

N20 User Manual

V1.0

Copyright

Copyright © 2018 Neoway Technology Co., Ltd. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Neoway Technology Co., Ltd.

Neowoy 有方_{is the trademark of Neoway Technology Co., Ltd.}

All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

This document provides guide for users to use theN20.

This document is intended for system engineers (SEs), development engineers, and test engineers.

The information in this document is subject to change without notice due to product version update or other reasons.

Every effort has been made in preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Neoway provides customers complete technical support. If you have any question, please contact your account manager or email to the following email addresses:

Sales@neoway.com

Support@neoway.com

Website: http://www.neoway.com

	Revision Record		
Issue	Changes	Revised By	Date
V1.0	Initial draft	He Zhizhong	2017-10

Contents

1 Introd	uction to N20	.1
1.1	Overview	. 1
1.2	Block Diagram	2
1.3	Specifications	2
1.4	FCC Compliance and Caution	3
2 N20 Pi	ins	.5
2.1	Pin Definition	5
2.2	Pin Description	6
3 Applie	cation Interfaces	11
3.1	Power and ControlInterfaces	11
	3.1.1 VBAT	11
	3.1.2 VDDIO_1P8	15
	3.1.3 ON/OFF	15
	3.1.4 RESET_N	18
	3.1.5 DTR	19
	3.1.6 NETLIGHT	19
	3.1.7 RING	20
3.2	USB Interface	21
3.3	UIM Card Interface	23
3.4	SDIOInterface	24
3.5	PCM Interface	25
3.6	I2C Interface	28
3.7	SPIInterface	28
3.8	UARTInterfaces	29
3.9	ADCInterfaces	32
3.1	0 GPIOInterfaces	32
3.1	1 Commissioning Interface	33
3.1	2 Other Interfaces	33
4 RF Int	erface	34
4.1	2G/4G RF Design and PCB Layout	34
4.2	GNSS RF Design and PCB Layout	36

4.2.1 GNSS Impedance	
4.2.2 Active GNSS Antenna Design	
5 Electrical Features and Reliability	
5.1 Electrical Features	
5.2 Temperature	
5.3 ESD	
6 RF Features	
6.1 Operating Band	
6.2 TX Power and RX Sensitivity	
7 Mechanical Features	
7.1 Dimensions	
7.2 PCB Foot Print	
7.3 Recommended PCB Foot Print	
8 Mounting and Packaging	
8.1 Mounting the Module onto the Application Board	
8.2 Packaging	
9 SMT TemperatureCurve	
10 Abbreviations	

Table of Figures

Figure 1-1 N20 block diagram
Figure 2-1 N20module pin definition (Top View)
Figure 3-1 Current peaks and voltage drops
Figure 3-2 Capacitors used for the power supply
Figure 3-3 Reference design of power supply control
Figure 3-4 Reference design of power supply controlled by p-MOSFET
Figure 3-5 Reference designs of separated power supply
Figure 3-6 Push switch control
Figure 3-7 MCU control
Figure 3-8 Automatic power on
Figure 3-9 N20 power-on timing
Figure 3-10 N20 power-off timing
Figure 3-11 Reset controlled by button
Figure 3-12 Reset circuit with triode separating
Figure 3-13 N20 reset sequence
Figure 3-14 LED indicator driven by transistor
Figure 3-15 RING indicator for incoming call
Figure 3-16 RING indicator for SMS
Figure 3-17 USB connection
Figure 3-18 USBconnection for OTG
Figure 3-19 Reference design of SIM card interface
Figure 3-20 SDIO SDRtiming
Figure 3-21 SDIO DDRtiming
Figure 3-22 PCM connection
Figure 3-23 I2Sconnection
Figure 3-24 PCM SYN timing
Figure 3-25 PCM data input timing
Figure 3-26 PCM data output sequence
Figure 3-27 SPI interface timing
Figure 3-28 Reference design of the UART interface
Figure 3-29 Recommended level shifting circuit 1
Figure 3-30 Recommended level shifting circuit 2
Figure 3-31 Reference design of the fastboot interface
Figure 4-1 Reference designs of antenna matching

Figure 4-2 Recommended RF PCB design	35
Figure 4-3 Encapsulation specifications of Murata RF connector	
Figure 4-4 RF connections	
Figure 4-5 GNSS RF structure	
Figure 4-6 Power supply reference for active antenna	
Figure 7-1 Dimensions of N20(unit: mm)	
Figure 7-2 N20PCBfoot print(Top View)(unit: mm)	
Figure 7-3 Recommended N20PCB foot print(unit:mm)	44
Figure 9-1 Temperature curve	

Table of Tables

Table 1-1 N20 specifications and features	2
Table 2-1 IO types and level feature description	6
Table 2-2 N20 pin description	7
Table 3-1 Timing parameters of SDIO interface	25
Table 3-2 Timing parameters of PCM interface	27
Table 3-3 Timingparameters of SPIinterface	28
Table 3-4 GPIO pins	32
Table 4-1 2G/4G Antenna Parameters	36
Table 5-1 N20electric features	39
Table 5-2 Temperature feature	39
Table 5-3 N20 ESD features	40
Table 6-1 N20 operating band	41
Table 6-2 N20 RF TX power	41
Table 6-3 N20Cat M1 QPSK RX sensitivity	41

1 Introduction to N20

1.1 Overview

N20 is an industrial-grade module developed on Qualcomm platform. Its dimensions are 23.8mm x 25.8mm x 2.8mm. This module has an ultra-wide operating temperature range of -40 $^{\circ}$ C to +85 $^{\circ}$ C and electrostatic capacity of 8kV.N20 is well applicable to develop low-power IoT terminals with the following features:

- ARM Cortex-A7 processors, 1.3 GHz main frequency, 256 KB L2 cache, 28 nm process technology
- Cat M1/GNSS(optional)
- USB2.0/UIM/ADC/UART/SPI/I2C/PCM/SDIO/GPIO

N20 meets the band requirements: B2/B4/B12/B13.

1.2 Block Diagram

Figure 1-1shows the block diagram of N20.

1.3 Specifications

Table 1-1 N20 specifications and features

Specifications	Description
Dimensions (H x W x D)	23.8±0.15 mm x 25.8±0.15 mm x 2.8±0.15 mm
Weight	3.5g
Package	68-pin LCC
Power supply	VBAT: 3.3V to 4.3 V;Typical value: 3.8 V
Current in idle mode	LTE Cat M1:1.7mA(@DRX cycle=1.28s)
Current in eDRXmode	LTE Cat M1:1.0mA(@eDRX cycle=61.44s, PTW=10.24s)
Current in PSM mode	LTE Cat M1:7.7 µA
Operating temperature	-40 °C to +85 °C
Processor	ARM Cortex-A7 processor

	Main frequency: 1.3 GHz
	256kB L2 cache
	ROM: 128MB
	RAM: 64 MB
Memory	Or
	ROM: 256 MB
	RAM: 128 MB
Rate	LTE Cat M1: 300 Kbps(DL)/375 Kbps(UL)
Transmit power	LTE: +23dBm (Power Class 3)
Antenna feature	$2G/4G$ antenna, GNSS antenna, 50Ω impedance
UART	At most 4 Mbps, 2UART interfaces
UIM	1UIM interface, 1.8V/2.85V dual-voltage adaptive
USB	1 high-speed USB2.0 interface
ADC	2 15-bit ADC interfaces, detectable voltage ranging from 0.1 V to 1.7V
CDI	1 SPI interface, supporting only host mode
581	At most 50 Mbps
I2C	1 I2C interface, used to control external sensor
РСМ	1PCM interface, used to transmit digital audio
SDIO	1SDIO interface, used to control 4-bit WLAN interface
GPIO	3GPIOs, 1 SIM SELECT

1.4 FCC Compliance and Caution

FCC compliance statement:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference.

(2) This device must accept any interference received, including interference that may cause undesired operation.

FCC Caution:

(1) Exposure to Radio Frequency Radiation. This equipment must be installed and operated in accordance with provided instructions and the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20cm from all persons and must not be collocated or operating in conjunction with any other antenna or transmitter. End-users and installers must be provided with antenna installation instructions and transmitter operation conditions for satisfying RF exposure compliance.

(2) Any changes or modifications not expressly approved by the grantee of this device could void the user's authority to operate the equipment.

(3) This transmitter must not be co-located or operating in conjuction with any other antenna or transmitter.

(4) Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

(5) The module FCC ID is not visible when installed in the host, or if the host is marketed so that end users do not have straight forward commonly used methods for access to remove the module so that the FCC ID of the module is visible; then an additional permanent label referring to the enclosed module: Contains Transmitter Module FCC ID: PJ7-1901 or Contains FCC ID: PJ7-1901.

2 N20 Pins

N20 adopts 68-pin LCC encapsulation package.

2.1 Pin Definition

Figure 2-1 N20module pin definition (Top View)

For how to use interfaces supported by OpenThreadX, see *Neoway_N20_Open ThreadX_User_Guide*.

2.2 Pin Description

ІО Туре								
В	Digital I/O, COMS logic level							
DO	Digital output, COMS logic level							
DI	Digital input,COMS logic level							
РО	Power output							
PI	Power input							
AO	Analog output							
AI	Analog input							
Level feature								
P1	Dual-voltage, 1.8Vor 2.85V	1.8Vlevel feature: V_{IH} =1.26V~2.1V, V_{IL} =-0.3V~0.36V V_{OH} =1.44V~1.8V, V_{OL} =0V~0.4V	2.85Vlevel feature $V_{IH}=2V\sim3.15V$, $V_{IL}=-0.3V\sim0.57V$ $V_{OH}=2.28V\sim2.85V$, $V_{OL}=0V\sim0.4V$					
Р3	1.8Vdigital IOvoltage	$V_{IH min} = 1.2V, V_{IL max} = 0.3V$ $V_{OH min} = 1.35V, V_{OLmax} = 0.45V$						
P6	Level for USB2.0 data interface	V _{min} =2.97V, V _{max} =3.5V, V _{typ} =3.08V						

Table 2-1 IO types and level feature description

				I I I I I				
Name	Pin	I/O	Function	Level Feature (V)	Power Domain	Remarks		
Power Supply								
VBAT	20, 21, 22	PI	Main power supply	V _{max} =4.3V		Supply a maximum current of 2A.		
VDDIO _1P8	17	РО	1.8 V power supply	V _{norm} =1.8V; I _{max} =50mA;	1.8V	Used for level shifting and to supply power for IO. Leave this pinunconnected if it is not used.		
GND	1, 4, 18, 19, 23, 24, 34, 35, 42, 52, 53, 55, 57, 66, 68		GND			Ensure that all GND pins are grounded.		
			Cont	rol Interfaces				
RESET_N	13	DI	Reset input	P3	1.8V	Low level triggers the reset.		
PWRKEY	14	DI	Power ON/OFF	P3	1.8V	Low level triggers the ON state. The level at the pin is 0.8 V by default.		
DTR	15	DI	Sleep mode control	Р3	1.8V	Low level triggers sleep mode. Leave this pin unconnected if it is not used.		
RING	50	DO	Incoming call ring	P3	1.8V	Leave this pin unconnected if it is not used.		
NETLIGHT	51	DO	Network status indicator control	P3	1.8V	Leave this pin unconnected if it is not used.		
UART0								
UART0_TX	9	DO	UART data transmit	P3	1.8V	Data transmission		
UART0_RX	10	DI	UART data receive	P3	1.8V	Leave these pins unconnected if they are not used.		
UART0_RTS	11	DI	Request to send	P3	1.8V	Leave these pins unconnected if they are not used.		

Table 2-2 N20 pin description

Copyright © Neoway Technology Co., Ltd

UART0_CTS	12	DO	Clear to send	P3	1.8V			
UART1 (supported by Open ThreadX)								
UART1_RTS	58	DI	Request to send	P3	1.8V	Locus these mine uncomposed if they are not used		
UART1_CTS	59	DO	Clear to send	P3	1.8V	- Leave these pins unconnected if they are not used.		
UART1_RX	60	DI	UART data receive	P3	1.8V	Data transmission		
UART1_TX	61	DO	UART data transmit	P3	1.8V	Leave these pins unconnected if they are not used.		
	ŀ	1		UIM				
VUIM	29	РО	UIM1 power supply output	IO _{max} =50 mA	1.8 V/2.85 V			
UIM_DATA	30	ΙΟ	UIM1 data I/O	P1	1.8 V/2.85 V	Connected to UIM1_VCC through a 10 k Ω pull-up resistor		
UIM_CLK	31	DO	UIM1 clock output	P1	1.8 V/2.85 V			
UIM_RESET	32	DO	UIM1 reset	P1	1.8 V/2.85 V			
UIM_PRESENT	33	DI	UIM1 detect	P3	1.8V			
				USB				
USB_VBUS	25	PI	USB voltage test	3.3V~5.2V, typically 5V		Used for firmware download and data transmission		
USB_HS_DM	26	ΙΟ	USB data negative signal	P6		Differential trace for DM and DP with 90Ω impedance		
USB_HS_DP	27	ΙΟ	USB data positive signal	P6				
USB_ID	28	AI	Master and slave device detect	P3	1.8V	Leave this pin unconnected if it is not used.		
				ADC				
ADC1	2	AI	Analog-to-digital signal conversion	V _{max} =1.7 V; V _{min} =0.1 V	1.8V	15-bit, detectable voltage range: 0.1 V to 1.7 V Leave these pins unconnected if they are not used.		

ADC2	3	AI	Analog-to-digital signal conversion	V _{max} =1.7 V; V _{min} =0.1 V	1.8V			
I2C(supported by Open ThreadX)								
I2C_SCL	44	В	I2C clock	P3	1.8V	Pulled up by a 2.2 k Ω resistor internally		
I2C_SDA	43	В	I2C data	P3	1.8V	Pulled up by a 2.2 k Ω resistor internally		
			PCM (support	ed by Open Thre	eadX)			
PCM_SYNC	45	В	PCM sync signal	P3	1.8V	Leave this pin unconnected if it is not used.		
PCM_CLK	46	DO	PCM clock signal	P3	1.8V	Leave this pin unconnected if it is not used.		
PCM_DIN	47	DI	PCM data input	P3	1.8V	Leave this pin unconnected if it is not used.		
PCM_DOUT	48	DO	PCM data output	P3	1.8V	Leave this pin unconnected if it is not used.		
I2S_MCLK	49	DO	I2S main clock	P3	1.8V	Default frequency:12.288MHz		
			SDIO(support	ed by Open Thre	eadX)			
SDC_CMD	36	В	Control signal of SDIO interface	P3	1.8V	Leave this pin unconnected if it is not used.		
SDC_CLK	37	DO	Clock signal of SDIO interface	P3	1.8V	Leave this pin unconnected if it is not used.		
SDC_DATA_0	38	В	SDIO data bit 0	P3	1.8V	Leave this pin unconnected if it is not used.		
SDC_DATA_1	39	В	SDIO data bit 1	P3	1.8V	Leave this pin unconnected if it is not used.		
SDC_DATA_2	40	В	SDIO data bit 2	P3	1.8V	Leave this pin unconnected if it is not used.		
SDC_DATA_3	41	В	SDIO data bit 3	P3	1.8V	Leave this pin unconnected if it is not used.		
SPI(supported by Open ThreadX)								
SPI_CLK	62	DO	Clock signal	P3	1.8V	Leave this pin unconnected if it is not used.		
SPI_MISO	63	DI	Master input, slave output	P3	1.8V	Leave this pin unconnected if it is not used.		

SPI_MOSI	64	DO	Master output, slave input	P3	1.8V	Leave this pin unconnected if it is not used.
SPI_CS_N	65	DO	Chip select	P3	1.8V	Leave this pin unconnected if it is not used.
				GPIO		
GPIO_1	5	В	GPIO with interrupt	Р3	1.8V	Leave this pin unconnected if it is not used.supported by Open ThreadX
GPIO_2	6	В	GPIO with interrupt	Р3	1.8V	Leave this pin unconnected if it is not used.supported by Open ThreadX
GPIO_3	7	В	GPIO with interrupt	Р3	1.8V	Leave this pin unconnected if it is not used.supported by Open ThreadX
SIM SELECT	8	В	GPIO	Р3	1.8V	To support dual-SIM single standby. Do not connect this pin to the power supply through a pull-up resistor before the module is started.
						Leave this pin unconnected if it is not used.
	1	1		Antenna		
RF_ANT_GNSS	54		GNSS antenna			50 Ω impedance
RF_ANT_MAIN	67		Main antenna			50 Ω impedance
				Other Pins		
EXT_GNSS_LNA_EN	56	DO	GNSS LNA enable	P3	1.8V	Leave this pin unconnected if it is not used.
FORCE_USB_BOOT	48	DI	Forcible upgrade control	Р3	1.8V	Connect a 10 k Ω pull-up resistor to 1.8V, and the module enters USB download mode
						Leave this pin unconnected if it is not used.

3 Application Interfaces

3.1 Power and ControlInterfaces

Name	Pin	I/O	Function	Remarks
VBAT	20, 21, 22	PI	Power supply input	3.3 V to 4.3V (typical value: 3.8 V)
VDDIO_1P8	17	РО	1.8 V power supply output	Power supply for IO level shifting circuit. Load capability: <50 mA Added ESD protection when using this pin.
RESET_N	13	DI	Reset input	Low level triggers reset
PWRKEY	14	DI	Power ON/OFF	Low level triggers the ON status
DTR	15	DI	Sleep mode control	Low level triggers sleep mode. Leave this pin unconnected if it is not used.
RING	50	DO	Incoming call ring	Leave this pin unconnected if it is not used.
NETLIGHT	51	DO	Network status indicator control	Leave this pin unconnected if it is not used.

3.1.1 VBAT

VBAT is the power supply input pin of the module. Its input voltage ranges from 3.3 V to 4.3V and the typical value is 3.8V. In addition to baseband, it supplies power to RF power amplifier. The performance of the VBAT power supply is a critical path to module's performance and stability. The peak input current at the VBAT pin can exceed 2A when the signal is weak and the module works at the maximum transmitting power. The voltage will encounter a drop in such a situation. The module might restart if the voltage drops lower than 3.3 V.

The reference design of the VBAT power supply is shown as below:

In Figure 3-2, use TVS at D1 to enhance the performance of the module during a burst. SMF5.0AG (Vrwm=5V&Pppm=200W) is recommended. Place it close to the module. A large bypass tantalum capacitor (220 μ F or 100 μ F) or aluminum capacitor (470 μ F or 1000 μ F) is expected at C1 to reduce voltage drops during bursts together with C2 (10 μ F ceramics capacitor).In addition,add 0.1 μ F, 100 pF, and 33 pF filter capacitors to enhance the stability of the power supply.R1 is a bleeder resistor that is used in scenarios with high requirements for the switch of power supply.

Neoway 有方

MIC29302WU in Figure 3-3is an LDO and outputs a maximum current of 3 A to ensure that the module works properly.

Figure 3-3 Reference design of power supply control

The alternative way is to use an enhancement-mode p-MOSFET and NPN triode to control the module's power, as shown inFigure 3-4.

InFigure 3-4, the module is turned on when PWR_EN is set to high level.

 V_{GS} across Q1 is equal to the voltage across R4. When high level is input at PWR_EN, the circuit is open at Q2 and there is current at R4. V_{CE} across Q2 is very small while V_{GS} is almost equal to that of VCCIN_3V9. V_S is greater than V_{GS} is smaller than $V_{GS(th)}$ (where $V_{GS(th)}$ is the Gate Threshold Voltage), so the circuit is open at Q1 and the current travels from source to drain.

In case that the MCU can supply a high voltage greater than VCCIN_3V9|, Q2 is not needed.

Reference components:

- Q1 can be IRML6401 or low Rds(on) p-MOSFET, which has higher, withstand voltage and drain current.
- Q2: a common NPN tripolar transistor, e.g. MMBT3904; or a digital NPN tripolar transistor, e.g. DTC123. If digital tripolar transistor is used, delete R1 and R2.
- C3: 470µF tantalum capacitor rated at 6.3V, or 1000µF aluminum capacitor. If lithium battery is used to supply power, C3 can be 220µF tantalum capacitor.

Power Supply Protection

Add TVS diodes (VRWM=5V)to the VBAT power supply, especially in automobile applications. For some stable power supplies, Zener diodes can decrease the power supply overshoot. SMF5.0AG from ONSEMI is an option.

Line Rules

The width of primary loop lines for VBAT on PCB must be able to support the safe transmission of 2 A current and ensure no obvious loop voltage decrease. Therefore, the line width of VBAT is required 2mm and the ground should be as complete as possible.

Separation

The module works in burst mode that generates voltage drops on power supply. Furthermore, this results in a 217Hz TDD noise through power (One of the way generating noise. Another way is through RF radiation). Analog parts, especially the audio circuits, are subjected to this noise, known as a "buzz noise" in GSM systems. To prevent other parts from being affected, use separated power supplies. The module shall be supplied by an independent power, like a DC/DC or LDO. SeeFigure 3-5.

DC/DC or LDO should output rated peak current larger than 2A.

The inductor used in Reference Design (b), should be a power inductor and have very low resistance. The value of 10μ H, with average current ability greater than 1.2A and low DC resistance, is recommended.

- Never use a diode to make the drop voltage between a higher input and module power. Otherwise, Neoway will not provide warranty for product issues caused by this. In this situation, the diode will obviously decrease the module performances, or result in unexpected restarts, due to the forward voltage of diode will vary greatly in different temperature and current.
- Place transient overvoltage protection components like TVS diode on power supply, to absorb the power surges, SMAJ5.0A/C could be a choice.

3.1.2 VDDIO_1P8

VDDIO_1P8 outputs voltage of 1.8V. It is recommended that VDDIO_1.8V@50mAbe used only for interface level shifting and to add ESD protector while using it. VDDIO_1P8 is enabled automatically when the module wakes up or is working.

3.1.3 ON/OFF

Power-On

After powering on the VBAT pin, use PWRKEY to start the module by inputting low-level pulse for more than 100ms (a value longer than 200ms is recommended). The PWRKEY pin is internally connected to the power supply through a 200 k Ω pull-up resistor. Do not connect an external large resistor to ground directly. Otherwise, the module cannot be powered on since the PWRKEY is pulled up all the time internally. If users do not have to control the ON/OFF state of the module, connect a 1.5 k Ω pull down resistor to the ground. Therefore, the module can start automatically once it is turned on. Leave this pin unconnected if not used.

The circuits in Figure 2-7 or Figure 2-8 are recommended to control PWRKEY.

Figure 3-6 Push switch control

Perform other operations on the module only after it is initialized completely. If the module is powered on but the power-on sequence has not been completed, the states of each pin are uncertain. The power-on timing of the module is shown inFigure 3-9.

Figure 3-9 N20 power-on timing

Power-off

The module can be powered off in two ways: hardware power off and software power off.

Inputting a low-level pulse for 2 seconds toPWRKEYcan trigger the power-off state of the module. Leave this pin unconnected if it isnot used.

For how to power off the module through software, please refer to the AT command manual.

If 2.8V/3.3V IO system is adopted, use external triode isolation. For details, refer to 3.1.4 RESET. Figure 3-10shows the hard power-off timing.

Figure 3-10 N20 power-off timing

3.1.4 **RESET_N**

The RESET_N pin is used to reset the module. Low level for more than 1 second at this pin triggers reset of the module. This pin is pulled up internally. Its typical high-level voltage is 1.8V. Leave this pin unconnected if it is not used. If 2.8V/3.0 V/3.3V IO system is used, separate it by adding a triode. Refer to the following design.

To reset the module through high level, refer to Figure 3-7.

Figure 3-11 Reset controlled by button

In a circuit shown inFigure 3-12, VDD_EXT=2.8V/3.3V/3.0V, R2=4.7K, R3=47K. The recommended voltage supplied to the base of the NPN transistor is VDD_1P8. If a voltage higher than 1.8 V is supplied, the voltage across RESET_N might be higher than the threshold 2.1 V once inputting high level.

Figure 3-13 shows the reset sequence.

Figure 3-13 N20 reset sequence

3.1.5 DTR

Generally, the DTR pin is used to control sleep mode together with AT commands. Enable the sleep mode function by AT command. Then pulling DTR low will bring the module into sleep mode if the module is idle. In this mode, the idle current is less than 2mA, depending on the DRX setting of network.

In sleep mode, the module can respond to the incoming call, SMS, and data. The host MCU can also control the module to exit sleep mode by controlling DTR.

Process of entering sleep mode:

- 1. Keep DTR high level in normal working mode. Activate the sleep mode by using the AT+ENPWRSAVE=1 command.
- 2. Pull DTR low, and the module will enter sleep mode, but only after process and pending data finished.
- 3. In sleep mode, the external MCUcan pull DTR high so that the module will exit from sleep mode actively. Then the module can transmit data and initiate calls. After processing is finished, pull DTR low again to take the module back to sleep mode.
- 4. In sleep mode, the module can be woken up by the events of incoming voice call, received data, or SMS. Meanwhile the module will send out the unsolicited messages through the UART.

Upon receipt of the unsolicited messages, the host MCU should pull DTR high firstly, otherwise the module will resume sleep mode in two minutes after the service processing. Then the host MCU can process the voice call, received data, or SMS.After processing is finished, pull DTR low again to put the module into sleep mode.

3.1.6 NETLIGHT

NETLIGHT can output 1.8 V high level. Do not use it to drive LED directly. Drive the LED with a transistor instead.

Figure 3-14 LED indicator driven by transistor

When the module is running, the LED indicator is driven by the NET_LIGHT pin to indicate different module status with its various blink behaviors. N20 supports multiple blink style and users can configure it using AT commands.

3.1.7 RING

• Calling: Once a voice call is incoming, UART outputs "RING" character strings and meanwhile the RING pin outputs 30ms low pulses in a period of 5 second. After the call is answered, the high level restores.

• SMS: Upon receipt of SMS, the module outputs one 35ms low pulse.

Figure 3-16 RING indicator for SMS

3.2 USB Interface

Name	Pin	I/O	Function	Remarks
VBUS	25	Р	USB voltage test	3.3V to 5.2V, typically 5V
USB_HS_DM	26	В	USB data negative signal	USB2.0, used for firmware download and
USB_HS_DP	27	В	USB data positive signal	data transmission 90 Ω impedance for differential trances
USB_ID	28	DI	USB ID	Used for OTG function

USB can be used to download firmware for N20 and establish data communication for commissioning. If the module is used only as USB

Connect a 1 μ F and a 22pF filter capacitors in parallel to the VBUS pin and place themas close to the pin as possible. TVS diodes are required for the USB_VBUS power line. The junction capacitance of the TVS diodes for USB_DP and USB_DM should be lower than 1pF as possible. USB data lines adopt differential trace design, in which the differential impedance is limited to 90 Ω . Isolate the traces from other signal traces.

USB_ID is used for the OTG function. Pull USB_ID to low level, and the module will work in host mode. To use the OTG function, supply a voltage to USB_VBUS. For voltage requirements, see the pin description. Figure 3-17 shows the connection of USB pins.

Figure 3-17 USB connection

Name	Pin	I/O	Function	Remarks
VUIM	29	РО	UIM power supply	Compatible with 1.8 V/3 V UIM card
UIM_DATA	30	Ю	UIMdata	A 10 k Ω resistor is required between VIM_VCC and UIM_DATA.
UIM_CLK	31	DO	UIMclock	
UIM_RESET	32	DO	UIMreset	
UIM_PRESENT	33	DI	UIM detect	A pull-up resistor is recommended

3.3 UIM Card Interface

N20 supports 1.8V/2.85 VUIM cards. VUIM is the power supply pin of the UIM card and its maximum load is 30mA. The UIM_DATA pin is not pulled up internally, so reserve a pull-up resistor externally in design. UIM_CLK is the clock signal pin, supporting 3.25GHz of clock frequency. Figure 3-19 shows the reference design of the UIM card interface.

ESD protectors, such as ESD diodes or TVS diodes (with a junction capacitance of less than 33pF), are recommended to be added on the SIM signals, in most applications with a high requirement of ESD protection.Add a 20 Ω resistor respectively to UIM_DATA,UIM_RESET, UIM_CLK, and UIM_PRESENT to enhance the ESD performance.

N20 supports UIM card detection. UIM_PRESENT isa 1.8V interrupt pin. The UIM detection circuit works by checking the level across the UIM_PRESENT pin before and after a UIM card is inserted. In the reference circuit, SIM-DET is not connected before a UIM card is inserted and is grounded after a UIM card is inserted.Low level means UIM card detected while high level mean no UIM card detected.

The antenna should be installed far away from the UIM card and UIM card traces, especially to the built-in antenna.

The UIM traces on the PCB should be as short as possible and shielded with GND copper.

The ESD protection diodes or small capacitors should be close to UIM card on the PCB.

3.4 SDIOInterface

Name	Pin	I/O	Function	Remarks
SDC_CMD	36	В	Control signal of SDIO interface	
SDC_CLK	37	DO	Clock signal of SDIO interface	
SDC_DATA_0	38	В	SDIO data bit 0	
SDC_DATA_1	39	В	SDIO data bit 1	
SDC_DATA_2	40	В	SDIO data bit 2	
SDC_DATA_3	41	В	SDIO data bit 3	

The SDIO interface supports a maximum clock frequency of SDR 200 MHz or DDR 50 MHz, and it is compatible DS, HS, SDR12, SDR25, SDR50, and SDR104.

The following figures and table shows the sequences and parameters of SDR and DDR modes respectively.

Table 3-1	Timing	parameters	of SDIO	interface
-----------	--------	------------	---------	-----------

	Timing Parameter	Min.	Typical	Max.	Unit
SDR mode	e (max. 200 MHz)				
t(cvdrd)	Command valid time	2.4	7	/	ns
t(dvdrd)	Data valid time	2.4	1	1	ns
t(pddwr)	Delay time from data write to transmit	-1.45	1	0.85	ns
t(pdcwr)	Delay time from command write to transmit	-1.45	/	0.85	ns
DDR mode (max. 50 MHz)					
t(chrd)	Command hold time	1.5	/	/	ns
t(csurd)	Command set-up time	5.53	/	/	ns
t(dhrd)	Data hold time	1.5	/	/	ns
t(dsurd)	Data set-up time	1.65	/	/	ns
t(pddwr)	Delay time from data write to transmit	2.5	/	6.15	ns
t(pdcwr)	Delay time from command write to transmit	-7.85	/	2.65	ns

3.5 PCM Interface

Name	Pin	I/O	Function	Remarks
PCM_SYNC	45	В	PCM sync signal	
PCM_CLK	46	DO	PCM clock signal	
PCM_DIN	47	DI	PCM data input	

PCM_DOUT	48	DO	PCM data output	
I2S_MCLK	49	DO	I2S main clock	Default frequency: 12.288MHz

N20 provides one I2S/PCM MUX interface that supports 1.8 V. Figure 3-22 shows the connection of PCM.

Figure 3-23 I2Sconnection

I2S_MCLK	I2S_MCLK
I2S_TX	I2S_DIN
I2S_RX	I2S_DOUT
I2S_WS	I2S_LRCLK
I2S_SCLK	I2S_BCLK
N20	CODEC

The clock frequency of the PCM interface is be 2018 KHz at most. The following figures show the sequences of PCM.

Figure 3-25 PCM data input timing

Figure 3-26 PCM data output sequence

Table 3-2 Timing parameters of PCM interface

	Timing Parameter	Min.	Typical	Max.	Unit
t(sync)	PCM_SYNCcycle	1	125	/	ns
t(synca)	PCM_SYNCvalid time	/	488	/	ns
t(syncd)	PCM_SYNC invalid time	1	124.5	/	ns
t(clk)	PCM_CLKcycle	/	488	/	ns
t(clkh)	PCM_CLK high time	/	244	/	ns
t(clkl)	PCM_CLK low time	/	244	/	ns
t(susync)	Set-up time from PCM_SYNChigh PCM_CLK low	/	122	/	ns
t(sudin)	Set-up time from PCM_DINhigh to PCM_CLKlow	60	/	/	ns
t(hdin)	Hold time from PCM_CLK low to PCM_DIN high	10	/	/	ns
t(pdout)	Delay time from PCM_CLK high to PCM_DOUTlow	/	/	60	ns
t(zdout)	Delay time from PCM_CLK low to PCM_DOUT high impedance	/	160	/	ns

3.6 I2C Interface

Name	Pin	I/O	Function	Remarks
I2C_SCL	44	DO	I2Cclock	Pulled up by a 2.2 k Ω resistor internally.
I2C_SDA	43	В	I2C data	Pulled up by a 2.2 k Ω resistor internally.

The I2C interface can be used directory because it is pulled up by a 2.2 k Ω resistor internally.

3.7 SPIInterface

Name	Pin	I/O	Function	Remarks
SPI_CLK	62	DO	Clock signal	Max. 50MHz
SPI_MISO	63	DI	Master input	
SPI_MOSI	64	DO	Master output	
SPI_CS_N	65	DO	Chip select	

The SPI interface supports 1.8 V and only master mode.

Figure 3-27 SPI interface timing

 Table 3-3 Timingparameters of SPIinterface

	Timing Parameter	Min.	Typical	Max.	Unit
Т	Clock cycle (max. 50MHz)	20.0	/	/	ns
t(ch)	Hold time for clock high	9.0	/	/	ns
t(cl)	Hold time for clock low	9.0	/	/	ns
t(mov)	Output valid time	-5.0	/	5.0	ns
t(mis)	Input set-up time	5.0	/	/	ns
t(mih)	Input hold time	1.0	/	/	ns

Name	Pin	I/O	Function	Remarks
UART0_TX	9	DO	UART data transmit	
UART0_RX	10	DI	UART data receive	
UART0_RTS	11	DO	Request to send	
UART0_CTS	12	DI	Clear to send	
UART1_RTS	58	DO	Request to send	
UART1_CTS	59	DI	Clear to send	
UART1_RX	60	DI	UART data receive	
UART1_TX	61	DO	UART data transmit	

3.8 UARTInterfaces

N20 provides 2 UART interfaces, one of which support hardware flow control. The UART interfaces support 4 Mbps at most. The level at the interfaces is 1.8V. Figure 3-28shows the reference design of the UART interface.

Figure 3-28 Reference design of the UART interface

If the UART does not match the logic voltage of the MCU, add a level shifting circuit outside of the module as shown inFigure 3-29 (for $V_{IL} \leq 200 \text{ mV}$) and Figure 3-30 (for $V_{IL} > 200 \text{ mV}$).

Figure 3-29 Recommended level shifting circuit 1

NOTE NOTE

Components:

R2/R4: 2K-10K. The greater the UART baud rate is, the lower the R2/R4 values are.

R1/R3: 4.7K-10K The greater the UART baud rate is, the lower the R/R3R3 value is.

Q1/Q2: MMBT3904 or MMBT2222. High-speed transistor is better.

MCU_TXD and MCU_RXD are respectively the TX and RX ports of the MCU while TXD and RXD are respectively the TX and RX ports of the module.

Voltage at VCC_IO is the voltage at the UART of the MCU while voltage at VDD_1V8 is the voltage at the UART of the module.

Figure 3-30 shows another recommended level shifting circuit.

Figure 3-30 Recommended level shifting circuit 2

NOTE NOTE

Components:

Q1/Q2: MMBT3904 or MMBT2222. High-speed transistors are better.

MCU_TXD and MCU_RXD are respectively the TX and RX ports of the MCU, while TXD and RXD are respectively the TX and RX ports of the module.

Voltage at VCC_IO is the voltage at the UART of the MCU while voltage at VDD_1P8 is the voltage at the UART of the module.

3.9 ADCInterfaces

N20 provides two ADC channels, and the input voltage ranges from 0.1 V to 1.7 V. ADC pin supports highest precision of 15 bit and it can be used for temperature and other check.

Name	Pin	I/O	Function	Remarks
ADC1	2	AI	Analog-to-digital signal conversion	
ADC2	3	AI	Analog-to-digital signal conversion	

3.10 GPIOInterfaces

Table 3-4lists GPIO pins.

Table 3-4 GPIO pins

Name	Pin	I/O	Function	Remarks
GPIO1	5	В	GPIO with interrupt	
GPIO2	6	В	GPIOwith interrupt	
GPIO3	7	В	GPIOwith interrupt	
SIM_SELECT	8	В	GPIO, to support Dual-SIM Single Standby	Do not connect this pin to the power supply through a pull-up resistor before the module is started.

N20 provides 4 GPIO pins, three among which support interrupt. Do not connect SIM_SELECT to the power supply through a pull-up resistor before the module is started. If high level is detected at this pin or any current is input at this pin during the startup of the module, the module will be forced to enter the download mode.

N20 does not support dual-SIM function. To support dual-SIM single standby, add an external analog switch to switch SIM cards. SIM_SELECT is used to control the analog switch. If low level is detected at this pin, switch to SIM1; if high level is detected, switch to SIM2.

SIM1 is selected by default after the module is enabled. To switch to SIM2, send AT+SIMSWITCH=2. For details, see *Neoway_N20_AT_Command_Mannual*.

For how to design the function, see Neoway_N20_Dual_SIM_Single_Standby_Application_Guide.

3.11 Commissioning Interface

To facilitate software update and commissioning, reserve the commissioning interface.

The module can enter the fastboot mode by connecting the FORCE_USB_BOOT pin to VDDIO_1P8 during the startup. This is the last method to troubleshoot the abnormality that the module cannot start or operation properly.

3.12 Other Interfaces

Name	Pin	I/O	Function	Remarks
EXT_GNSS_LNA_EN	56	DO	GNSS_LNA enable	Used for externalGNSS_LNA

4 **RF Interface**

Name	Pin	I/O	Function	Remarks
RF_ANT_MAIN	67		2G/4G main antenna	500 abarastaristis impedance
RF_ANT_GNSS	54		GNSSantenna	5002 characteristic impedance

4.1 2G/4G RF Design and PCB Layout

RF_ANT_MAIN is the antenna pins of N20. A 50 Ω antenna is required. VSWR ranges from 1.1 to 1.5. The antenna should be well matched to achieve best performance. It should be installed far away from high-speed logic circuits, DC/DC power or any other strong disturbing sources.

A 50 Ω antenna is required. VSWR ranges from 1.1 to 1.5. The antenna should be well matched to achieve best performance.

For multiple-layer PCB, the trace between the antenna pad of module and the antenna connector, should have a 50 Ω characteristic impedance, and be as short as possible. The trace should be surrounded by ground copper. Place plenty of via holes to connect this ground copper to main ground plane, at the copper edge.

For dual-layer PCB, the width of recommended impedance trace is 0.8 mm to 1 mm and the grounding copper should away from the trace for 1 to 1.5 time of the trace width.

If the trace between the module and connector has to be longer, or built-in antenna is used, add a matching as shown in Figure 4-1.

Figure 4-1 Reference designs of antenna matching

The elements in the matching circuits must be capacitor, inductor, or 0Ω resistor. It is recommended to add ESD protector if the antenna might generate static electricity. The protector can be TVS with a

maximum junction capacitance of lower than 0.5 pF. Ensure that the reverse breakdown voltage of the TVS is greater than 10V (above 15 V is recommended).

Big RF solder pad can result in great parasitic capacitance, which will affect the antenna performance. Remove the copper on the first and second layers under the RF solder pad.

Figure 4-2 Recommended RF PCB design

To adopt RF antenna connections, the GSC RF connector MM9329-2700RA1 from Murata is recommended.Figure 4-3shows the encapsulation specifications.

Figure 4-3 Encapsulation specifications of Murata RF connector

RF antenna can also be connected to the module by soldering. In this manner, ensure proper soldering in case of damage that lowers RF performance. Figure 4-4shows the pictures of these two connections.

Figure 4-4 RF connections

The antenna model of CS-G10-3F3-LE has been recommended in 2G/4G applications, and its specification is listed in **Table 4-1**.

Model Specification		CS-G10-3F3-J	LE
Frequency Range	824-960/1710-2690 MH	Z	
Bandwidth	1116 MHz		
Polarization	Vertical Polarization		
Nominal Impedance	50 Ω		
	820/960 MHz	4.44 dBi	
Gain	1710/2170 MHz	4.89 dBi	Without compensation
	2300/2690 MHz	6.41 dBi	
Connector	SMA		
Antenna Dimension	Φ=67.8 mm, 269 mm		
Cable length	3 m		
The Work Temperature	-40~85 °C		
Material	TPEE		
Screw torque	$\leq 5 \text{ kg}$		
Others	The appearance is solid a	and can bear ha	sh environment conditions.

4.2 GNSS RF Design and PCB Layout

4.2.1 GNSS Impedance

The 54th pin is the GNSS interface of the module, which also requires a 50 Ω . The PCB layout for GNSS is similar to that for GPRS. For details, refer to the previous section. Figure 4-5shows the internal structure of the GNSS RF.

Figure 4-5 GNSS RF structure

In addition to the basic rules, the GNSS routing has higher requirements because the air wireless GNSS signal has lower strength, which results in weaker electrical signal after the antenna receives. Weaker signals are more susceptible to interference. Therefore, active antenna are commonly used for GNSS. The active GNSS antenna amplifies the weak signals received to stronger signals through the low-noise amplifier (LNA) and then transmits the signals through the feeder.

If using a passive antenna, add LNA near the feeder because the module does not embed one internally.EXT_GNSS_LNA_EN is used to enable GNSS_LNA.

If the antenna and layout are not designed reasonably, the GNSS will be insensitive, resulting in long time on positioning or inaccurate position.

Keep the GPRS and GNSS far away from each other in layout and antenna layout design.

4.2.2 Active GNSS Antenna Design

Ceramic GNSS chip antenna is mainly used. In general, using the active ceramic antenna is recommended. After the antenna receives GNSS satellite signals, the LNA amplifies them first and then they are transmitted to the 54thpin (RF_ANT_GNSS) through the feeder and PCB traces. 50 Ω impedance is required for both the feeder and PCB traces and the traces should be as short as possible. The power supply of the active antenna is fed by the 100nH inductance through the signal traces.

Common active antenna requires 3.3V to 5V power supply. Though the active antenna has a low power consumption, it requires stable and clean power supply. It is recommended that high-performance LDO is used to supply power for the antenna through a 100nH inductance, as shown inFigure 4-6.

Figure 4-6 Power supply reference for active antenna

It is recommended that an ESD protection diode is added to the antenna interface in an environment with great electromagnetic interference and other applications with bad ESD. The ESD protection diode must have ultra-low capacitance (lower than 0.5pF). Otherwise, it will affect the impedance of the RF loop or result in attenuation of RF signals. RCLAMP0521P from Semtech or ESD5V3U1U from Infineon is recommended.

On the PCB, keep the RF signals and RF components away from high-speed circuits, power supplies, transformers, great inductors, the clock circuit of single-chip host, etc.

5 Electrical Features and Reliability

5.1 Electrical Features

Table 5-1 N20electric features

Module St	atus	Minimum Value	Typical Value	Maximum Value
VDAT	Vin	3.3V	3.8V	4.3V
VDAI	Iin	/	/	2A

If the voltage is too low, the module might fail to start. If the voltage is too high or there is a voltage burst during the startup, the module might be damaged permanently.

If LDO or DC-DC is used to supply power for the module, ensure that it outputs at least 2A current.

5.2 Temperature

Table 5-2 Temperature feature

Module Status	Minimum Value	Typical Value	Maximum Value
Work	-40 °C	25 ℃	85 °C
Storage	-45 °C		90 °C

If the module works in temperature exceeding the thresholds, some of its RF performance indicator might be worse but it can still work properly.

5.3 ESD

Electronic products need to pass several ESD tests. The following table shows the ESD capability of key pins of our module. Add ESD protection to those pins in accordance to the application to ensure product quality when designing better products.

Humidity: 45% Temperature: 25 °C

Testing Point	Contact Discharge	Air Discharge
VBAT	±8 kV	±15 kV
GND	±8 kV	±15 kV
ANT	±8 kV	±15 kV
Cover	±8 kV	±15 kV
Others	±2 kV	±4 kV

Table 5-3 N20 ESD features

6 RF Features

6.1 Operating Band

OperatingBand	Uplink	Downlink
FDD-LTE B2	1850~1910 MHz	1930~1990 MHz
FDD-LTE B4	1710~1755 MHz	2110~2155 MHz
FDD-LTE B12	699~716 MHz	729~746 MHz
FDD-LTE B13	777~787 MHz	746~756 MHz

Table 6-1 N20 operating band

6.2 TX Power and RX Sensitivity

Table 6-2 N20 RF TX power

Band	Max Power	Min. Power
HD-FDD LTE B2	23dBm+2/-2dB	<-40dBm
HD-FDD LTE B4	23dBm+2/-2dB	<-40dBm
HD-FDD LTE B12	23dBm+2/-2dB	<-40dBm
HD-FDD LTE B13	23dBm+2/-2dB	<-40dBm

Table 6-3N20Cat M1 QPSK RX sensitivity

Band	REFSENS	Duplex Mode
LTE B2	≤-103dBm	HD-FDD
LTE B4	≤-103dBm	HD-FDD
LTE B12	≤-103dBm	HD-FDD
LTE B13	≤-103dBm	HD-FDD

NOTE NOTE

All the values above are obtained in the lab environment. In actual applications, there might be a difference because of the network environment.

7 Mechanical Features

7.1 Dimensions

Figure 7-1 Dimensions of N20(unit: mm)

7.2 PCB Foot Print

7.3 Recommended PCB Foot Print

Figure 7-3 Recommended N20PCB foot print(unit:mm)

8 Mounting and Packaging

8.1 Mounting the Module onto the Application Board

N20 is compatible with industrial standard reflow profile for lead-free SMT process.

The reflow profile is process dependent, so the following recommendation is just a start point guideline:

- Only one flow is supported.
- Quality of the solder joint depends on the solder volume. Minimum of 0.12 mm to 0.15mmstencil thickness is recommended.
- Use bigger aperture size of the stencil than actual pad size.
- Use a low-residue, no-clean type solder paste.

For information about cautions in N20 storage and mounting, refer to Neoway Module Reflow Manufacturing Recommendations.

When maintaining and manually desoldering it, use heat guns with great opening, adjust the temperature to 250 degrees (depending on the type of the solder paste), and heat the module till the solder paste is melt. Then remove the module using tweezers. Do not shake the module in high temperature when removing it. Otherwise, the components inside the module might get misplaced.

8.2 Packaging

N20 modules are packaged in sealed bags on delivery to guarantee a long shelf life. Package the modules again in case of opening for any reasons.

If exposed to air for more than 48 hours at conditions not worse than 30 °C/60% RH, a baking procedure should be done before SMT.Or if the indication card shows humidity greater than 20%, the baking procedure is also required. Do not bake modules with the package tray directly.

9 SMT TemperatureCurve

Figure 9-1 Temperature curve

X: Time (s) Y: Temperature (\mathcal{C})

Technicalparameters:

- Ramp up rate: 1 to 4 °C/sec
- Ramp down rate: -3 to-1 °C/sec
- Soaking zone: 150-180 °C, Time: 60-100s
- Reflow zone:>220 °C, Time: 40-90s
- Peak temperature: 235-250 °C

Do not use the kind of solder paste different from our module technique.

- The melting temperature of solder paste with lead is 35 °Clower than that of solder paste without lead. It is easy to cause faulty joints for LCC inside the module after second reflow soldering.
- When using only solder pastes with lead, please ensure that the reflow temperature is kept at 220 $^{\circ}$ C for more than 45 seconds and the peak temperature reaches 240 $^{\circ}$ C.

Neoway will not provide warranty for heat-responsive element abnormalities caused by improper temperature control.

10 Abbreviations

ADC	Analog-Digital Converter
DRX	Discontinuous Reception
DTR	Data Terminal Ready
eDRX	Extended Discontinuous Reception
EGSM	Enhanced GSM
ESD	Electronic Static Discharge
FDD	Frequency Division Duplex
GNSS	Global Navigation Satellite System
GPRS	General Packet Radio Service
GPIO	General-Purpose Input/Output
GPS	Global Positioning System
GSM	Global Standard for Mobile Communications
I2C	Interintegrated Circuit
LDO	Low Dropout Regulator
LNA	Low Noise Amplifier
LTE	Long-Term Evolution
Mbps	Million bits per second
MCU	Micro Controller Unit
PCB	Printed Circuit Board
PCM	Pulse-Coded Modulation
SDC	Secure Digital Controller
SDR	Single Data Rate
SIM	Subscriber Identification Module
SPI	Serial Peripheral Interface
TBD	To Be Determined
TDD	Time Division Duplex
TVS	Transient Voltage Suppressor
UART	Universal Asynchronous Receiver-Transmitter
UIM	User Identity Module