

i

Copyright © 2017 Neoway Technology Co., Ltd. All rights reserved.

NCOWOY 有方 is the trademark of Neoway Technology Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

Remarks

This document is intended for system engineers (SEs), development engineers, and test engineers.

The information in this document is subject to change without notice due to product version update or other reasons.

Every effort has been made in preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Neoway provides customers complete technical support. If you have any question, please contact your account manager or email to

Sales@neoway.com

Support@neoway.com

Website: http://www.neoway.com

Revision Record								
Version	Changes	Date						
V1.0	Initial draft	2016-08						
V1.1	Added bands information of different areas	2016-09						
V1.2	Modified pin the description	2016-10						
V1.3	Modify the UIM card part and delete the UIM2 part	2016-12						
	Improve band information							
	 Modify part of the pin definition (the original pin78 RING, pin80 LIGHT are modified to pin13 RING, pin83 LIGHT. Pin13 and pin83 are NC) 							
	Modify part of description							

Contents

1 Introduction to N720	1
1.1 Overview	1
1.2 Block Diagram	2
1.3 Features	2
2 Application Interfaces	5
2.1 Specifications and Pin Definition	5
2.2 Pin Description	6
2.3 Power Control Interfaces	13
2.3.1 VBAT	13
2.3.2 VDDIO_1P8	17
2.3.3 ON/OFF	17
2.3.4 RESET	19
2.4 USB Interface	21
2.5 UIM Card Interface	22
2.6 GPIO	24
1.1.1 UART	24
2.6.2 ADC	26
2.6.3 NET_LIGHT	26
2.6.4 DTR	27
2.6.5 RING Signal Indicator	27
2.7 Commissioning Interfaces	28
2.7.1 FORCE_USB_BOOT	28
3 RF Interface	29
3.1 2G/3G/4G RF Design and PCB Layout	29
3.2 GPS RF Design and PCB Layout	31
3.2.1 GPS Impedance	31
3.2.2 Active GPS Antenna Design	31
4 Electric Feature and Reliability	33
4.1 Electric Feature	33
4.2 Temperature	33
4.3 ESD Protection	34
5 RF Feature	35
5.1 Work Band	35

5.2 TX Power and RX Sensitivity	
6 Mechanical Feature	
6.1 Dimensions	
6.2 PCB Foot Print	
7 Mounting and Packaging	39
7.1 Mounting the Module onto the Application Board	
7.2 Package	
8 SMT TemperatureCurve	40
9 Abbreviations	41

Table of Figures

Figure 1-1 N720 block diagram	. 2
Figure 2-1 Top view of N720	. 5
Figure 2-2 Current peaks and voltage drops	14
Figure 2-3 Capacitors used for the power supply	14
Figure 2-4 Reference design of power supply control	15
Figure 2-5 Reference design of power supply controlled by p-MOSFET	15
Figure 2-6 Reference designs of separated power supply	17
Figure 2-7 Push switch controlling	18
Figure 2-8 MCU controlling	18
Figure 2-9 N720 power-on/off sequence	18
Figure 2-10 N720 power-off sequence	19
Figure 2-11 Reset controlled by button	20
Figure 2-12 Reset circuit with triode separating	20
Figure 2-13 N720 reset sequence	20
Figure 2-14 USB circuit	21
Figure 2-15 Reference design of SIM card interface	22
Figure 2-16 Encapsulation	23
Figure 2-17 Reference design of the UART interface	25
Figure 2-18 Recommended level shifting circuit	25
Figure 2-19 LED indicator driven by transistor	26
Figure 2-20 RING indicator for incoming call	28
Figure 2-21 RING indicator for SMS	28
Figure 2-22 Reference design of the fast boot interface	28
Figure 3-1 Reference of antenna matching design	29
Figure 3-2 Recommended RF PCB design	30
Figure 3-3 Encapsulation specifications of Murata RF connector	30
Figure 3-4 RF connections	30
Figure 3-5 GPS RF structure	31
Figure 3-6 Power supply reference for active antenna	32
Figure 6-1 Dimensions of N720	37
Figure 6-2 N720PCBFoot Print(Top View)	38

Figure 8-1	Temperature curve	40
------------	-------------------	----

Table of Tables

Table 1-1 N720 baseband and wireless features	2
Table 2-1 N720 dimensions	5
Table 2-2 N720 pin description	6
Table 2-3 GPIO	24
Table 4-1 N720 Electric Feature	33
Table 4-2 Temperature Feature	33
Table 4-3 N720 ESD feature	34
Table 5-1 N720 work band	35
Table 5-2 N720 RF power and RX sensitivity	36

1 Introduction to N720

1.1 Overview

N720 is an industrial 4G module that is developed on Qualcomm platform. Its dimensions are 30mm x 28 mm x 2.8mm and it is with industrial-grade high-performance: ultra-wide operating temperature of -40 $^{\circ}$ C to +85 $^{\circ}$ C, electrostatic capacity of 8KV. It is well applicable to electric terminals, in-vehicle computers, POS, industrial routers, and other IoT terminals with the following features:

- ARM Cortex-A7 processors, 1.2 GHz main frequency, 256 kB L2 cache, 28 nm
- GSM/GPRS/EDGE &WCDMA R99
- SIM/ADC/UART

N720 series include the following versions:

Band		LTE															
Version	В 1	B2	В3	B4	B5	В 7	B 8	B9	B1 2	B1 7	B1 9	B2 0	B2 8	В3 8	ВЗ 9	B4 0	В4 1
CN	٠		•		•		•	7						٠	٠	٠	•
JP	٠		•				•	•		0	•						
EU	٠		•			•	•		2			٠				٠	
US		•		•	•	•		5		•							

Band				UMTS	5		(GSM			
Version	B1	B2	B4	B5	B8	B9	B19	850	900	1800	1900
CN	•				•				•	•	
JP	•				•	•	•				
EU	•				•			•	•	•	•
US		•	٠	٠				•	•	•	•

IFNOTE

CN: China JP: Japan EU: Europe US: The United States

1.2 Block Diagram

Figure 1-1 shows the block diagram of N720 Modular only,

Figure 1-1 N720 block diagram

Specifications	Description
Power supply	VBAT: 3.3V to 4.3V, TYP: 3.8 V

Table 1-1 N720 baseband and wireless features

4mA

Current in sleep

mode

	Operating temperature: -40°C to +85°C						
Temperature	Limited: -40°C to +85°C						
	Storage temperature: -40°Cto +85°C						
	ARM Cortex-A7 processor						
Processor	Main frequency: 1.2 GHz						
	256kB L2 cache						
Band	 CN: GSM/GPRS/EDGE:900M/1800M TD_SCDMA:B34/B39 UMTS:B1/B8 LTE-FDD B1/B3/B5 LTE-TDD B38/B39/B40/B41 JP: UMTS: B1/B8/B9/B19 FDD-LTE: B1/B3/B8/B9/B19 EU: GSM/GPRS/EDGE:850M/ 900M/1800M/1900M UMTS: B1/B8 FDD-LTE: B1/B3/B5/B7/B8/B20 TDD-LTE: B40; US: GSM/GPRS/EDGE: 850M/1900M UMTS: B2/B4/B5 EDD LTE D0/D (100)/D2/D (100)/D4/D (100)/D4/D4/D (100)/D4/D4/D (100)/D4/D4/D4/D4/D4/D4/D4/D4/D4/D4/D4/D4/D4/						
Rate	I TE EDD: non CA cat/ May 150Mbac/DL\/May 50Mbac/LU\						
	LTE TDD: non-CA cat4,Max 130Mbps(DL)/Max 35Mbps(UL)						
	$GSM850^{\circ} + 34dBm (Power Class 4)$						
	EGSM900: +34dBm (Power Class 4)						
	DCS1800: +31.5dBm (Power Class 1)						
Transmit power	PCS1900: +31.5dBm (Power Class 1)						
	EDGE 850MHz: +28.5dBm (Power Class E2)						
	EDGE 900MHz: +28.5dBm (Power Class E2)						

	EDGE1800MHz: +27.5dBm (Power Class E2)					
	EDGE1900MHz: +27.5dBm (Power Class E2)					
	UMTS: 24dBm (Power Class 3)					
	LTE: +23dBm (Power Class 3)					
Antenna feature	50Ω impedance					
UART	At most 4 Mbps, 1 group					
UIM	1 groups, 1.8V/3V dual-voltage adaptive					
USB	1 group of USB2.0 high-speed interface					
ADC	2 groups of 16-bit ADC, input voltage ranging from 0.1 to 1.7V					

2 Application Interfaces

N720 adopts 100-pins LGA encapsulation.

2.1 Specifications and Pin Definition

Specifications	N720
Dimensions	30mm*28 mm*2.8mm(H*W*D)
Weight	5.1g
Package	100-Pin LGA

Table 2-1 N720 dimensions

2.2 Pin Description

NOTE NOTE

IO: input/output

DI: Digital input

DO: Digital output

PI: Power input

PO: Power output

AI: Analog input

AO: Analog output

Table 2-2 N720 pin description

Name	Pin	I/O	Function	Level Feature (V)	Power Domain	Remarks
Power Supply	1			U.		
VABT	27, 28, 29	PI	Main power supply input	Vmax=4.3V		The power supply can provide up to 3A current
VDDIO _1P8	45	PO	1.8 V power supply output	Vnorm=1.8V; Imax=100mA	1.8V	Supply power for IO level shifting circuit. Leave it disconnected if you do not use it.
GND	1, 14, 17, 20,		GND			

	26, 30, 31,					
	44, 49, 74,					
	75, 77, 91,					
	93, 95, 97,					
	98, 99, 100					
Power on/off and reset						
RESET	32	DI	Reset input		1.8V	Low level triggers the ON status and can control the power off and reset.
PWRKEY	33		Power ON/OFF	V _{IL} min=-0V; V _{IL} max=0.5V; V _{IH} min=1.2V;	1.8V	Low level triggers the ON status. It is pulled up by an internal 200 KΩresistor.
	34	DI	DON TRIC	V _{IH} max=2.1V;	1.81/	High level triggers the ON status.
FON_TRIG	54	DI	FON_IRIG		1.00	200 KΩresistor.
						Ground it if you do not use it.
UART						
	46	DO	LIART data transmit	V _{OL} max=0.45V;	1.8\/	Data communication
	40 DO	00	UART data transmit	V _{он} min=1.35V;	1.0V	Leave them disconnected if
UART2_RXD	47	DI	UART data receive	V _{IL} min=-0.3V;	1.8V	you do not use them.

				V _{IL} max=0.45V;		
				V _{IH} min=1.35V;		
				V _{IH} max=2.1V		
	54		Clear to cond	V _{OL} max=0.45V;	4.0\/	Leave it disconnected if you
UARTZ_CTS	51	וט	Clear to send	V _{OH} min=1.35V;	1.8V	do not use it.
				V _{IL} min=-0.3V;		
	50		Dequest to cond	V _{IL} max=0.45V;	1 0\/	Leave it disconnected if you
UARIZ_RIS	52	DO	Request to send	V _{IH} min=1.35V;	1.0V	do not use it.
				V _{IH} max=2.1V		
UIM						
				1.8V USIM:		
			$\left(\begin{array}{c} 0 \\ 0 \end{array} \right)$	Vmax = 1.9V ;		
				Vmin = 1.7V;		
VUIM	35	PO	UIM power supply output	3V USIM:	1.8V/3V	Compatible with 1.8/3V UIM
				Vmax = 3.05V;		card
				Vmin = 2.7V;		
				IO max =50mA		
)	1.8V USIM:		
	20		LIIM report	V _{OL} max = 0.45V;	1 0\//2\/	
	30	00	Ulivi lesel	V _{OH} min = 1.35V;	1.00/30	
				3V USIM:		
	1	1	1	1	1	1

				V_{OL} max = 0.4V;		
				V _{OH} min = 2.6V;		-
UIM_DATA				1.8V USIM:		
				V _{IL} max = 0.6V;		
				V _{IH} min = 1.2V;		
				V _{OL} max = 0.45V;		
		10		V _{OH} min = 1.35V;	4.01//01/	
	30	10	UIM data input, output	3V USIM:	1.80/30	
		27	V _{IL} max = 0.8V			
			V _{IH} min = 1.95V			
				V _{OL} max = 0.45V		
				V _{OH} min = 2.6V		
				1.8V USIM:		Compatible with 1.8/3V UIM
				V _{OL} max = 0.45V		Calu
				V _{OH} min = 1.35V		
	37	DO	UIM CIOCK OUTPUT	3V USIM:	1.80/30	
				V_{OL} max = 0.4V		
				V _{OH} min = 2.6V		
	20			V _{IL} min = -0.3V	1 0\/	
	39			V_{IL} max = 0.63V	1.0V	
USB						

USB_DM	41	Ю	USB data negative signal	USB2.0		Used for firmware download		
USB_DP	42	ю	USB data positive signal	USB2.0		and data transmission		
VBUS	40	PI USB voltage test		3.3V~5.2V, typically 5V		DP 90 Ω impedance resistance		
USB_ID	43	AI	Identify host and device		1.8V	Leave it disconnected if you do not use it.		
ADC								
ADC2	88	AI	Analog-to-digital signal conversion	Vmax=1.7V Vmin=0.1V	1.8V	16-bit, detectable voltage		
ADC1	89	AI	Analog-to-digital signal conversion	Vmax=1.7V Vmin=0.1V	1.8V	range: 0.1 V to 1.7 V		
Network LED Indicator			\mathbf{O}					
NET_LIGHT	83	DO	Indicate network status	V _{OL} max=0.45V; V _{OH} min=1.35V;	1.8V	Leave it disconnected if you do not use it.		
Sleep Mode Control								
DTR	79	DI	Sleep mode control	$V_{IL} min=-0.3V;$ $V_{IL} max=0.45V;$ $V_{IH} min=1.35V;$ $V_{IH} max=2.1V$	1.8V	Leave it disconnected if you do not use it.		
RING								

N720 Hardware User Guide

RING	13	DO	Incoming call ring	V _{OL} max=0.45V; V _{OH} min=1.35V;	1.8V	Leave it disconnected if you do not use it.
Other Pins						
FORCE_USB_BOOT	48	DI	Force to download and upgrade control pin	V _{IL} min=-0.3V; V _{IL} max=0.45V; V _{IH} min=1.35V; V _{IH} max=2.1V	1.8V	Leave it disconnected if you do not use it.
ANT_MAIN	76		Main antenna			50 Ω impedance
ANT_GPS	92		GPS antenna	X		50 Ω impedance
ANT_AUX	94		4Gdiversity aerial			50 Ω impedance
NC	$\begin{array}{c} 2, \ 3, \ 4, \ 5, \\ 6, \ 7, \ 8, \ 9, \\ 10, \ 11, \ 12, \\ 15, \ 16, \ 18, \\ 19, \ 21, \ 22, \\ 23, \ 24, \ 25, \\ 50, \ 53, \ 54, \\ 55, \ 56, \ 57, \\ 58, \ 59, \ 60, \\ 61, \ 62, \ 63, \\ 64, \ 65, \ 66, \\ 67, \ 68, \ 69, \\ 70, \ 71, \ 72, \end{array}$		NC			Leave them disconnected. Do not use them.

73、78、80、		
81、82、84、		
85、86、87、		
90、96		

Name	Pin	I/O	Function	Remarks
VABT	17/18/1 9	Ρ	Main power supply input	3.3 V to 4.3 V (TYP: 3.8 V)
VDDIO_1P8	45	Ρ	1.8 V power supply output	Supply power for IO level shifting circuit. Load capability: <100 mA Advise to add ESD to protect while using.
RESET	32	DI	Reset input	Low level
PON_TRIG	34	DI	PON_TRIG	High level triggers the ON status
PWRKEY	33	DI	Power ON/OFF	Low level triggers the ON status

2.3 Power Control Interfaces

2.3.1 **VBAT**

VBAT is the power supply input pin of the module. Its input voltage ranges from 3.3 V to 4.3 V and the preferable value is 3.8V. In addition to baseband, it supplies power for RF power amplifier. The performance of the VBAT power supply is a critical path to module's performance and stability. The peak input current at the VBAT pin can be up to3A when the signal is weak and the module works at the maximum transmitting power. The voltage will encounter a drop in such a situation. The module might restart if the voltage drops lower than 3.3 V.

Figure 2-2 Current peaks and voltage drops

Figure 2-3 shows the reference design of the VRTC power supply.

Figure 2-3 Capacitors used for the power supply

In Figure 2-3, you can use TVS at D1 to enhance the performance of the module during a burst. SMF5.0AG (Vrwm=5V&Pppm=200W) is recommended. A large bypass tantalum capacitor (220 μ F or 100 μ F) or aluminum capacitor (470 μ F or 1000 μ F) is expected at C1 to reduce voltage drops during bursts together with C2 (10-µF ceramics capacitor). It is recommended that you add 0.1 µF, 100 pF, and 33 pF filter capacitors to enhance the stability of the power supply. The module might fail to reset or power on/offin remote or unattended applications, or in an environment with great electromagnetic interference (EMI). A controllable power supply is

preferable if used in harsh conditions. You can use the EN pin on the LDO or DC/DC chipset to control the switch of the power supply as shown inFigure 2-4if a 5V power supply is used. MIC29302WU in Figure 2-4 is an LDO and outputs 3 A current to ensure the performance of the module.

The alternative way is to use an enhancement mode p-MOSFET to control the module's power, as shown inFigure 2-5. When the external MCU detects the exceptions such as no response from the module or the disconnection of GPRS, power off/on can rectify the module exceptions. InFigure 2-5, the module is turned on when PWR_EN is set to high level.

Figure 2-5 Reference design of power supply controlled by p-MOSFET

Q2 is added to eliminate the need for a high enough voltage level of the host GPIO. In case that the GPIO can output a high voltage greater than VCCIN - |VGS(th)|, where VGS(th) is the Gate Threshold Voltage, Q2 is not needed.

Reference components:

- Q1 can be IRML6401 or low Rds(on) pMOSFET, which has higher, withstand voltage and drain current.
- Q2: a common NPN tripolar transistor, e.g. MMBT3904; or a digital NPN tripolar transistor, e.g. DTC123. If digital tripolar transistor is used, delete R1 and R2.
- C3: 470-μF tantalum capacitor rated at 6.3V, or 1000 μF aluminum capacitor. If lithium battery is used to supply power, C3 can be 220-μF tantalum capacitor.

Power Supply Protection

Add TVS diodes (VRWM=5 V) on the VBAT power supply, especially in automobile applications. For some stable power supplies, Zener diodes can decrease the power supply overshoot. SMF5.0AG from ONSEMI is an option.

Line Rules

The width of primary loop lines for VBAT on PCB must be able to support the safe transmission of 2 A current and ensure no obvious loop voltage decrease. Therefore, the loop line width of VBAT is required 2 mm and the ground level should be as complete as possible.

Separation

The module works in burst mode that generates voltage drops on power supply. Furthermore, this results in a 217Hz TDD noise through power (One of the way generating noise. Another way is through RF radiation). Analog parts, especially the audio circuits, are subjected to this noise, known as a "buzz noise" in GSM systems. To prevent other parts from being affected, it is better to use separated power supplies. The module shall be supplied by an independent power, like a DC/DC or LDO. SeeFigure 2-6.

DC/DC or LDO should output rated peak current larger than 2 A.

The inductor used in Reference Design (b), should be a power inductor and have a very low resistance. The value of 10 μ H, with average current ability greater than 1.2A and low DC resistance, is recommended.

Figure 2-6 Reference designs of separated power supply

Never use a diode to make the drop voltage between a higher input and module power.

Otherwise, Neoway will not provide warranty for product issues caused by this. In this situation,

the diode will obviously decrease the module performances, or result in unexpected restarts, due to the forward voltage of diode will vary greatly in different temperature and current.

EMC Considerations for Power Supply

Place transient overvoltage protection components like TVS diode on power supply, to absorb the power surges. SMAJ5.0A/C could be a choice.

2.3.2 VDDIO_1P8

VDDIO_1P8 supports output voltages of 1.8V. It is recommended that VDDIO_1.8V@100mAbe used only for interface level shifting and to add ESD to protect while using.

2.3.3 ON/OFF

Power-On

After powering on the VBAT pin, you can use PWRKEY to start the module by inputting low-level pulse for 100 ms (200 ms is recommended). This pin is pulled up by 200Ω internally. Its typical high-level voltage is 1.8 V. The following circuit Figure 2-7 or Figure 2-8 is recommended to control PWRKEY.

Figure 2-7 Push switch controlling

If the module is powered on but the power-on sequence has not been completed, the states of each pin are uncertain. The power-on sequence of the module is shown in Figure 2-9.

Figure 2-9 N720 power-on/off sequence

If your application does not require ON/OFF control, you can pull the PWRKEY pin down to GND through 1.5K resistor. Then the module can start automatically after it is powered on. If you do

not use the PWRKEY pin, it must be left disconnected. The PON_TRIG pin can trigger the ON status of the module by high level.

Power-off

Power off can be achieved through two methods, one is to use PWRKEY input pin; the other is to use RESET pin.

1. Use PWRKEY pin. Low-level pulse input for 2 seconds can trigger the power-off status of the module. This pin is pulled up internally. Its typical high-level voltage is 1.8 V. Leave this pin disconnected if you do not use it.

2. Use RESET pin. Input more than 900ms low pulse when the module is at working status can trigger the module power off.

If 2.8V / 3.3V IO system is used, it is recommended to use external triode isolation. For details, refer to Section 2.3.4 RESET Pin Descriptions. Figure 2-10 shows the hard power-off sequence.

2.3.4 **RESET**

The RESET pin is used to reset and power off the module. It triggers module reset when you input low-level pulse less than 900ms and the module will power off when input low-level pulse more than 900ms. (One second is recommended.). This pin is pulled up internally. Its typical

high-level voltage is 1.8 V. Leave this pin disconnected if you do not use it. If you use a 2.8V/3.3V IO system, it is recommended that you add a triode to separate it. Refer to the following design.

Neowoy 有方

Figure 2-11 Reset controlled by button

In a circuit shown in Figure 2-12, VDD_EXT=2.8V/3.3V/3.0V, R2=4.7K, R3=47K. Figure 2-13 shows the reset sequence.

2.4 USB Interface

Name	Pin	I/O	Function	Remarks
VBUS	40	Ρ	USB voltage test	3.3V~5.2V, typically 5V
USB_DM	41	Ю	USB data negative signal	USB2.0, used for firmware
USB_DP	42	Ю	USB data positive signal	download and data transmission

You can download programs for N720 and establish data communication for commissioning through the USB interface. If the module is used only as USB Device, the recommended USB circuit is shown in Figure 2-14.

Parallel a 1μ F and 22pF filter capacitors to the VBUS pin as close to the pin as possible. TVS components are required for the VBUS power line. The junction capacitance of the TVS protection diodes for USB_DP and USB_DM should be lower than 12pF as possible. USB data

lines adopt differential trace design, in which the differential impedance is limited to 90 Ω characteristics impedance. Isolate the traces from other signal traces.

Name	Pin	I/O	Function	Remarks
VUIM	35	PO	UIM power supply output	Compatible with 1.8/3 V UIM card
UIM_DATA	36	Ю	UIMdata I/O	A 10K resistor is required between VUIM and UIM-DATA.
UIM_CLK	37	DO	UIMclock output	
UIM_RESET	38	DO	UIMreset	
UIM_DETECT	39	DI	UIM detect	Advise to use a pull-up resistor

2.5 UIM Card Interface

N720 supports 1.8V/3V UIM cards.. VUIM is the power supply pin of the UIM card and its maximum load is 30 mA. The UIM_DATA pin is not pulled up internally, so you need to reserve external pull-up resistor in your design. UIM_CLK is the clock signal pin, supporting 3.25 GHz of clock frequency. Figure 2-15 shows the reference design of the UIM card interface.

ESD protectors, such as ESD diodes or ESD varistors (with a junction capacitance of less than 33 pF), are recommended to be added on the SIM signals, especially in automotive electronics or other applications with badly ESD. Replace the ESD diodes with 27 pF to 33 pF capacitors connecting to GND in common applications. The ESD diodes or small capacitors should be close to UIM card.

N720 supports SIM card detection. UIM_DETECT is 1.8V interrupt pins. Low level means UIM card detected while high level mean no UIM card detected.

If you apply N720 to some electric terminals, MUP-C713(H2.8) is recommended.

Figure 2-16 Encapsulation

CAUTION

The antenna should be installed far away from the UIM card and UIM card traces, especially to the build-in antenna.

The UIM traces on the PCB should be as short as possible and shielded with GND copper.

The ESD protection diodes or small capacitors should be close to UIM card on the PCB.

2.6 GPIO

N720supports UART. You can configure the GPIO to meet your requirements for connecting to different devices. For the open multi-function GPIO interface, please inquiry our technical support engineers. The level of the module interface is 1.8 V. Table 2-3lists GPIO pins.

Name	Pin	I/O	Function	Remarks
UART2_TXD	46	DO	UART data transmit	
UART2_RXD	47	DI	UART data receive	Data communication
UART2_CTS	51	DI	Clear to send	Data communication
UART2_RTS	52	DO	Request to send	
ADC2	88	AI	ADC2input	16-bit, detectable voltage
ADC1	89	AI	ADC1input	range: 0.1 V to 1.7 V
NET_LIGHT	83	DO	Indicate network status	
DTR	79	DI	Sleep mode control	
RING	13	DO	Incoming call ring	

Table	2-3	GP	0
14010		U . 1	

1.1.1 **UART**

N720 provides one group of UART interfaces, which support hardware flow control and 4Mbps at most. The high level is 1.8V. Figure 2-17 shows the reference design of the UART interface.

Figure 2-17 Reference design of the UART interface

If the UART does not match the logic voltage of the MCU, it is recommended that you add a level shifting circuit outside of the module as shown in Figure 2-18.

Figure 2-18 Recommended level shifting circuit

NOTE

Components:

R2/R4: 2K-10K. The greater the UART baud rate is, the lower the R2 value is.

R1/R3: 4.7K-10K The greater the UART baud rate is, the lower the R3 value is.

Q1: MMBT3904 or MMBT2222 High-speed transistor is better.

MCU_UTXD and MCU_URXD are respectively the TX and RX ports of the MCU while TXD and RXD are respectively the TX and RX ports of the module.

Voltage at VCC_IO is the voltage at the UART of the MCU while voltage at VDDIO_1V8 is the voltage at the UART of the module.

2.6.2 ADC

N720 provides two ADC channels, and the input voltage ranges from 0.1 to 1.7V. ADC pin supports highest precision of 16-bit and it can be used for temperature and other check. If you apply this pin to SIM card temperature check on electric terminals, refer to *Neoway GPRS Module ADC User Guide*.

2.6.3 NET_LIGHT

NET_LIGHT can output 1.8 V high level and is forbidden to be used to drive the LED indicator. Users can drive the LED with a transistor instead, as shown in Figure 2-18.

Figure 2-19 LED indicator driven by transistor

When the module is running, the LED indicator is driven by the NET_LIGHT pin to indicate different module status with its various blink behaviors. N720 supports multiple blink style and you can configure it using AT commands.

2.6.4 DTR

Generally, DTR is used to control sleep mode together with AT commands. Enable the sleep mode function by AT command. Then pulling DTR low will bring the module into sleep mode if the module is idle. In this mode, the idle current is less than 4 mA, depending on the DRX setting of network.

In sleep mode, the module can respond to the incoming call, SMS, and GPRS data. The host MCU can also control the module to exit sleep mode by controlling DTR.

Process of entering sleep mode:

- Keep DTR high level in normal working mode. Activate the sleep mode by using the AT+ENPWRSAVE=1 command.
- 2. Pull DTR low, and the module will enter sleep mode, but only after process and pending data finished.
- 3. In sleep mode, the external MCP can pull DTR high so that the module will exit from sleep mode actively. Then the module can transmit data and initiate calls. After processing is finished, pull DTR low again to take the module back to sleep mode.
- In sleep mode, the module can be woken up by the events of incoming voice call, received data, or SMS. Meanwhile the module will send out the unsolicited messages through the UART.

Upon receipt of the unsolicited messages, the host MCU should pull DTR high firstly, otherwise the module will resume sleep mode in two minutes after the service processing. Then the host MCU can process the voice call, received data, or SMS. After processing is finished, pull DTR low again to put the module into sleep mode.

2.6.5 RING Signal Indicator

 Calling: Once a voice call is incoming, UART outputs "RING" character strings and meanwhile the RING pin outputs 30 ms low pulses at 5s period. After the call is answered, the high level restores.

Figure 2-20 RING indicator for incoming call

Neowoy 有方

• SMS: Upon receipt of SMS, the module outputs one 35 ms low pulse.

Figure 2-21 RING indicator for SMS

2.7 Commissioning Interfaces

To facilitate software update and commissioning, reserve the commissioning interfaces.

2.7.1 FORCE_USB_BOOT

The module can enter the fastboot mode by short connecting the FORCE_USB_BOOT pin and VDDIO_1P8V during the startup. This is the last method to troubleshoot the abnormality that the module cannot start or operation properly.

Figure 2-22 Reference design of the fast boot interface

$$\underbrace{VDDIO_1P8V}_{\swarrow} \underbrace{10 \text{ K}\Omega}_{\circ} \underbrace{S1}_{\circ} FORCE_USB_BOOT}$$

3 RF Interface

Name	Pin	I/O	Function	Remarks
ANT_MAIN	76	AI/O	2G/3G/4G main antenna	50Ω characteristic
ANT_GPS	92	AI	GPS antenna	
ANT_AUX	94	AI	4Gdiversity aerial	F

3.1 2G/3G/4G RF Design and PCB Layout

ANT_MAIN and ANT_AUX is the antenna pin of N720. A 50 Ω antenna is required. VSWR ranges from 1.1 to 1.5. The antenna should be well matched to achieve best performance. It should be installed far away from high-speed logic circuits, DC/DC power, or any other strong disturbing sources.

A 50 Ω antenna is required. VSWR ranges from 1.1 to 1.5. The antenna should be well matched to achieve best performance.

For multiple-layer PCB, the trace between the antenna pad of module and the antenna connector, should have a 50 Ω characteristic impedance, and be as short as possible. The trace should be surrounded by ground copper. Place plenty of via holes to connect this ground copper to main ground plane, at the copper edge.

For dual-layer PCB, the width of recommended impedance trace is 0.8 mm to 1 mm and the grounding copper should away from the trace for 1 to 1.5 time of the trace width.

If the trace between the module and connector has to be longer, or built-in antenna is used, a π -type matching circuit is needed, as shown in Figure 3-1.

Figure 3-1 Reference of antenna matching design

Big RF solder pad can result in great parasitic capacitance, which will affect the antenna performance. Remove the copper on the first and second layers under the RF solder pad.

Figure 3-2 Recommended RF PCB design

If you adopt RF antenna connections, the GSC RF connector MM9329-2700RA1 from Murata is recommended..Figure 3-3shows the encapsulation specifications.

Figure 3-3 Encapsulation specifications of Murata RF connector

RF antenna can also be connected to the module by soldering. In this manner, you must ensure proper soldering in case of damage that lowers RF performance. Figure 3-4shows the pictures of these two connections.

Figure 3-4 RF connections

3.2 GPS RF Design and PCB Layout

3.2.1 GPS Impedance

The 92nd pin is the GPS interface of the module, which also requires a 50 Ω . The PCB layout for GPS is similar to that for GPRS. For details, refer to the previous section. Figure 3-5 shows the internal structure of the GPS RF.

Figure 3-5 GPS RF structure

In addition to the basic rules, the GPS routing has higher requirements because the air wireless GPS signal has lower strength, which results in weaker electrical signal after the antenna receives. Weaker signals are more susceptible to interference. Therefore, active antenna are commonly used for GPS. The active GPS antenna amplifies the weak signals received to stronger signals through the low-noise amplifier (LNA) and then transmits the signals through the feeder.

If you use a passive antenna, add LNA near the feeder because the module does not embed one.

If the antenna and layout are not designed reasonably, the GPS will be insensitive, resulting in long time on positioning or inaccurate position.

Keep the GPRS and GPS far away from each other in layout and antenna layout.

3.2.2 Active GPS Antenna Design

Ceramic GPS chip antenna is monly used. In general, it is recommended that you use the active ceramic antenna. After the antenna receives GPS satellite signals, the LNA amplifies them first and then they are transmitted to the 92nd pin (GPS_ANT) through the feeder and PCB traces. 50Ω resistance is required for both the feeder and PCB traces and the traces should be as short

as possible. The power supply of the active antenna is fed by the 100 nH inductance through the signal traces.

Common active antenna requires 3.3V to 5V power supply. Though the active antenna has a low power consumption, it requires stable and clean power supply. You are advised to use high-performance LDO to supply power for the antenna through a 100 nH inductance, as shown inFigure 3-6.

Figure 3-6 Power supply reference for active antenna

It is recommended that you add an ESD protection diode to the antenna interface in an environment with great electromagnetic interference and other applications with badly ESD. The ESD protection diode must have ultra-low capacitance (lower than 0.5 pF). Otherwise, it will affect the impedance of the RF loop or result in attenuation of RF signals. RCLAMP0521P from Semtech or ESD5V3U1U from Infineon is recommended.

On the PCB, keep the RF signals and RF components away from high-speed circuits, power supplies, transformers, great inductors, the clock circuit of single-chip host, etc.

4 Electric Feature and Reliability

4.1 Electric Feature

Module Stat	tus	Minimum Value	Typical Value	Maximum Value
	Vin	3.3V	3.8V	4.3V
VBAT	lin	1	1	3A

If the voltage is too low, the module might fail to start. If the voltage is too high or there is a voltage burst during the startup, the module might be damaged permanently.

If you use LDO or DC-DC to supply power for the module, ensure that it output at least 3 A current.

4.2 Temperature

Module Status	Minimum Value	Typical Value	Maximum Value
Work	-40°C	25°C	85°C
Limit	-40°C		85°C
Storage	-40°C		85°C

Table 4-2 Temperature Feature

If the module works in temperature exceeding the thresholds, its RF performance might be worse but it can still work properly.

4.3 ESD Protection

Electronics need to pass sever ESD tests. The following table shows the ESD capability of key pins of our module. It is recommended that you add ESD protection to those pins in accordance to the application to ensure your product quality when designing your products. Humility: 45% Temperature: 25°C

Testing Point	Contact Discharge	Air Discharge
VBAT	±8KV	±15KV
GND	±8KV	±15KV
ANT	±8KV	±15KV
Cover	±8KV	±15KV
Others	±2KV	±4KV

Table 4-3 N720 ESD feature

5 RF Feature

5.1 Work Band

Work band	Uplink	Downlink
GSM850	824~849MHz	869~894MHz
PCS1900	1850~1910MHz	1805~1880MHz
UMTS B2	1850~1910MHz	1805~1880MHz
UMTS B4	1710~1755MHz	2110~2155MHz
UMTS B5	824~849MHz	869~894MHz
LTE-FDD B2	1850~1910MHz	1805~1880MHz
LTE-FDD B4	1710~1755MHz	2110~2155MHz
LTE-FDD B5	824~849MHz	869~894MHz
LTE-FDD B7	2500~2570MHz	2620~2690MHz
LTE-FDD B12	699.7 – 715.3 MHz	729.7– 745.3 MHz
LTE-FDD B17	704~716MHz	734~746MHz

Table 5-1 N720 work band

Band	Transmitting Power	Receiving Sensitivity
GSM850	34 dBm	<-108 dBm
PCS1900	31.5 dBm	<-108 dBm
UMTS B2	24 dBm	<-108 dBm
UMTS B4	24 dBm	<-108 dBm
UMTS B5	24 dBm	<-108 dBm
LTE-FDD B2	23 dBm	<-95 dBm
LTE-FDD B4	23 dBm	<-97 dBm
LTE-FDD B5	23 dBm	<-95 dBm
LTE-FDD B7	23 dBm	<-95 dBm
LTE-FDD B12	23 dBm	<-95 dBm
LTE-FDD B17(10MHz)	23 dBm	<-95 dBm

Table 5-2 N720 RF power and RX sensitivity

NOTE NOTE

All the values above are obtained in the lab environment. In your actual applications, there might be a difference because of the network environment.

6 Mechanical Feature

6.1 Dimensions

Figure 6-1 Dimensions of N720

6.2 PCB Foot Print

Figure 6-2 N720PCBFoot Print(Top View)

A test point is reserved at the Silk Area. It is recommended that you add a layer of white ink in case short circuit. Do not lay out any trace under the JTAG pin.

7 Mounting and Packaging

7.1 Mounting the Module onto the Application Board

N720 is compatible with industrial standard reflow profile for lead-free SMT process.

The reflow profile is process dependent, so the following recommendation is just a start point quideline:

- Only one flow is supported.
- Quality of the solder joint depends on the solder volume. Minimum of 0.12 mm to 0.15stencil thickness is recommended.
- Use bigger aperture size of the stencil than actual pad size.
- Use a low-residue, no-clean type solder paste.

For information about cautions in N720 storage and mounting, refer to *Neoway Module Reflow Manufacturing Recommendations*.

When you maintain and manually solder it, use heat guns with great opening, adjust the temperature to 250 degrees (depending on the type of the solder paste), and heat the module till the solder paste is melt. Then remove the module using tweezers. Do not shake the module in high temperature when you remove it. Otherwise, the components inside the module might be misplaced.

7.2 Package

N720 modules are packaged in sealed bags on delivery to guarantee a long shelf life. Package the modules again in case of opening for any reasons.

If exposed in air for more than 48 hours at conditions not worse than 30°C/60% RH, a baking procedure should be done before SMT. Or, if the indication card shows humidity greater than 20%, the baking procedure is also required. Do not bake modules with the package tray directly.

8 SMT TemperatureCurve

Figure 8-1 Temperature curve

X: Time (s) Y Temperature (°C)

Technicalparameters:

- Ramp up rate: 1to 4°C/sec; Ramp down rate: -3 to-1°C/sec
- Soaking zone: 150-180°CTime: 60-100s
- Reflow zone:>220°CTime: 40-90s
- Peak temperature: 235-250°C

It is not recommended that you use the kind of solder paste different from our module technique.

- The melting temperature of solder paste with lead is 35°Clower than that of solder paste without lead. It is easy to cause faulty joints for BGA inside the module after second reflow soldering.
- If you can use only solder pastes with lead, please ensure that the reflow temperature is kept at 220°C for more than 45 seconds and the peak temperature reaches 240°C.

Neoway will not provide warranty for heat-responsive element abnormalities caused by improper temperature control.

9 Abbreviations

ADC	Analog-Digital Converter
CPU	Central Processing Unit
DTR	Data Terminal Ready
EGSM	Enhanced GSM
ESD	Electronic Static Discharge
GPRS	General Packet Radio Service
GSM	Global Standard for Mobile Communications
IMEI	International Mobile Equipment Identity
LED	Light Emitting Diode
РСВ	Printed Circuit Board
RF	Radio Frequency
SIM	Subscriber Identification Module
UART	Universal asynchronous receiver-transmitter
•	

Copyright © Neoway Technology Co., Ltd

FCC Information

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide residential protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on. The user is encouraged to try to correct the interference by one or more of the following measures:

Reorient or relocate the receiving antenna.

Increase these paration between the equipment and receiver.

Connect the equipment into an outlet on the circuit different from that to which the receiver is connected.

Consult the dealer or an experienced radio/TV technician for help.

CAUTION!

The manufacturer is not responsible for any radio or TV interference caused by unauthorized modifications to this equipment. Such modifications could void the user authority to operate the equipment.

If the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains Transmitter Module FCC ID: PJ7-1705 Or Contains FCC ID: PJ7-1705"

FCC RADIATION EXPOSURE STATEMENT

This equipment complies with FCC RF radiation exposure limits set for an uncontrolled environment. This transmitters must not be co-located or operating in conjunction with any other antenna or transmitter. This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions: (1)This device may not cause harmful interference, and (2) This device must accept any interference, including interference that may cause undesired operation.

The distance between user and product include antenna should be no less than 25 cm. The maximum permissible antenna gain is 0 dBi for each band, and under no conditions may an antenna gain be used that would exceed the ERP and EIRP power limits as specified in Parts 22, 24 and 27.