPORT

For

Baby's Journey, Inc.

999 Main Street, Unit 703, Pawtucket, RI 02860, United States

FCC ID: PJF-3927006TX

Report Type: Original Report	Product Type: BRU Perfect View 5 Monitor(Baby Unit)	'' Video
Test Engineer:	Ares Liu	ns. lin
Report Number:	R1DG121101001-00	
Report Date:	2012-12-07	
Reviewed By:	Ivan Cao Julio EMC Engineer	m Cau
Test Laboratory:	Bay Area Compliance Laboratories Co No.69 Pulongcun, Puxinhu Industrial 2 Tangxia, Dongguan, Guangdong, Chin Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn	Zone,

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	4
Test Methodology	4
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT Exercise Software	
Equipment Modifications	
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	9
Applicable Standard	
ANTENNA CONNECTOR CONSTRUCTION	9
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	10
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure	
Test Equipment List and Details	
Test Results Summary Test Data	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP EMI Test Receiver & Spectrum Analyzer Setup	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP TEST PROCEDURE	
Test Equipment List and Details	
Corrected Amplitude & Margin Calculation	
Test Results Summary	
TEST DATA	
FCC §15.247(a) (1) - CHANNEL SEPARATION TEST	21
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST DATA	
FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING	24
APPLICABLE STANDARD	24
Test Procedure	
FCC Part 15.247 P	age 2 of 36

Page 2 of 36

Report No.: R1DG121101001-00

Test Equipment List and Details Test Data	
FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST	27
Applicable Standard Test Procedure Test Equipment List and Details Test Data	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	
Applicable Standard Test Procedure Test Equipment List and Details Test Data	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	
Applicable Standard Test Procedure Test Equipment List and Details Test Data	
FCC §15.247(d) - BAND EDGES TESTING	
Applicable Standard Test Procedure Test Equipment List and Details	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Baby's Journey,Inc.*'s product, model number: 3927006TX (*FCC ID: PJF-3927006TX*) or ("EUT") in this report is a BRU Perfect View 5" Video Monitor(Baby Unit), which was measured approximately: 7.5 cm (L) x7.5 cm (W) x 15.0 cm (H), rated input voltage: DC 5.0V from adapter.

Adapter information:HON-KWANG Model:HK-U-050A100-US Input: AC 100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1.0A

* All measurement and test data in this report was gathered from production sample serial number: 121101001 (Assigned by BACL, Dongguan). The EUT was received on 2012-11-01.

Objective

This report is prepared on behalf of *Baby's Journey,Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine the Bluetooth of EUT compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

The uncertainty of any RF tests which use conducted method measurement is ± 0.96 dB, the uncertainty of any radiation on emissions measurement is ± 4.0 dB

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

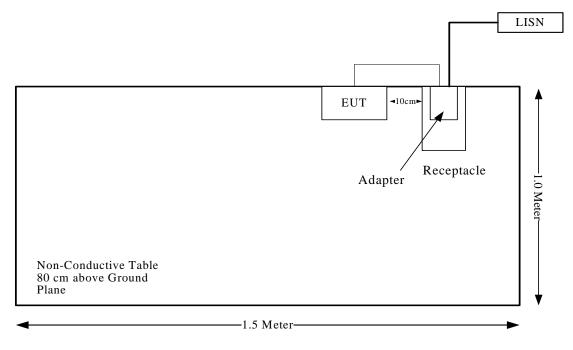
The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode, which was provided by manufacturer.

19 hopping channels are provided by manufacturer, and EUT was tested with low channel : 2411.375MHz, middle channel :2441.75MHz, and high channel: 2472.125MHz.


EUT Exercise Software

No EUT exercise software was used.

Equipment Modifications

No modification was made to the EUT tested.

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1091	Maximum Permissible exposure	Compliace
§15.203	Antenna Requirement	Compliance
§15.207 (a)	Conducted Emissions	Compliance
\$15.205, \$15.209, \$15.247(d)	Radiated Emissions	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i) and subpart \$1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f ²)	30		
30–300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency	Ante	enna Gain	Conducted Power		Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm^2)
2411.375	0	1.00	14.32	27.04	20.00	0.005	1.0

Result: The device meet FCC MPE at 20cm distance

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

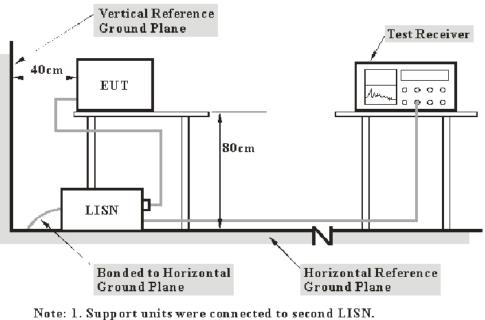
Antenna Connector Construction

The EUT has an internal antenna permanently soldering on the printed circuit boards, which complied with 15.203, the maximum gain is 0 dBi, please refer to the internal photos.

Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard


FCC§15.207

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratory Corp. (Dongguan) is ± 2.4 dB (k=2, 95% level of confidence), and the uncertainty will not be taken into consideration for all the test data recorded in the report.

EUT Setup

 Support units were connected to second LISIV.
 Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

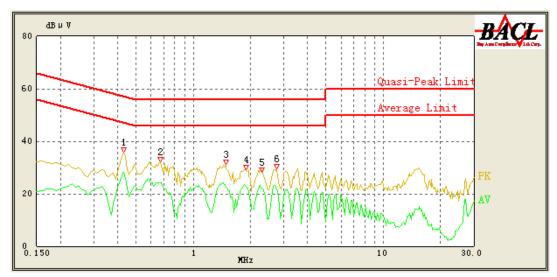
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCS 30	830245/006	2012-10-08	2013-10-07
R&S	LISN1	ESH3-Z5	843331/015	2012-09-17	2013-09-16
R&S	LISN2	ESH3-Z5	100113	2012-10-08	2013-10-07

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207, with the worst margin reading of:

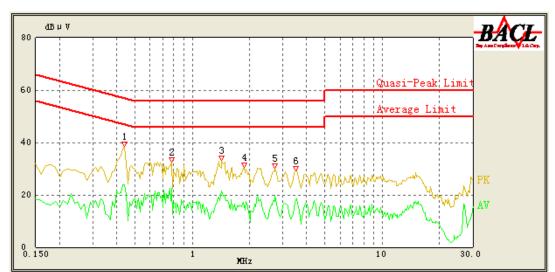
19.80 dB at 0.430 MHz in the Line conducted mode.

Test Data


Environmental Conditions

Temperature:	25.9° C
Relative Humidity:	54 %
ATM Pressure:	100.7 kPa

The testing was performed by Ares Liu on 2012-11-24.


Test Mode: Transmitting

AC 120V/60 Hz, Line

Frequency (MHz)	Cord. Reading (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/AV/QP)
0.430	28.20	0.22	48.00	19.80	AV
0.670	24.20	0.21	46.00	21.80	AV
1.470	23.37	0.25	46.00	22.63	AV
1.890	22.70	0.26	46.00	23.30	AV
2.730	22.61	0.28	46.00	23.39	AV
0.430	34.15	0.22	58.00	23.85	QP
2.300	21.95	0.27	46.00	24.05	AV
0.670	28.33	0.21	56.00	27.67	QP
1.480	27.45	0.25	56.00	28.55	QP
1.900	26.43	0.26	56.00	29.57	QP
2.300	25.85	0.27	56.00	30.15	QP
2.750	25.62	0.28	56.00	30.38	QP

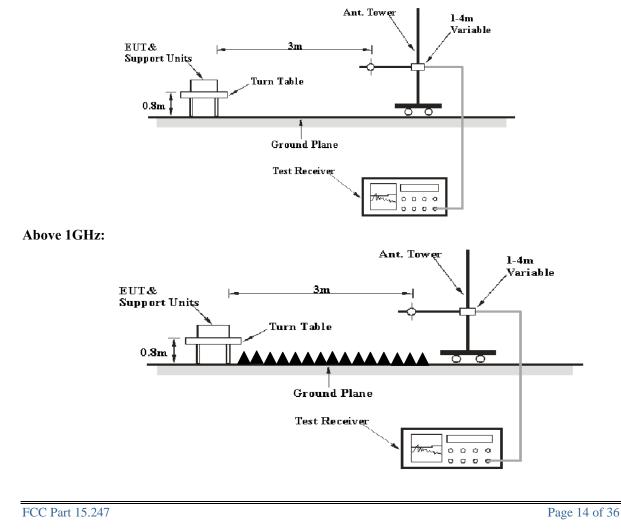
AC 120V/60 Hz, Neutral

Frequency (MHz)	Cord. Reading (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/AV/QP)
0.440	34.97	0.22	57.71	22.74	QP
0.780	22.48	0.22	46.00	23.52	AV
0.440	23.93	0.22	47.71	23.78	AV
1.430	21.37	0.25	46.00	24.63	AV
1.430	30.33	0.25	56.00	25.67	QP
2.730	19.78	0.28	46.00	26.22	AV
0.780	28.46	0.22	56.00	27.54	QP
3.490	17.20	0.31	46.00	28.80	AV
1.860	17.13	0.26	46.00	28.87	AV
2.730	26.76	0.28	56.00	29.24	QP
3.500	26.53	0.31	56.00	29.47	QP
1.870	25.80	0.26	56.00	30.20	QP

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;


Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Dongguan) is 4.0 dB(k=2, 95% level of confidence), and the uncertainty will not be taken into consideration for all the test data recorded in the report.

EUT Setup

Below 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video BW	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	QP
1000 MHz – 25 GHz	1 MHz	3 MHz	PK
1000 MHz – 25 GHz	1 MHz	10 Hz	Ave.

Test Procedure

For the radiated emissions test, the adapter was connected to the first AC floor outlet. Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2012-05-14	2013-05-13
Sunol Sciences	Hybrid Antennas	JB3	A060611-1	2011-09-06	2013-09-05
HP	Pre-amplifier	8447E	2434A02181	2012-10-08	2013-10-07
R&S	Spectrum Analyzer	FSEM 30	DE31388	2012-03-15	2013-03-14
ETS-LINDGREN	Horn Antenna	3115	000 527 35	2012-09-06	2014-09-05
Mini-Circuits	Wideband Amplifier	ZVA-183-S+	96901149	N/A	N/A

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15,</u> <u>Subpart C, and section 15.205, 15.209 and 15.247</u>, with the worst margin reading of:

2.07 dB at 551.86 MHz in the Vertical polarization

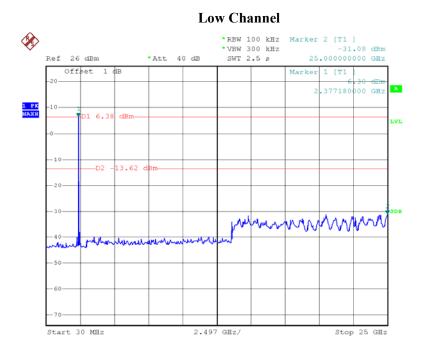
Test Data

Environmental Conditions

Temperature:	25.9°C
Relative Humidity:	54%
ATM Pressure:	100.7kPa

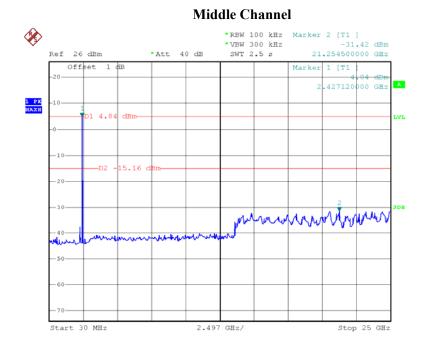
The testing was performed by Ares Liu on 2012-11-24.

Test Mode: Tansmitting


Report No.: R1DG121101001-00

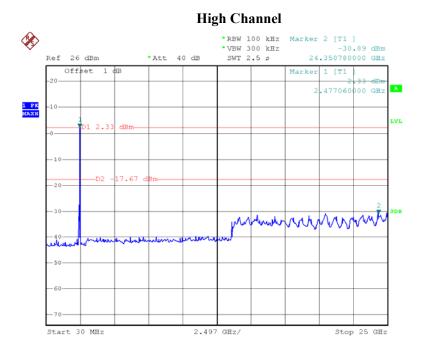
Frequency	R	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	FCC 1	5.247
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low	V Channel:	2411.375	(MHz)			
551.86	44.64	QP	V	18.59	2.85	22.15	43.93	46.00	2.07 *
2390	40.23	РК	V	25.61	3.84	0.00	69.68	74.00	4.32
4822.75	56.87	РК	V	30.64	4.72	27.21	65.02	74.00	8.98
2390	14.23	AV	V	25.61	3.84	0.00	43.68	54.00	10.32
7234.125	48.78	РК	V	34.16	6.55	26.57	62.92	74.00	11.08
9645.5	18.17	AV	Н	36.05	8.71	26.42	36.51	54.00	17.49
7234.125	19.97	AV	V	34.16	6.55	26.57	34.11	54.00	19.89
9645.5	34.69	РК	Н	36.05	8.71	26.42	53.03	74.00	20.97
4822.75	21.09	AV	V	30.64	4.72	27.21	29.24	54.00	24.76
1314.2	26.48	AV	Н	23.12	2.65	27.30	24.95	54.00	29.05
1314.2	38.12	РК	Н	23.12	2.65	27.30	36.59	74.00	37.41
2411.375	40.37	AV	Н	25.67	3.92	0.00	69.96	N/A	N/A
2411.375	68.02	РК	Н	25.67	3.92	0.00	97.61	N/A	N/A
2411.375	49.11	AV	V	25.67	3.92	0.00	78.70	N/A	N/A
2411.375	76.48	РК	V	25.67	3.92	0.00	106.07	N/A	N/A
			Mide	dle Channel	: 2441.75	(MHz)			
551.43	44.38	QP	V	18.59	2.85	22.15	43.67	46.00	2.33 *
7325.25	51.68	РК	V	34.38	6.73	26.67	66.12	74.00	7.88
4883.5	55.96	РК	V	30.80	4.75	27.04	64.47	74.00	9.53
9085.3	18.06	AV	Н	35.62	9.32	26.50	36.50	54.00	17.50
9767	17.97	AV	Н	36.34	8.58	26.55	36.34	54.00	17.66
7325.25	20.07	AV	V	34.38	6.73	26.67	34.51	54.00	19.49
9085.3	32.44	РК	Н	35.62	9.32	26.50	50.88	74.00	23.12
9767	32.31	РК	Н	36.34	8.58	26.55	50.68	74.00	23.32
4883.5	21.25	AV	V	30.80	4.75	27.04	29.76	54.00	24.24
1301.7	23.73	AV	Н	23.08	2.55	27.26	22.10	54.00	31.90
1301.7	36.52	РК	Н	23.08	2.55	27.26	34.89	74.00	39.11
2441.75	40.64	AV	Н	25.75	3.99	0.00	70.38	N/A	N/A
2441.75	68.64	РК	Н	25.75	3.99	0.00	98.38	N/A	N/A
2441.75	50.16	AV	V	25.75	3.99	0.00	79.90	N/A	N/A
2441.75	76.91	РК	V	25.75	3.99	0.00	106.65	N/A	N/A

Report No.: R1DG121101001-00


			Hig	h Channel:	2472.125	(MHz)			
551.82	44.26	QP	V	18.59	2.85	22.15	43.55	46.00	2.45 *
2483.5	13.91	AV	V	25.86	3.80	0.00	43.57	54.00	10.43
7416.375	48.26	РК	V	34.60	6.90	26.76	63.00	74.00	11.00
4944.25	53.48	РК	V	30.95	4.68	27.25	61.86	74.00	12.14
2483.5	30.85	РК	V	25.86	3.80	0.00	60.51	74.00	13.49
9888.5	18.18	AV	Н	36.63	8.45	26.67	36.59	54.00	17.41
7416.375	19.42	AV	V	34.60	6.90	26.76	34.16	54.00	19.84
9888.5	33.23	PK	Н	36.63	8.45	26.67	51.64	74.00	22.36
4944.25	20.62	AV	V	30.95	4.68	27.25	29.00	54.00	25.00
1631.5	21.55	AV	Н	23.86	3.17	27.28	21.30	54.00	32.70
1631.5	35.24	РК	Н	23.86	3.17	27.28	34.99	74.00	39.01
2472.125	40.38	AV	Н	25.83	3.87	0.00	70.08	N/A	N/A
2472.125	68.56	РК	Н	25.83	3.87	0.00	98.26	N/A	N/A
2472.125	50.51	AV	V	25.83	3.87	0.00	80.21	N/A	N/A
2472.125	78.29	PK	V	25.83	3.87	0.00	107.99	N/A	N/A

*Within measurement uncertainty!

Conducted Spurious Emissions at Antenna Port


Date: 24.NOV.2012 12:00:04

Date: 24.NOV.2012 12:01:45

FCC Part 15.247

Page 19 of 36

Date: 24.NOV.2012 12:05:29

FCC Part 15.247

Page 20 of 36

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 100 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another truce
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	25.9 °C
Relative Humidity:	54 %
ATM Pressure:	100.7kPa

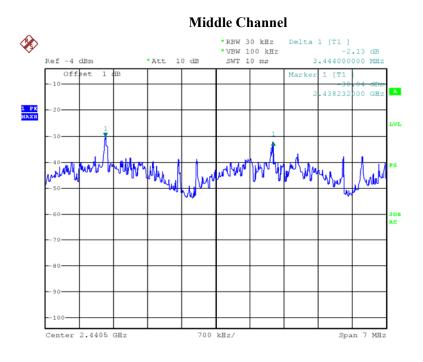
* The testing was performed by Ares Liu on 2012-11-24.

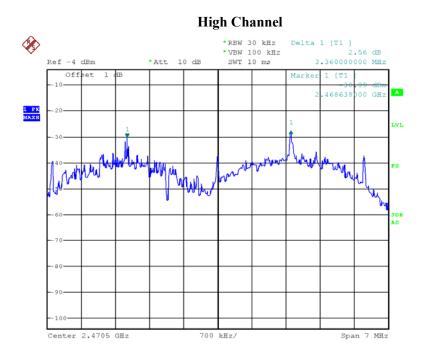

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Report No.: R1DG121101001-00


Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
Low	2411.375	3.402	2.38	Pass
Adjacent	2414.75	5.402	2.30	r ass
Middle	2441.75	3.444	2 20	Desa
Adjacent	2438.375	5.444	2.38	Pass
High	2472.125	3.36	2.36	Pass
Adjacent	2468.75	5.30	2.30	rass


Date: 24.NOV.2012 15:36:08

FCC Part 15.247

Page 22 of 36

Date: 24.NOV.2012 15:37:11

Date: 24.NOV.2012 15:40:40

FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

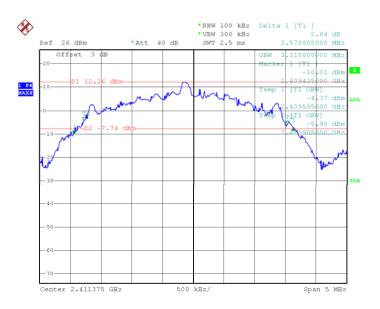
Environmental Conditions

Temperature:	25.9 °C
Relative Humidity:	54 %
ATM Pressure:	100.7kPa

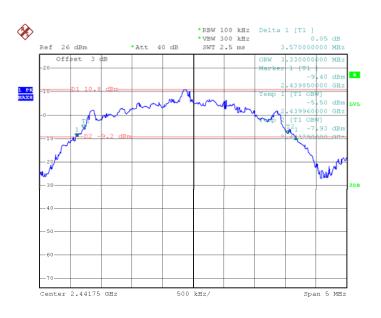
* The testing was performed by Ares Liu on 2012-11-24.

Test Result: Compliance.

Please refer to following tables and plots

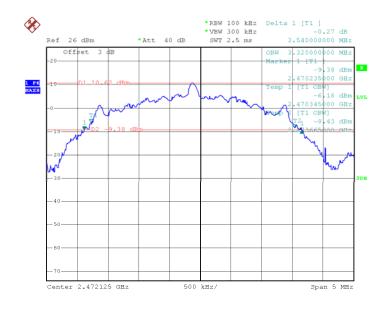

Test Mode: Transmitting

Report No.: R1DG121101001-00


Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
Low	2411.375	3.57
Middle	2441.75	3.57
High	2472.125	3.54

Please refer to the following plots.

Low Channel


Date: 24.NOV.2012 10:07:28

Middle Channel

Date: 24.NOV.2012 10:18:16

Date: 24.NOV.2012 10:13:16

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Equipment List and Details

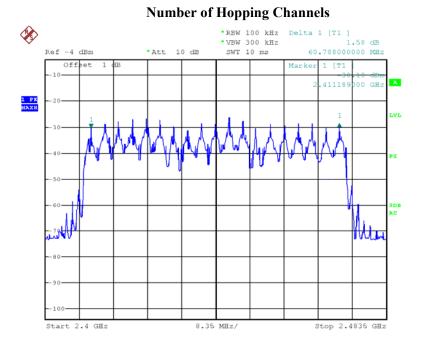
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

Environmental Conditions

Temperature:	25.9°C
Relative Humidity:	54 %
ATM Pressure:	100.7kPa

The testing was performed by Ares Liu on 2012-11-24.


Test Result: Compliance.

Please refer to following tables and plots

Report No.: R1DG121101001-00

Test Mode: Transmitting

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	19	≥15

Date: 24.NOV.2012 15:29:42

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 * channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Dwell Time= time slot length * hope rate/ number of hopping channels *hopping NO. * 0.4s

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

Environmental Conditions

Temperature:	25.9 °C
Relative Humidity:	54 %
ATM Pressure:	100.7kPa

* The testing was performed by Ares Liu on 2012-11-24.

Test Result: Compliance.

Please refer to following tables and plots

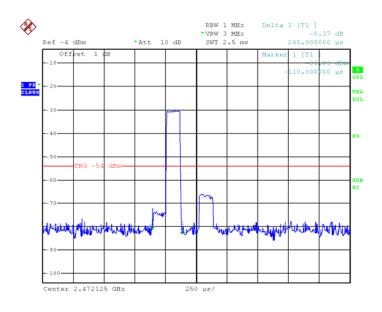

Report No.: R1DG121101001-00

Test Mode: Transmitting


Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result
Low	0.245	0.03087	0.4	Pass
Middle	0.225	0.02835	0.4	Pass
High	0.245	0.03087	0.4	Pass
Dwell Time(s)= time slot length(s)* 315/19*19 * 0.4				

Note: The EUT hopping 315times per second

Low Channel


Date: 24.NOV.2012 16:18:52

Middle Channel

Date: 24.NOV.2012 16:19:31

Date: 24.NOV.2012 16:19:55

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI test receiver.
- 3. Add a correction factor to the display.

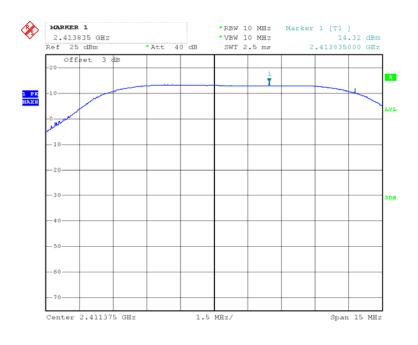
Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

Environmental Conditions

Temperature:	25.9°C
Relative Humidity:	54%
ATM Pressure:	100.7kPa


* The testing was performed by Ares Liu on 2012-12-07.

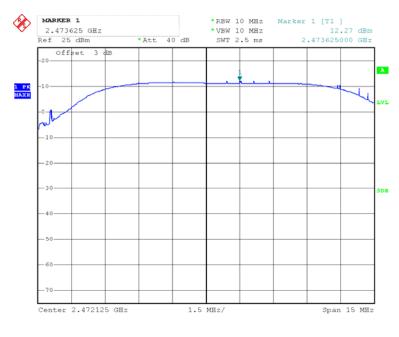
Test Result: Compliance.

Test Mode: Transmitting


Channel	Frequency (MHz)	Output power (dBm)	Limit (dBm)
Low	2411.375	14.32	21
Middle	2441.75	13.46	21
High	2472.125	12.27	21

Note: The data above was tested in conducted mode.

Output Power, Low


Date: 7.DEC.2012 12:30:41

Output Power, Middle

Date: 7.DEC.2012 12:31:09

Output Power, High

Date: 7.DEC.2012 12:32:22

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

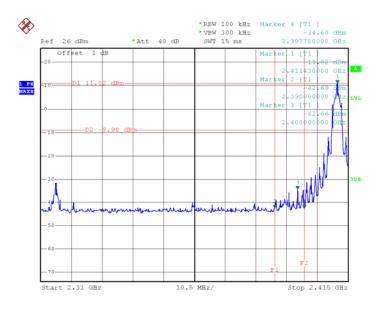
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a
 EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low
 Channel and High Channel within its operating range, and make sure the instrument is operated in its
 linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

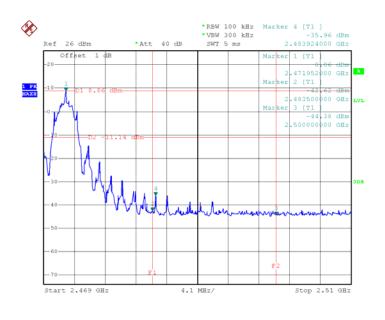
Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13


Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	48 %
ATM Pressure:	101kPa


*The testing was performed by Ares Liu on 2012-11-24.

Test Result: Compliance

Band Edge, Left Side

Date: 24.NOV.2012 10:12:01

Band Edge, Right Side

Date: 24.NOV.2012 10:13:42

***** END OF REPORT *****