

FCC REPORT					
Report Reference No:	TRE1706002501	R/C: 47277			
FCC ID::	PJ7-1705				
Applicant's name:	Shenzhen Neoway Technolo	ogy Co., Ltd.			
Address	4F-2#,Lian Jian Science & Ind Dalang Street,Longhua New D Guandong Province,P.R.China	District, Shenzhen City,			
Manufacturer	Shenzhen Neoway Technolog	y Co., Ltd.			
Address:	4F-2#,Lian Jian Science & Ind Dalang Street,Longhua New D Guandong Province,P.R.China	District, Shenzhen City,			
Test item description:	LTE Module				
Trade Mark	Neoway				
Model/Type reference:	N720				
Listed Model(s):					
Standard	FCC Part 22: PUBLIC MOBILE SERVICES				
	FCC Part 24: PERSONAL COMMUNICATIONS SERVICES				
	FCC Part 27: MISCELLANEC COMMUNICATIONS SERVIC				
Date of receipt of test sample:	Jun. 05, 2017				
Date of testing	Jun. 06, 2017 - Jun. 26, 2017				
Date of issue	Jun. 27, 2017				
Result:	Pass				
Compiled by		Beeky Linnag-			
(position+printedname+signature):	File administrators Becky Lian	g			
Supervised by (position+printedname+signature):	Project Engineer Lion Cai	g Cron Car			
Approved by		Hours me			
(position+printedname+signature):	Manager Hans Hu	Ir louis rue			
Testing Laboratory Name :	Shenzhen Huatongwei Interr	national Inspection Co., Ltd.			
Address:	1/F, Bldg 3, Hongfa Hi-tech Ind Gongming, Shenzhen, China	dustrial Park, Genyu Road, Tianliao			
	Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.				

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Applicable Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Equipments Used during the Test	8
4.4.	Environmental conditions	9
4.5.	Statement of the measurement uncertainty	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Conducted Output Power	10
5.2.	99% & -26 dB Occupied Bandwidth	13
5.3.	Conducted Spurious Emissions	24
5.4.	Band Edge	30
5.5.	ERP and EIRP	41
5.6.	Radiated Spurious Emssion	44
5.7.	Frequency stability V.S. Temperature measurement	51
5.8. 5.9.	Frequency stability V.S. Voltage measurement Peak-Average Ratio	54 56
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	59
7.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	60

1. Test standards and Report version

1.1. Applicable Standards

The tests were performed according to following standards:

FCC Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24: PUBLIC MOBILE SERVICES

FCC Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

<u>971168 D01 Power Meas License Digital Systems v02r02</u>: provides a methodology for fully characterizing the fundamental power of wideband (> 1 MHz) digitally modulated RF signals acceptable to the FCC for demonstrating compliance for licensed transmitters.

1.2. Report version

Version No.	Date of issue	Description
00	Jun. 27, 2017	Original

2. Test Description

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 22.913(a) Part 24.232(c) Part 27.50	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 22.917(b) Part 24.238(b)	Pass
Conducted Spurious Emissions	Part 2.1051 Part 22.917 Part 24.238 Part 27.53	Pass
Band Edge	Part 2.1051 Part 22.917 Part 24.238 Part 27.53	Pass
ERP and EIRP	Part 22.913(a) Part 24.232(b)	Pass
Radiated Spurious Emissions	Part 2.1053 Part 22.917 Part 24.238 Part 27.53	Pass
Frequency stability vs. temperature	Part 2.1055(a)(1)(b) Part 22.255 Part 24.235 Part 27.54	Pass
Frequency stability vs. voltage	Part 2.1055(d)(1)(2) Part 22.255 Part 24.235 Part 27.54	Pass
Peak-Average Ratio	Part 24.232 Part 27.50	Pass

Note: The measurement uncertainty is not included in the test result.

3. SUMMARY

3.1. Client Information

Applicant:	Shenzhen Neoway Technology Co., Ltd.
Address:	4F-2#,Lian Jian Science & Industry Park,Huarong Road,Dalang Street, Longhua New District,Shenzhen City,Guandong Province,P.R.China
Manufacturer:	Shenzhen Neoway Technology Co., Ltd.
Address:	4F-2#,Lian Jian Science & Industry Park,Huarong Road,Dalang Street, Longhua New District,Shenzhen City,Guandong Province,P.R.China

3.2. Product Description

Name of EUT:	LTE Module
Trade Mark:	Neoway
Model No.:	N720
Listed Model(s):	-
IMEI:	869235021680512
Power supply:	DC 5V
Adapter information:	-
Hardware version:	1750-v1.1
Software version:	N720_EAB0CM_BZ_CTA_V001A_20170120
2G:	
Support Network:	GSM, GPRS, EGPRS
Support Band:	GSM850, PCS1900
Modulation:	GSM/GPRS/EGPRS: GMSK EGPRS: 8PSK
Transmit Frequency:	GSM850: 824.20MHz-848.80MHz PCS1900: 1850.20MHz-1909.80MHz
Receive Frequency:	GSM850: 869.20MHz-893.80MHz PCS1900: 1930.20MHz-1989.80MHz
GPRS Class:	12
EGPRS Class:	12
3G:	
Operation Band:	FDD Band II and FDD Band IV, FDD Band V
Power Class:	Power Class 3
Modilation Type:	QPSK/16QAM/64QAM/HSUPA/HSDPA
DC-HSUPA Release Version:	Not Supported

3.3. Operation state

Test frequency list

GSM850		PCS1900		
Channel	Frequency (MHz)	Channel Frequency (N		
128	824.20	512	1850.20	
190	836.60	661	1880.00	
251	848.80	810	1909.80	

FDD Band II		FDD Band IV		FDD Band V	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
9262	1852.4	1313	1712.6	4132	826.40
9400	1880.0	1450	1740.0	4183	836.60
9538	1907.6	1512	1752.4	4233	846.60

> <u>Test mode</u>

For RF test items

The EUT has been tested under typical operating condition. The Applicant providessoftware to control the EUT for staying in continoustransmitting and receiving mode for testing.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- \bigcirc supplied by the lab

•	Test Fixture	Manufacturer :	Shenzhen Neoway Technology Co.,Ltd.	
		Model No. :	N720-DMEO-V1.2	
•	Antenna	Manufacturer :	Shenzhen Neoway Technology Co.,Ltd.	
		Model No. :	CS-G10-5F3-LE, Antenna Gain is 0dBi	
•	Adapter	Manufacturer :	Shenzhen Neoway Technology Co.,Ltd.	
		Model No. :	HH-0500300A Input: 100-240Va.c., 50/60Hz, Output: 5.0Vd.c., 3A	
Note:All the LTE Module test is test with the Fixture(N720-DMEO-V1.2) and the antenna(CS-G10-5F3-LE)				

3.5. Modifications

No modifications were implemented to meet testing criteria.

Page: 7 of 61

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory:Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478.

IC-Registration No.: 5377B

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Page: 8 of 61

4.3. Equipments Used during the Test

	Power(Conducted) &Occupi		n Bandwidth&Bai	nd Edge	
Complia No.	ance&Conducted Spurious E Equipment	mission Manufacturer	Model No.	SerialNo.	Last Cal.
INU.	UNIVERSAL RADIO	Manufacturer		Senaino.	Last Gal.
1	COMMUNICATION	Rohde&Schwarz	CMU200	112012	2016/11/13
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2016/11/13
3	Splitter	Mini-Circuit	ZAPD-4	400059	2016/11/13
-					
	ncy Stability				
No.	Equipment	Manufacturer	Model No.	SerialNo.	Last Cal.
1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2016/11/13
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2016/11/13
3	Climate Chamber	ESPEC	EL-10KA	05107008	2016/11/13
4	Splitter	Mini-Circuit	ZAPD-4	400059	2016/11/13
	•	•	•	•	
Output	Power (Radiated) & Radiate				
No.	Equipment	Manufacturer	Model No.	SerialNo.	Last Cal.
1	UNIVERSAL RADIO	Rohde&Schwarz	CMU200	112012	2016/11/13
I	COMMUNICATION	Ronueaochwarz		112012	2010/11/13
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2016/11/13
3	HORNANTENNA	ShwarzBeck	9120D	1012	2016/11/13
4	HORNANTENNA	ShwarzBeck	9120D	1011	2016/11/13
5	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13
6	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	2016/11/13
7	TURNTABLE	MATURO	TT2.0		N/A
8	ANTENNA MAST	MATURO	TAM-4.0-P		N/A
9	EMI Test Software	Audix	E3	N/A	N/A
10	EMI Test Receiver	Rohde&Schwarz	ESIB 26	100009	2016/11/13
11	RF Test Panel	Rohde&Schwarz	TS / RSP	335015/0017	2016/11/13
12	High pass filter	Compliance Direction systems	BSU-6	34202	2016/11/13
13	Splitter	Mini-Circuit	ZAPD-4	400059	2016/11/13
14	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2016/11/13
15	Horn Antenna	SCHWARZBECK	BBHA9170	25842	2016/11/13
16	Preamplifier	ShwarzBeck	BBV 9718	BBV 9718	2016/11/13
17	Broadband Preamplifier	ShwarzBeck	BBV743	9743-0079	2016/11/13
18	Signal Generator	Rohde&Schwarz	SMF100A	101932	2016/11/13
19	Amplifer	Compliance Direction systems	PAP1-4060	120	2016/11/13
20	TURNTABLE	ETS	2088	2149	2016/11/13
21	ANTENNA MAST	ETS	2075	2346	2016/11/13
22	HORNANTENNA	Rohde&Schwarz	HF906	100068	2016/11/13
				100000	_0.0/11/10

The calibration interval was one year.

4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature/Tnor:	15~35°C
lative Humidity	30~60 %
Air Pressure	950-1050 hPa

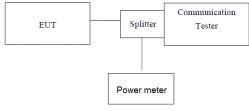
4.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurementof mobile radio equipment characteristics;Part 1"and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	MeasurementUncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-12.75 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.


5. TEST CONDITIONS AND RESULTS

5.1. Conducted Output Power

LIMIT

N/A

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure the maximum burst average power.

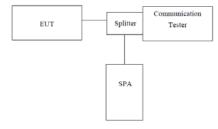
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

		С	onducted Power (dBm)		
Mode: GSM850		CH128	CH190	CH251		
		824.2MHz	836.6MHz	848.8MHz		
G	SM	32.24	32.37	32.52		
	1TXslot	32.32	32.25	32.34		
GPRS	2TXslots	29.79	29.74	29.94		
(GMSK)	3TXslots	28.13	28.02	28.14		
	4TXslots	26.89	26.79	26.96		
	1TXslot	32.29	32.15	32.39		
EGPRS	2TXslots	29.76	29.71	29.92		
(GMSK)	3TXslots	28.32	28.21	28.17		
	4TXslots	26.77	26.85	26.92		
	1TXslot	26.58	26.74	26.37		
EGPRS	2TXslots	25.68	25.74	25.77		
(8PSK)	3TXslots	24.69	24.95	24.87		
	4TXslots	23.66	23.68	23.84		
		Conducted Power (dBm)				
Mode:	PCS1900	CH512	CH661	CH810		
		1850.2MHz	1880.0MHz	1909.8MHz		
G	SM	30.64	30.45	30.76		
	1TXslot	30.62	30.38	30.48		
GPRS	2TXslots	28.92	28.25	28.47		
(GMSK)	3TXslots	26.89	26.92	26.67		
	4TXslots	25.87	25.59	25.63		
	1TXslot	30.15	30.37	30.29		
EGPRS	2TXslots	28.90	28.31	28.29		
(GMSK)	3TXslots	26.76	26.58	26.77		
	4TXslots	25.80	25.51	25.62		
	1TXslot	26.43	26.52	26.37		
EGPRS	2TXslots	25.37	25.84	25.96		
(8PSK)	3TXslots	24.58	24.75	24.63		
	4TXslots	23.88	23.94	23.89		


		W	CDMA Band	۷	WCDMA Band II		
		Conde	Conducted Power (dBm)			Conducted Power (dBm)	
Мос	de	CH4132	CH4183	CH4233	CH9262	CH9400	CH9538
		826.4	836.6	846.6	1852.4	1880.0	1907.6
AMR 1	2.2K	22.87	22.69	22.58	22.47	22.58	22.32
RMC 1	2.2K	22.83	22.22	22.61	22.32	22.54	22.25
	Subtest-1	20.96	20.81	20.71	20.39	20.83	20.42
HSDPA	Subtest-2	20.79	20.64	20.62	20.23	20.66	20.23
HODFA	Subtest-3	20.79	20.65	20.55	20.23	20.65	20.18
	Subtest-4	20.52	20.35	20.34	19.94	20.34	20.03
	Subtest-1	20.41	20.22	20.23	19.81	20.25	19.94
	Subtest-2	20.25	20.11	20.02	19.73	20.17	19.77
HSUPA	Subtest-3	20.16	20.02	19.98	19.62	20.02	19.63
	Subtest-4	20.10	19.94	19.92	19.52	19.98	19.65
	Subtest-5	20.04	19.94	19.83	19.51	19.94	19.52

			WCDMA Band IV					
		C	Conducted Power (dBm)					
M	Mode		CH1450	CH1512				
			1740.0	1752.40				
AMR	AMR 12.2K		22.41	22.58				
RMC	RMC 12.2K		22.40	22.43				
	Subtest-1	20.31	20.62	20.83				
HSDPA	Subtest-2	20.30	20.44	20.66				
HODFA	Subtest-3	20.30	20.43	20.68				
	Subtest-4	20.01	20.52	20.36				
	Subtest-1	19.97	20.03	20.25				
	Subtest-2	19.75	19.97	20.13				
HSUPA	Subtest-3	19.63	19.81	20.24				
	Subtest-4	19.58	19.75	19.93				
	Subtest-5	19.57	19.70	19.95				

5.2. 99% & -26 dB Occupied Bandwidth

N/A

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

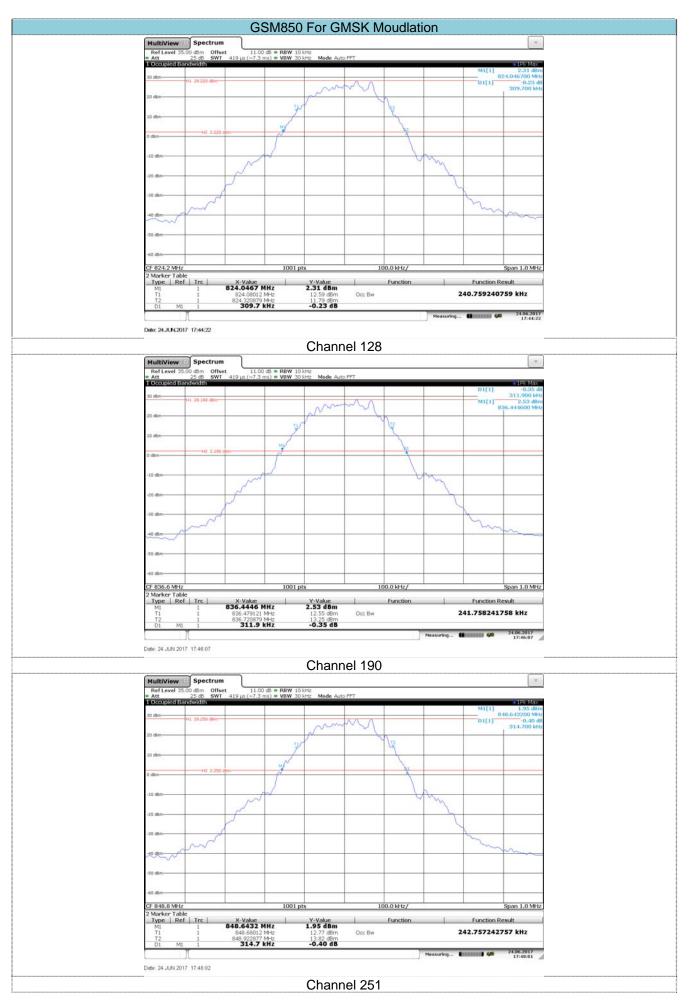
TEST PROCEDURE

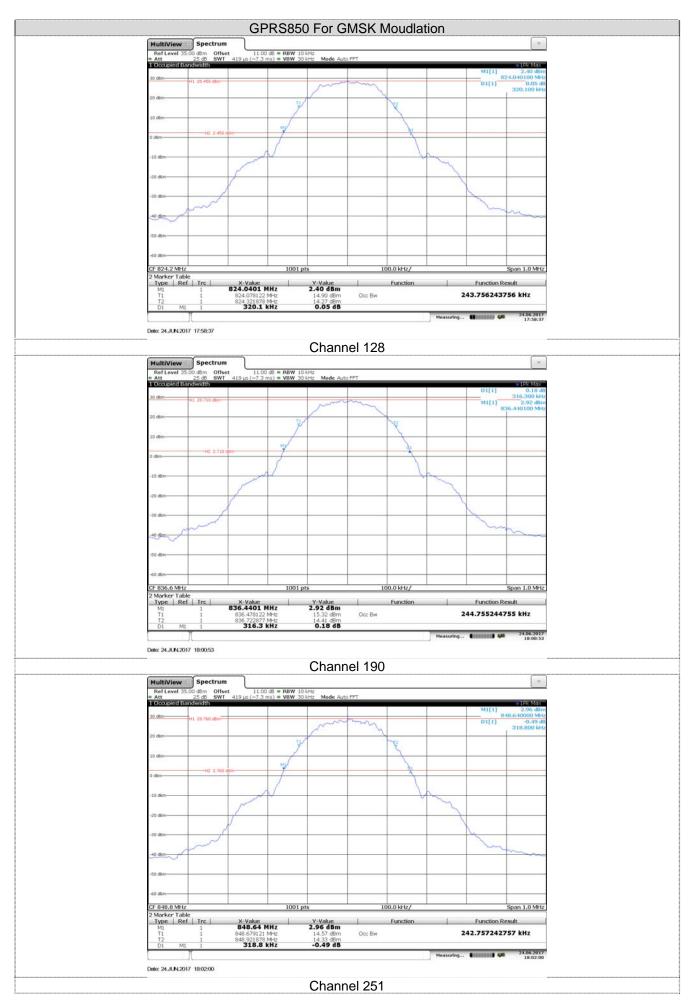
- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBWwas set to about 1% of emission BW, VBW= 3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

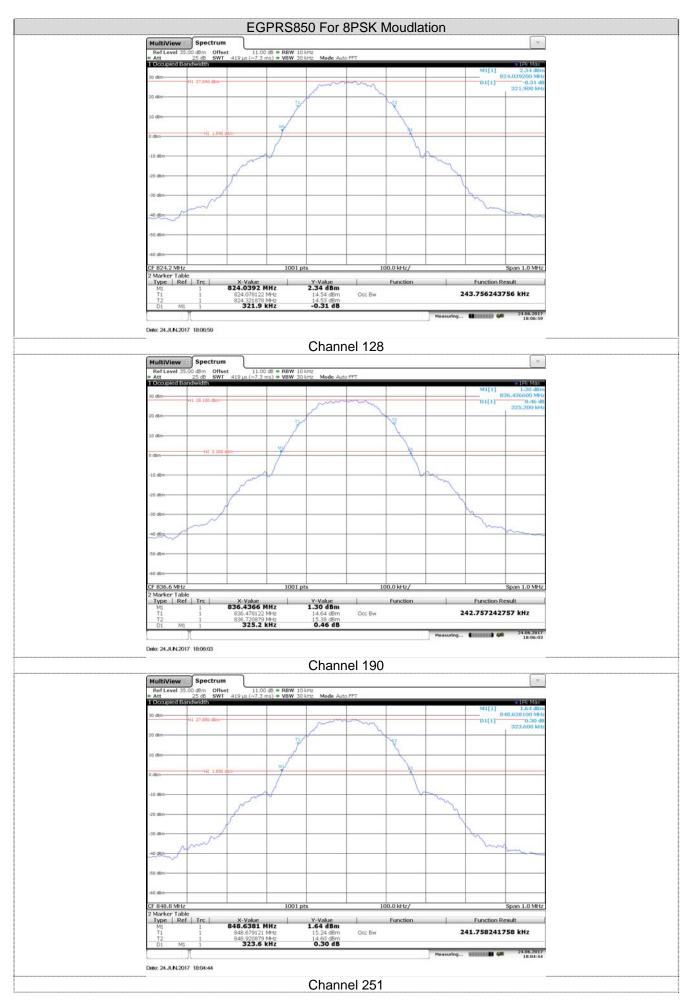
TEST MODE:

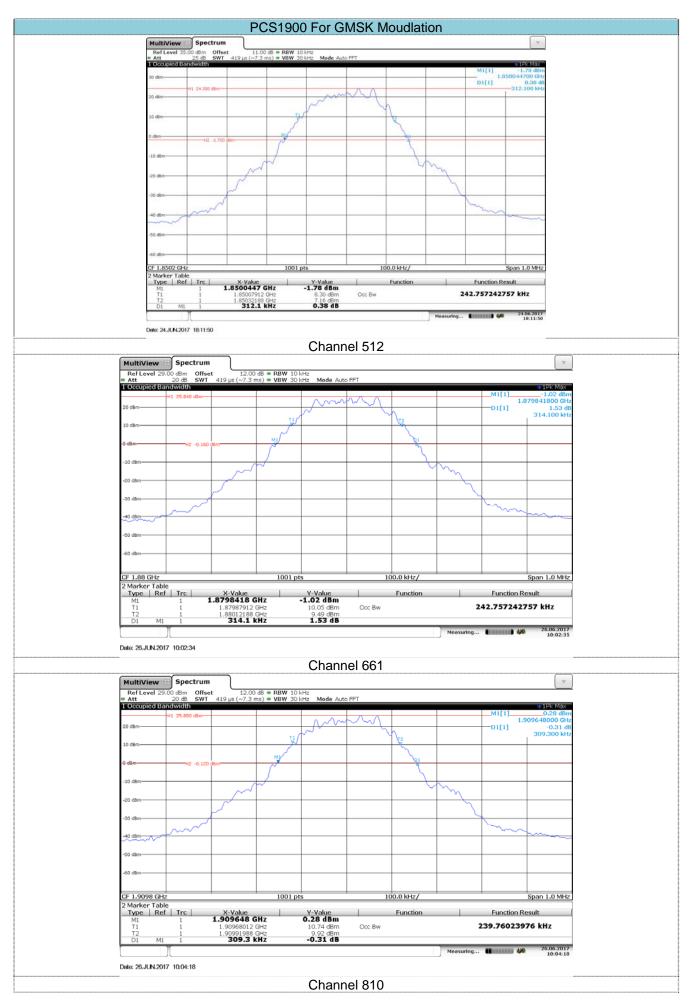
Please refer to the clause 3.3

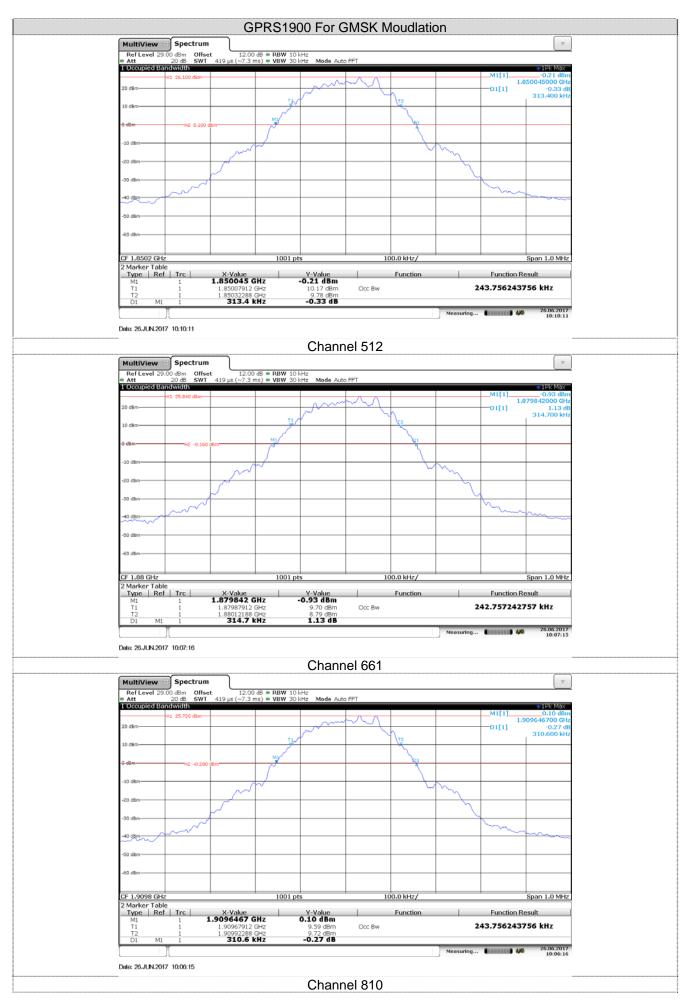
TEST RESULTS

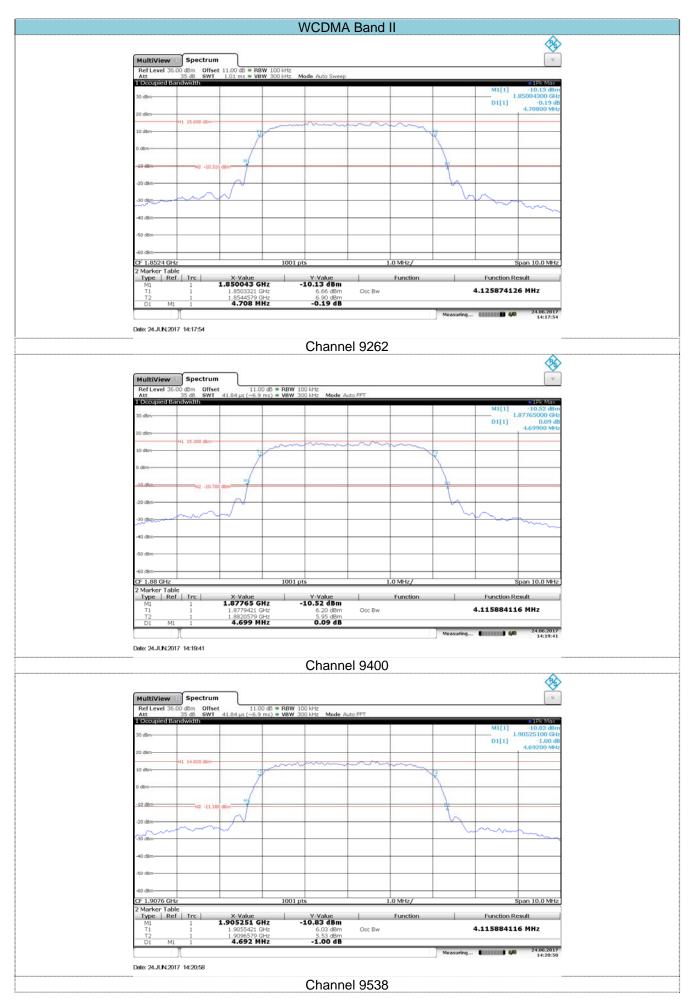

☑ Passed □ Not Applicable

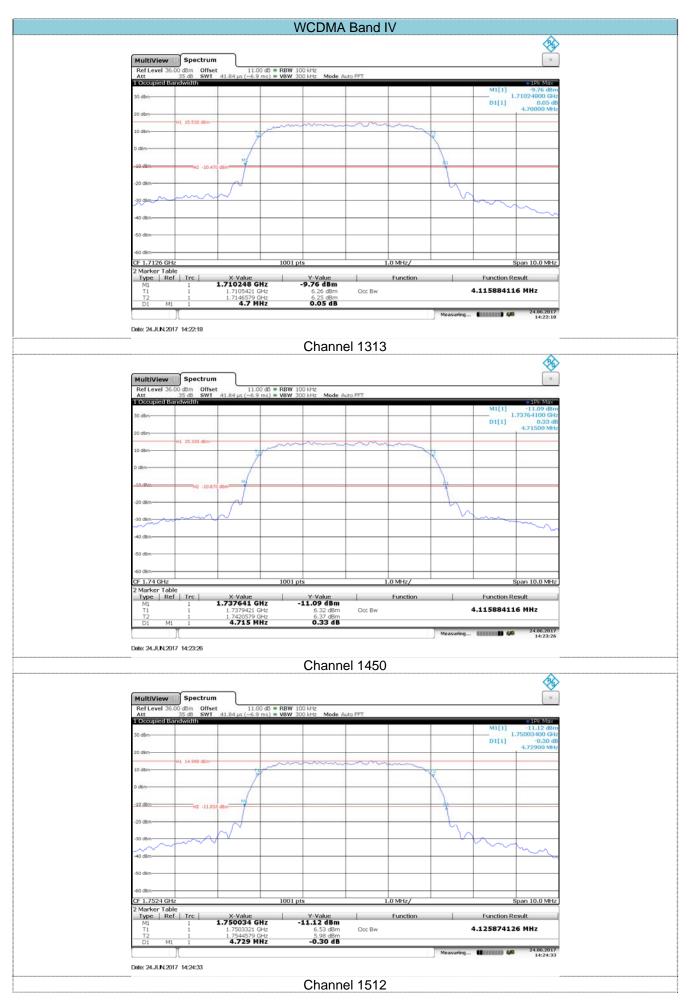

Report No.: TRE1706002501

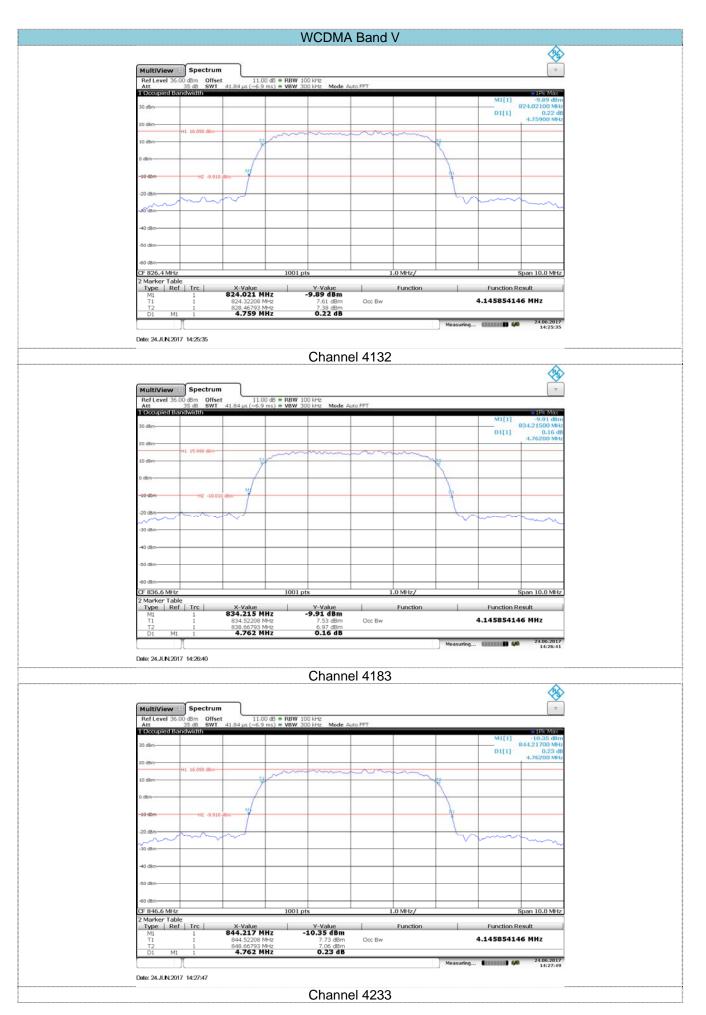

Page: 14 of 61


Issued: 2017-06-27

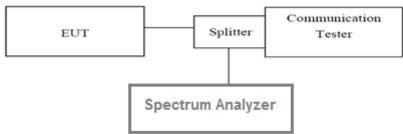

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (KHz)	-26dB bandwidth (KHz)
	128	824.20	240.76	309.70
GSM 850 (GMSK)	190	836.60	241.76	311.90
(Cinicity)	251	848.80	242.76	314.70
	128	824.20	243.76	320.10
GPRS850 (GMSK,1Slot)	190	836.60	244.76	316.30
	251	848.80	242.76	318.80
5000000	128	824.20	243.76	321.90
EGPRS850 (8PSK,1Slot)	190	836.60	242.76	325.20
(01 513, 15101)	251	848.80	241.76	323.60
	512	1850.20	242.76	312.10
PCS1900 (GMSK)	661	1880.00	242.76	314.10
(GMOR)	810	1909.80	239.76	309.30
	512	1850.20	243.76	313.40
GPRS1900 (GMSK,1Slot)	661	1880.00	242.76	314.70
	810	1909.80	243.76	310.60
	512	1850.20	240.76	321.50
EGPRS1900 (8PSK,1Slot)	661	1880.00	243.76	321.20
	810	1909.80	240.76	310.30
	9262	1852.40	4125.87	4708.00
WCDMA Band II	9400	1880.00	4115.88	4699.00
	9538	1907.60	4115.88	4692.00
	1313	1712.60	4115.88	4700.00
WCDMA Band IV	1450	1740.00	4115.88	4715.00
	1512	1752.40	4125.87	4729.00
	4132	826.40	4145.85	4759.00
WCDMA Band V	4183	836.60	4145.85	4762.00
	4233	846.60	4145.85	4762.00







Report Template Version: H00 (2016-08)


5.3. Conducted Spurious Emissions

LIMIT

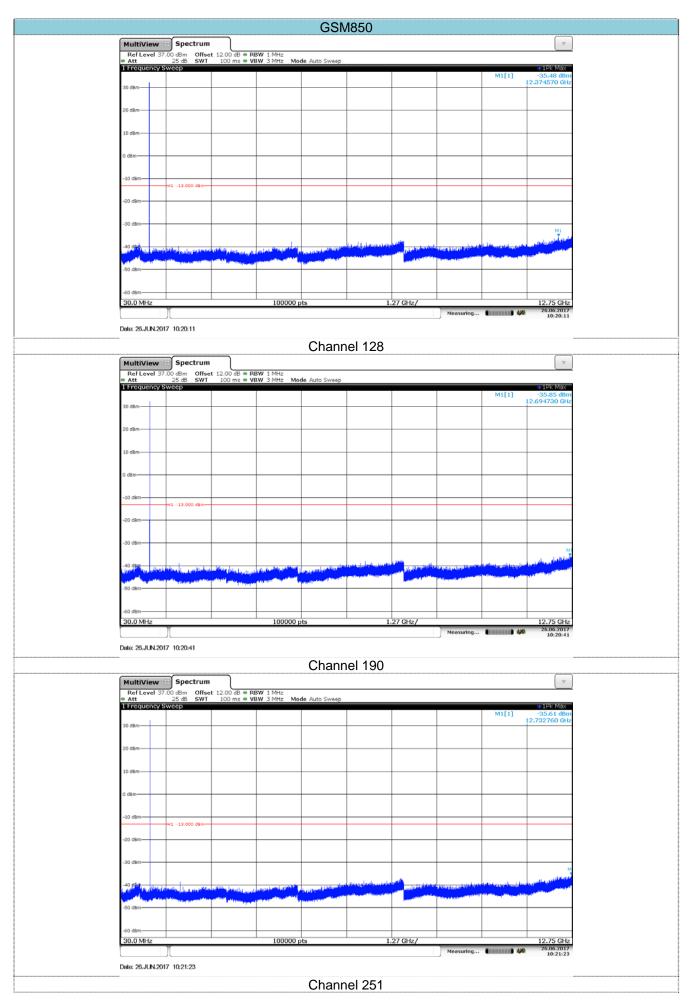
Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

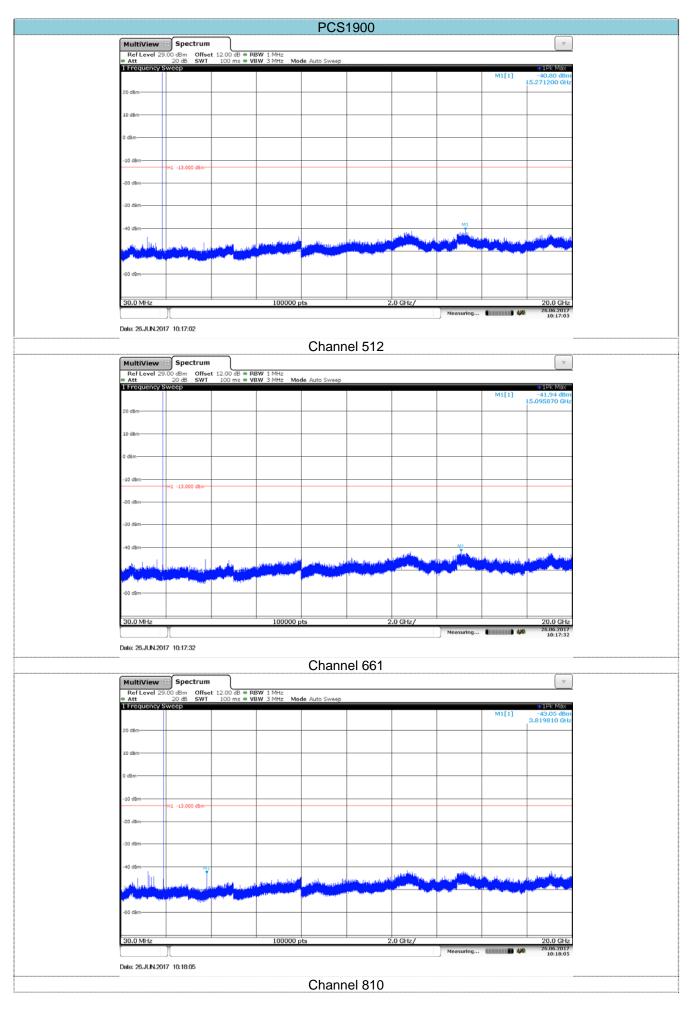
The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

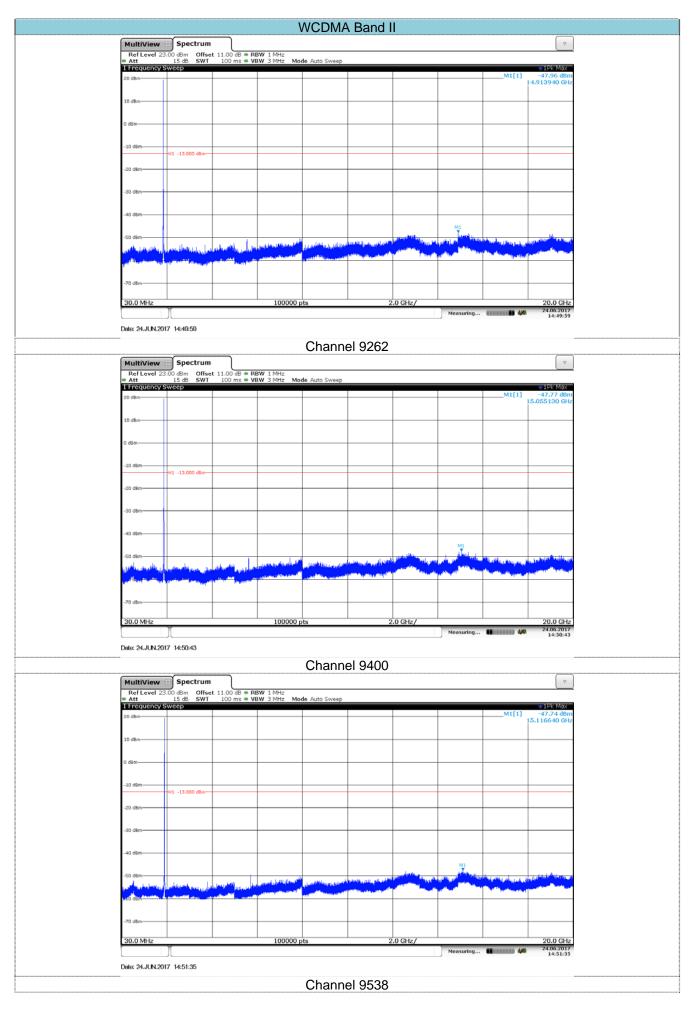
TEST CONFIGURATION

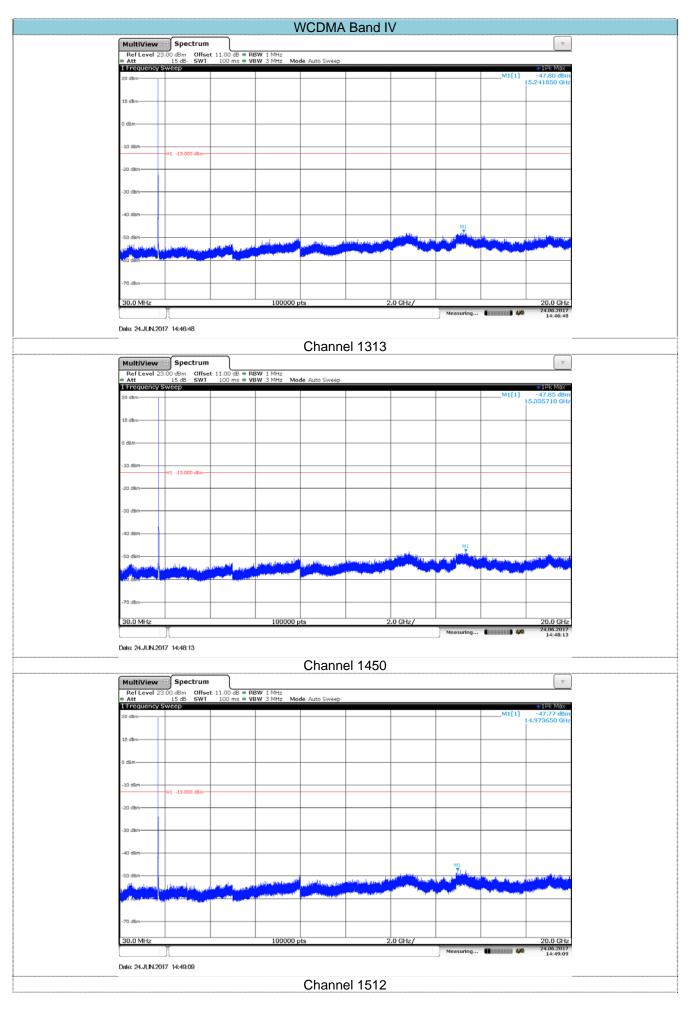
TEST PROCEDURE

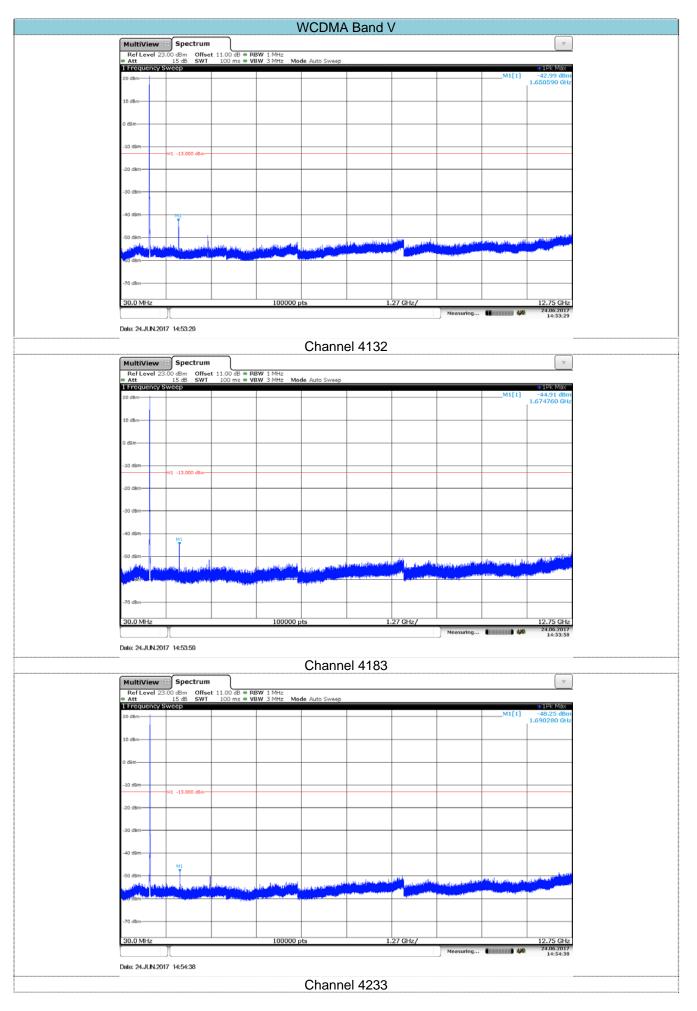
- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficientscans were taken to show the out of band Emissions if any up to 10th harmonic.
- 3. For the out of band: Set the RBW= 1MHz, VBW = 3MHz, Start=30MHz, Stop= 10th harmonic.

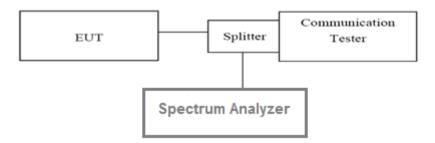

TEST MODE:


Please refer to the clause 3.3


TEST RESULTS




Note:Worst case at GSM850/PCS1900


5.4. Band Edge

LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. For the bandedge: 2G:Set the RBW=3KHz, VBW = 10KHz, Sweep time= Auto

3G: Set the RBW=100KHz, VBW = 300KHz, Sweep time= Auto

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Report No.: TRE1706002501

Page: 31 of 61

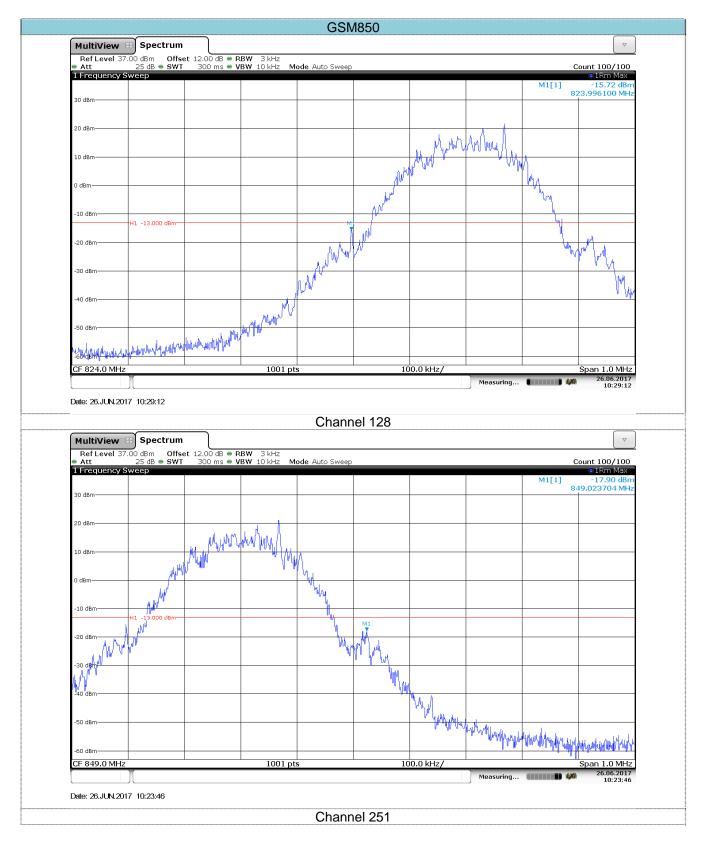
Issued: 2017-06-27

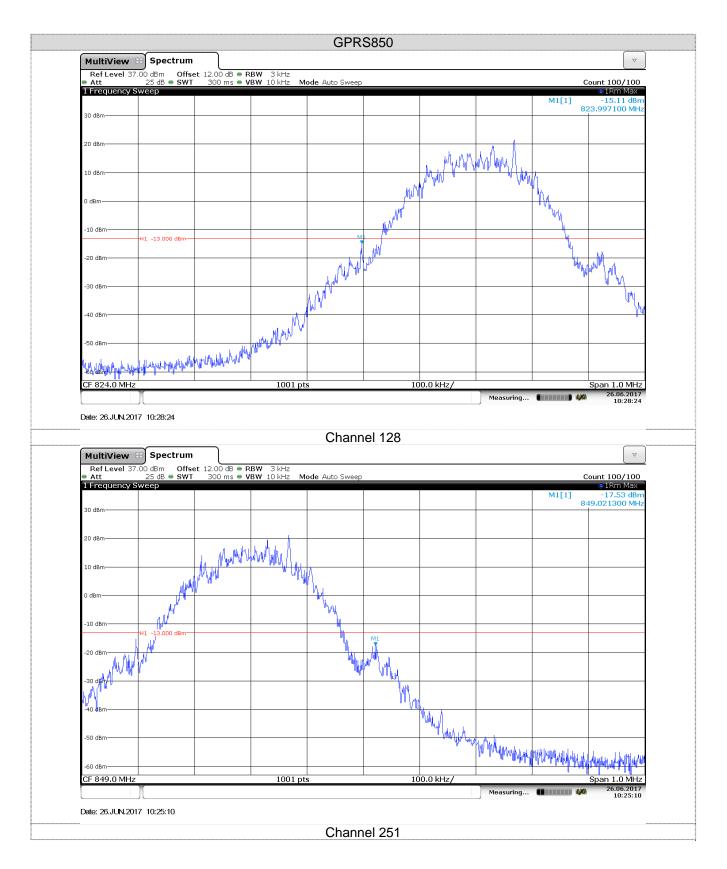
GSM850								
Channel	Frequency	Measurement Results		Limit Verdict				
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict			
128	824.2	824	-15.72	-13.00	Pass			
251	848.8	849	-17.90	-13.00	Pass			

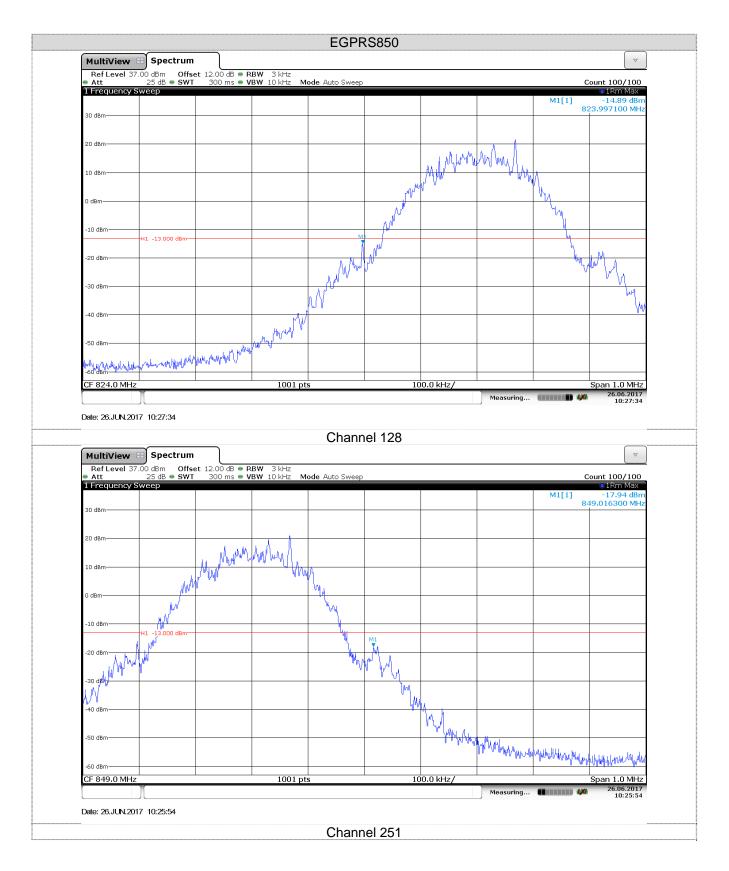
GPRS850									
Channel	Frequency	Measureme	nt Results	Limit Verdict					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Veruici				
128	824.2	824	-15.11	-13.00	Pass				
251	848.8	849	-17.53	-13.00	Pass				

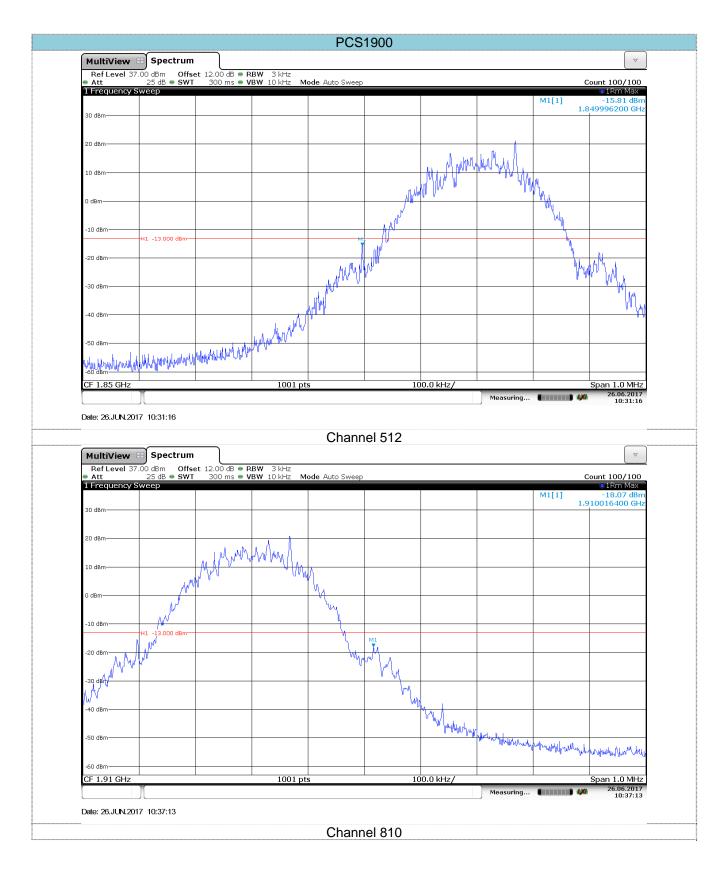
EGPRS850								
Channel	Frequency	Measurement Results		Limit Verdict				
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict			
128	824.2	824	-14.89	-13.00	Pass			
251	848.8	849	-17.94	-13.00	Pass			

PCS1900								
Channel	Frequency	Measurement Results		Limit Vordiet				
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict			
512	1850.2	1850	-15.81	-13.00	Pass			
810	1909.8	1910	-18.07	-13.00	Pass			

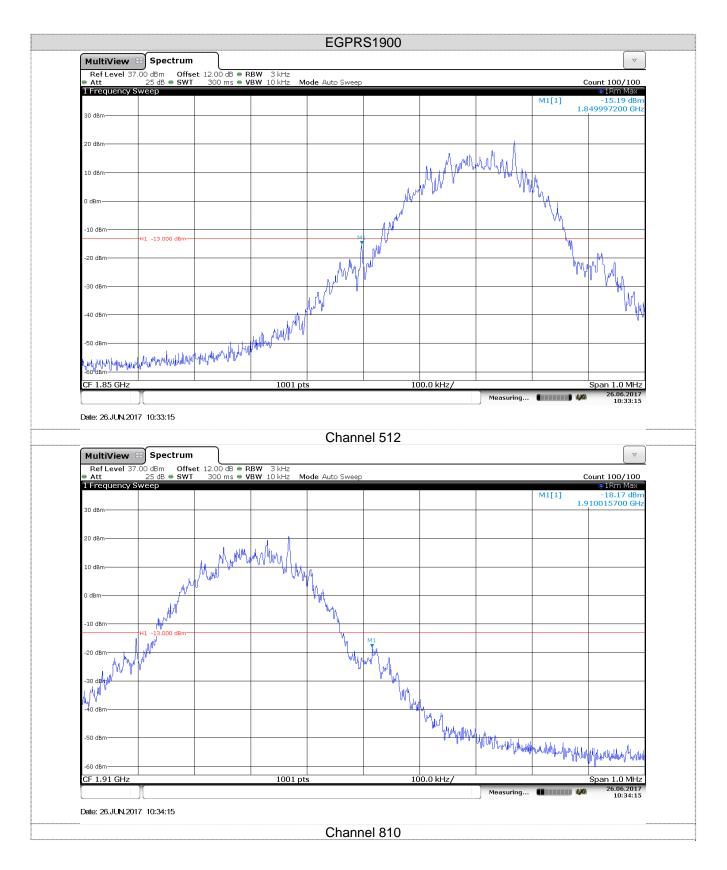

GPRS1900									
Channel	Frequency	Measurement Results		Limit Verdict					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdici				
512	1850.2	1850	-15.45	-13.00	Pass				
810	1909.8	1910	-18.79	-13.00	Pass				


EGPRS1900								
Channel	Frequency	Measurement Results		Limit	Verdict			
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict			
512	1850.2	1850	-15.19	-13.00	Pass			
810	1909.8	1910	-18.17	-13.00	Pass			

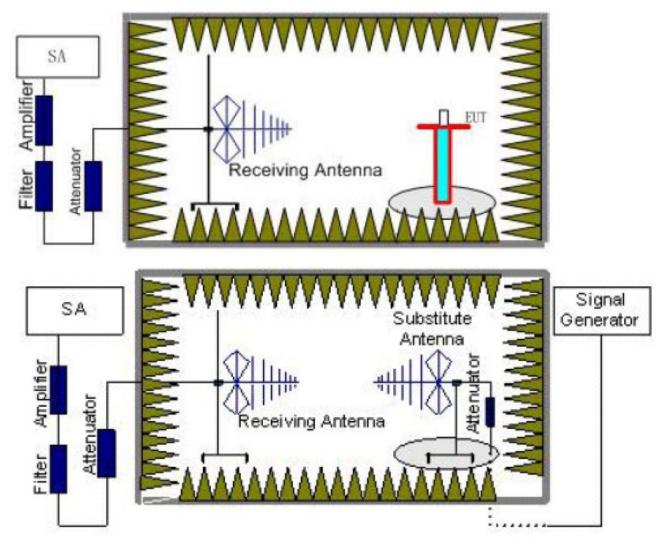

WCDMA Band II								
Channel	Frequency	Measureme	rement Results Limit Verdio					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict			
9262	1852.4	1850	-24.64	-13.00	Pass			
9538	1907.6	1910	-24.74	-13.00	Pass			


WCDMA Band V								
Channel	Frequency	Measurement Results Limit			Verdict			
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict			
1313	1712.6	1710	-28.49	-13.00	Pass			
1512	1752.4	1755	-31.47	-13.00	Pass			


WCDMA Band V					
Channel	Frequency	Measurement Results		Limit	Verdict
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict
4132	826.4	824	-19.75	-13.00	Pass
4233	846.6	849	-20.07	-13.00	Pass



MultiView	🖽 Spectrum	l							\bigtriangledown
Ref Level 30 Att	1.00 dBm Offse 25 dB • SWT		BW 100 kHz BW 300 kHz M	Ande Auto Swee	n				Count 100/100
1 Frequency S		500 m3 • •	DI SOURIZ I		P				
								M1[1]	-24.64 dBr 1,85000000 GH
20 dBm									
10 dBm									
					www	manoralinence	men the for the sources and	mentender	manue
0 dBm									
					1				$ \rangle$
-10 dBm	H1 -13.000 dBm				1				
-20 dBm									
				N	<u>t</u>				
-30 dBm				\square					
				mal					
-40 dBm	K	how when the way	manna	r 🗸 *					
Whenderson	www.www.www.	** ****							
-50 dBm									
co. In-									
-60 dBm									
CF 1.85 GHz	١٢		1001 pt	5	1	.0 MHz/		(Span 10.0 MH: 24.06.201
MultiView	Spectrum			Chann	el 9262				13,43,12
MultiView Ref Level 30	Spectrum	st 11.00 dB ● F 300 ms ● V	BW 100 kHz BW 300 kHz N						▼
MultiView Ref Level 30 Att	Spectrum 0.00 dBm Offse 25 dB • SWT	et 11.00 dB ● F 300 ms ● V	88W 100 kHz 18W 300 kHz N						Count 100/100 ●1Rm Max
	Spectrum 0.00 dBm Offse 25 dB • SWT	t 11.00 dB ● F 300 ms ● V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100
MultiView Ref Level 30 Att	Spectrum 0.00 dBm Offse 25 dB • SWT	t 11.00 dB ● F 300 ms ● V	88W 100 kHz 18W 300 kHz N					M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	Spectrum 0.00 dBm Offse 25 dB • SWT	at 11.00 dB ● F 300 ms ● V	88W 100 kHz 8W 300 kHz N					M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att 1 Frequency S	Spectrum 0.00 dBm Offse 25 dB • SWT	t 11.00 dB ● F 300 ms ● V	88W 100 kHz 8W 300 kHz N					M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 • Att 1 Frequency S 20 dBm	Spectrum 0.00 dBm Offse 25 dB • SWT	st 11.00 dB = F 300 ms = V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	Spectrum 0.00 dBm Offse 25 dB • SWT	t 11.00 dB ● F 300 ms ● V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 • Att 1 Frequency S 20 dBm	Spectrum 1.00 dBm Offse 25 dB • SWT Weep	tt 11.00 dB ● F 300 ms ● V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att TFrequency S 20 dBm 10 dBm 0 dBm	Spectrum 0.00 dBm Offse 25 dB • SWT	st 11.00 dB • F 300 ms • V	BW 100 kHz N BW 300 kHz N					M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 3C Att I Frequency S 20 dBm 10 dBm 0 dBm	Spectrum 1.00 dBm Offse 25 dB • SWT Weep	t 11.00 dB ● F 300 ms ● V	BW 100 kHz BW 300 kHz N		P			M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 1.00 dBm Offse 25 dB • SWT Weep	st 11.00 dB = F 300 ms = V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att TFrequency S 20 dBm 10 dBm -10 dBm -10 dBm	Spectrum 1.00 dBm Offse 25 dB • SWT Weep	st 11.00 dB • F 300 ms • V	BW 100 kHz BW 300 kHz N		P			M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum 1.00 dBm Offse 25 dB • SWT Weep	et 11.00 dB • F 300 ms • V	BW 100 kHz BW 300 kHz N		P			M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 1.00 dBm Offse 25 dB • SWT Weep	st 11.00 dB • F 300 ms • V	BW 100 kHz BW 300 kHz N		P			M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum 1.00 dBm Offse 25 dB • SWT Weep	st 11.00 dB • F 300 ms • V	BW 100 kHz BW 300 kHz N		P			M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum 1.00 dBm Offse 25 dB • SWT Weep	st 11.00 dB • F 300 ms • V	BW 100 kHz BW 300 kHz N		P			M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum 1.00 dBm Offse 25 dB • SWT Weep	st 11.00 dB = F 300 ms = V	BW 100 kHz N		P			M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum 1.00 dBm Offse 25 dB • SWT Weep	st 11.00 dB • F 300 ms • V	BW 100 kHz N		P			M1[1]	Count 100/100 ● 1Rm Max -24.74 dBr
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum 1.00 dBm Offse 25 dB • SWT Weep	et 11.00 dB • F 300 ms • V	BW 100 kHz BW 300 kHz N	Auto Swee	P	.0 MHz/		M1[1]	Count 100/100 • 1Rm Max -24.74 dB .91014000 GF
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Spectrum 1.00 dBm Offse 25 dB • SWT Weep	t 11.00 dB • F 300 ms • V		Auto Swee	P	.0 MHz/		M1[1]	Count 100/100 • 1 km Max -24.74 dB .91014000 GH


MultiView 8									
Ref Level 30.0 Att	00 dBm Offse 25 dB • SWT	t 11.00 dB • R 300 ms • V	BW 100 kHz BW 300 kHz M	Aode Auto Swee	P			0	ount 100/100
1 Frequency Sv								M1[1]	 1Rm Max -28,49 dBr
								1	71000000 GH
20 dBm									
10 dBm						and states a super-	the restores while there is not		
0 dBm									and the second s
									$\langle \rangle$
-10 dBm					- /				
	H1 -13.000 dBm								
-20 dBm									
				M					
-30 dBm				1941					
-40 dBm		h	un walk with and the second	mun v					
	and the second	whether							
-50 dBm	and and a second second								
- markenen	~~~~								
-60 dBm									
CF 1.71 GHz	1		1001 pt	s	. 1	.0 MHz/			pan 10.0 MHz 24.06.2017
Date: 24.JUN.2017 MultiView				Channe	el 1313				
		t 11.00 dB • R 300 ms • V	B₩ 100 kHz B₩ 300 kHz M						ount 100/100
MultiView 8 Ref Level 30.0	Spectrum 00 dBm Offse 25 dB • SWT	t 11.00 dB • R 300 ms • V	BW 100 kHz BW 300 kHz M						ount 100/100 • 1Rm Max
MultiView Ref Level 30.0 Att 1 Frequency Sv	Spectrum 00 dBm Offse 25 dB • SWT	t 11.00 dB • R 300 ms • V	BW 100 kHz BW 300 kHz N					M1[1]	ount 100/100
MultiView 8 Ref Level 30.0 Att	Spectrum 00 dBm Offse 25 dB • SWT	t 11.00 dB • R 300 ms • V	BW 100 kHz BW 300 kHz M					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView 8 Ref Level 30.0 Att I Frequency Sv 20 dBm	Spectrum 00 dBm Offse 25 dB • SWT	t 11.00 dB • R 300 ms • V	BW 100 kHz BW 300 kHz N					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView Ref Level 30.0 Att 1 Frequency Sv	Spectrum 00 dBm Offse 25 dB • SWT	t 11.00 dB • R 300 ms • V	BW 100 kHz BW 300 kHz N					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView 8 Ref Level 30.0 Att I Frequency Sv 20 dBm	Spectrum 00 dBm Offse 25 dB • SWT	t 11.00 dB = R 300 ms = V	BW 100 kHz BW 300 kHz M					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView 30.0 Ref Level 30.0 Att I Frequency SV 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 25 dB • SWT	t 11.00 dB • R 300 ms • V	BW 100 kHz BW 300 kHz					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView 3 Ref Level 30.0 Att 1 Frequency St 20 dBm 10 dBm 0 dBm - J0 dBm	Spectrum 00 dBm Offse 25 dB • SWT	t 11.00 dB • R 300 ms • V	BW 100 kHz BW 300 kHz N					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView 30. Ref Level 30. Att 1 Frequency Sv 20 dBm 10 dBm 0 dBm - 30 dBm	Spectrum O0 dBm Offse 25 dB • SWT weep	t 11.00 dB = R 300 ms = V	BW 100 kHz N BW 300 kHz N					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView 3 Ref Level 30.0 Att 1 Frequency St 20 dBm 10 dBm 0 dBm - J0 dBm	Spectrum O0 dBm Offse 25 dB • SWT weep	t 11.00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView 30. Ref Level 30. Att 1 Frequency Sv 20 dBm 10 dBm 0 dBm - 30 dBm	Spectrum O0 dBm Offse 25 dB • SWT weep	t 11.00 dB = R 300 ms = V	BW 100 kHz BW 300 kHz M					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView 30. Ref Level 30. Att 1 Frequency Sv 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum O0 dBm Offse 25 dB • SWT weep	t 11.00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView 30. Ref Level 30. Att 1 Frequency Sv 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum O0 dBm Offse 25 dB • SWT weep	t 11.00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView Ref Level 30.0 Att I Frequency SV 20 dBm 0 10 dBm 0 -10 dBm	Spectrum O0 dBm Offse 25 dB • SWT weep	t 11.00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView Ref Level 30.0 Att I Frequency SV 20 dBm 0 dBm 10 dBm 0 dBm -10 dBm -30 dBm	Spectrum O0 dBm Offse 25 dB • SWT weep	t 11.00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView Ref Level 30.0 Att 1 1 Frequency SV 20 d8m 10 d8m 0 d8m -10 d8m	Spectrum O0 dBm Offse 25 dB • SWT weep	t 11.00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	ount 100/100 1Rm Max -31.47 dBn
MultiView Ref Level 30.0 Att I Frequency SV 20 dBm 0 10 dBm 0 -10 dBm	Spectrum O0 dBm Offse 25 dB • SWT weep	t 11.00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	ount 100/100 9 IRm Max -31.4 dBn 75500000 GH
MultiView B Ref Level 30.0 Att 1 Frequency SV 20 dBm 20 dBm 10 dBm 10 dBm 0 dBm -30 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Spectrum O0 dBm Offse 25 dB • SWT weep	t 11.00 dB • R 300 ms • V	BW 300 kHz N			л MHz /		M1[1]	ount 100/100 9 1 Rm Max
MultiView Ref Level 30.0 Att 1 1 Frequency SV 20 dBm 20 dBm 10 dBm 10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -60 dBm -60 dBm	Spectrum O0 dBm Offse 25 dB • SWT weep	t 11.00 dB • R 300 ms • V	BW 100 kHz N			.0 MHz/		M1[1]	ount 100/100 9 IRm Max -31.4 dBn 75500000 GH
MultiView Ref Level 30.0 Att 1 1 Frequency SV 20 d8m 10 d8m 0 d8m -10 d8m	Spectrum 00 dBm Offse 25 dB SWT weep H1 -13.000 dBm	t 11.00 dB • R 300 ms • V	BW 300 kHz N			.0 MHz/		M1[1] 1	ount 100/100 91Rm Max -31.47 dBn 75500000 GH

·	Υ <u></u>			WCDMA					
MultiView 8									
Ref Level 30.0 Att	25 dB 🖷 SWT	t 11.00 dB • R 300 ms • V	3BWF 100 kHz 1BWF 300 kHz - N	Aode Auto Swee	р			(Count 100/100
1 Frequency Sw	weep							M1[1]	 1Rm Max -19.75 dBr
									824.00000 MH
20 dBm									
10 dBm						moment	monum	menne	~
0 -10					1 And				
0 dBm									
-10 dBm									
	H1 -13.000 dBm				/				
-20 dBm				M	1				
-30 dBm			mann						
-40 dBm									
	1								
-50 dBm	and the second s								
-60 dBm									
CF 824.0 MHz			1001 pt:			0 MHz/		<u> </u>	Span 10.0 MHz
	(1001 pt:	5			Measuring	(
MultiView 🗄	7 15:01:08			Channe	el 4132				
MultiView 8 Ref Level 30.0	Spectrum	t 11.00 dB • R	BW 100 kHz						⊽
Ref Level 30.0 Att	Spectrum OO dBm Offse 25 dB • SWT	t 11.00 dB ● R 300 ms ● V	8W 100 kHz 8W 300 kHz M			1			Count 100/100
Ref Level 30.0 Att	Spectrum OO dBm Offse 25 dB • SWT	t 11.00 dB ● R 300 ms ● V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.0	Spectrum OO dBm Offse 25 dB • SWT	t 11.00 dB ● R 300 ms ● V	BW 100 kHz BW 300 kHz M					M1[1]	Count 100/100 • 1Rm Max -20,07 dBr 849.00000 MH
Ref Level 30.0 Att 1 Frequency Sv	Spectrum OO dBm Offse 25 dB • SWT	t 11.00 dB ● R 300 ms ● V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.0 Att 1 Frequency Sv	Spectrum OO dBm Offse 25 dB • SWT	t 11.00 dB ● R 300 ms ● V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.0 Att I Frequency Sv 20 dBm 10 dBm	Spectrum OO dBm Offse 25 dB • SWT	it 11.00 dB • R 300 ms • V	BW 100 kHz BW 300 kHz M					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.0 Att 1 Frequency Sv 20 dBm	Spectrum OO dBm Offse 25 dB • SWT	tt 11.00 dB ● R 300 ms ● V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.0 Att 1 Frequency SV 20 dBm 10 dBm 0 dBm	Spectrum OO dBm Offse 25 dB • SWT	t 11.00 dB ● R 300 ms ● V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.0 Att 1 Frequency Sy 20 dBm 10 dBm 0 dBm	Spectrum OO dBm Offse 25 dB • SWT	t 11.00 dB ● R 300 ms ● V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.0 Att 1 Frequency Sy 20 dBm 10 dBm 0 dBm	Spectrum D0 dBm Offse 25 dB SWT weep	t 11.00 dB ● R 300 ms ● V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.4 Att 1 Frequency SV 20 dBm 10 dBm -10 dBm	Spectrum D0 dBm Offse 25 dB SWT weep	it 11.00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.4 Att 1 Frequency SV 20 dBm 10 dBm -10 dBm	Spectrum D0 dBm Offse 25 dB SWT weep	it 11.00 dB = R 300 ms = V	BW 100 kHz BW 300 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.0 Att 1 Frequency St 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm	Spectrum D0 dBm Offse 25 dB SWT weep	t 11.00 dB ● R 300 ms ● V	BW 100 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.4 Att 1 Frequency St 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum D0 dBm Offse 25 dB SWT weep	it 11.00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.0 Att 1 Frequency St 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm	Spectrum D0 dBm Offse 25 dB SWT weep	it 11.00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.4 Att 1 Frequency St 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum D0 dBm Offse 25 dB SWT weep	it 11,00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.0 Att 1 Frequency St 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	Spectrum D0 dBm Offse 25 dB SWT weep	.t 11.00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.0 Att 1 Frequency St 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm	Spectrum D0 dBm Offse 25 dB SWT weep	it 11.00 dB • R 300 ms • V	BW 100 kHz N					M1[1]	Count 100/100 01Rm Max -20.07 dBr
Ref Level 30.0 Att 1 Frequency Sy 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Spectrum D0 dBm Offse 25 dB SWT weep	it 11.00 dB • R 300 ms • V	BW 300 kHz N					M1[1]	20unt 100/100 © 1Rm Max -20.07 dB 849,00000 MH
Ref Level 30.0 Att 1 Frequency St 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm	Spectrum D0 dBm Offse 25 dB SWT weep	it 11.00 dB = R 300 ms = V	BW 100 kHz BW 300 kHz N			.0 MHz/	Measuring	M1[1]	Span 10.0 MH

5.5. ERP and EIRP

LIMIT

GSM850/WCDMA Band V: 7W ERP PCS1900/WCDMA Band II: 2W EIRP TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz,, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the

frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga
- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
 ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

🛛 Passed

Not Applicable

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
	128	V	31.45		
	120	Н	26.52		
COMPEO	100	V	31.84	29.45	Deee
GSM850	190	Н	26.78	38.45	Pass
	251	V	31.55		
	251	Н	26.85		
	128	V	31.88		
	120	Н	26.54		
GPRS850	190	V	31.64	38.45	Pass
GFK3050	190	Н	26.47	36.45	F d 5 5
	251	V	31.33		
	251	Н	26.48		
	128	V	26.85		
	120	Н	20.66		
EGPRS850	190	V	26.43	38.45	Pass
EGFR3000	190	Н	20.85	30.45	F 055
	251	V	26.35		
	201	Н	20.37		

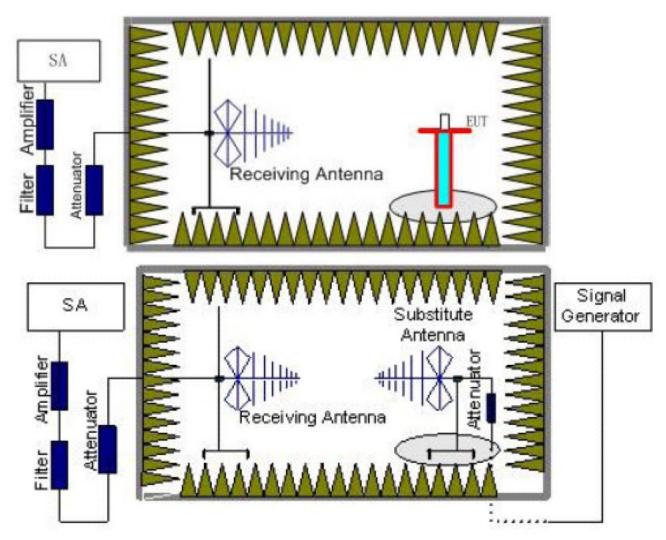
Page: 43 of 61

Issued: 2017-06-27

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	512	V	29.43		
	512	Н	25.36		
PCS1900	661	V	29.85	33.00	Deee
PC31900	001	Н	25.66	33.00	Pass
	810	V	29.74		
	610	Н	25.37		
	512	V	29.85		
	512	Н	25.46		
GPRS1900	661	V	29.46	22.00	Pass
GFK31900	001	Н	25.37	33.00	
	810	V	29.46		
	010	Н	25.38		
	512	V	25.77		
	512	Н	20.62		
EGPRS1900	661	V	25.46	33.00	Pass
EGEKSI900	100	Н	20.38	33.00	rass
	810	V	25.47		
	010	Н	20.38		

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	0262	V	20.43		
	9262	Н	15.74		
WCDMA Band II	0400	V	20.36	33.00	Deee
	9400	Н	15.47	33.00	Pass
	0529	V	20.64		
	9538	Н	15.38		

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	1010	V	21.43		
	1313	Н	16.52		
WCDMA Band IV	1450	V	21.58	22.00	Deee
	1450	Н	16.37	33.00	Pass
	1510	V	21.52		
	1512	Н	16.38		


Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
	4132	V	20.15		
	4132	Н	15.48		Pass
	1100	V	20.63	00.45	
WCDMA Band V	4183	Н	15.38	38.45	Pass
	4000	V	20.35		
	4233	Н	15.38		

5.6. Radiated Spurious Emssion

LIMIT

-13dBm

TEST CONFIGURATION

TEST RESULTS

- EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the

substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga
- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
 ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Note: Worst case at GSM850/PCS1900/WCDMA B2/B4/B5

Page: 46 of 61

Issued: 2017-06-27

		GS	M850		
Ohannal	Frequency	Spurious	Emission		Desult
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	74.92	Vertical	-57.43		
	199.99	V	-55.11		
	1486.76	V	-51.17	10.00	_
	1648.51	V	-51.07	-13.00	Pass
	5091.22	V	-58.87		
100	7487.89	V	-50.48		
128	99.88	Horizontal	-63.34		
	243.38	Н	-57.55		
	1189.56	Н	-48.47	10.00	5
	1648.51	Н	-47.83	-13.00	Pass
	5286.86	Н	-58.20		
	6923.86	Н	-49.97		
	74.92	Vertical	-58.71		
	558.73	V	-52.31		
	1486.76	V	-43.26	40.00	5
	2076.28	V	-49.14	-13.00	Pass
	5165.60	V	-55.10		
100	8706.88	V	-47.44		
190	56.00	Horizontal	-63.56		
	241.68	Н	-57.00		
	1438.56	Н	-49.36	10.00	Dava
	2309.76	Н	-49.73	-13.00	Pass
	4804.28	Н	-55.17		
	8656.52	Н	-48.06		
	195.82	Vertical	-62.48		
	558.73	V	-53.13		
	1194.80	V	-54.69	10.00	Data
	1483.50	V	-49.19	-13.00	Pass
	3387.17	V	-54.60		
054	7843.58	V	-46.73		
251	74.92	Horizontal	-59.30		
	176.27	Н	-57.41		
	1186.95	Н	-57.22	10.00	D
	1753.11	Н	-54.71	-13.00	Pass
	4113.73	Н	-53.61		
	7798.21	Н	-46.81		

Remark:

1. The emission behaviour belongs to narrowband spurious emission.

Page: 47 of 61

Issued: 2017-06-27

		PC	S1900		
Channel	Frequency	Spurious	Emission	Lizzit (dDzz)	Desult
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	75.45	Vertical	-61.75		
	199.99	V	-58.99		
	1323.32	V	-44.32	10.00	5
	1401.12	V	-41.31	-13.00	Pass
	4113.73	V	-53.56		
540	6883.81	V	-47.77		
512	99.88	Horizontal	-57.54		
	243.38	Н	-53.89		
	1186.95	Н	-50.87	10.00	Daaa
	1486.76	Н	-50.50	-13.00	Pass
	4988.90	Н	-49.15		
	7753.10	Н	-46.79		
	74.40	Vertical	-62.26		
	199.99	V	-61.75		
	1490.03	V	-48.28	12.00	Deee
	1753.11	V	-46.61	-13.00	Pass
	4113.73	V	-53.22		
661	7866.36	V	-45.73		
001	99.88	Horizontal	-57.47		
	239.99	Н	-57.20		
	1194.80	Н	-49.94	-13.00	Pass
	1490.03	Н	-47.02	-13.00	Pass
	4113.73	Н	-53.80		
	5635.22	Н	-49.45		
	74.40	Vertical	-63.71		
	243.38	V	-59.23		
	1017.73	V	-46.18	-13.00	Pass
	1401.12	V	-43.39	-13.00	Fass
	5474.12	V	-57.87		
910	6964.14	V	-50.23		
810	99.88	Horizontal	-62.32		
	239.99	Н	-54.08		
	1200.06	Н	-46.00	12.00	Deec
	1419.72	Н	-45.83	-13.00	Pass
	4902.82	Н	-51.54		
	8581.52	Н	-45.12		

Remark:

1. The emission behaviour belongs to narrowband spurious emission.

Page: 48 of 61

Issued: 2017-06-27

		WCDM	A Band II		
Ohannal	Frequency	Spurious	Emission		Desult
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	53.32	Vertical	-64.58		
	266.61	V	-48.91		
	1753.11	V	-45.86	10.00	Dava
	1935.31	V	-43.27	-13.00	Pass
	3700.48	V	-63.04		
0000	6964.14	V	-50.39		
9262	114.11	Horizontal	-67.96		
	266.61	н	-50.54		
	1332.08	н	-54.24	10.00	Dees
	1931.06	н	-44.14	-13.00	Pass
	4945.67	н	-60.39		
	6784.69	Н	-49.72		
	74.92	Vertical	-70.03		
	266.61	V	-53.12		
	1960.99	V	-47.19	10.00	Deer
	2612.19	V	-41.63	-13.00	Pass
	3759.98	V	-62.52		
0.400	6943.97	V	-50.05		
9400	52.21	Horizontal	-59.86		
	266.61	н	-53.16		
	1467.29	н	-53.34	12.00	Deee
	1960.99	н	-42.68	-13.00	Pass
	4846.27	н	-61.19		
	6609.87	н	-50.59		
	50.76	Vertical	-61.78		
	266.61	V	-49.79		
	1753.11	V	-46.13	12.00	Deee
	1987.01	V	-46.75	-13.00	Pass
	6059.03	V	-51.79		
0500	8074.41	V	-49.33		
9538	50.76	Horizontal	-61.78		
	266.61	Н	-53.31		
	1516.45	н	-54.59	10.00	Dees
	1987.01	Н	-39.92	-13.00	Pass
	6310.13	н	-51.30		
	8631.44	н	-47.99		

Remark:

1. The emission behaviour belongs to narrowband spurious emission.

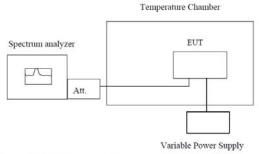
		WCDM	A Band IV		
Ohannal	Frequency	Spurious	Emission		Decult
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	70.83	Vertical	-74.66		
	266.61	V	-52.24		
	1229.42	V	-55.20	10.00	Deee
	1960.99	V	-42.68	-13.00	Pass
	5602.62	V	-54.71		
4040	6984.37	V	-50.36		
1313	73.36	Horizontal	-70.51		
	266.61	н	-52.52		
	1394.98	Н	-54.21	12.00	Deee
	1960.99	Н	-47.19	-13.00	Pass
	5602.62	Н	-54.71		
	6943.97	Н	-50.00		
	74.92	Vertical	-67.80		
	266.61	V	-52.41		
	1884.95	V	-51.03	10.00	Deee
	2577.97	V	-45.07	-13.00	Pass
	5047.11	V	-58.01		
4.450	10022.06	V	-45.22		
1450	74.92	Horizontal	-69.18		
	266.61	Н	-52.51		
	1364.66	Н	-54.51	10.00	Deee
	2141.14	Н	-46.47	-13.00	Pass
	5554.08	н	-55.85		
	8706.88	Н	-49.32		
	74.92	Vertical	-69.62		
	266.61	V	-51.26		
	1901.59	V	-45.54	40.00	Dee
	2150.57	V	-48.08	-13.00	Pass
	5003.39	V	-58.83		
	8263.96	V	-49.58		
1512	74.92	Horizontal	-69.17		
	266.61	Н	-51.71		
	1884.95	Н	-35.89		
	2577.97	Н	-41.46	-13.00	Pass
	5635.22	Н	-55.64		
	6964.14	н	-49.60		

Remark:

1. The emission behaviour belongs to narrowband spurious emission.

		WCDM	A Band V		
Channel	Frequency	Emission	Linsit (dDms)	Decult	
	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	47.66	Vertical	-61.28		
	246.82	V	-56.66		5
	1764.70	V	-39.42	-13.00	
	2131.75	V	-47.35	-13.00	Pass
	5570.22	V	-54.65		
4132	9993.03	V	-44.27		
4132	74.92	Horizontal	-69.17		
	266.61	Н	-51.71		
	1884.95	Н	-35.89	-13.00	Pass
	2577.97	Н	-41.46	-13.00	Pass
	5635.22	Н	-55.64		
	6964.14	Н	-49.60		
	185.14	Vertical	-64.72		
	266.61	V	-49.26	-13.00	Pass
	1310.30	V	-60.51		
	1764.70	V	-50.46		
	5980.46	V	-56.73		
4400	9993.03	V	-46.36		
4183	49.71	Horizontal	-63.56		
	266.61	Н	-53.83		
	1764.70	Н	-47.81	-13.00	Deee
	2440.18	Н	-52.18	-13.00	Pass
	6824.17	Н	-50.59		
	10620.63	Н	-43.91		
	52.95	Vertical	-62.04		
	266.61	V	-48.88		_
	1852.10	V	-48.35	40.00	
	2141.14	V	-50.61	-13.00	Pass
	5474.12	V	-58.03		
1005	8192.37	V	-50.47		
4233 - - - -	41.13	Horizontal	-60.96		
	266.61	Н	-51.71	-13.00 Pas	
	1764.70	Н	-39.63		
	1884.95	Н	-48.50		Pass
	5651.59	Н	-56.08		
	6903.80	Н	-50.61		

Remark:


3. The emission behaviour belongs to narrowband spurious emission.

5.7. Frequency stability V.S. Temperature measurement

LIMIT

2.5ppm

TEST CONFIGURATION

Note : Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°Coperating frequency as reference frequency.
- Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE:

Please refer to the clause 3.3

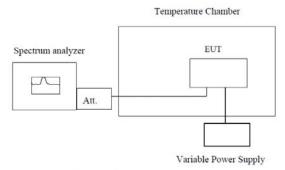
TEST RESULTS

☑ Passed □ Not Applicable

Note:Worst case at GSM850/PCS1900/WCDMA B2/B4/B5 mid channel

Reference Frequency: GSM850 Middle channel=190 channel=836.6MHz						
Power supplied	Temperature (°C)	Frequer	cy error	Limit (ppm)	Result	
(Vdc)		Hz	ppm	Linii (ppin)	Result	
	-30	16	0.019			
	-20	15	0.018			
	-10	18	0.022			
	0	19	0.023			
5.00	10	15	0.018	2.50	Pass	
	20	14	0.017			
	30	16	0.019	-		
	40	18	0.022			
	50	18	0.022			
Refe	erence Frequency: PO	CS1900 Middle ch	annel=661 chanr	nel=1880MHz		
Power supplied	Temperature (°C)	Frequency error		Limit (ppm)	Result	
(Vdc)		Hz	ppm	Liniit (ppin)	Result	
	-30	14	0.007			
	-20	10	0.005			
	-10	16	0.009			
	0	12	0.006			
5.00	10	18	0.010	2.50	Pass	
	20	16	0.009			
	30	11	0.006			
	40	13	0.007			
	50	15	0.008			

Reference Frequency: WCDMA Band II Middle channel=9400 channel=1880MHz						
Power supplied	Temperature (°C)	Frequer	icy error	Limit (ppm)	Result	
(Vdc)	Temperature (C)	Hz	ppm			
	-30	16	0.009			
	-20	13	0.007			
	-10	16	0.009			
	0	18	0.010			
5.00	10	15	0.008	2.50	Pass	
	20	18	0.010			
	30	15	0.008			
	40	14	0.007			
	50	10	0.005			
Reference	e Frequency: WCDM	A Band IV Middle	e channel=1450 c	hannel=1740MH	Z	
Power supplied	Temperature (°C)	Frequency error		Limit (ppm)	Result	
(Vdc)	Temperature (C)	Hz	ppm	Limit (ppm)	Result	
	-30	10	0.018			
	-20	16	0.014			
	-10	15	0.015			
	0	19	0.023			
5.00	10	17	0.018	2.50	Pass	
	20	20	0.020			
	30	15	0.027			
	40	14	0.023			
	50	13	0.014			


Reference Frequency: WCDMA Band V Middle channel=4182 channel=836.6MHz						
Power supplied	Tomporature (°C)	Frequency error		Limit (nnm)	Popult	
(Vdc)	Temperature (°C)	Hz	ppm	Limit (ppm)	Result	
	-30	16	0.019	2.50	Pass	
	-20	12	0.014			
	-10	14	0.017			
	0	18	0.022			
5.00	10	15	0.018			
	20	16	0.019			
	30	20	0.024			
	40	19	0.023			
	50	16	0.019			

5.8. Frequency stability V.S. Voltage measurement

LIMIT

2.5ppm

TEST CONFIGURATION

Note : Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. Set chamber temperature to 25°C. Use a variable DC power source topower the EUT and set the voltage to rated voltage.
- 2. Set the spectrum analyzer RBW lowenough to obtain the desired frequency resolution and recorded the frequency.
- 3. Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.

TEST MODE:

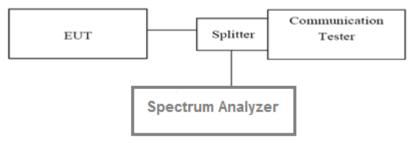
Please refer to the clause 3.3

TEST RESULTS

🛛 Passed

Not Applicable

Note:Worst case at GSM850/PCS1900/WCDMA B2/B4/B5 mid channel


Reference	e Frequency: GSM85	0 (GSM link) Midd	lle channel=190 d	channel=836.6MH	Ηz	
Temperature (°C)	Power supplied	Frequen	cy error		Result	
	(Vdc)	Hz	ppm	Limit (ppm)		
	5.50	16	0.019	2.50		
25	5.00	15	0.018		Pass	
	4.50	14	0.017			
Reference	Frequency: PCS190	00 (GSM link) Mide	dle channel=661	channel=1880MI	Ηz	
Temperature (°C)	Power supplied	Frequen	cy error	Limit (ppm)	Result	
Temperature (C)	(Vdc)	Hz	ppm	Limit (ppm)	Result	
	5.50	13	0.007			
25	5.00	16	0.009	2.50	Pass	
	4.50	15	0.008			
Referen	ce Frequency: WCD	MA Band II Middle	channel=9400 cl	hannel=1880MHz	Z	
Temperature (°C)	Power supplied	Frequency error		Limit (ppm) Result		
Temperature (C)	(Vdc)	Hz ppm				
	5.50	10	0.005	2.50	Pass	
25	5.00	16	0.009			
	4.50	15	0.008			
Reference	ce Frequency: WCDM	IA Band IV Middle	channel=1450 c	hannel=1740MH	Z	
Temperature (°C)	Power supplied	Frequency error		Limit (ppm)	Result	
	(Vdc)	Hz	ppm	Einin (ppin)	Result	
	5.50	13	0.007			
25	5.00	14	0.008	2.50	Pass	
	4.50	11	0.006			
Reference Frequency: WCDMA Band V Middle channel=4183 channel=836.6MHz						
Temperature (°C)	Power supplied	Frequen	cy error	Limit (ppm)	Result	
	(Vdc)	Hz	ppm	Einin (ppin)	Result	
	5.50	16	0.019	2.50		
25	5.00	15	0.018		Pass	
	4.50	12	0.014			

5.9. Peak-Average Ratio

LIMIT

13dB

TEST CONFIGURATION

TEST PROCEDURE

According with KDB 971168

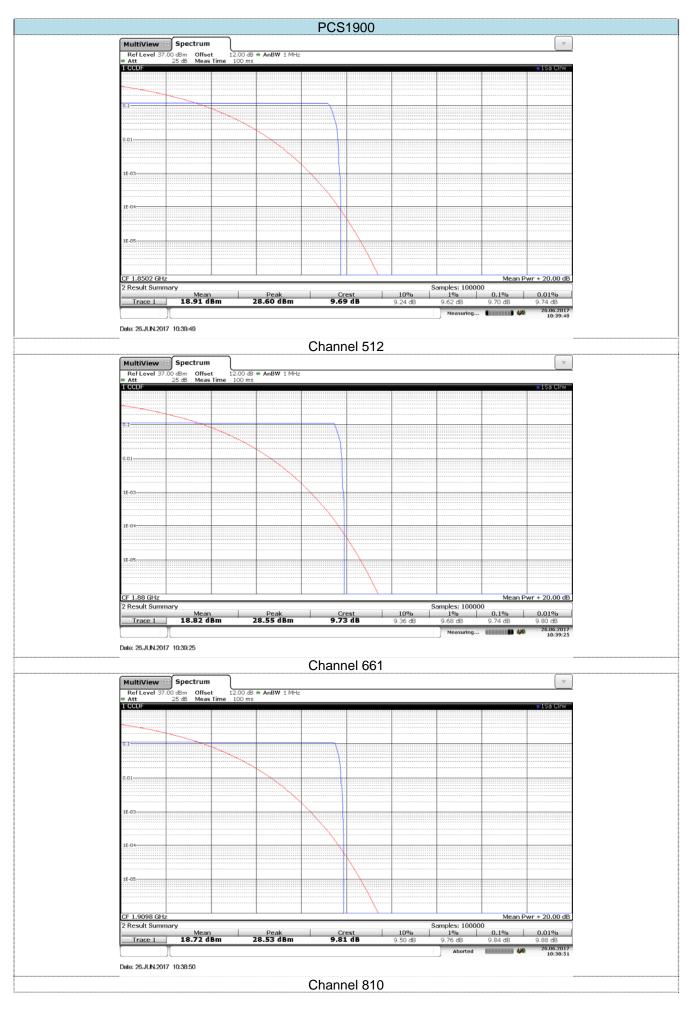
- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve

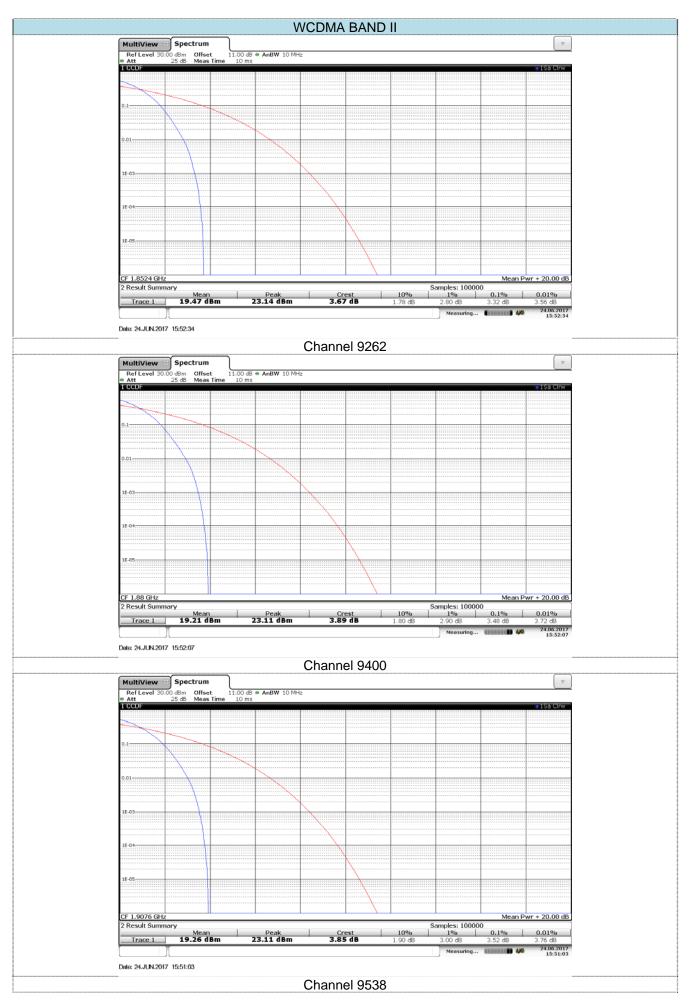
5. The measurement interval was set depending on the type of signal analyzed. Forcontinuoussignals(>98% duty cycle), the measurement interval was set to 1ms. For bursttransmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that issynced with an incoming pulse and the measurement interval is set to less than the duration of the " on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

TEST MODE:

Please refer to the clause 3.3

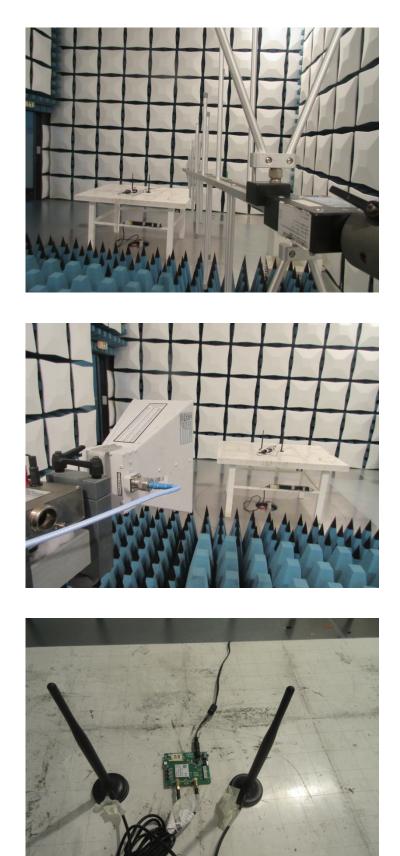
TEST RESULTS


☑ Passed □ Not Applicable

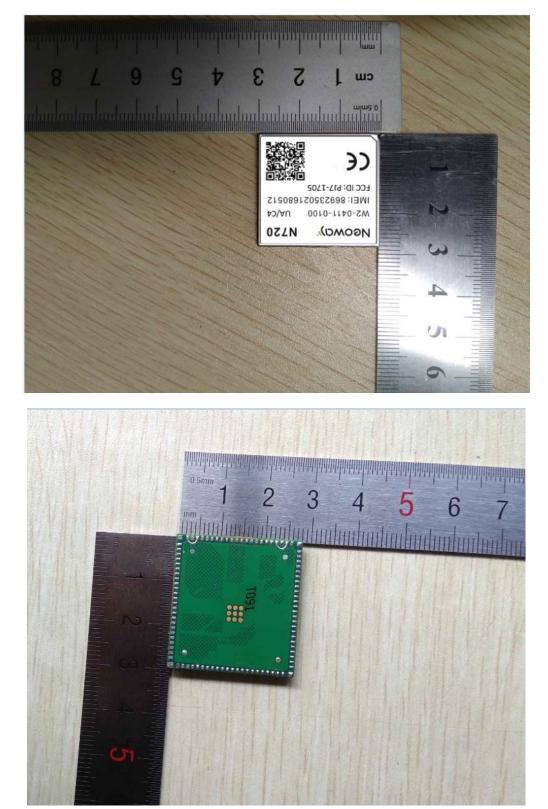

Note:Worst case PCS1900,WCDMA BAND1900, WCDMA BAND1700

Band	Channel	Frequency(MHz)	PAR	Limit(dB)	Result
PCS1900	512	1850.2	9.70	13.00	Pass
	661	1880.0	9.74	13.00	Pass
	810	1909.8	9.76	13.00	Pass

Band	Channel	Frequency(MHz)	PAR	Limit(dB)	Result
WCDMA BAND	9262	1852.4	3.32	13.00	Pass
	9400	1880.0	3.48	13.00	Pass
11	9538	1907.6	3.52	13.00	Pass


Band	Channel	Frequency(MHz)	PAR	Limit(dB)	Result
WCDMA BAND IV	1313	1712.6	3.34	13.00	Pass
	1450	1740.0	4.35	13.00	Pass
	1512	1752.4	3.78	13.00	Pass

6. Test Setup Photos of the EUT


Radiated emission:

7. External and Internal Photos of the EUT

Report No.: TRE1706002501

External photos of the EUT

Internal photos of the EUT

.....End of Report.....