REPORT ON

Limited FCC CFR 47: Parts 15 and 80 of a Raymarine RAY49 Fixed Mount VHF (with Class D DSC)

COMMERCIAL-IN-CONFIDENCE

FCC ID: PJ5RAY49

Doc Number 75900802 Report 06 Issue 3

September 2007

Choose certatiny. Add value.

COMMERCIAL-IN-CONFIDENCE

TUV Product Service Ltd, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: <u>www.tuvps.co.uk</u>; <u>www.babt.com</u>

REPORT ON Limited FCC CFR 47: Parts 15 and 80 Testing of a Raymarine RAY49 Fixed Mount VHF (with Class D DSC)

FCC ID: PJ5RAY49

Doc Number 75900802 Report 06 Issue 3

September 2007

PREPARED FOR

Raymarine Anchorage Park Portsmouth Hampshire PO3 5TD United Kingdom

PREPARED BY

N Bennett Administrator

APPROVED BY

K Adsetts

Authorised Signatory

M Jenkins Authorised Signatory

DATED

5th September 2007

This report is up-issued to issue 3 to correct typographical errors in the summary table.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47: Parts 2, 15 and 80. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineers;

M Hardv

P Harrison

Doc Number 75900802 Report 06 Issue 3

CONTENTS

Section

Page No

1	REPORT SUMMARY	
1.1	Status	4
1.2	Introduction	5
1.3	Brief Summary of Results	6
1.4	Application Form	7
1.5	Test Conditions	21
1.6	Deviations from the Standard	21
1.7	Modification Record	21
2	TEST DETAILS	
	FCC Part 15	
2.1	Spurious Radiated Emissions	23
	FCC Part 80	
2.2	Occupied Bandwidth	25
2.3	Occupied Bandwidths DSC	29
2.4	Transmitter Frequency Tolerances - Voltage	33
2.5	Transmitter Frequency Tolerances - Temperature	35
2.6	Frequency Stability DSC Emissions	39
2.7	Emissions Limitations (Emissions Mask)	40
2.8	Emissions Limitations (Emissions Mask) DSC	44
2.9	Emissions Limitations (Conducted Transmitter Spurious)	48
2.10	Emissions Limitations DSC (Conducted Transmitter Spurious)	55
2.11	Emissions Limitations (Radiated Transmitter Spurious)	59
2.12	Modulation Characteristics	61
2.13	Transmitter Power	64
2.14	Transmitter Power - DSC	66
2.15	Suppression of Interference aboard ships	68
3	TEST EQUIPMENT	
3.1	Test Equipment	74
3.2	Measurement Uncertainty	79
4	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	
4.1	Accreditation, Disclaimers and Copyright	81

SECTION 1

REPORT SUMMARY

Limited FCC CFR 47: Parts 15 and 80 Testing of a Raymarine RAY49 Fixed Mount VHF (with Class D DSC)

1.1	STATUS	
	Manufacturer	Raymarine
	Type Designation	RAY49 Fixed Mount VHF
	Serial No	Sample No. 2 Sample ATIS (Blue)
	Number of Samples Tested	Two
	Test Specification/Issue/Date	FCC CFR 47: Part 15: 2006 FCC CFR 47: Part 80: 2006
	Date of Receipt of Test Sample	18 th April 2007 Sample No. 2 28 th June 2007 Sample ATIS (Blue)
	Start of Test	2 nd July 2007
	Finish of Test	11 th July 2007
	Test Engineer(s)	R Blagg

R Blagg M Hardy P Harrison

1.2 INTRODUCTION

The information contained within this report is intended to show limited verification of compliance of the Raymarine RAY49 Fixed Mount VHF (with Class D DSC) to the requirements of FCC Specification Parts 15 and 80.

Testing has been performed under the following site accreditations

FCC Accreditation 90987 Octagon House, Fareham Test Laboratory.

1.3 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out is shown below.

FCC CFR 47: Part 15, Subpart B

Section	Spec Clause	Test Description	Result	Comments
2.1	15.109	Spurious Radiated Emissions	Pass	

FCC CFR 47: Part 80, Subparts B and C

Section	Spec Clause	Test Description	Result	Comments
2.2	2.1049 / 80.205	Bandwidths	Pass	
2.3	2.1049 / 80.207	DSC Bandwidths	Pass	
2.4	2.1055 / 80.209	Transmitter Frequency Tolerances - Voltage	Pass	
2.5	2.1055 / 80.209	Transmitter Frequency Tolerances - Temperature	Pass	
2.6	2.1055 / 80.209	Frequency Stability DSC Emissions	Pass	
2.7	2.1051 / 80.211	Emissions Limitations (Emission Mask)	Pass	
2.8	2.1053 / 80.211(f)(1)(2)	Emissions Limitations (Emission Mask) DSC	Pass	
2.9	2.1051 / 80.211(c)	Emissions Limitations (Conducted Transmitter Spurious)	Pass	
2.10	2.1051 / 80.211(c)	1051 / 80.211(c) Emissions Limitations DSC (Conducted Transmitter Spurious)		
2.11	2.1053 / 80.211(c)	Emissions Limitations (Radiated Transmitter Spurious)	Pass	
2.12	2.1047 / 2.1047(a) / 80.213	Modulation Requirements	Pass	
2.13	1.1046 / 80.215	Transmitter Power	Pass	
2.14	1.1046 / 80.215	Transmitter Power DSC	Pass	
2.15	80.217(b)	Suppression of Interference aboard ships	Pass	
	80.225	Requirements for selective calling equipment	elective calling equipment Customer declaration	
	80.227	Special requirements for protection from RF Radiation	tion from RF Radiation Report 08	

1.4 APPLICATION FORM

APPLICANT'S D	DETAILS
CATEGORY OF APPLICANT	
(please tick relevant box opposite)	(a) [] MANUFACTURER
If how (h) (c) or (d) is ticked	(b) [] IMPORTER
complete details in box below with	(c) [] DISTRIBUTOR
	(d) [X] AGENT
COMPANY NAME	Marine Electronics Marketing
ADDRESS :	Hollycroft Holybred Lane Little Baddow Chelmsford
NAME FOR CONTACT PURPOSES :	J. D. Walsh
TELEPHONE NO :01245 226000	FAX NO :
	TELEX NO :

MANUFACTURER'S DETAILS				
COMPANY NAME :	Raymarine Limited			
ADDRESS :	Anchorage Park Robinson Way Portsmouth Hampshire PO3 5TD			
NAME FOR CONTACT PURPOSES :	Al Sundoro			
TELEPHONE NO : 001 954 267 8057	FAX NO :			
	TELEX NO :			

TYPE DESIGNATION (1)					
The type designation may be either a single alphanumeric c two parts.	ode <u>or</u> an alphanumeric/code divided into				
Please fill in					
EITHER :					
TYPE DESIGNATION AS A SINGLE ALPHANUMERIC CODE	Ray49/49E				
OR :					
TYPE DESIGNATION IN TWO PARTS :					
1. EQUIPMENT SERIES NO. (2) ("MODEL NUMBER")	///////////////////////////////////////				
AND					
2. EQUIPMENT SPECIFIC NO. (3) ("IDENTIFICATION NO")					

- (1) This is the manufacturer's numeric or alphanumeric code or name that is specific to a particular equipment. It may contain information in coded form on the characteristics of the equipment e.g. frequency, power. The manufacturer is free to choose the form of the type designation.
- (2) This is the number, code or trade name used by the manufacturer to describe a series or 'family' of equipment of substantially the same mechanical and electrical construction which will include a number of related equipments. This number is often referred to as the "model number".
- (3) This is the manufacturer's identification number given to a specific equipment in the series or 'family' of equipments. It is often referred to as the "identification number".

TYPE APPROVAL TO OTHER ETS					
Has the equipment been previously type approved to other ETS?					
Yes	[]	ETS No.		
No	[X]			
Give details of previous type approvals to the equipment:					

TYPE OF EQUIPMENT					
	[]	Transmitter		
	[X]	Transmitter/Receiver		
	[]	Receiver		
	[X]	Simplex on single-frequency channels		
	[]	Simplex on two-frequency channels		
	[]	Duplex		
	[]	Separate DSC unit		
	[X]	Integrated DSC units		
	[]	Integrated analogue selective calling decoder		
Interface	es				
	[]	DSC at audio level		
	[]	DSC at DC level		
	[]	Printer		
	[X]	External loudspeaker		
	[]	DSC watchkeeping receiver antenna output		
	[]	DSC watchkeeping receiver control		

DUPLEX OPERATION						
Is the equipment intended for						
Duplex operation	[]	Yes			
	[X]	No			
Is the equipment fitted with separate transmitte	r _		N.			
and receiver antenna sockets	L]	Yes			
	[X]	No			
Is the equipment fitted with a duplex filter as an integral part of the equipment with a single anter	enna					
connection socket	l]	Yes			
	[X]	No			
Is the duplex filter externally fitted and connected the main equipment by co-axial cable(s)	Is the duplex filter externally fitted and connected to the main equipment by co-axial cable(s)					
	[]	Yes			
	[X]	No			
Type and make of duplex filter	Type and make of duplex filter					

TRANSMITTER AND RECEIVER CHARACTERISTICS						
NUMBER (NUMBER OF CHANNELS:					
[X]	ITU channels				
[X]	USA channels				
[X]	PRIVATE channels				
[X]	WEATHER channels (Rx Only)				
[]	MEMORY channels				
DSC CHANNEL(S) (if provided)						
[X]					
[]	Other :				
CHANNEL SEPARATION : 25 kHz						
ITU designation of class of emission(s) : 16K0G3EJN, 16K0G2BJN						
ANTENNA IMPEDANCE : 50 Ohms						

	TRANSMITTER TECHNICAL CHARACTERISTICS				
	TRANSMITTER FREQUENCY				
Ме	thod of frequen	cy generation			
[]	CRYSTAL			
[X]	SYNTHESIZER			
[]	OTHER			
Tra	nsmitter freque	ncy bands : 156.000–161.450MHz			
		TRANSMITTER MODULATION			
Мо	Modulation method :PHASE				
Oc	Occupied bandwidth : 16KHz				
Ма	Maximum frequency deviations : 5KHz				
	TRANSMITTER MODULATION INPUT CHARACTERISTICS				
Imp	Impedance : 2.2kohm				
	[]	balanced			
	[X]	unbalanced			

TRAN	TRANSMITTER RF POWER CHARACTERISTICS							
RATED TRANSMITTER OUTP	RATED TRANSMITTER OUTPUT POWER (as stated by the manufacturer)							
Maximum output power :	25		W					
Reduced output power :	1		W					
Output power switch :	[X]	Yes					
	[]	No					

	TRANSMITTER AND RECEIVER POWER SOURCE (1)							
[]	AC MAINS State voltage: V	[]	Single phase				
	AC MAINS FREQUENCY	[]	Three phase				
[X]	DC Voltage : 12V nominal							
	DC Maximum Current (A) : 6A							
[]	Other:							
BATTE	RY							
[]	Nickel Cadmium							
[]	Mercury							
[]	Alkaline							
[]	Lead acid (Vehicle regulated)							
[]	Leclanche							
[]	Lithium							
[]	Other							
Volts nominal:12. End point voltage as quoted by equipment manufacturer: V. (Refer to Clause 4.9.2 and 4.10.3 of the Standard when completing the above)								

(1) If a transmitter and receiver use the same power source, this should be declared. In such cases only the box for the transmitter power source should be filled in.

	RECEIVER TECHNICAL CHARACTERISTICS							
	RECEIVER FREQUENCY							
Method of f	frequency generation :							
[]	CRYSTAL							
.[X]	SYNTHESISER							
[]	OTHER :							
Intermediat	e frequencies :							
[21.6]	MHz							
[450]	kHz							
[N/A]	3rd							
Receiver fro	Receiver frequency channels : 156.000–163.275MHz							
Is local osc	Is local oscillator injection frequency higher or lower than the receiver nominal frequency?							
[]	Higher							
[X]	Lower							

RECEIVER MODULATION OUTPUT CHARACTERISTICS							
RATED AUDIO OUTPUT POWER (as stated by the manufacturer)							
Loudspeaker: 2W for External							
Earphone : N/A W							
RECEIVER MULTIPLE WATCH FACILI	TIES						
Dual watch facilities :							
	[X]	Yes				
	[]	No				
If Yes, then :							
Selection of priority channel possible ? :							
	[]	Yes				
	[X]	No (= Ch16)				
Multiple watch facilities :							
	[X]]	Yes				
	[]	No				
If Yes, then :							
Selection of priority channel possible ? :							
	[]	Yes				
	[X]	No (= Ch16)				
Number of additional channels selectable : 56							
Scan time programmable ? :							
	[]	Yes				
	[X]	No				

RE	RECEIVER POWER SOURCE (1) transmitter and receiver use the same power source							
[]	AC MAINS	State voltage:	V	[]	Single phase		
	AC MAINS FREQUENCY			[]	Three phase		
[X]	DC Voltage : 12V nominal							
	DC Maximum Current : 24	A						
[]	Other							
BATTE	RY							
[]	Nickel Cadmium							
[]	Mercury							
[]	Alkaline							
[]	Lead acid (Vehicle regulat	ted)						
[]	Leclanche							
[]	Lithium							
[]	Other							
Volts n (Refer t	ominal:12. End point volta o Clause 4.9.2 and 4.10.3 c	ge as quoted by equip f the Standard when c	ment mar completing	nufactu g the al	irer oove	V.)		

(1) If a transmitter and receiver use the same power source, this should be declared. In such cases only the box for the transmitter power source should be filled in.

		CONSTRUCTION OF THE EQUIPMENT				
[X]	Single unit (1)				
[]	Multiple units				
If multiple	e units, de	escribe each one clearly :				
	TEMPERATURE RANGES over which the equipment is to be tested					
_	_					
[]	+15°C to +35°C				
[X]	-15°C to +55°C				
[]	Other				

(1) Unit means a physically separate item of the equipment.

OTHER ITEMS SUPPLIED						
Spare batteries	[]	Yes			
	[X]	No			
Battery charging device	[]	Yes			
	[X]	No			
Special tools for dismantling equipment	[]	Yes			
	.[X]	No			
Test interface box (if applicable)	[X]	Yes			
	[]	No			
Full documentation on equipment	[tba]	Yes			
(Handbook and circuit diagrams)	[]	No			
Others	[]	Yes			
	[]	No			
If Yes, please specify :						

DECLARATION						
Are the equipments submitted representative production models ?	[]	Yes			
	[]	No			
If not are the equipments pre-production models ?	[x]	Yes			
	[]	No			
If pre-production equipments are submitted will the final production equi	ipme	nts				
be identical in all respects with the equipment tested	[X]	Yes			
	[]	No			
If no supply full details						
Is the Test Report to be used as part of a Type Approval Application ?	[]	Yes			
	[X]	No			
If yes has the product, any direct engineering predecessor, or variant e	ver					
been granted Type Approval in any EEC member country ?	[]	Yes			
	[X]	No			
If yes supply full details :						
Will labelling of the equipment comply with the						
requirements of ETS 300 338 ?	[]	Yes			
If no supply full details-equipment to IEC 62238	[X]	No			

I hereby declare that I am entitled to sign on behalf of the applicant and that the information supplied is correct and complete.

Signature :

Name : J. D. WALSH

Position held :Consultant

Date :29 March 2007.

TÜV Product Service formally certifies that the manufacturer's declaration as typed out in this report, is a true and accurate record of the original received from the applicant.

1.5 TEST CONDITIONS

The EUT was set-up simulating a typical user installation at the Test Laboratory, as listed in Section 1.2 and tested in accordance with the applicable specification.

For all tests, the EUT was powered by a 12V dc power supply.

1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standards were made to the EUT during testing.

1.7 MODIFICATION RECORD

The table below details modifications made to the EUT during the test programme. The Modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer	N/A	N/A
1	Upgrade firmware to V0625 to enable ATIS function. Upgrade 'Dealer Programmed' software to set correct parameters for ATIS. The firmware upgrade necessitated opening the radio.	Richard Andrews of Raymarine	26 th June 2007

SECTION 2

TEST RESULTS

Limited FCC CFR 47: Parts 15 and 80 Testing of a Raymarine RAY49 Fixed Mount VHF (with Class D DSC)

2.1 SPURIOUS RADIATED EMISSIONS

2.1.1 Specification Reference

FCC CFR 47: Part 15 Subpart B, Section 15.109

2.1.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample: No. 2

2.1.3 Date of Test

17th May 2007 – Modification State 0

2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.5 Test Procedure

Test Performed in accordance with ANSI C63.4.

A preliminary profile of the Spurious Radiated Emissions was obtained by operating the EUT on a remotely controlled turntable within a semi-anechoic chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

Using the information from the preliminary profiling of the EUT. The list of emissions was then confirmed or updated under Alternative Open Site conditions. Emission levels were maximised by adjusting the antenna height, antenna polarisation and turntable azimuth.

Emissions identified within the range 30MHz – 1GHz were then formally measured using a CISPR Quasi-Peak detector.

Emissions identified within the range 1GHz - 2GHz were then formally measured using Peak and Average Detectors, as appropriate.

The measurements were performed at a 3m distance unless otherwise stated.

2.1 SPURIOUS RADIATED EMISSIONS

2.1.6 Test Results

Equipment Designation: Unintentional Radiator.

The EUT met the requirements of FCC CFR 47: Part 15 Subpart B, Section 15.109 for Spurious Radiated Emissions (30MHz – 1GHz).

EUT Receiving on Middle Channel 16(156.8MHz)

Frequency	Polarisation	Height	Azimuth	Field Strength		Field Strength Limit		
MHz		cm	degree	dBµV/m	μV/m	dBµV/m	μV/m	
135.2	Vertical	100	058	21.0	11.2	43.5	150.0	
225.0	Vertical	100	052	16.2	6.5	46.0	200.0	

No other emissions were detected within 20dB of the specification limit.

The EUT met the requirements of FCC CFR 47: Part 15 Subpart B, Section 15.109 for Spurious Radiated Emissions (1GHz - 2GHz).

No emissions were detected within 20dB of the specification limit therefore no table of results is presented

2.2 OCCUPIED BANDWIDTH

2.2.1 Specification Reference

FCC CFR 47: Part 80.205, Part 2.1049(c)

2.2.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample ATIS (Blue)

2.2.3 Date of Test

11th July 2007– Modification State 0

2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.2.5 Test Procedure

The EUT is declared as having a class of emission designator of : 16K0G3E which equates to an Authorised Bandwidth of: 16kHz.

Initially, the EUT was connected via a 40dB Attenuator to a Modulation Analyser, which was set to measure the Deviation. From the results in 80.213, the audio frequency for a set input level which produces the highest level of deviation was 2.7kHz. Thus, the Audio Analyser was set to supply the EUT with an audio tone of 2.5kHz at an amplitude which produced a deviation corresponding to 50% of the maximum permissible frequency deviation, (±2.5kHz). The level was then increased on the audio analyser by 16dB.

The Modulation Analyser was then replaced with a Spectrum Analyser and the 99% Bandwidth was measured. The measurements were performed on Channel 16, bottom and top channels on maximum power levels.

2.2.6 Test Results

Channel	Power Level	Result	Authorised Bandwidth
Number/Frequency	(W)	(kHz)	(kHz)
60 / 156.025MHz	25	14.96	16
16 / 156.800MHz	25	14.97	16
88 / 157.425MHz	25	14.98	16

The test result plots are presented on the following pages.

2.2 **OCCUPIED BANDWIDTH**

2.2.6 **Test Results**

Occupied Bandwidth As Defined By The -26dBc Points

15.226 kHz*

🔆 Agilent 10:36:16 Jul 11, 2007

Maximum Power – Channel 60 Bottom

2.2 OCCUPIED BANDWIDTH

2.2.6 Test Results

Occupied Bandwidth As Defined By The –26dBc Points

Agilent 10:32:05 Jul 11, 2007

Maximum Power - Channel 16 MIddle

2.2 OCCUPIED BANDWIDTH

2.2.6 Test Results

x dB Bandwidth

Occupied Bandwidth As Defined By The –26dBc Points

15.229 kHz*

🔆 Agilent 10:35:13 Jul 11, 2007

Maximum Power – Channel 88 Top

2.3.1 Specification Reference

FCC CFR 47: Part 80.205, Part 2.1049(c)

2.3.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample ATIS (Blue)

2.3.3 Date of Test

11th July 2007– Modification State 0

2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.5 Test Procedure

DSC devices are classed as 16K0G2B emissions designator. This equates to an authorised bandwidth of 20kHz from 80.225(C)(3)(ii), where it states that the radiotelephone emissions bandwidth shall not be exceeded.

The input level was set to 156 which is a default value set by the EUT. The 1300Hz and 2100Hz tones are generated from within the EUT. Using the test modes supplied, three plots have been taken showing the carrier modulated with B and Y states and dotting pattern.

2.3.6 Test Results

Test Mode	Occupied Bandwidth	Authorised Bandwidth
	(kHz)	(kHz)
1300Hz	7.81	20
2100Hz	12.60	20
Dotting Pattern	11.32	20

The test result plots are presented on the following pages.

2.3.6 Test Results

Occupied Bandwidth As Defined By The –26dBc Points

🔆 Agilent 11:42:56 Jul 11, 2007

Transmit Freq Error	–156.903 Hz
x dB Bandwidth	10.400 kHz*

1300Hz Test Mode

2.3.6 Test Results

Occupied Bandwidth As Defined By The –26dBc Points

🔆 Agilent 11:43:48 Jul 11, 2007

Transmit Freq Error	–174.825 Hz
x dB Bandwidth	12.813 kHz*

2100Hz Test Mode

2.3.6 Test Results

Occupied Bandwidth As Defined By The –26dBc Points

🔆 Agilent 11:44:37 Jul 11, 2007

Transmit Freq Error	–208.079 Hz
x dB Bandwidth	13.247 kHz*

Dotting Pattern Test Mode

2.4 FREQUENCY STABILITY UNDER VOLTAGE VARIATIONS

2.4.1 Specification Reference

FCC CFR 47: Part 80.209, Part 2.1055

2.4.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample: No. 2

2.4.3 Date of Test

3 rd July 2007– Modification State 1

2.4.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.4.5 Test Procedure

The EUT was set to transmit an unmodulated carrier at maximum power. Using a frequency counter, the frequency error was measured on channels 60 and 88 and the result recorded.

The voltage to the EUT was varied as shown in the table of results at a temperature of 20°C.

2.4 FREQUENCY STABILITY UNDER VOLTAGE VARIATIONS

2.4.6 Results

Ambient conditions: 20.0°C 53.6% RH

Channel 60 - 156.025MHz

DC Voltage	Test Frequency	Error	Limit
(V)	(MHz)	(kHz)	(kHz)
11.56	156.025	-0.185	± 1.56025
13.60	156.025	-0.214	± 1.56025
15.64	156.025	-0.266	± 1.56025

Channel 88 – 157.425MHz

DC Voltage	Test Frequency	Error	Limit
(V)	(MHz)	(kHz)	(kHz)
11.56	157.425	-0.192	± 1.57425
13.60	157.425	-0.231	± 1.57425
15.64	157.425	-0.288	± 1.57425

LIMITS:

Limit	±1.56025kHz / ±1.57425kHz or 10ppm

Remarks

EUT complies with CFR 47 Part 2.1055, 80.209

2.5 FREQUENCY STABILITY UNDER TEMPERATURE VARIATIONS

2.5.1 Specification Reference

FCC CFR 47: Part 80.209, Part 2.1055

2.5.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample: No. 2

2.5.3 Date of Test

3rd July 2007– Modification State 1

2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.5 Test Procedure

The EUT was set to transmit an unmodulated carrier on channel 16 at maximum power. Using a frequency counter, the frequency error was measured and the result recorded. The voltage to the EUT was varied as shown in the table of results and the temperature was adjusted between - 20°C and +50°C in 10° steps as per 2.1055. Measurements were repeated on channels 60 and 88.

2.5 FREQUENCY STABILITY UNDER TEMPERATURE VARIATIONS

2.5.6 Test Results

Channel 60

Temperature Interval ℃	Voltage (V)	Test Frequency MHz	Deviation Hz	Ch60 error (ppm)	Limit (ppm)
	11.56	156.025135	135	0.865	+/- 10
-20	13.6	156.025103	103	0.660	+/- 10
	15.64	156.025113	113	0.724	+/- 10
	11.56	156.025184	184	1.179	+/- 10
-10	13.6	156.025179	179	1.147	+/- 10
	15.64	156.025166	Deviation Hz 135 103 113 184 179 166 211 197 171 55 41 19 -185 -214 -266 -405 -422 -454 -534 -552 -571 -519 -518 -511	1.064	+/- 10
	11.56	156.025211	211	1.352	+/- 10
0	13.6	156.025197	197	1.263	+/- 10
0	15.64	156.025171	171	1.096	+/- 10
	11.56	156.025055	55	0.353	+/- 10
+10	13.6	156.025041	41	0.263	+/- 10
	15.64	156.025019	Jass 135 103 113 184 179 166 211 197 171 55 41 19 -185 -214 -266 -405 -422 -454 -534 -552 -571 -519 -518 -511	0.122	+/- 10
	11.56	156.024815	-185	-1.186	+/- 10
+20	13.6	156.024786	-214	-1.372	+/- 10
	15.64	156.024734	-266	-1.705	+/- 10
	11.56	156.024595	-405	-2.596	+/- 10
+30	13.6	156.024578	-422	-2.705	+/- 10
	15.64	11.56 156.025055 13.6 156.025041 15.64 156.025019 11.56 156.024815 13.6 156.024786 15.64 156.024734 11.56 156.024734 11.56 156.024595 13.6 156.024578 15.64 156.024546 15.64 156.024546	-454	-2.910	+/- 10
	11.56	156.024466	-534	-3.423	+/- 10
+40	13.6	156.024448	-552	-3.538	+/- 10
	15.64	156.025103 103 156.025113 113 156.025184 184 156.025179 179 156.025166 166 156.025171 211 156.025177 197 156.025171 111 156.025171 171 156.025171 171 156.025055 55 156.025041 41 156.025041 41 156.025041 41 156.025041 41 156.025041 41 156.024815 -185 156.024815 -185 156.024734 -266 156.024595 -405 156.024595 -405 156.024578 -422 156.024546 -454 156.024448 -552 156.024448 -552 156.024481 -519 156.024482 -518 156.024482 -518 156.024489 -511	-3.660	+/- 10	
	11.56	156.024481	-519	-3.326	+/- 10
+50	13.6	156.024482	-518	-3.320	+/- 10
	15.64	156.024489	-511	-3.275	+/- 10

2.5 FREQUENCY STABILITY UNDER TEMPERATURE VARIATIONS

2.5.6 Test Results

Channel 16

Temperature Interval °C	Voltage (V)	Test Frequency MHz	Deviation Hz	Ch16 error (ppm)	Limit (ppm)
	11.56	156.800115	115	0.733	+/- 10
-20	13.6	156.800105	105	0.670	+/- 10
	15.64	156.800108	108	0.689	+/- 10
	11.56	156.800181	181	1.154	+/- 10
-10	13.6	156.800176	176	1.122	+/- 10
	15.64	156.800173	Deviation Hz 115 105 108 181 176 173 206 204 187 60 51 28 -181 -201 -246 -402 -413 -529 -545 -566 -522 -520 -514	1.103	+/- 10
	11.56	156.800206	206	1.314	+/- 10
0	13.6	156.800204	204	1.301	+/- 10
	15.64	156.800187	187	1.193	+/- 10
	11.56	156.800060	60	0.383	+/- 10
+10	13.6	156.800051	51	0.325	+/- 10
	15.64	156.800028	Deviation Hz 115 105 108 181 176 173 206 204 187 60 51 28 -181 -201 -246 -402 -413 -443 -529 -545 -566 -522 -520 -514	0.179	+/- 10
	11.56	156.799819	-181	-1.154	+/- 10
+20	13.6	156.799799	-201	-1.282	+/- 10
	15.64	156.799754	-246	-1.569	+/- 10
	11.56	156.799598	-402	-2.564	+/- 10
+30	13.6	156.799587	-413	-2.634	+/- 10
	15.64	156.799557	-443	-2.825	+/- 10
	11.56	156.799471	-529	-3.374	+/- 10
+40	13.6	156.799455	-545	-3.476	+/- 10
	15.64	156.800176 176 4 156.800173 173 5 156.800206 206 156.800204 204 4 156.800204 204 4 156.800187 187 5 156.800060 60 4 156.800051 51 4 156.799819 -181 5 156.799799 -201 4 156.799754 -246 5 156.799587 -413 4 156.799587 -413 4 156.799557 -443 5 156.799471 -529 5 156.799434 -566 5 156.799478 -522 6 156.799480 -520 4 156.799486 -514	-3.610	+/- 10	
	11.56	156.799478	-522	-3.329	+/- 10
+50	13.6	156.799480	-520	-3.316	+/- 10
	15.64	156.799486	-514	-3.278	+/- 10

Remarks

EUT complies with CFR 47 Parts 2.1055, 80.209.

2.5 FREQUENCY STABILITY UNDER TEMPERATURE VARIATIONS

2.5.6 Test Results

Channel 88

Temperature Interval °C	Voltage (V)	Test Frequency MHz	Deviation Hz	Ch88 error (ppm)	Limit (ppm)
	11.56	157.425154	154	0.978	+/- 10
-20	13.6	157.425106	106	0.673	+/- 10
	15.64	157.425106	106	0.673	+/- 10
	11.56	157.425189	189	1.201	+/- 10
-10	13.6	157.425187	187	1.188	+/- 10
	15.64	157.425171	Cy Deviation Hz C 154 106 106 106 106 106 106 106 107 189 189 1 107 187 111 171 209 190 2 182 66 36 5 5 3 -192 -231 -231 2 -288 -192 -231 2 -288 -411 -435 3 -472 3 -542 5 -564 -581 -523 -520 -520	1.086	+/- 10
	11.56	157.425209	209	1.328	+/- 10
0	13.6	157.425190	190	1.207	+/- 10
	15.64	157.425182	182	1.156	+/- 10
	11.56	157.425066	66	0.419	+/- 10
+10	13.6	157.425036	36	0.229	+/- 10
	15.64	157.425005	Deviation Hz 154 106 189 187 171 209 190 182 66 36 5 -192 -231 -288 -411 -435 -472 -542 -564 -581 -523 -520 -507	0.032	+/- 10
	11.56	157.424808	-192	-1.220	+/- 10
+20	13.6	157.424769	-231	-1.467	+/- 10
	15.64	157.424712	-288	-1.829	+/- 10
	11.56	157.424589	-411	-2.611	+/- 10
+30	13.6	157.424565	-435	-2.763	+/- 10
	15.64	157.424528	-472	-2.998	+/- 10
	11.56	157.424458	-542	-3.443	+/- 10
+40	13.6	157.424436	-564	-3.583	+/- 10
	15.64	157.424419	-581	-3.691	+/- 10
	11.56	157.424477	-523	-3.322	+/- 10
+50	13.6	157.424480	-520	-3.303	+/- 10
	15.64	157.424493	-507	-3.220	+/- 10

Remarks

EUT complies with CFR 47 Parts 2.1055, 80.209.

2.6 FREQUENCY STABILITY DSC EMISSIONS

2.6.1 Specification Reference

FCC CFR 47: Part 80.209, Part 2.1055

2.6.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample ATIS (Blue)

2.6.3 Date of Test

6th July 2007 – Modification State 0

2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.6.5 Test Procedure

The EUT was configured in a test mode supplied by the manufacturer to enable testing of the DSC modulation frequencies. The EUT was set to transmit in a B and Y state, 2100Hz and 1300HZ respectively. Using a modulation analyser and a frequency counter, the modulation frequencies were measured an recorded in the table below:

2.6.6 Test Results

Channel Frequency – 156.525MHz, (Channel 70)

То	et Conditions	Transmitter Frequency (Hz)		
166	St Conditions	fB-state	fY-state	
T _{nom} (26°C)	V _{nom} (12Vdc)	2099.533	1299.520	
Measurem	ent Uncertainty (Hz)	±0.15		

Limit	2100 Hz ± 10Hz
	1300Hz ± 10Hz

2.7.1 Specification Reference

FCC CFR 47: Part 80, 80.211 Part 2, 2.10551

2.7.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample ATIS (Blue)

2.7.3 Date of Test

6th July 2007 – Modification State 0

2.7.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.7.5 Test Procedure

The EUT was connected to a Spectrum Analyser via attenuators. The path loss was measured for each channel frequency and was entered as a reference level offset.

All Measurements were performed with the EUT modulated in accordance with Part 2.1051. The EUT was initially connected to a Modulation Analyser and the EUT set to transmit. Using an Audio Analyser, an audio frequency was swept between 300Hz to 5kHz to find the frequency which produced the highest deviation.

The amplitude at this frequency was then increased to give a deviation of 2.5kHz.

The amplitude and frequency levels were 4.30mV at 2.8kHz

Then at a frequency of 2.5kHz the amplitude recorded above was increased by 16dB to provide the Final Modulated level.

The EUT transmitting on full power was then connected to a Spectrum Analyser via a 40dB Attenuator. The modulated carrier was checked (for the bottom, middle and top channels of the EUT) against the emission mask.

The Path Loss was recorded and the worst case loss was entered as a Reference Level Offset

Total Path loss = 41.56dB

2.7.6 Test Results

The EUT meets the requirements of Part 80.211(c) The test result plots are presented on the following pages.

2.7.6 Test Results

Emission Mask Channel 60 - Bottom

2.7.6 Test Results

Emission Mask Channel 16 - Middle

Doc Number 75900802 Report 06 Issue 3

2.7.6 Test Results

Emission Mask Channel 88 - Top

2.8.1 Specification Reference

FCC CFR 47: Part 80, 80.211(f)(1)(2), Part 2, Sections 2.1053

2.8.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample ATIS (Blue)

2.8.3 Date of Test

9th July 2007 – Modification State 0

2.8.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.8.5 Test Procedure

The EUT was tested in its DSC mode of operation. Using the test modes supplied by the manufacturer the FSK modulated carrier was checked for compliance against the emission mask defined in 80.211(f)(1)(2). The EUT was tested in its B and Y states and Dotting Pattern.

2.8.6 Test Results

The EUT meets the requirements of Sections 2.1053, 80.211(f)(1)(2)The test result plots are presented on the following pages.

2.8.6 Test Results

1300kHz Test Mode

2.8.6 Test Results

2100kHz Test Mode

2.8.6 Test Results

Dotting Pattern Mode

2.9.1 Specification Reference

FCC CFR 47: Part 80, Sections 2.10551 80.211(c)

2.9.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample ATIS (Blue)

2.9.3 Date of Test

6th July 2007 – Modification State 0

2.9.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.9.5 Test Procedure

All Measurements were performed with the EUT modulated, in accordance with Part 2.1051. The EUT was initially connected to a Modulation Analyser and the EUT set to transmit. Using an Audio Analyser, an audio frequency was swept between 300Hz to 5kHz to find the frequency which produced the highest deviation.

The amplitude at this frequency was then increased to give a deviation of 2.5kHz.

The amplitude and frequency levels were 4.30mV at 2.8kHz

Then at a frequency of 2.5kHz the amplitude recorded above was increased by 16dB to provide the Final Modulated level.

The EUT transmitting on full power, was then connected to a Spectrum Analyser via a 40dB Attenuator in the 9kHz - 600MHz frequency range and via a 30dB Attenuator with 600MHz High Pass Filter in the 600MHz - 1.6GHz frequency range.

The EUT was checked (for the bottom, middle and top channels of the EUT) against the specification limit for all emissions >250% removed from the assigned Frequency, between 9kHz - 1.6GHz.

The Path Loss for each frequency range was recorded and the worst case loss was entered as a Reference Level Offset.

Total Path loss (9kHz - 600MHz) = 41.56dB Total Path loss (600MHz - 1.6GHz) = 41.68dB

2.9.6 Test Results

The EUT meets the requirements of Part 80.211(c) The test result plots are presented on the following pages.

2.9.6 Test Results

(Channel 60 - Bottom) 9kHz - 600MHz

2.9.6 Test Results

🔆 Agil	lent 1	6:14:20	0 Juli6	, 2007							Trace/View
								Mk	r1 687	'.5 MHz	
Ref 50	dBm		Atten	20 dB						6 dBm	Trace
Peak Log											<u>1</u> 2 3
10 dB/ Offst											Clear Write
41.7 dB	Ref	Leve									Max Hold
	50.0	0 dB	m								Min Hold
M1 S2 S3 FC AA			hanger	ummen		Mg	un kuju	4-444/45A	han-14****	10,00-0,10-1690-0	View
											Blank
Start 6 #Res B	500 MH: W 100	z kHz		VBI	W 100	<hz< td=""><td>Sweep</td><td>128.8</td><td>Stop 1 ms (40)</td><td>.6 GHz 1 pts)</td><td>More 1 of 2</td></hz<>	Sweep	128.8	Stop 1 ms (40)	.6 GHz 1 pts)	More 1 of 2

(Channel 60 - Bottom) 600MHz - 1.6GHz

2.9.6 Test Results

🔆 Agil	lent 1	4:40:33	3 Jul	6,200	7						File
								М	kr1 94	1.5 MHz	1
Ref 50	dBm		Atte	n 20 dB					-18.2	6 dBm	Create Dir
Peak			1								create bir
109 10											
d₿/											
Offst											
41.6 dB											
uD											
M1 S2 S3 EC	man	1 	sl	mm		handrende	~~~~~	m.m.		~~~~~	
Ŭ AA											
											Format⊦
Start S) kHz								Stop 60	00 MHz	More 2 of 2
#Res B	W 100	kHz		VE	3W 100	кНz	Swee	p 77.3	ms (40	1 pts)	2 01 2
C:\ST	ATE022	2.STA	file s	aved							

(Channel 16 - Middle) 9kHz - 600MHz

2.9.6 Test Results

(Channel 16 - Middle) 600MHz - 1.6GHz

2.9.6 Test Results

(Channel 88 - Bottom) 9kHz - 600MHz

2.9.6 Test Results

(Channel 88 - Bottom) 600MHz - 1.6GHz

2.10.1 Specification Reference

FCC CFR 47: Part 80, Sections 2.10551 80.211(c)

2.10.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample ATIS (Blue)

2.10.3 Date of Test

9th July 2007 – Modification State 0

2.10.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.10.5 Test Procedure

All Measurements were performed with the EUT in the DSC mode of operation. The EUT was tested in the dotting pattern test state on DSC channel 70.

The EUT transmitting on full power, was then connected to a Spectrum Analyser via a 40dB Attenuator in the 9kHz - 600MHz frequency range and via a 30dB Attenuator with 600MHz High Pass Filter in the 600MHz - 1.6GHz frequency range.

The Path Loss for each frequency range was recorded and the worst case loss was entered as a Reference Level Offset.

Total Path loss (9kHz - 600MHz) = 41.56dB Total Path loss (600MHz - 1.6GHz) = 41.68dB

2.10.6 Test Results

The EUT meets the requirements of Part 80.211(c) The test result plots are presented on the following pages.

2.10.6 Test Results

(Channel 60 - Bottom) 9kHz - 600MHz

2.10.6 Test Results

🔆 Agi	lent 1	13:50:1	5 Jul 9	9, 2007							Freq/Channel
Ref 44 Peak Log	.52 dBi	m	Atten	15 dB							Center Freq 800.000000 MHz
10 dB/ 0ffst 41 7											Start Freq 600.000000 MHz
dB											Stop Freq 1.00000000 GHz
											CF Step 40.000000 MHz <u>Auto</u> Man
M1 S2 S3 FC AA	maden		rumh		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	^	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~	FreqOffset 0.00000000 Hz
											Signal Track On <u>Off</u>
Start 6 #Res B	500 MH: W 30 k	z Hz		#V[3W 30 k	(Hz	Sweep	572.6	Stop ms (40	1 GHz 1 pts)	Scale Type Log <u>Lin</u>

(Channel 60 - Bottom) 600MHz - 1GHz

2.10.6 Test Results

🔆 Ag	ilent 1	13:52:10	3 Jul S	9, 2007							Trace/View
Ref 44 Book	1.52 dB	m	Atten	15 dB							Trace
Log											<u>1</u> 2 3
10 dB/											Clear Write
Offst 41.7											
dB											Max Hold
											Min Hold
M1 S2											
S3 FC		n a sala as	a mar ha	. A					at wat wat wat		View
											Blank
<u>^</u>											More
Start #Res E	i GHZ 3W 30 k	Hz		#V[3W 30 k	Hz	Sweep	858.9	Stop 1 ms (40	.6 GHŻ 1 pts)	1 of 2

(Channel 60 - Bottom) 1GHz - 1.6GHz

2.11 EMISSION LIMITATIONS (RADIATED TRANSMITTER SPURIOUS)

2.11.1 Specification Reference

FCC CFR 47: Part 80, Sections 2.1053 80.211(c)

2.11.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample No. 02

2.11.3 Date of Test

17th May 2007 – Modification State 0

2.11.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.11.5 Test Procedure

The EUT was set up in accordance with the manufacturers instruction in a semi-anechoic chamber conforming to the requirements of ANSI-C63.4.

The frequency spectrum was investigated between 30MHz and 1700MHz. Where emissions were present, they were measured at a distance of 3m. A height search between 1 and 4m was carried out and the EUT rotated through 360° to maximise the response.

The receivers detector was set to peak and max hold function utilised. Below 1GHz an RBW of 100kHz and UBW of 300kHz was used. Above 1GHz on RBW of 1MHz and UBW of 3MHz was used.

The EUT was tested on bottom, middle and top channels on maximum power with modulation applied in accordance with FCC Part 2.1049.

2.11.6 Test Results

No emissions attributable to the EUT were detected within 20dB below the limit. Therefore no table of results is presented.

Frequency	Antenna Polarisation	Height	Azimuth	Peak Result	Peak Limit
MHz		cm	degree	dBm	dBm
312.0	Vertical	100	000	-50.28	-13.0
936.1	Vertical	143	346	-45.86	-13.0

EUT Transmitting on Bottom Channel 60 (156.025MHz)

Transmitting on Middle Channel 16 (156.8MHz)

Frequency	Antenna Polarisation	Height	Azimuth	Peak Result	Peak Limit
MHz		cm	degree	dBm	dBm
313.6	Horizontal	100	291	-52.48	-13.0
940.8	Vertical	100	333	-46.86	-13.0

Transmitting on Top Channel 88 (157.425MHz)

Frequency	Antenna Polarisation	Height	Azimuth	Peak Result	Peak Limit
MHz		cm	degree	dBm	dBm
314.9	Horizontal	100	300	-51.38	-13.0
944.6	Vertical	100	310	-46.46	-13.0

Transmitting on DSC Channel 70 (156.5MHz)

Frequency	Antenna Polarisation	Height	Azimuth	Peak Result	Peak Limit
MHz		cm	degree	dBm	dBm
313.00	Horizontal	100	300	-46.17	-13.0
469.50	Vertical	166	033	-54.46	-13.0
939.00	Vertical	100	330	-46.86	-13.0

2.12 MODULATION CHARACTERISTICS

2.12.1 Specification Reference

FCC CFR 47: Part 80, 80.213(d), Part 2, 2.1047

2.12.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample ATIS (Blue)

2.12.3 Date of Test

9th July 2007 – Modification State 0

2.12.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.12.5 Test Procedure

In each of the test modes listed in the table below, the maximum frequency duration was checked to ensure that the deviation remained within ±5kHz as defined in 80.213(d)

80.213(d)

The frequency deviation remains within ± 5 kHz as the amplitude is fixed for the B and Y states, it is not possible for the deviation to exceed ± 5 kHz. The table shows that the EUT meets the requirements of the specification.

In accordance with 2.1047(a), a curve has been produced displaying the frequency response of the audio modulating circuit over a range of 100Hz to 5kHz. The plot shows the data for all of the circuitry installed between the microphone input and the modulated stage.

The EUT was connected to a Modulation Analyser via a 30dB Attenuator. An Audio Analyser was connected to the microphone input at a set voltage level and the frequency varied between 100Hz and 5kHz. The demodulated audio was measured and plotted as a graph, which is shown below.

2.12 MODULATION CHARACTERISTICS

2.12.6 Test Results

Frequency Deviation (kHz)	Modulation State	Limit
2.673	1300Hz	≤ 5kHz
4.050	2100Hz	≤ 5kHz
4.080	Dotting Pattern	≤ 5kHz

The EUT meets the requirements of Parts 2.1047, 80.213(d) The test result plot is presented on the following page.

2.12 MODULATION CHARACTERISTICS

2.12.7 Test Results

Audio Frequency Response

A Graph To Show The Frequency Response Of The Audio Modulating Circuit

Two sets of data are plotted on the graph. One shows the audio frequency response characteristics and the other with the input level increased by 16dB to show the limiting characteristics.

2.13 TRANSMITTER POWER

2.13.1 Specification Reference

FCC CFR 47: Part 80, 80.215(a)(2)(e)(1), Part 2, 2.1046

2.13.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample: No. 2

2.13.3 Date of Test

2nd July 2007 – Modification State 1

2.13.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.13.5 Test Procedure

The EUT was connected via a 30dB attenuator to a Modulation Analyser and sensor. The path loss between the EUT and the modulation analyser was measured and entered as a reference level offset.

The emissions designator for the EUT is declared as G3E. In Clause 80.215(a)(2), the measurement of G3E designations is defined as being Carrier Power. In accordance with Clause 2.1, the Carrier Power was measured unmodulated.

The carrier power was measured on the top, middle and bottom channels of the operating frequency band and at maximum and minimum power levels.

2.13 TRANSMITTER POWER

2.13.6 Test Results

Maximum Power – 25W

Test Cond	itions	Tra	ansmitter Output power (W)
		156.025 MHz	156.800MHz	157.425MHz
Tnom (23°C)	Vnom (12Vdc)	21.232	21.429	21.928

Limit	≤25W or <+43.98dBm
-------	--------------------

Minimum Power- 1W

Test Condi	itions	Tra	ansmitter Output power (W)
		156.025 MHz	156.800MHz	157.425MHz
Tnom (23°C)	Vnom (12Vdc)	0.798	0.794	0.802

Limits

Limit	≤1W or <+30dBm
-------	----------------

The EUT meets the requirements of Sections 2.1046, 80.215(a)(2)(e)(1) and RSS-182, 4.3 & 6.2

2.14 TRANSMITTER POWER - DSC

2.14.1 Specification Reference

FCC CFR 47: Part 80, 80.215(a)(2)(e)(1), Part 2, 2.1046

2.14.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample ATIS (Blue)

2.14.3 Date of Test

11th July 2007 – Modification State 0

2.14.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.14.5 Test Procedure

The EUT was connected via a 40dB attenuator to a Modulation Analyser and sensor. The path loss between the EUT and the modulation analyser was measured and entered as a reference level offset.

The EUT was configured with a continuous dotting pattern and with a default level of 156.

The carrier power was measured on channel 70 and at maximum power.

2.14 TRANSMITTER POWER

2.14.6 Test Results

Maximum Power – 25W

Test Conditions		Transmitter Output power (W)
		156.800MHz
Tnom (23°C)	Vnom (12Vdc)	24.15

Limit	≤25W or <+43.98dBm
-------	--------------------

The EUT meets the requirements of Sections 2.1046, 80.215(a)(2)(e)(1).

2.15.1 Specification Reference

FCC CFR 47: Part 80, Section 80.217(b)

2.15.2 Equipment Under Test

RAY49 Fixed Mount VHF (with Class D DSC)

Sample: No. 2

2.15.3 Date of Test

10th July 2007 – Modification State 1

2.15.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.15.5 Test Procedure

The EUT was powered on with both FM and DSC receivers active, and connected to a Spectrum Analyser via an RF cable. The emissions were measured from 9kHz to 1.6GHz.

The worst case cable loss across the Measurement Frequency range was entered a reference level offset.

2.15.6 Test Results

9kHz – 30MHz

2.15.6 Test Results

30MHz - 100MHz

2.15.6 Test Results

100MHz – 300MHz

2.15 SUPPRESSION OF INTERFERENCE ABOARD SHIPS

2.15.6 Test Results

300MHz – 1.6GHz

SECTION 3

TEST EQUIPMENT

List of absolute measuring and other principal items of test equipment.

Instrument	Manufacturer	Туре No	TE Number	Calibration Due	
Section 2.2 & 2.3 Radio (Tx) -	Section 2.2 & 2.3 Radio (Tx) - Occupied Bandwidth				
Audio Analyser	Hewlett Packard	8903B	44	11/07/2008	
Attenuator (30dB/ 50W)	Bird	8321	46	15/11/2007	
Sensor Module	Hewlett Packard	11722A	1333	21/11/2007	
Digital Multimeter	Iso-tech	ISO-TECH IDM63	1894	23/01/2008	
Power Supply Unit	Farnell	TSV-70	2043	TU	
Hygrometer	Rotronic	I-1000	2891	06/01/2008	
Attenuator dc - 18GHz	Suhner	6810.17.B	2966	23/02/2008	
Modulation Analyser	Hewlett Packard	8901B	3292	20/11/2007	
ESA-E Series Spectrum Analyser	Agilent	E4402B	3348	16/04/2008	
Section 2.4 & 2.5 Radio (Tx) - Frequency Characteristics					
Power Supply Unit	Hewlett Packard	6269B	113	TU	
Counter	Hewlett Packard	53181A	159	17/08/2007	
Temperature Chamber	Montford	2F3	467	OP MON	
Attenuator (30dB, 50W)	Bird	8321	494	07/12/2007	
Multimeter	Iso-tech	Iso Tech IDM101	2424	04/08/2007	
Hygrometer	Rotronic	I-1000	2891	06/01/2008	
Thermocouple Thermometer	Fluke	51	3173	18/06/2008	

Instrument	Manufacturer	Туре No	TE Number	Calibration Due	
Section 2.10 Emission Limitation DSC					
Attenuator (30dB/ 50W)	Bird	8321	46	15/11/2007	
Digital Multimeter	Iso-tech	ISO-TECH IDM63	1894	23/01/2008	
Power Supply Unit	Farnell	TSV-70	2043	TU	
High Pass Filter	Mini-Circuits	NHP-600	2834	24/10/2007	
Hygrometer	Rotronic	I-1000	2891	06/01/2008	
Attenuator dc - 18GHz	Suhner	6810.17.B	2966	23/02/2008	
ESA-E Series Spectrum Analyser	Agilent	E4402B	3348	16/04/2008	
Section 2.12 Radio (Tx) - Modulation Characteristics					
Attenuator (30dB/ 50W)	Bird	8321	46	15/11/2007	
Modulation Analyser	Rohde & Schwarz	FAM	119	TU	
1GHz Digital Oscilloscope	Lecroy	9370M	612	21/09/2007	
Sensor Module	Hewlett Packard	11722A	1333	21/11/2007	
Digital Multimeter	Iso-tech	ISO-TECH IDM63	1894	23/01/2008	
Power Supply Unit	Farnell	TSV-70	2043	TU	
Hygrometer	Rotronic	I-1000	2891	06/01/2008	
Attenuator dc - 18GHz	Suhner	6810.17.B	2966	23/02/2008	
Modulation Analyser	Hewlett Packard	8901B	3292	20/11/2007	

Instrument	Manufacturer	Туре No	TE Number	Calibration Due
Sections 2.13 Radio (Tx) - Au	dio Frequency Respons	5e		
Audio Analyser	Hewlett Packard	8903B	44	11/07/2008
Attenuator (30dB/ 50W)	Bird	8321	46	15/11/2007
Spectrum Analyser (20Hz- 40MHz)	Hewlett Packard	3585A	743	23/02/2008
Sensor Module	Hewlett Packard	11722A	1333	21/11/2007
Digital Multimeter	Iso-tech	ISO-TECH IDM63	1894	23/01/2008
Power Supply Unit	Farnell	TSV-70	2043	TU
Hygrometer	Rotronic	I-1000	2891	06/01/2008
Attenuator dc - 18GHz	Suhner	6810.17.B	2966	23/02/2008
Signal Generator 100kHz to 2060MHz	Hewlett Packard	8657B	2983	18/12/2007
Modulation Analyser	Hewlett Packard	8901B	3292	20/11/2007
Section 2.14 (Tx) - Power Cha	racteristics			
Audio Analyser	Hewlett Packard	8903B	44	11/07/2008
Attenuator (30dB/ 50W)	Bird	8321	46	15/11/2007
Modulation Analyser	Hewlett Packard	8901B	773	23/01/2008
Sensor Module	Hewlett Packard	11722A	1333	21/11/2007
Digital Multimeter	Iso-tech	ISO-TECH IDM63	1894	23/01/2008
Power Supply Unit	Farnell	TSV-70	2043	TU
Multimeter	Iso-tech	Iso Tech IDM101	2424	04/08/2007
Power Attenuator 30dB	Rohde & Schwarz	RBU	2746	23/11/2007
Sensor	Hewlett Packard	11722A	2787	09/08/2007
Hygrometer	Rotronic	I-1000	2891	06/01/2008
Attenuator dc - 18GHz	Suhner	6810.17.B	2966	23/02/2008
Signal Generator 100kHz to 2060MHz	Hewlett Packard	8657B	2983	18/12/2007
Modulation Analyser	Hewlett Packard	8901B	3292	20/11/2007

Instrument	Manufacturer	Туре No	TE Number	Calibration Due	
Section 2.7, 2.8 & 2.9 Radio –	Section 2.7, 2.8 & 2.9 Radio – Emissions Limitations				
Attenuator (30dB/ 50W)	Bird	8321	46	15/11/2007	
Digital Multimeter	Iso-tech	ISO-TECH IDM63	1894	23/01/2008	
Power Supply Unit	Farnell	TSV-70	2043	TU	
High Pass Filter	Mini-Circuits	NHP-600	2834	24/10/2007	
Hygrometer	Rotronic	I-1000	2891	06/01/2008	
Attenuator dc - 18GHz	Suhner	6810.17.B	2966	23/02/2008	
ESA-E Series Spectrum Analyser	Agilent	E4402B	3348	16/04/2008	
Section 2.1 & 2.11 EMC - Radi	ated Emissions				
Spectrum Analyser	Hewlett Packard	8542E	18	09/02/2008	
Antenna (Dipole, 300MHz- 1000MHz)	Schwarzbeck	UHAP	447	08/09/2007	
Modulation Analyser	Hewlett Packard	8901B	557	31/10/2007	
Test Receiver	Rohde & Schwarz	ESIB40	1006	21/04/2008	
Mast Controller	Inn-Co GmbH	CO 1000	1606	TU	
Turntable/Mast Controller	EMCO	2090	1607	TU	
Signal Generator	Marconi	2031	2015	18/11/2007	
Audio Analyser	Hewlett Packard	8903B	2212	01/12/2007	
Bilog Antenna	Chase	CBL6143	2904	10/11/2007	
Section 2.15 Radio - Suppression of Interference aboard ships					
Digital Multimeter	Iso-tech	ISO-TECH IDM63	1894	23/01/2008	
EMI Test Receiver	Rohde & Schwarz	ESIB26	2028	25/06/2008	
Power Supply Unit	Farnell	TSV-70	2043	TU	
Multimeter	lso-tech	Iso Tech	2419	04/08/2007	

Instrument	Manufacturer	Type No	TE Number	Calibration Due	
Section 2.6 Radio (Tx) - Modu	Section 2.6 Radio (Tx) - Modulation Characteristics				
Attenuator (30dB/ 50W)	Bird	8321	46	15/11/2007	
Modulation Analyser	Rohde & Schwarz	FAM	119	TU	
1GHz Digital Oscilloscope	Lecroy	9370M	612	21/09/2007	
Sensor Module	Hewlett Packard	11722A	1333	21/11/2007	
Digital Multimeter	Iso-tech	ISO-TECH IDM63	1894	23/01/2008	
Power Supply Unit	Farnell	TSV-70	2043	TU	
Hygrometer	Rotronic	I-1000	2891	06/01/2008	
Attenuator dc - 18GHz	Suhner	6810.17.B	2966	23/02/2008	
Modulation Analyser	Hewlett Packard	8901B	3292	20/11/2007	

* - Used to tune rejection network, calibration not required.
TU - Traceability Unscheduled
OP MON – Output Monitored with calibrated equipment

3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

Test Discipline	Frequency / Parameter	MU
Radiated Emissions, Bilog Antenna, AOATS	30MHz to 1GHz Amplitude	5.1dB*
Radiated Emissions, Horn Antenna, AOATS	1GHz to 40GHz Amplitude	6.3dB*
Conducted Emissions, LISN	150kHz to 30MHz Amplitude	3.2dB*

Worst case error for both Time and Frequency measurement 12 parts in 10^6 .

* In accordance with CISPR 16-4

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TUV Product Service Limited

© 2007 TUV Product Service Limited