

FCC REPORT Report Reference No.....:: TRE1603015902 R/C....: 19353 FCC ID.....: PJ7-M54T Applicant's name : shenzhen Neoway Technology Co.,Ltd 4F-2, Lian Jian Science & Industry Park Huarong Road, Dalang, Address..... Baoan District, Shenzhen City, P.R.China Manufacturer..... **JSR** Limited Room 8, 12/F, Lucida Industrial Building, No.43-47 Wang Lung Address.....: Street, Tsuen Wan, N.T, Hong Kong Test item description: Smartphone Trade Mark: innos Model/Type reference.....: M54T Listed Model(s) FCC Part 22: PUBLIC MOBILE SERVICES Standard:: FCC Part 24: PERSONAL COMMUNICATIONS SERVICES FCC Part 27: MISCELLANEOUS WIRELESS **COMMUNICATIONS SERVICES** Date of receipt of test sample..... Mar.22, 2016 Date of testing..... Mar.23, 2016 ~ Apr.18, 2016 Date of issue..... Apr.19, 2016 Result.....: Pass Compiled by Londy Lin (position+printed name+signature)..: File administrators Candy Liu Supervised by (position+printed name+signature)..: Project Engineer Lion Cai Approved by (position+printed name+signature)..: Manager Hans Hu Testing Laboratory Name: : Shenzhen Huatongwei International Inspection Co., Ltd 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Address..... Gongming, Shenzhen, China Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	TEST STANDARDS AND TEST DESCRIPTION	3
1.1.	Test Standards	3
1.2.	Test Description	3
<u>2.</u>	SUMMARY	4
2.1.	Client Information	4
2.2.	Product Description	4
2.3.	EUT operation mode	6
2.4.	EUT configuration	7
2.5.	Modifications	7
<u>3.</u>	TEST ENVIRONMENT	8
3.1.	Address of the test laboratory	8
3.2.	Test Facility	8
3.3.	Environmental conditions	9
3.4.	Statement of the measurement uncertainty	9
3.5.	Equipments Used during the Test	10
<u>4.</u>	TEST CONDITIONS AND RESULTS	11
4.1.	Conducted Output Power	11
4.2.	Occupy Bandwidth	12
4.3.	Out of band emission at antenna terminals	26
4.4.	Band Edge compliance	39
4.5.	Radiated Power Measurement	64
4.6.	Radiated Spurious Emssion	70
4.7.	Frequency stability V.S. Temperature measurement	84
4.8.	Frequency stability V.S. Voltage measurement	86
4.9.	Peak-Average Ratio	87
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	88
<u>6.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	89

1. TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

FCC Part 22 (10-1-13 Edition): PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24(10-1-13 Edition): PUBLIC MOBILE SERVICES FCC Part 27:MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

<u>971168 D01 Power Meas License Digital Systems v02r02:</u> provides a methodology for fully characterizing the fundamental power of wideband (> 1 MHz) digitally modulated RF signals acceptable to the FCC for demonstrating compliance for licensed transmitters.

ANSI C63.10-2013: AmericanNationalStandardforTestingUnlicensedWirelessDevices

1.2. Test Description

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 22.913 (a)(2) Part 24.232 (c) Part 27.50 (d)	Pass
Modulation Characteristics	Part 2.1047	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 22.917 Part 24.238	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 22.917 (a) Part 24.238 (a) Part 27.53 (h)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 22.917 (a) Part 24.238 (a) Part 27.53 (h)	Pass
Out of band emission, Band Edge	Part 22.917 (a) Part 24.238 (a) Part 27.53 (h)	Pass
Frequency stability vs. temperature	Part 2.1055(a)(1)(b)	Pass
Frequency stability vs. voltage	Part 2.1055(d)(1)(2)	Pass
Peak-Average Ratio	Part 24.232 (d) Part 27.50 (d)	Pass

Remark: The measurement uncertainty is not included in the test result.

2. <u>SUMMARY</u>

2.1. Client Information

Applicant:	shenzhen Neoway Technology Co.,Ltd
Address:	4F-2,Lian Jian Science & Industry Park Huarong Road,Dalang, Baoan District,Shenzhen City, P.R.China
Manufacturer:	JSR Limited
Address:	Room 8, 12/F, Lucida Industrial Building, No.43-47 Wang Lung Street, Tsuen Wan, N.T, Hong Kong

2.2. Product Description

Smartphone							
innos							
M54T							
866572020076131							
866572020076132							
DC 3.8V From internal battery							
Model:DGL-SFP0501000 Input:AC 110-240V 50/60Hz 0.2A Output: 5Vd.c., 1.0A							
M54T_JSR_Nord V1.0							
M54T_MB_V2.2							
Uplink:1710.7 MHz – 1754.3 MHz Downlink: 2110.7 MHz – 2154.3 MHz							
⊠1.4MHz ⊠ 3MHz ⊠ 5MHz ⊠ 10MHz ⊠15MHz ⊠20MHz							
Uplink:2502.5 MHz – 2567.5 MHz Downlink: 2622.5 MHz – 2687.5 MHz							
□1.4MHz □ 3MHz 🛛 5MHz 🖾 10MHz 🖾 15MHz 🖾 20MHz							
Uplink:706.5 MHz – 713.5 MHz Downlink: 736.5MHz – 743.5 MHz							
□1.4MHz □ 3MHz ⊠ 5MHz ⊠ 10MHz □15MHz □20MHz							
□ Class 1 □ Class 2 ⊠ Class 3 □ Class 4							
QPSK 16QAM 64QAM							
Modulation type: QPSK 16QAM 64QAM Antennna type: 1 * TRX, 1 * RX-only							
i not only							

Test Frequency:

Test Frequency ID	Bandwidth [MHz]	NuL	Frequency of Uplink [MHz]	Ndl	Frequency of Downlink [MHz]
	1.4	19957	1710.7	1957	2110.7
Low Range	3	19965	1711.5	1965	2111.5
	5	19975	1712.5	1975	2112.5
	10	20000	1715	2000	2115
	15	20025	1717.5	2025	2117.5
1	20	20050	1720	2050	2120
Mid Range	1.4/3/5/10/15/20	20175	1732.5	2175	2132.5
	1.4	20393	1754.3	2393	2154.3
	3	20385	1753.5	2385	2153.5
Link Danas	5	20375	1752.5	2375	2152.5
High Range	10	20350	1750	2350	2150
	15	20325	1747.5	2325	2147.5
	20	20300	1745	2300	2145
Test Frequency ID	Bandwidth [MHz]	NUL	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink [MHz]
	5	20775	2502.5	2775	2622.5
	10	20800	2502.5	2800	2625
Low Range	15	20825	2507.5	2825	2627.5
	20 [1]	20850	2510	2850	2630
	5/10/15 20 ^[1]	21100	2535	3100	2655
Mid Range	2011				
Mid Range	5	21425	2567.5	3425	2687.5
		21400	2565	3400	2685
Mid Range High Range	5 10 15	21400 21375	2565 2562.5	3400 3375	2685 2682.5
High Range	5 10 15 20 ^[1]	21400 21375 21350	2565 2562.5 2560	3400 3375 3350	2685 2682.5 2680
High Range	5 10 15 20 ^[1]	21400 21375 21350 of the spec	2565 2562.5 2560	3400 3375 3350	2685 2682.5 2680
High Range	5 10 15 20 ^[1] or which a relaxation] Clause 7.3) is allow Bandwidth	21400 21375 21350 of the spec	2565 2562.5 2560 ified UE receiver sen: Frequency of	3400 3375 3350	2685 2682.5 2680 rement (TS
High Range NOTE 1: Bandwidth f 36.101 [27	5 10 15 20 ^[1] or which a relaxation] Clause 7.3) is allow Bandwidth [MHz] 5 ^[1]	21400 21375 21350 of the spec red. N _{UL} 23755	2565 2562.5 2560 fied UE receiver sen: Frequency of Uplink [MHz] 706.5	3400 3375 3350 sitivity requi N _{DL} 5755	2685 2682.5 2680 rement (TS Frequency of Downlink [MHz] 736.5
High Range NOTE 1: Bandwidth f 36.101 [27 Test Frequency ID Low Range	5 10 15 20 ^[1] or which a relaxation] Clause 7.3) is allow Bandwidth [MHz] 5 ^[1] 10 ^[1]	21400 21375 21350 of the spec red. N _{UL} 23755 23780	2565 2562.5 2560 fied UE receiver sen: Frequency of Uplink [MHz] 706.5 709	3400 3375 3350 sitivity requi N _{DL} 5755 5780	2685 2682.5 2680 rement (TS Frequency of Downlink [MHz] 736.5 739
High Range NOTE 1: Bandwidth f 36.101 [27	5 10 15 20 ^[1] or which a relaxation] Clause 7.3) is allow Bandwidth [MHz] 5 ^[1]	21400 21375 21350 of the spec red. N _{UL} 23755	2565 2562.5 2560 fied UE receiver sen: Frequency of Uplink [MHz] 706.5	3400 3375 3350 sitivity requi N _{DL} 5755	2685 2682.5 2680 rement (TS Frequency of Downlink [MHz] 736.5

2.3. EUT operation mode

1. The EUT has been tested under typical operating condition. The Applicant provides software to control the EUT for staying in continous transmitting and receiving mode for testing.

Testheme	Dend			Bandw	vidth (M	Hz)		Modu	ulation		RB #		Test	Char	inel
Test Items	Band	1.4	3	5	10	15	20	QPSK	16QAM	1	Half	Full	L	М	н
Max	4	v	v	v	v	v	v	v	v	v	v	v	v	v	v
Max Output Power	7	-	-	v	v	v	v	v	v	v	v	v	v	v	v
Power	17	-	-	v	v	-	-	v	v	v	v	v	v	v	v
26dB and 99% Bandwidth	4	v	v	v	v	v	v	v	v			v	v	v	v
	7	-	-	v	v	v	v	v	v			v	v	v	v
Bandwidth	17	-	-	v	v	-	-	v	v			v	v	v	v
Conducted	4	v	v	v	v	v	v	v	v	v		v	v		v
Conducted Band Edge	7	-	-	v	v	v	v	v	v	v		v	v		v
	17	-	-	v	v	-	-	v	v	v		v	v		v
Conducted	4	v	v	v	v	v	v	v	v	v			v	v	v
Spurious	7	-	-	v	v	v	v	v	v	v			v	v	v
Emission	17	-	-	v	v	-	-	v	v	v			v	v	v
	4	v	v	v	v	v	v	v	v	v			v	v	v
E.R.P./ E.I.R.P.	7	-	-	v	v	v	v	v	v	v			v	v	v
	17	-	-	v	v	-	-	v	v	v			v	v	v
Radiated	4	v	v	v	v	v	v	v		v			v	v	v
Spurious	7	-	-	v	v	v	v	v		v			v	v	v
Emission	17	-	-	v	v	-	-	v		v			v	v	v
_	4						v	v				v		v	
Frequency Stability	7						v	v				v		v	
	17				v			v				v		v	
Peak-to-	4						v	v	v	v		v	v	v	v
Average Ratio	7						v	v	v	v		v	v	v	v
κατιο	17				v			v	v	v		v	v	v	v
Remark	2. T 3. T d	he mark he devic	"-" mear e is inve	ns that th stigated	is bandv from 30N	vidth is n //Hz to 1	ot suppo 0 times (of fundam	ng ental signal ubsequentl						ler

2.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- \bigcirc supplied by the lab

Length	(m): /
Sr	ield : /
Detacha	able : /
Manufact	urer : /
Model	No. : /

2.5. Modifications

No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Laboratory:Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Labo

ratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for tec hnical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional progra m requirements in the identified field of testing. Valid time is until December 31, 2016.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FC C is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Aust ralian C-Tick mark as a result of our A2LA accreditation.

VCCI

The 3m Semi-

anechoic chamber (12.2m×7.95m×6.7m) of Shenzhen Huatongwei International Inspection Co., Ltd.

has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2484. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 29, 2015.

Radiated disturbance above 1GHz measurement of Shenzhen Huatongwei International Inspection Co., Ltd. h as been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2013. Valid time is until Dec. 23, 2016.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with R egistration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of D NV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Di rectives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-

ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the D NV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature/Tnor:	15~35°C
lative Humidity	30~60 %
Air Pressure	950-1050 hPa

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1" and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics;Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

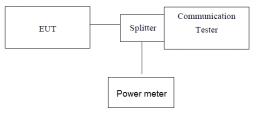
Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-12.75 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

3.5. Equipments Used during the Test

	Output Power(Conducted) & Occupied Bandwidth & Emission Bandwidth & Band Edge Compliance									
& Cond	& Conducted Spurious Emission									
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.					
1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2015/11/2					
2	WIDEB.RADIO COMM.TESRER	Rohde&Schwarz	CMW500	1201.0002K50	2015/11/3					
3	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2015/11/2					
4	Splitter	Mini-Circuit	ZAPD-4	400059	2015/11/2					

Freque	Frequency Stability									
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.					
1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2015/11/2					
2	WIDEB.RADIO COMM.TESRER	Rohde&Schwarz	CMW500	1201.0002K50	2015/11/3					
3	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2015/11/2					
4	Climate Chamber	ESPEC	EL-10KA	05107008	2015/11/2					
5	Splitter	Mini-Circuit	ZAPD-4	400059	2015/11/2					


Output	Power (Radiated) & Radia	ted Spurious Emissio	n		
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2015/11/2
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2015/11/2
3	HORN ANTENNA	ShwarzBeck	9120D	1012	2015/11/2
4	HORN ANTENNA	ShwarzBeck	9120D	1011	2015/11/2
5	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2015/11/2
6	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	2015/11/2
7	TURNTABLE	MATURO	TT2.0		N/A
8	ANTENNA MAST	MATURO	TAM-4.0-P		N/A
9	EMI Test Software	Audix	E3	N/A	N/A
10	EMI Test Receiver	Rohde&Schwarz	ESIB 26	100009	2015/11/2
11	RF Test Panel	Rohde&Schwarz	TS / RSP	335015/ 0017	2015/11/2
12	High pass filter	Compliance Direction systems	BSU-6	34202	2015/11/2
13	Splitter	Mini-Circuit	ZAPD-4	400059	2015/11/2
14	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2015/11/2
15	Horn Antenna	SCHWARZBECK	BBHA9170	25842	2015/11/2
16	Preamplifier	ShwarzBeck	BBV 9718	BBV 9718	2015/11/2
17	Broadband Preamplifier	ShwarzBeck	BBV743	9743-0079	2015/11/2
18	Signal Generator	Rohde&Schwarz	SMF100A	101932	2015/11/2
19	Amplifer	Compliance Direction systems	PAP1-4060	120	2015/11/2
20	TURNTABLE	ÉTS	2088	2149	2015/11/2
21	ANTENNA MAST	ETS	2075	2346	2015/11/2
22	HORN ANTENNA	Rohde&Schwarz	HF906	100068	2015/11/2
23	HORN ANTENNA	Rohde&Schwarz	HF906	100039	2015/11/2
24	WIDEB.RADIO COMM.TESRER	R&S	CMW500	1201.0002K50	2015/11/3

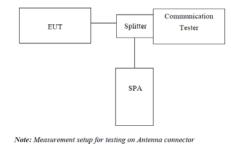
The calibration interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Output Power

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

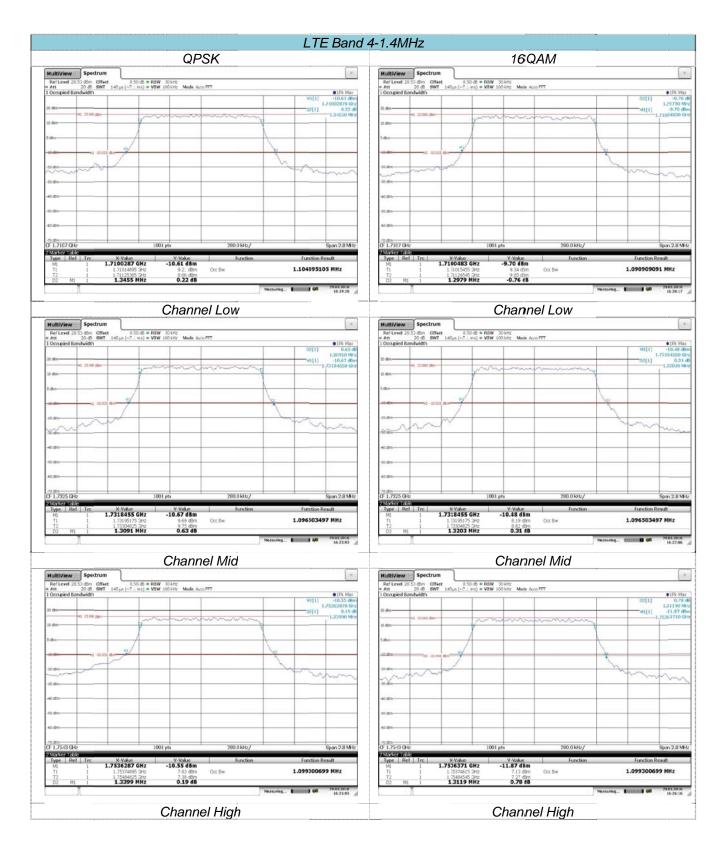

TEST PROCEDURE

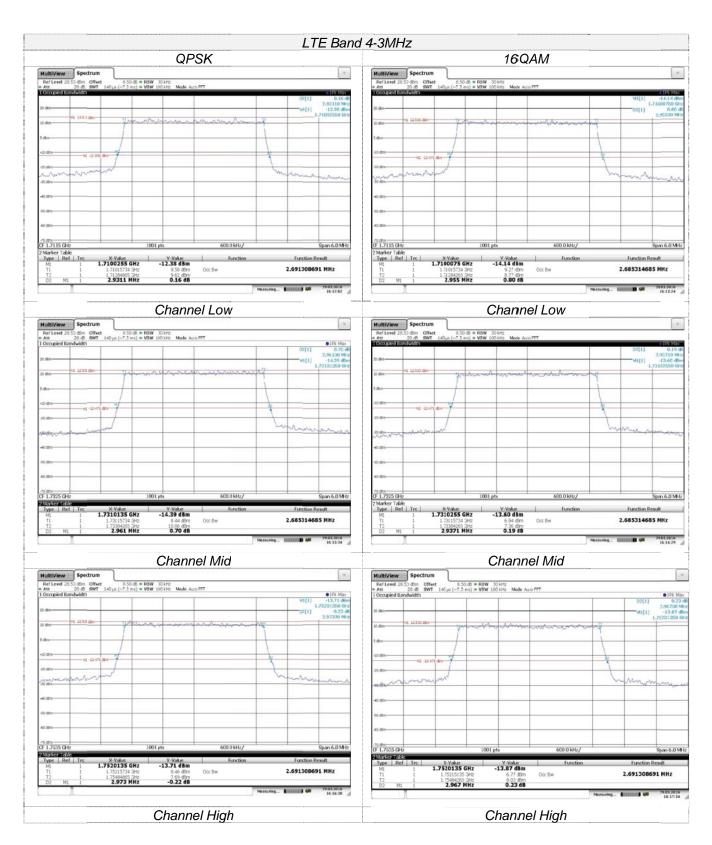
- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure the maximum burst average power.

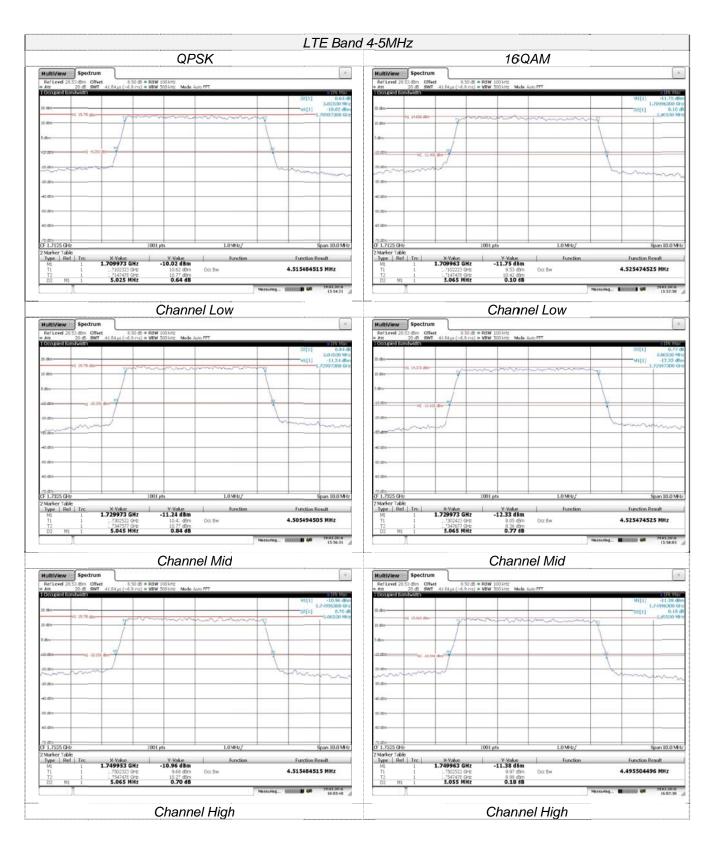
EUT Mode	Frequency (MHz)	Max Avg.Power QPSK (dBm)	Max Avg.Power 16QAM (dBm)
LTE Band 4	1710.70 – 1754.30	22.43	21.76
LTE Band 7	2502.50 – 2567.50	22.36	21.88
LTE Band 17	706.50 - 713.50	22.57	21.69

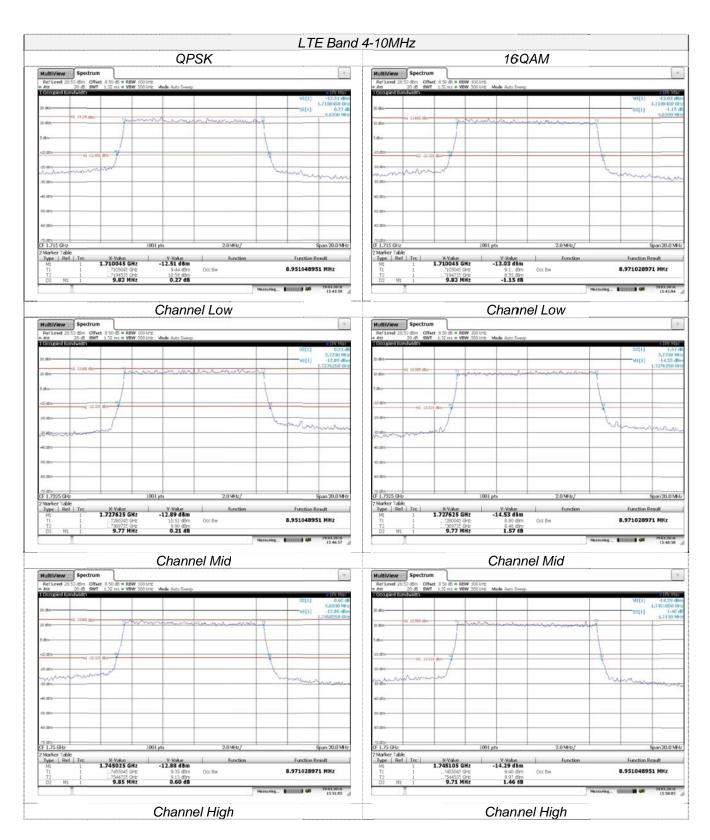
4.2. Occupy Bandwidth

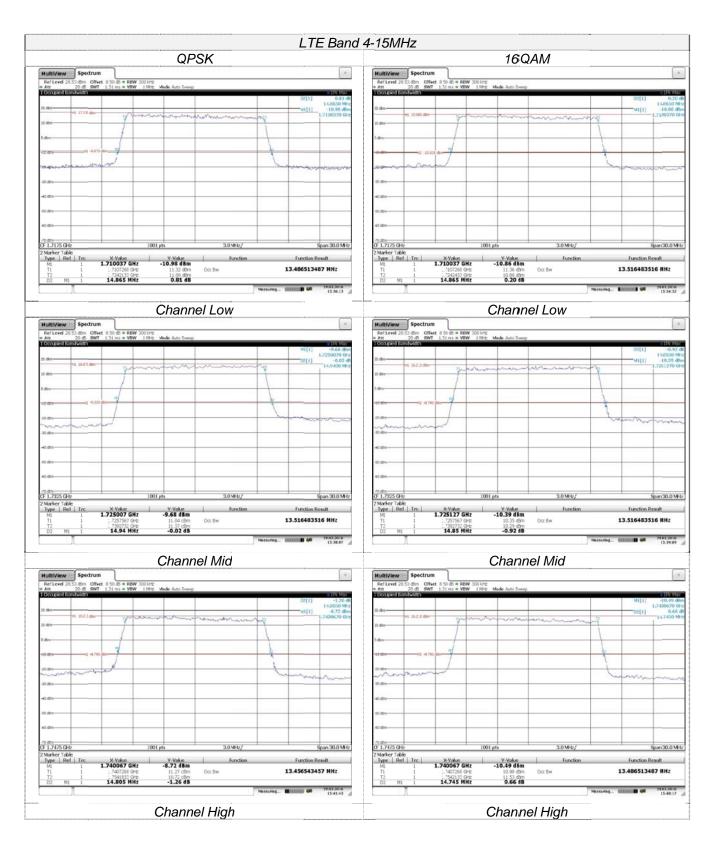
TEST CONFIGURATION

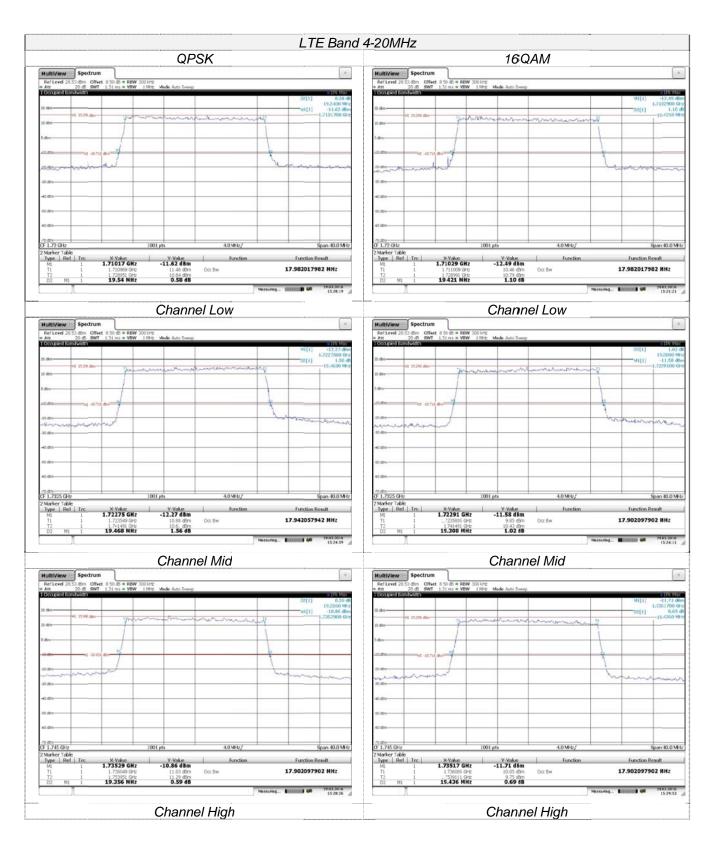

TEST PROCEDURE

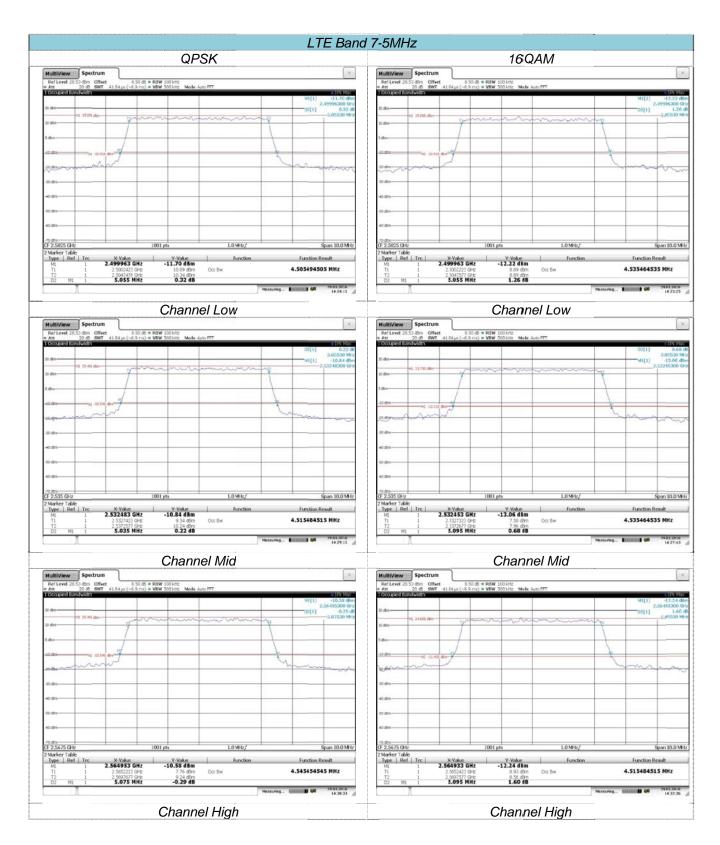

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW= 3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

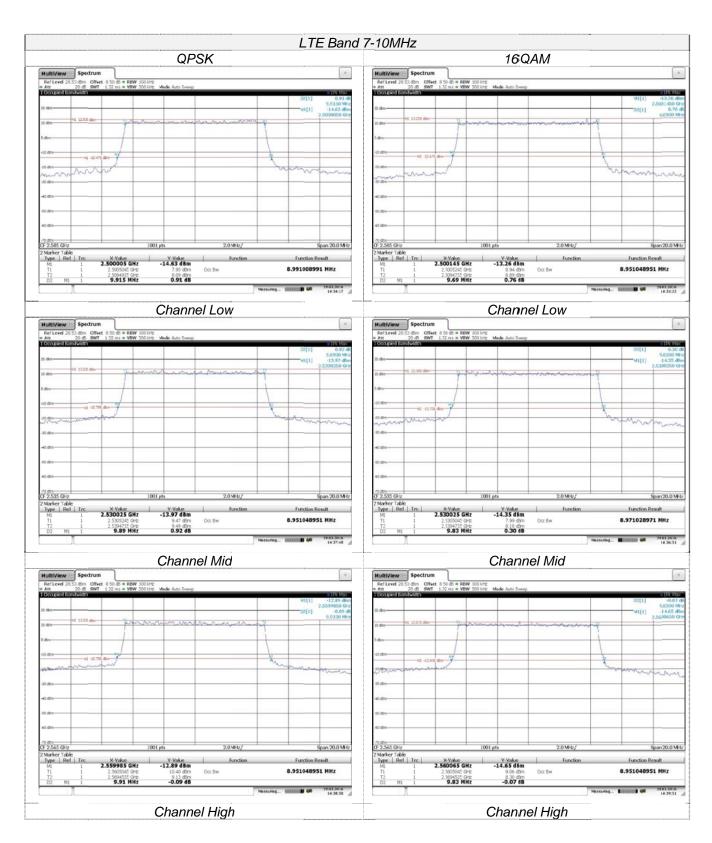

LTE Band 4					
Bandwidth	Channel	99% Occupy bandwidth (MHz)		-26dB bandwidth (MHz)	
		QPSK	16QAM	QPSK	16QAM
1.4MHz	Low	1.10	1.09	1.35	1.30
	Mid	1.10	1.10	1.31	1.32
	High	1.10	1.10	1.34	1.31
	Low	2.69	2.69	2.93	2.96
3MHz	Mid	2.69	2.69	2.96	2.94
	High	2.69	2.69	2.97	2.97
	Low	4.52	4.53	5.03	5.07
5MHz	Mid	4.51	4.53	5.05	5.07
	High	4.52	4.45	5.07	5.06
	Low	8.95	8.97	9.83	9.83
10MHz	Mid	8.95	8.97	9.77	9.77
	High	8.97	8.95	9.85	9.71
15MHz	Low	13.49	13.52	14.87	14.87
	Mid	13.52	13.52	14.94	14.85
	High	13.46	13.49	14.81	14.75
20MHz	Low	17.98	17.98	19.54	19.42
	Mid	17.94	17.90	19.36	19.44
	High	17.90	17.90	19.41	19.61

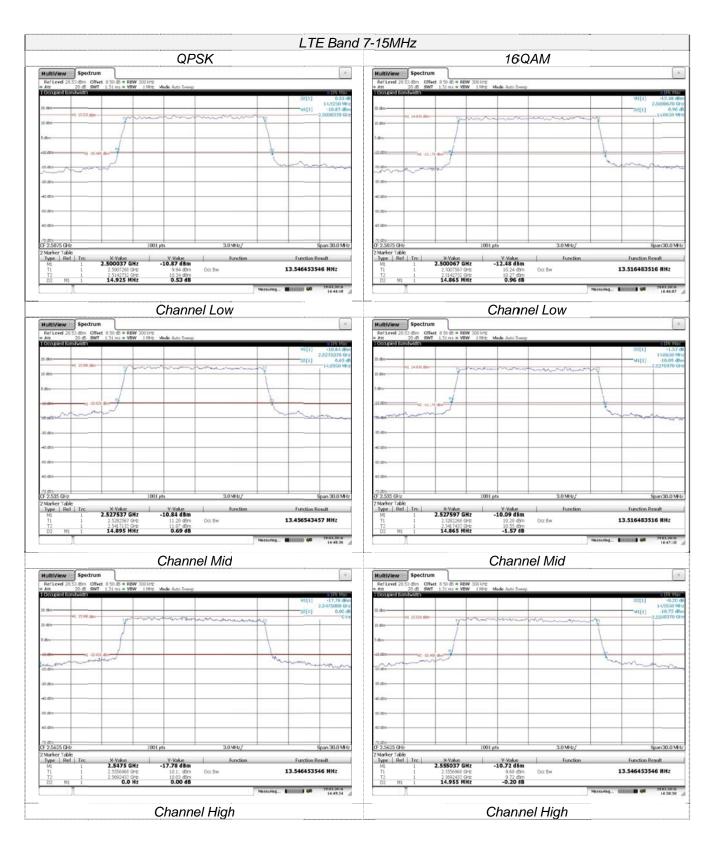

LTE Band 7					
Bandwidth	Channel	99% Occupy bandwidth (MHz)		-26dB bandwidth (MHz)	
		QPSK	16QAM	QPSK	16QAM
5MHz	Low	4.51	4.54	5.06	5.06
	Mid	4.52	4.54	5.04	5.10
	High	4.55	4.52	5.08	5.10
10MHz	Low	8.99	8.95	9.92	9.69
	Mid	8.95	8.97	9.89	9.83
	High	8.95	8.95	9.91	9.83
15MHz	Low	13.55	13.52	14.92	14.87
	Mid	13.46	13.52	14.90	14.87
	High	13.55	13.55	14.93	14.96
20MHz	Low	17.90	17.98	19.54	19.50
	Mid	18.02	17.94	19.70	19.58
	High	17.98	17.94	19.64	19.44

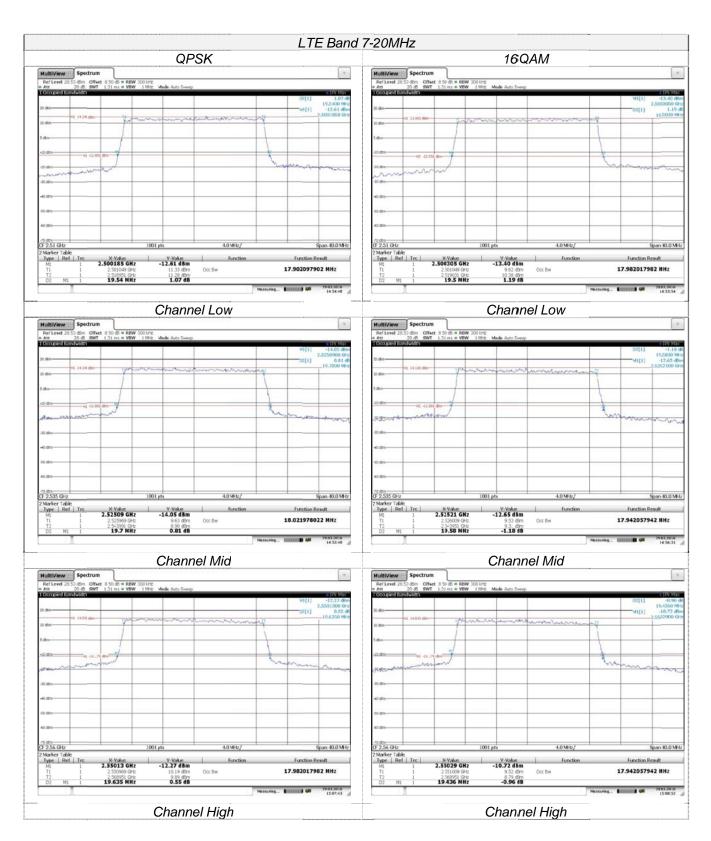

LTE Band 17					
Bandwidth	Channel	99% Occupy bandwidth (MHz)		-26dB bandwidth (MHz)	
		QPSK	16QAM	QPSK	16QAM
5MHz	Low	4.52	4.53	5.05	5.05
	Mid	4.51	4.53	5.02	5.10
	High	4.53	4.51	5.09	5.06
10MHz	Low	8.99	8.95	9.91	9.75
	Mid	8.95	8.97	9.89	9.83
	High	8.95	8.95	9.89	9.77

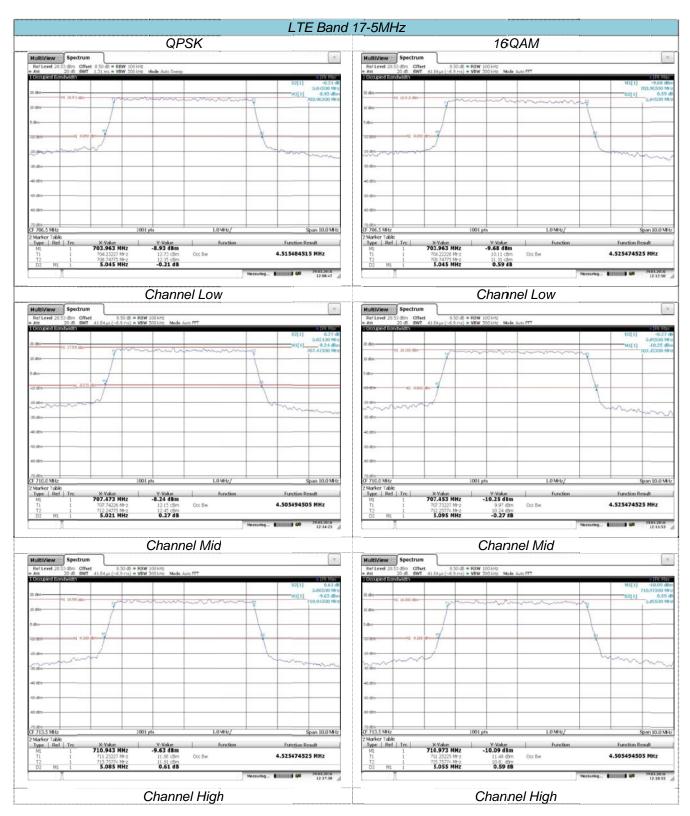


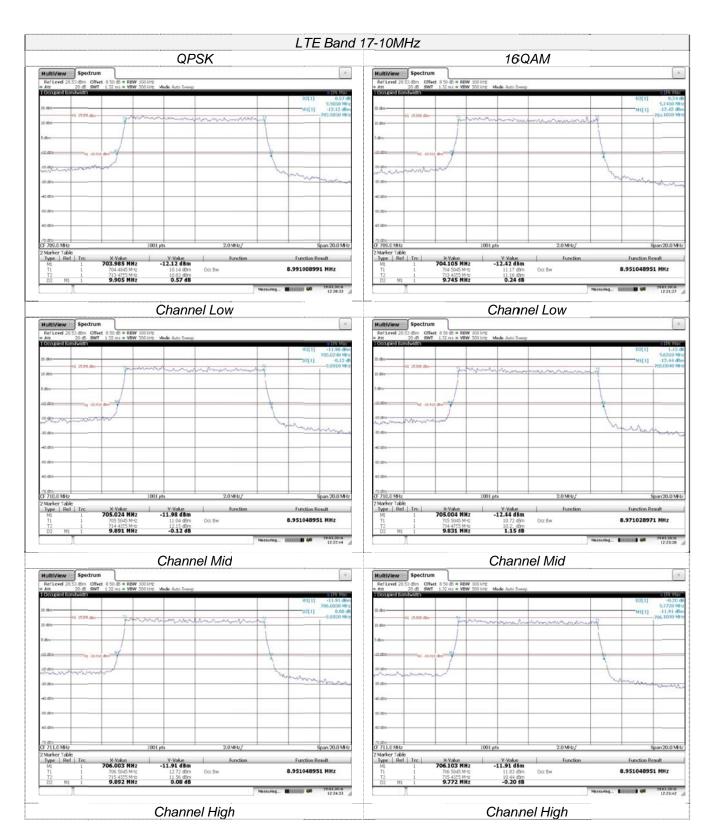


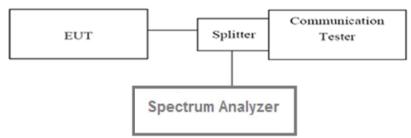






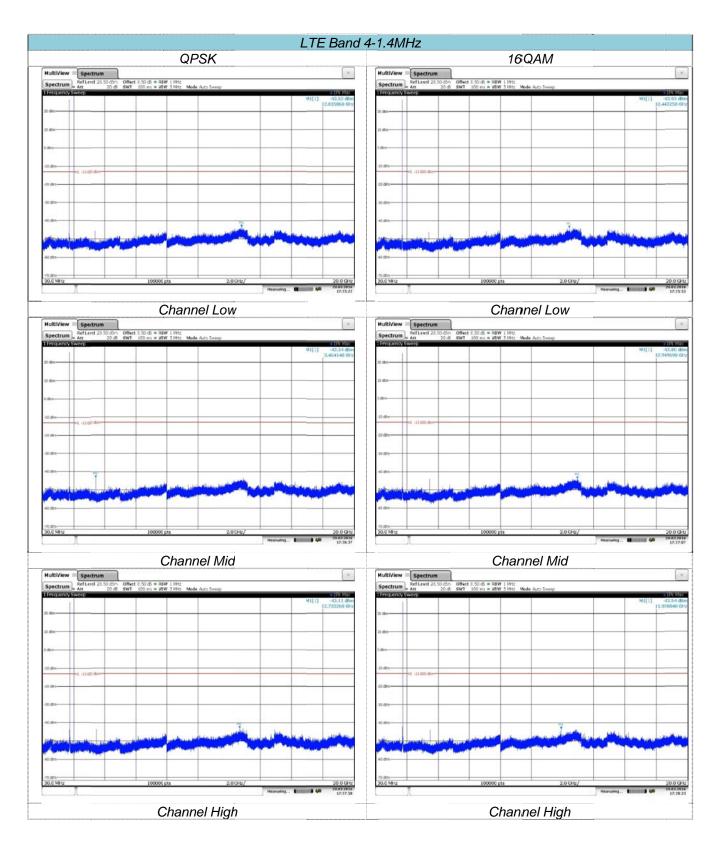


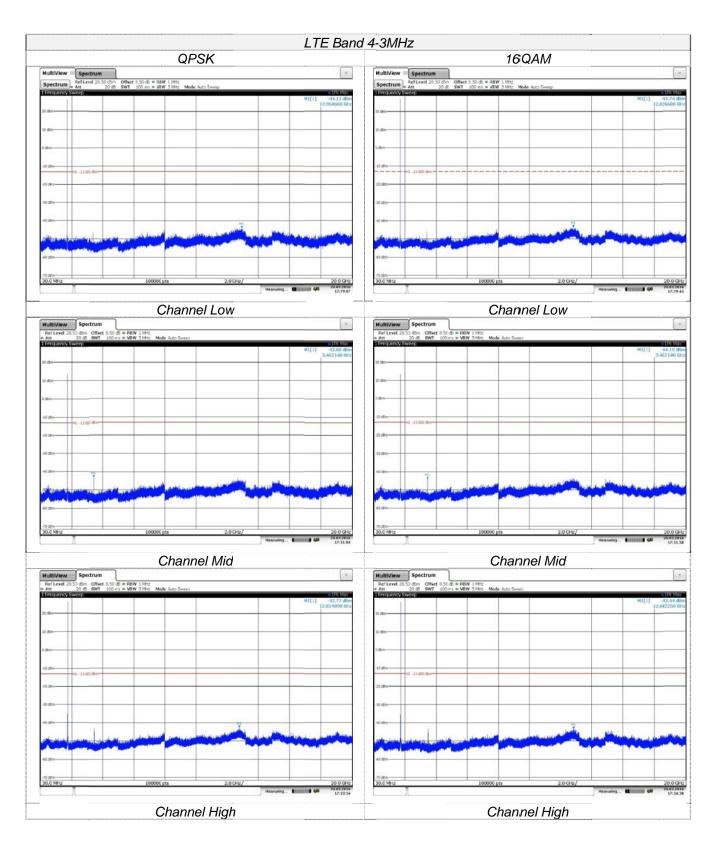


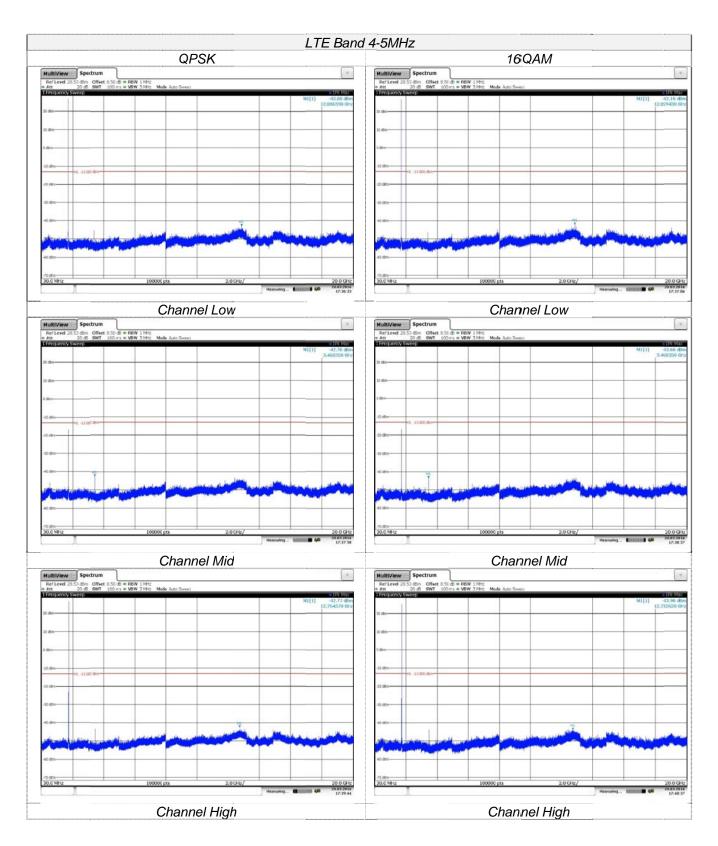

4.3. Out of band emission at antenna terminals

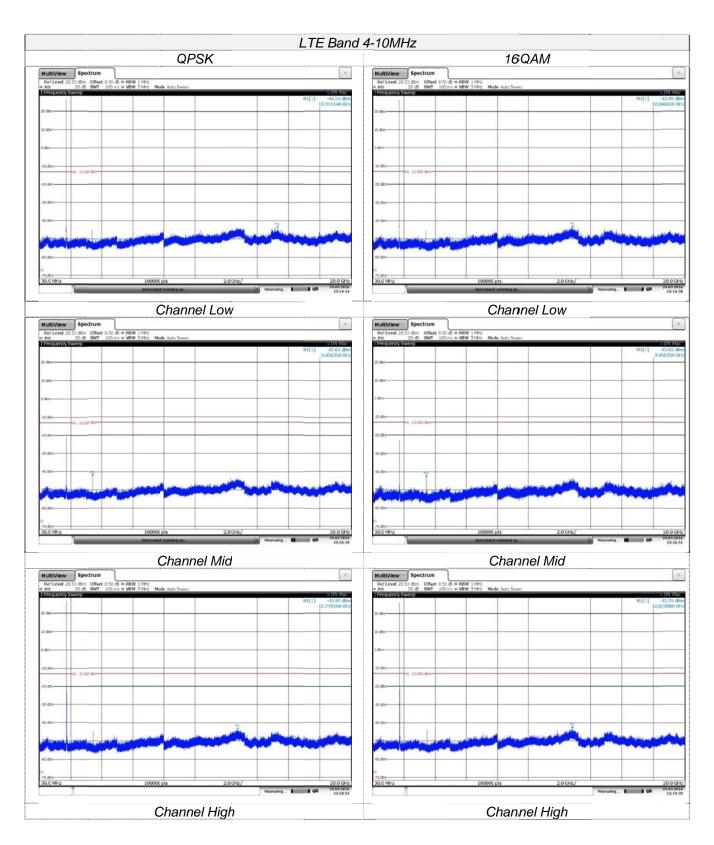
<u>LIMIT</u>

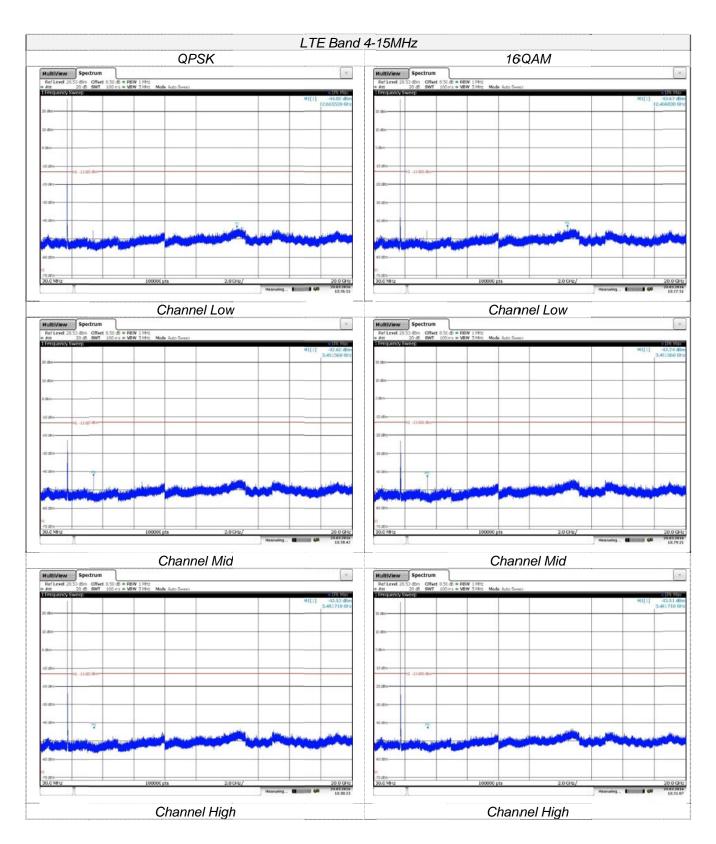
Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

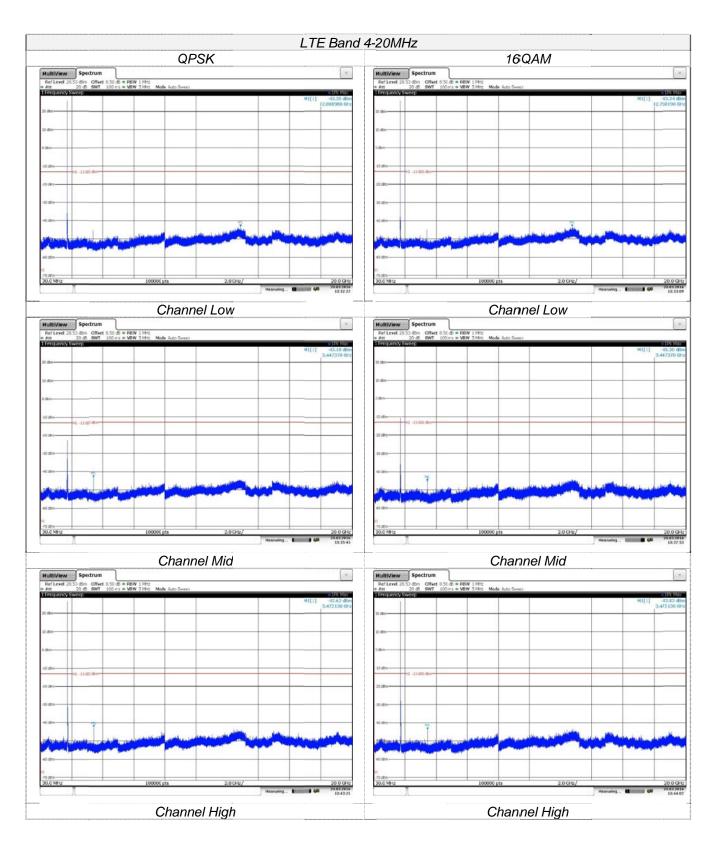

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

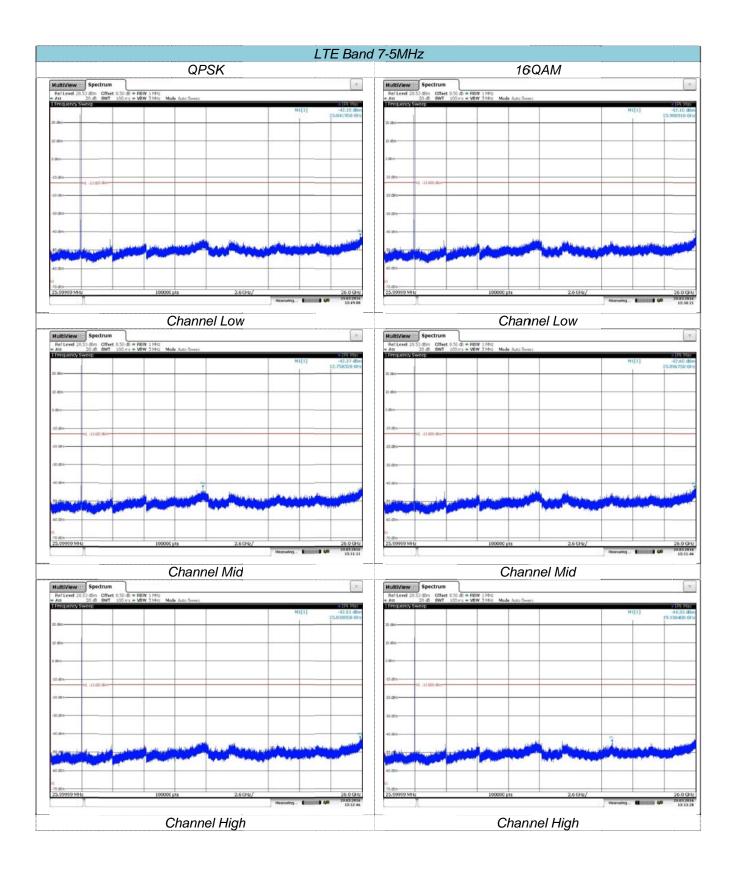

TEST CONFIGURATION

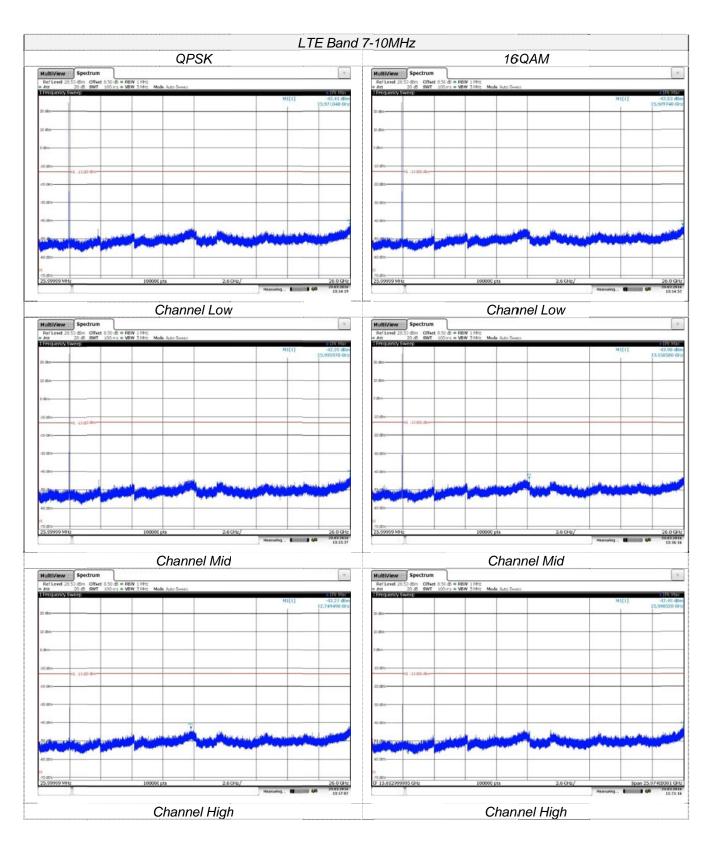


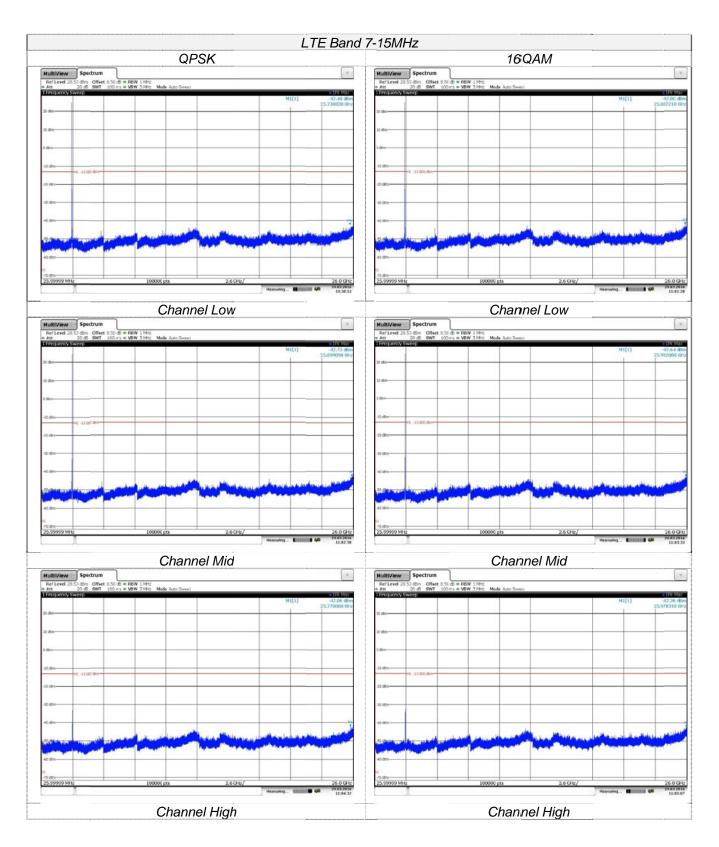

TEST PROCEDURE

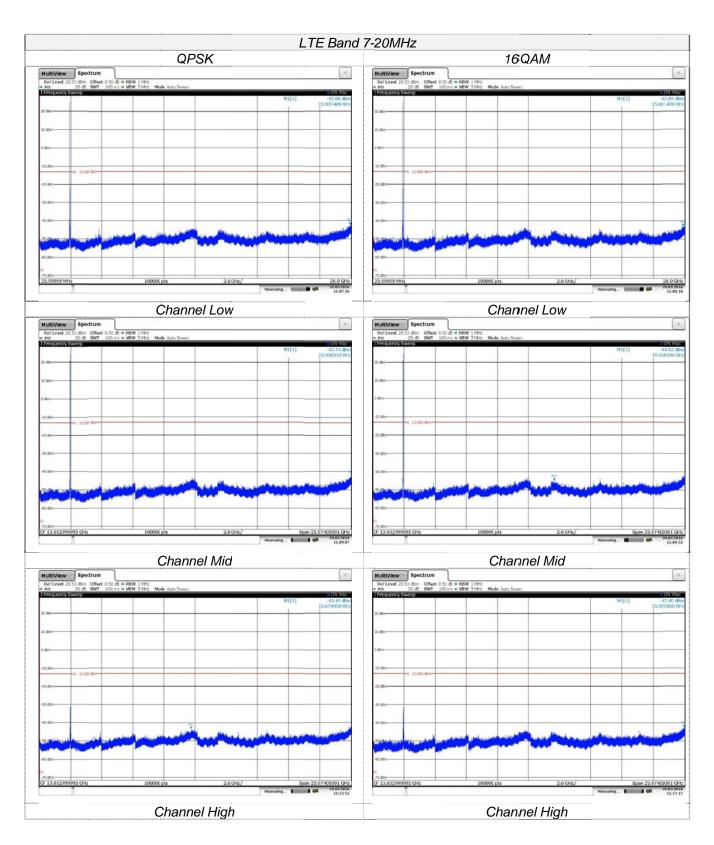

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.
- 3. For the out of band: Set the RBW= 1MHz, VBW = 3MHz, Start=30MHz, Stop= 10th harmonic.

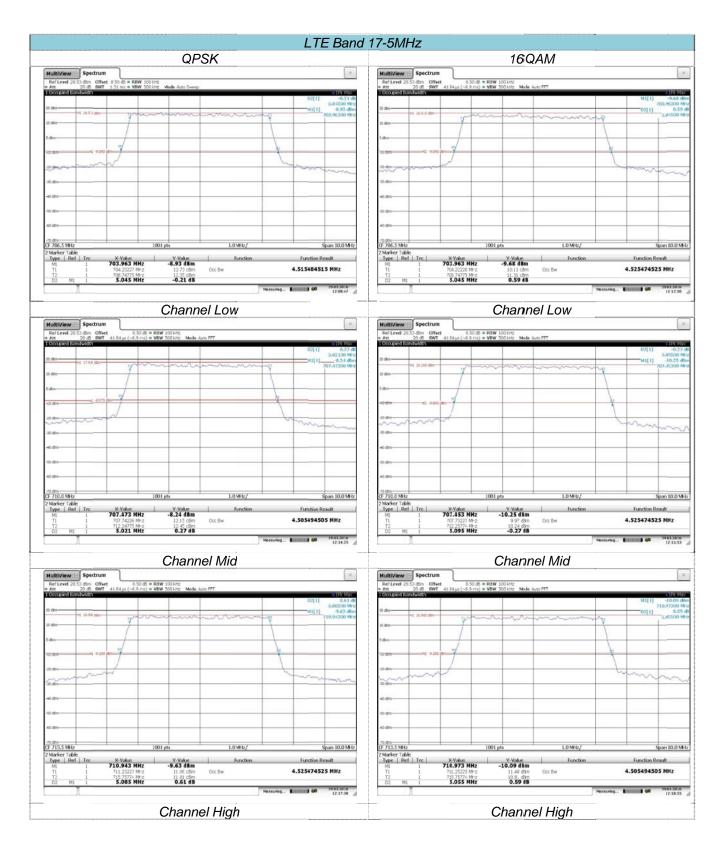


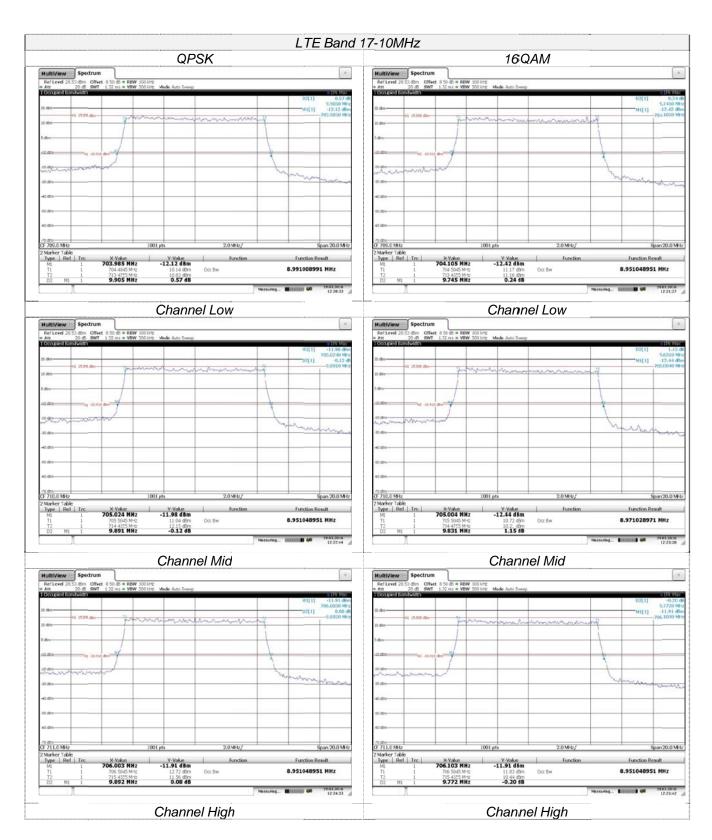


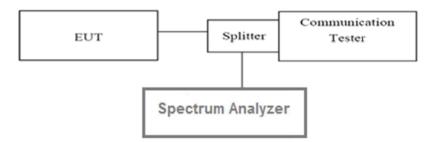






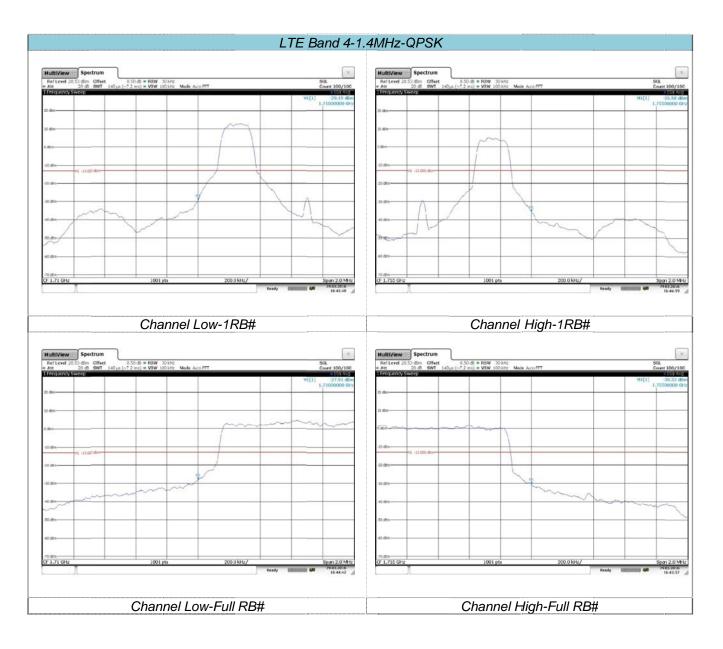





4.4. Band Edge compliance

<u>LIMIT</u>

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.


The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- The band edges of low and high channels for the highest RF powers were measured. Set RBW>= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 3. Set spectrum analyzer with RMS detector.

