

TEST REPORT

EMC DEPARTMENT

RAYMARINE LTD

Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner

> To: FCC Part 80: 1998 and FCC Part 2:1998

(Leisure Marine Radar Equipment)

Test Report Serial No. 648/1065

Checked By:	Approved By:
11/00-	E achilfabban
EMC Team Leader	International Compliance manager
Tested By: Andy Little / Paul Pitt	Author: Andy Little
	EMC Engineer
Issue Date: 10 th February, 2006	Test Dates: 3 rd January to 9 th February 2006

Table of Contents

1	Client Information	
2	Equipment Under Test (EUT)	. 4
	2.1 Identification of Equipment Under Test (EUT)	. 4
	2.2 Description of EUT	4
	2.3 Modifications incorporated in EUT	. 4
	2.4 Additional information related to Testing	
	2.5 Support Equipment	. 5
3	Test Specification, Methods and Procedures	
	3.1 Test Specification	
	3.2 Methods and Procedures	. 6
	3.3 Definition of Measurement Equipment	
4	Deviations from the Test Specification	
5	Operation of the EUT during Testing	
	5.1 Operating Conditions.	
	5.2 Operating Modes	
	5.3 Configuration and peripherals	
6	Summary of Test Results	
	6.1 Summary of Tests	
	6.1.1 Radiated Spurious Emissions	
	6.1.2 Conducted Spurious Emissions	
	6.1.3 RF Power Output	
	6.1.4 Variation of Frequency with Voltage	10
	6.1.5 Variation of Frequency with Temperature	10
	6.1.6 Occupied Bandwidth	10
	6.1.7 Transmitter Frequency Tolerance	10
	6.1.8 Suppression of Interference Aboard Ships	11
	6.2 Location of Tests	11
7	Measurements, Examinations and Derived Results	12
	7.1 General Comments	12
	7.2 Field Strength Measurements	
	7.2.1 Magnetic Field Measurements: Frequency Range 9 kHz to 30 MHz	12
	7.2.2 Electric Field Measurements: Frequency Range 30 MHz to 2000 MHz	
	7.2.3 Electric Field Measurements: Frequency Range: 2GHz to 40GHz	12
	7.3 Conducted Emissions	
	7.3.1 Peak Detector measurements on RF port	
	7.4 Peak Power	
	7.5 Pulse Width	
	7.6 Pulse Repetition Frequency	
	7.7 Average Power	
	7.8 Variation of frequency with input voltage	
	7.9 Variation of frequency with temperature	
	7.10 Occupied Bandwidth	17
		17
	7.11.1 Specification: 80.209(b)	
	7.11.2 Calculation	
8	Measurement Uncertainty	
	opendix A Test Equipment Used	
	opendix B Measurement Methods	
	opendix C Test Configuration Drawings	
Ap	opendix D Graphical Test Results	28

1 Client Information

Company Name	Raymarine Ltd.
Address:	Robinson Way Anchorage Park Portsmouth Hampshire PO3 5TD England, U.K.
Contact Name:	Mr. P. Bowen, EMC Team Leader

2 Equipment Under Test (EUT)

2.1 Identification of Equipment Under Test (EUT)

Brand Name:	Raymarine	
Model Name or Number:	RD424 Analog 4kW 24inch Radome Scanner	
	Compatible with the Following Raymarine disp	olays
	E120 12 inch Ultra Bright Multifunction Navigation Display	
	E80 8 inch Ultra Bright Multifunction Navigation Display	
	C70 7 inch Multifunction Navigation Display	
	C80 8 inch Multifunction Navigation Display	
	C120 12 inch Multifunction Navigation Display	
Unique Type Identification:	RD424 4kW unit	E52067
	E120 12" Display	E02013
	E80 8" Display	E02011
	C120 12" Display	E02022
	C80 8" Display	E02020
	C70 7" Display	E02018
Serial Number:	Scanner Unit	EMC301105
	Display Unit (E120)	EMC041104b
Country of Manufacture:	Hungary	
FCC ID Number:	PJ5-AD4D-8P	
Date of Receipt:	30 th November 2005	

2.2 Description of EUT

The equipment under test is an X-band marine radar intended for use on leisure craft and small workboats, and is comprised of:

Scanner Unit: 4kW X-band transmitter with a 24 inch Flare antenna. Display Unit: 12 inch Ultra Bright Multifunction Navigation Display with chart reader and with Seatalk/alarm, NMEA, Video in/out, Seatalk 2, and Seatalk High speed bus interface ports.

2.3 Modifications incorporated in EUT

The EUT has not been modified from what is described by the Model Name and Unique Type Identification stated above.

2.4 Additional information related to Testing

Power Supply Requirement:	Nominal 12-32V DC supply		
Intended Operating Environment:	Leisure Marine & Small Workboats		
Weight:	424 Scanner: 7.5kg (16.5lbs)		
	Display 7.35kg (16.2lbs)		
Dimensions:	424 Scanner: 652mm dia x 247mm height		
	Display: w355.5mm x h264mm x d140mm		
Interface Ports:	Power		
	Seatalk / Alarm		
	Seatalk 2		
	Seatalk High Speed Bus		
	NMEA		
	Video In		
	Video Out		

2.5 Support Equipment

Support equipment used up to	
Item	Unique Type Identification & Serial Number
ST60 Multi Display	A22003 / EMC 101203b
C80 Display	E02020 / EMC 181103a
DSM 250 Sonar	E62007 / EMC031103e
B256 Sonar transducer	E66024
ST290 Data Display	E22056 / 430015

Support equipment used up to 2GHz

No support equipment was required to be used over 2GHz

3 Test Specification, Methods and Procedures

3.1 Test Specification

Reference:	FCC Part 80: 1998 and FCC Part 2:1998
Title:	Code of Federal Regulations, Part 80 (47CFR): 1998 Stations in the maritime services
	Code of Federal Regulations, Part 2 (47CFR): 1998 Frequency Allocations and radio treaty matters; general rules and regulations
Comments:	The test facility used for the radiated emissions portions of these tests is an alternative test site as described in ANSI C63.4-2001, being a 3m test range within a semi-anechoic chamber, with antenna height scanning from $1 - 4$ metres and meeting the +/-4dB NSA criterion. It is registered with the FCC under the 2.948 (47CFR) listing procedure with Reference Number 970522.
Purpose of Test:	To demonstrate compliance of the RD424 analog 4kW radome scanner with the appropriate clauses of Parts 2 and 80 of the FCC Rules.

3.2 Methods and Procedures

The methods and procedures used were as detailed in:

ANSI C63.2-1996

Title: American National Standard for Electromagnetic Noise and Field Strength Instrumentation, 10 Hz to 40 GHz – Specifications

ANSI C63.4-2001

Title: American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

ANSI C63.5-1998

Title: American National Standard for Electromagnetic Compatibility – Radiated Emission Measurements in Electromagnetic Interference (EMI) Control – Calibration of Antennas (9 kHz to 40 GHz)

CISPR 16-1 (1999)

Title: Specification for radio disturbance and immunity measuring apparatus and methods Part 1: Radio disturbance and immunity measuring apparatus

CISPR 16-4 (2002)

Title: Specification for radio disturbance and immunity measuring apparatus and methods Part 4: Uncertainty in EMC measurements

3.3 Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the Methods and Procedures section above. Appendix A contains a list of the test equipment used. Deviations from the Test Specification

4 Deviations from the Test Specification

None.

5 Operation of the EUT during Testing

5.1 Operating Conditions

- 1. Radiated Emissions, 9kHz to 40GHz: The EUT was located on a non-conducting support above a turntable on a 3m test range within a semi-anechoic chamber (Raymarine Site 3)
- 2. The EUT was located in a laboratory environment for all other tests.
- 3. During testing, the EUT was powered by a nominal 12V DC supply except when measuring Frequency Variation with Voltage. [FCC Part 2, 1055(d)]

5.2 Operating Modes

The EUT was tested in the following operating modes:

- 1. Radiated emissions: Transmitting into a rotating non-reflective load with the transmitter set to 75, 450 and 1000ns pulse widths.
- 2. Conducted emissions: Transmitting into a fixed non-reflective load with the transmitter set to 75, 450 and 1000ns pulse widths.
- 3. Variation of transmit frequency with voltage and temperature: The transmitter was set to the half nautical mile range (75ns pulse width) and the six nautical mile range (1000ns pulse width).
- 4. Transmitter power, pulse width, occupied bandwidth and P.R.F. Transmitting into a fixed non-reflective load.

5.3 Configuration and peripherals

- The scanner unit was connected to the display unit with the standard cable of 15m length. A transmit dummy load was connected to the scanner unit antenna port. Over the frequency range 9kHs to 2GHz all interface ports were terminated with suitable instruments. Above 2GHz all display unit interface ports were connected to dummy loads using the maximum length of cable specified for the particular port, or 20 m where this is less than the maximum specified. A 12V DC supply was connected to the Display Unit.
- 2. This configuration is defined as being likely to be the worst case as regards emissions.
- 3. Appendix A of this report contains a full list of test equipment used and Appendix C contains a schematic diagram of the test configuration.

6 Summary of Test Results

6.1 Summary of Tests

6.1.1 Radiated Spurious Emissions

Frequency Range	Specification Reference	Compliance Status
9kHz to 40GHz	2.1053 and 80.211(f)	Complied

6.1.2 Conducted Spurious Emissions

Frequency Range	Specification Reference	Compliance Status
9kHz to 40GHz	2.1051 and 80.211(f)	Complied

6.1.3 RF Power Output

6.1.3.1 Peak Power

Nominal Pulsewidth Range (ns)	Specification Reference	Compliance Status
75 to 1000	2.1046(a) and 80.215(a)	Complied

6.1.3.2 Average Power

Nominal Pulsewidth Range (ns)	Specification Reference	Compliance Status
75 to 1000	2.1046(a) and 80.215(a)	Complied

6.1.3.3 Pulse Width

Nominal Pulsewidth Range (ns)	Specification Reference	Compliance Status
75 to 1000	2.1046(a) and 80.215(a)	Complied

6.1.3.4 PRF

Nominal Pulsewidth Range (ns)	Specification Reference	Compliance Status
75 to 1000	2.1047(d) and 80.213(g)	Complied

6.1.4 Variation of Frequency with Voltage

6.1.4.1 75ns

Nominal Pulsewidth (ns)	Specification Reference	Compliance Status
75	2.1055(d)	Complied

6.1.4.2 1000ns

Nominal Pulsewidth (ns)	Specification Reference	Compliance Status
1000	2.1055(d)	Complied

6.1.5 Variation of Frequency with Temperature

6.1.5.1 75ns

Nominal Pulsewidth (ns)	Specification Reference	Compliance Status
75	2.1055(a and b)	Complied

6.1.5.2 1000ns

Nominal Pulsewidth (ns)	Specification Reference	Compliance Status
1000	2.1055(a and b)	Complied

6.1.6 Occupied Bandwidth

Nominal Pulsewidth Range (ns)	Specification Reference	Compliance Status
75 to 1000	2.1049(i) and 80.205	Complied

6.1.7 Transmitter Frequency Tolerance

Nominal Pulsewidth Range (ns)	Specification Reference	Compliance Status
75 to 1000	80.209(b)	Complied

6.1.8 Suppression of Interference Aboard Ships

80.217. When the radar is in the Standby mode of operation, the local oscillator is automatically switched off.

6.2 Location of Tests

All the measurements described in this report were performed in the EMC Department at the premises of Raymarine Ltd., Robinson Way, Anchorage Park, Portsmouth, Hampshire PO3 5TD, England, U.K.

7 Measurements, Examinations and Derived Results

7.1 General Comments

This section contains test results only. Details of the test methods and procedures can be found in Appendix B of this report.

Measurement uncertainties are stated in accordance with the requirements of CISPR 16-4:2002. Please refer to Section 8 for details of measurement uncertainties.

The highest frequency generated by the EUT is 9.4GHz. Consequently, tests were performed up to 40GHz.

7.2 Field Strength Measurements

7.2.1 Magnetic Field Measurements: Frequency Range 9 kHz to 30 MHz

Plots of measurements using a peak detector can be found in Appendix D.

No emissions exceeded a level of 70dBuV/m.

Details of the limit line calculation can be seen in Appendix B.

7.2.2 Electric Field Measurements: Frequency Range 30 MHz to 2000 MHz

Plots of measurements can be found in Appendix D.

The highest peak levels measured were less than 60dBuv/m

Details of the limit line calculation can be seen in Appendix B

7.2.3 Electric Field Measurements: Frequency Range: 2GHz to 40GHz

Plots of measurement scans can be found in Appendix D.

The following table lists frequencies at which significant emissions were measured using Peak detector functions. Although these emissions are not required to be recorded, being more than 20dB lower than the limit line, they are included for completeness as they are all magnetron-related.

Details of the limit line calculation can be seen in Appendix B

Frequency	Antenna	Level	Limit	Margin	Result
(GHz)	Polarization	(dBuV/m)	(dBuV/m)	(dB)	
18.790	Vertical	92.94	132.9	40	Complied

7.3 Conducted Emissions

7.3.1 Peak Detector measurements on RF port

The design of the RF coupling from the magnetron to the antenna forms an effective high pass/band pass filter arrangement. The peak energy level of radar requires considerable attenuation in order to prevent the analyser from going into compression. This limits the maximum dBc figure that can be obtained without changing the resolution bandwidth of the analyser. Since the signal is wideband compared to the resolution bandwidth, it is critical to the measurement accuracy that the resolution bandwidth settings remain consistent throughout the testing where possible.

Due to the use of waveguide on the antenna port, the lowest frequency of measurement was increased to 6GHz. The following table lists frequencies at which emissions or the highest noise floors were measured using a Peak Detector. Note that for measurements above 26.5GHz, the mixer conversion process may produce a "true" and "spurious" response for each signal, depending on which analyser local oscillator harmonic is selected. Only the true responses are detailed in the table below. These are clearly identifiable as harmonics of the magnetron frequency. Plots of the scans can be found in Appendix D.

Measurements were performed from 6 GHz to 40GHz with the EUT set to 75ns, 450nS and 1000ns, measurements were performed within and around the transmitter frequency allocation.

Details of the limit line calculation can be found in Appendix B.

All emissions were more than 20dB below the required limit.

7.4 Peak Power

These measurements were performed with the HP Peak Power Analyser and sensor connected to the EUT antenna port via a coupler and in-line attenuator.

Pulse Width (ns)	Measured Power (kW)
75	3.67
100	3.76
150	3.67
250	3.61
350	3.62
450	3.64
600	3.67
1000	3.76

Note 1: Power is measured at the antenna port and will be less than the nominal magnetron output due to normal losses in the circulator and rotating joint.

7.5 Pulse Width

Plots can be found in Appendix D.

In order to determine the characteristics of the various pulses, the HP Peak Power Analyser was connected to the EUT antenna port via a coupler and inline attenuator.

Nominal Pulse Width (ns)	Measured Pulse Width (ns)
75	77
100	107
150	156
250	259
350	359
450	458
600	595
1000	970

7.6 Pulse Repetition Frequency

In order to determine the characteristics of the various pulses, the HP Peak Power Analyser and sensor was connected to the EUT antenna port via a coupler and in-line attenuator.

Pulse Width (ns)	Measured P.R.F. (Hz)	
75	3003	
100	3003	
150	3003	
250	3003	
350	2000	
450	1502	
600	1302	
1000	739	

Note 1: The P.R.F. is jittered as part of the interference rejection circuit. The Interference Rejection circuit was switched off while making P.R.F. measurements.

7.7 Average Power

Measured at the antenna port

Nominal Pulse Width (ns)	Peak Power (kW)	P.R.F. (Hz)	Measured Pulse Width (ns)	Average Power (Watts)
75	3.67	3003	77	0.85
100	3.76	3003	107	1.21
150	3.67	3003	156	1.72
250	3.61	3003	259	2.81
350	3.62	2000	359	2.60
450	3.64	1502	458	2.50
600	3.67	1302	595	2.84
1000	3.76	739	970	2.70

Note 1: The previous subsections detail the results required to make the above calculation.

7.8 Variation of frequency with input voltage

The frequency of the EUT was measured at each voltage.

75ns

% of Nominal Volts	Volts (dc)	Measured Frequency (GHz)
85% of 12.0	10.2	9.394988
100% of 12.0	12.0	9.394756
100% of 32.0	32.0	9.394750
115% of 32.0	36.8	9.394731

1000ns

% of Nominal Volts	Volts (dc)	Measured Frequency (GHz)
85% of 12.0	10.2	9.39579
100% of 12.0	12.0	9.39585
100% of 32.0	32.0	9.39521
115% of 32.0	36.8	9.39530

Note: The equipment can be operated from any voltage within the nominal range 12 to 32V without requiring any adjustment. Therefore, the testing was performed from 85% of the lowest to 115% of the highest operating voltage.

7.9 Variation of frequency with temperature

The EUT scanner unit was situated in an environmental test chamber and set for normal operation at the shortest pulse width. The antenna port was connected via a coupler and inline attenuator to the input of the HP70000 analyser, which is equipped with a precision frequency reference module.

The chamber was then set to -20C. After a 30-minute delay to allow for temperature stabilisation, the EUT frequency was monitored until there was no measurable frequency change. The frequency was recorded. The EUT was then set for normal operation at the longest pulse width, and the frequency monitored until there was no measurable frequency change. The frequency was recorded.

The chamber temperature was then increased by 10C and the process repeated at this temperature and at further increments of 10C up to and including +50C. **75ns**

Temperature °C	Measured Frequency (GHz)
-20	9.434990
-10	9.433460
0	9.430500
+10	9.429385
+20	9.426325
+30	9.423505
+40	9.421340
+50	9.419835

1000ns

Measured Frequency (GHz)
9.432905
9.430935
9.429570
9.426435
9.424165
9.419270
9.415580
9.412355

7.10 Occupied Bandwidth

Plots can be found in Appendix D.

The 99.5% (-23dBc) power bandwidth was measured for each pulse width using the delta function of the HP70000 analyser. Owing to the shape of the pulse it was not always possible to measure the bandwidth at the exact –23db point. Consequently, the next lower point was taken. This has the effect of slightly increasing the measured bandwidth above the actual 99.5% bandwidth.

Nominal Pulse Width (ns)	99.5% Power Bandwidth (MHz)
75	47.69
100	40.08
150	36.87
250	21.64
350	20.04
450	18.83
600	18.43
1000	18.43

7.11 Transmitter Frequency Tolerance

7.11.1 Specification: 80.209(b)

"When pulse modulation is used in land and ship radar stations operating in the bands above 2.4GHz the frequency at which maximum emission occurs must be within the authorised bandwidth and must not be closer than 1.5/T MHz to the upper and lower limits of the authorised bandwidth where "T" is the pulse duration in microseconds."

7.11.2 Calculation

Authorised Bandwidth:

9300MHz to 9500MHz

Specification Limits: [Lower] [Upper] 9300 + 1.5/T 9500 - 1.5/T

	Transmitter Freque	ency Tolerances	
Nominal Pulse Width	Actual Pulse Width	Specification Limits (MHz)	
(ns)	(ns)	Lower	Upper
75	77	9.31948	9.48052
100	107	9.31402	9.48598
150	156	9.30962	9.49038
250	259	9.30579	9.49421
350	359	9.30418	9.49582
450	458	9.30328	9.49672
600	595	9.30252	9.49748
1000	970	9.30155	9.49845

From examining the transmitter frequency data from the Variation of Frequency with Voltage and Variation of Frequency with Temperature results pages, it can be seen that the transmitter is within the calculated specification.

8 Measurement Uncertainty

Measurement uncertainty was calculated after reference to CISPR 16-4:2002. In order to determine compliance with the limit for emissions tests, the specification states that, where the calculated uncertainty exceeds the value of Ucispr, the difference in dB is to be added to the instrument reading. The corrections shown in the table below are therefore added to the reported measurements before assessing compliance with the limits.

Measurement Type	Confidence Level (k = 2)	Calculated Uncertainty	Ucispr	Correction
Radiated Emissions: Electric Field Strength	95%	+/- 6.8dB	4.5dB(<300MHz) 5.2dB(>300MHz)	+2.3dB(<300MHz) +1.6dB(>300MHz)
30MHz-1GHz Radiated Emissions: Electric Field Strength 1GHz-26.5GHz	95%	+/- 7.3dB	Under consideration (5.2dB assumed)	+2.1dB
Radiated Emissions: Electric Field Strength 26.5-40GHz	95%	+/-7.6dB	Under consideration (5.2dB assumed)	+2.4dB

Note 1. All test equipment and antennae used for the tests described in this report have current traceable calibration to UKAS or equivalent standard.

Note 2. All reported measurements include the appropriate offsets for antenna factors, coupler and cable losses, etc.

Appendix A Test Equipment Used

013 Dual PSU 0-30V @ 10A TTI CPX200 112718 Duewwith 16 686 Environmental Chamber 1941 Due Wik41/06 01/005 131 Peak Power Analyser H-P 6991A 3244A00128 00/1005 376 60V Power Supply Famell AP60-50 1140	Ref. No.	Device	Manufacturer	Model No.	Serial No.	Last Calibration
696 Environmental Chamber H-P 8991A 3248A00128 06/10/05 316 60V Power Supply Famell AP60-50 1140		Dual PSU 0-30V @ 10A	ТТІ	CPX200	112718	
318 Peak Power Analyser H-P 8991A 3248A00128 06/10/05 376 60V Power Supply Farnell AP60-50 1140						Due Wk41/06
376 60V Power Supply Farnell AP60-50 1140			H-P	8991A		
VLL Fluke 83 63550394 05/11/05						***
Analyser 0.1kHz -26.5GHz H-P 70000 series As below						
Analyser 0.1kHz -26.5GHz H-P 70000 series As below	424	DVM	Fluke	83	63550394	05/11/05
425 Display Section H-P 70004A 3040A01640 29/07/2005 426 I.F. Module H-P 70902A 3206A03917 29/07/2005 427 I.F. Module H-P 70900B 3345A01913 29/07/2005 428 L.O. Module H-P 70900B 3345A01913 29/07/2005 429 External Mixer Interface H-P 70900B 33345A0171 29/07/2005 430 Mainframe H-P 70001A 3230A0576 29/07/2005 431 Digitizer Module H-P 70700A 3176A01071 29/07/2005 432 Precision Freq. Reference H-P 70909A 3136A0022 29/07/2005 433 RF Module H-P 70904A 3625A00329 27/10/2005 434 Option 001 Preamplifier H-P 8546A 3625A00329 27/10/2005 435 Receiver 9kHz-6.5GHz H-P 8546A 3625A00329 27/10/2005 436 Filter Section H-P 8546A 3625A00						
426 I.F. Module H-P 70902A 3206A03917 29/07/2005 427 I.F. Module H-P 70900B 3331A02727 29/07/2005 428 L.O. Module H-P 70900B 33345A01913 29/07/2005 429 External Mixer Interface H-P 70907B 3533A00576 29/07/2005 430 Mainframe H-P 70001A 3220A05180 29/07/2005 431 Digitizer Module H-P 7001A 3127A02429 29/07/2005 432 Precision Freq. Reference H-P 70909A 3136A00120 29/07/2005 433 RF Module H-P 70800B 3550A00850 29/07/2005 434 Option 001 Preamplifier H-P 85460A 3448A00219 27/10/2005 435 Receiver 9kHz-6.5GHz H-P 85460A 3448A00219 27/10/2005 442 Antenna 0.9-30MHz Schaftner HLA6120 1122 06/01/2005* 442 Antenna 20.5-40GHz Credowan 20-R-2843-000	425					29/07/2005
427 I.F. Module H-P 70903A 3331A02727 29/07/2005 428 L.O. Module H-P 70900B 3534A001913 29/07/2005 429 External Mixer Interface H-P 70907B 3533A00576 29/07/2005 430 Mainframe H-P 70001A 3230A05180 29/07/2005 431 Digitizer Module H-P 70300A 3176A01071 29/07/2005 432 Precision Freq. Reference H-P 70310A 3127A02429 29/07/2005 433 RF Module H-P 70909A 3136A00120 29/07/2005 434 Option 001 Preamplifier H-P 70620B 3550A00850 29/07/2005 435 Receiver 9kHz-6.5GHz H-P 8546A 3625A00329 27/10/2005 436 Filter Section H-P 8546A 3625A00329 27/10/2005 440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 0.0-300MHz Schaffner HLA6120						
427 I.F. Module H-P 70903A 3331A02727 29/07/2005 428 L.O. Module H-P 70900B 3534A001913 29/07/2005 429 External Mixer Interface H-P 70907B 3533A00576 29/07/2005 430 Mainframe H-P 70001A 3230A05180 29/07/2005 431 Digitizer Module H-P 70300A 3176A01071 29/07/2005 432 Precision Freq. Reference H-P 70310A 3127A02429 29/07/2005 433 RF Module H-P 70909A 3136A00120 29/07/2005 434 Option 001 Preamplifier H-P 70620B 3550A00850 29/07/2005 435 Receiver 9kHz-6.5GHz H-P 8546A 3625A00329 27/10/2005 436 Filter Section H-P 8546A 3625A00329 27/10/2005 440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 0.0-300MHz Schaffner HLA6120	426	I.F. Module	H-P	70902A	3206A03917	29/07/2005
428 L.O. Module H-P 70900B 3345A01913 29/07/2005 429 External Mixer Interface H-P 70907B 3533A0576 29/07/2005 430 Mainframe H-P 70001A 3220A05180 29/07/2005 431 Digitizer Module H-P 70700A 3716A01071 29/07/2005 433 RF Module H-P 70310A 3127A02429 29/07/2005 433 APresion Freq, Reference H-P 70300A 3136A0120 29/07/2005 434 Option 001 Preamplifier H-P 70620B 3550A00850 29/07/2005 435 Receiver 9kHz-6.5GHz H-P 8546A 3625A00329 27/10/2005 436 Filter Section H-P 85460A 3448A00219 27/10/2005 440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 20-9-30MHz Schaffner HLA6120 1122 06/01/2005* 429 Paak Power Sensor H-P 84812A						
429 External Mixer Interface H-P 70907B 3533A00576 29/07/2005 430 Mainframe H-P 70001A 3230A05180 29/07/2005 431 Digitizer Module H-P 70700A 3716A01071 29/07/2005 432 Precision Freq. Reference H-P 70310A 3127A02429 29/07/2005 433 Option 001 Preamplifier H-P 70620B 3550A00850 29/07/2005 434 Option 001 Preamplifier H-P 70620B 3550A00329 27/10/2005 435 Receiver 9kHz-6.5GHz H-P 8546A 3448A00219 27/10/2005 436 Filter Section H-P 85460A 3448A00219 27/10/2005 440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 0.93-30MHz Schaffner HLA6120 1122 06/01/2005 442 Antenna 18-26.5GHz Credowan 2.0. R-2843-0007 36755 29/09/2005 488 Antenna 0.3-300MHz Sch						
430 Mainframe H-P 70001A 3230A05180 29/07/2005 431 Digitizer Module H-P 70700A 3716A01071 29/07/2005 432 Precision Freq. Reference H-P 70310A 3127A02429 29/07/2005 433 RF Module H-P 70909A 3136A00120 29/07/2005 434 Option 001 Preamplifier H-P 70620B 3550A00850 29/07/2005 435 Receiver 9kHz-6.5GHz H-P 85460A 3625A00329 27/10/2005 436 Filter Section H-P 85460A 3448A0219 27/10/2005 440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 18-26.5GHz Credowan 20-R-2843-0007 36755 29/09/2005 479 Peak Power Sensor H-P 84812A 3138A01050 04/10/2005 482 Antenna 18-26.5GHz Credowan S.G. Horn None 29/09/2005 789 Mixer 26.5-40GHz Agilent 50						
431 Digitizer Module H-P 70700A 3716A01071 29/07/2005 432 Precision Freq. Reference H-P 70310A 3127A02429 29/07/2005 433 RF Module H-P 70909A 3136A00120 29/07/2005 434 Option 001 Preamplifier H-P 70620B 3550A00850 29/07/2005 435 Receiver 9kHz-6.5GHz H-P 8546A 3625A00329 27/10/2005 436 Filter Section H-P 85460A 3448A00219 27/10/2005 440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 0.9-30MHz Schaffner HLA6120 1122 06/01/2005 479 Peak Power Sensor H-P 84812A 3318A01050 04/10/2005 483 Antenna 28-5.5GHz Credowan S.G. Horn None 29/09/2005 789 Mixer 26.5-40GHz Agilent 11970A 3003A08859 06/08/2004* 969 Antenna 3.0-3.00MHz Schwarzbeck						
432 Precision Freq. Reference H-P 70310A 3127A02429 29/07/2005 433 RF Module H-P 70909A 3136A00120 29/07/2005 434 Option 001 Preamplifier H-P 70620B 3550A00850 29/07/2005 435 Receiver 9kHz-6.5GHz H-P 85466A 3625A00329 27/10/2005 436 Filter Section H-P 85460A 3448A00219 27/10/2005 436 Filter Section H-P 85460A 3448A00219 27/10/2005 440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 0.09-30MHz Schaffner HLA6120 1122 06/01/2005* 482 Antenna 18-26.5GHz Credowan 20-R-2843-0007 36755 29/09/2005 483 Antenna 26.5-40GHz Credowan S.G. Horn None 29/09/2005* 484 Antenna 30-300MHz Schwarzbeck BHA9120D 128 29/03/2005* 485 Antenna 30-300MHz Schwarzbeck						
433 RF Module H-P 70909A 3136A00120 29/07/2005 434 Option 001 Preamplifier H-P 70620B 3550A00850 29/07/2005 435 Receiver 9kHz-6.5GHz H-P 8546A 3625A00329 27/10/2005 436 Filter Section H-P 85460A 3448A00219 27/10/2005 436 Filter Section H-P 85460A 3448A00219 27/10/2005 1520 Microwave Sig. Gen. 0.01-40GHz Rohde & Schwarz SMR40 10-300074685 17/08/2005 440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 0.09-30MHz Schaffner HLA6120 1122 06/01/2005* 442 Antenna 18-26.5GHz Credowan S.G. Horn None 29/09/2005 483 Antenna 26.5-40GHz Agilent 11970A 3003A0859 06/08/2003** 852 Antenna 1.0-18.0GHz Schwarzbeck BBHA9120D 128 29/03/2005 968 Antena 0.3-2.0GHz						
434 Option 001 Preamplifier H-P 70620B 3550A00850 29/07/2005 435 Receiver 9kHz-6.5GHz H-P 8546A 3625A00329 27/10/2005 436 Filter Section H-P 85460A 3448A00219 27/10/2005 436 Filter Section H-P 85460A 3448A00219 27/10/2005 440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 0.09-30MHz Schaffner HLA6120 1122 06/01/2005* 442 Antenna 18-26.5GHz Credowan 20-R-2843-0007 36755 29/09/2005 482 Antenna 18-26.5GHz Credowan S.G. Horn None 29/09/2005 789 Mixer 26.5-40GHz Agilent 11970A 3003A08859 06/08/2004** 852 Antenna 30-300MHz Schwarzbeck WHB9124 9124-285 06/08/2004* 968 Antenna 30-300Hz Schwarzbeck VHB9124 9124-285 06/08/2004 960 Microwave Cable						
435 Receiver 9kHz-6.5GHz H-P 8546A 3625A00329 27/10/2005 436 Filter Section H-P 85460A 3448A00219 27/10/2005 436 Filter Section H-P 85460A 3448A00219 27/10/2005 437 Microwave Sig. Gen. 0.01-40GHz Rohde & Schwarz SMR40 10-300074685 17/08/2005 442 Antenna 0.09-30MHz Schaffner HLA6120 1122 06/01/2005* 442 Antenna 18-26.5GHz Credowan 20-R-2843-0007 36755 29/09/2005 483 Antenna 18-26.5GHz Credowan S.G. Horn None 29/03/2005 789 Mixer 26.5-40GHz Agilent 11970A 3003A08859 06/08/2004** 852 Antenna 1.0-18.0GHz Schwarzbeck BBHA9120D 128 29/03/2005 789 Mixer 26.5-40GHz Agilent 5061-5458 EMC Cable 5 As Required 852 Antenna 1.0-18.0GHz Schwarzbeck VHBB9124 9124-285 06/08/2004 969						
436 Filter Section H-P 85460A 3448A00219 27/10/2005 1520 Microwave Sig. Gen. 0.01-40GHz Rohde & Schwarz SMR40 10-300074685 17/08/2005 440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 0.09-30MHz Schaffner HLAB120 1112 06/01/2005* 479 Peak Power Sensor H-P 84812A 3318A01050 04/10/2005 482 Antenna 18-26.5GHz Credowan 20-R-2843-0007 36755 29/09/2005 483 Antenna 26.5-40GHz Agilent 11970A 3003A08859 06/08/2003** 852 Antenna 30-300MHz Schwarzbeck BBHA9120D 128 29/09/2005 968 Antenna 0.3-2.0GHz Emco EM6946 112 06/08/2004 969 Antenna 0.3-2.0GHz Emco EM6246 112 06/08/2004 EM06 Microwave Cable Agilent 5061-5458 EMC Cable 5 As Required EM20 Low-loss RF cable 1.6m<	-0-			100200	0000/100000	20/01/2000
436 Filter Section H-P 85460A 3448A00219 27/10/2005 1520 Microwave Sig. Gen. 0.01-40GHz Rohde & Schwarz SMR40 10-300074685 17/08/2005 440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 0.09-30MHz Schaffner HLAB120 1112 06/01/2005* 479 Peak Power Sensor H-P 84812A 3318A01050 04/10/2005 482 Antenna 18-26.5GHz Credowan 20-R-2843-0007 36755 29/09/2005 483 Antenna 26.5-40GHz Agilent 11970A 3003A08859 06/08/2003** 852 Antenna 30-300MHz Schwarzbeck BBHA9120D 128 29/09/2005 968 Antenna 0.3-2.0GHz Emco EM6946 112 06/08/2004 969 Antenna 0.3-2.0GHz Emco EM6246 112 06/08/2004 EM06 Microwave Cable Agilent 5061-5458 EMC Cable 5 As Required EM20 Low-loss RF cable 1.6m<	435	Beceiver 9kHz-6 5GHz	H-P	85464	3625400329	27/10/2005
1520 Microwave Sig. Gen. 0.01-40GHz Rohde & Schwarz SMR40 10-300074685 17/08/2005 440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 0.09-30MHz Schaffner HLA6120 1122 06/01/2005* 479 Peak Power Sensor H-P 84812A 3318A01050 04/10/2005 482 Antenna 18-26.5GHz Credowan 20.R-r2843-0007 36755 29/09/2005 483 Antenna 26.5-40GHz Credowan S.G. Horn None 29/09/2005* 789 Mixer 26.5-40GHz Agilent 11970A 3003A08859 06/08/2003** 852 Antenna 1.0-18.0GHz Schwarzbeck BBHA9120D 128 29/03/2005 968 Antenna 0.3-2.0GHz Emco EM6946 112 06/08/2004 969 Antenna 0.3-2.0GHz Emco EM6946 112 06/08/2004 EM06 Microwave Cable Agilent 5061-5458 EMC Cable 5 As Required EM20 Low-loss RF cab						
440 PSU 3-15V 25A Palstar PS30M 92534722 18/06/2005 442 Antenna 0.09-30MHz Schaffner HLA6120 1122 06/01/2005* 479 Peak Power Sensor H-P 84812A 3318A01050 04/10/2005 482 Antenna 18-26.5GHz Credowan 20-R-2843-0007 36755 29/09/2005 483 Antenna 26.5-40GHz Credowan S.G. Horn None 29/09/2005* 789 Mixer 26.5-40GHz Agilent 11970A 3003A08859 06/08/2003** 852 Antenna 1.0-18.0GHz Schwarzbeck BBHA9120D 128 29/03/2005 968 Antenna 30-300MHz Schwarzbeck VHBB9124 9124-285 06/08/2004 969 Antenna 3.3-2.0GHz Emco EM6946 112 06/08/2004 EM05 Microwave Cable Agilent 5061-5458 EMC Cable 5 As Required EM20 Low-loss RF cable 1.6m Andrew 243290 EMC Cable 20 As Required EM22 Low-loss RF cable	100			0010071	0110/100210	21/10/2000
442 Antenna 0.09-30MHz Schaffner HLA6120 1122 06/01/2005* 479 Peak Power Sensor H-P 84812A 3318A01050 04/10/2005 482 Antenna 18-26.5GHz Credowan 20-R-2843-0007 36755 29/09/2005 483 Antenna 26.5-40GHz Credowan S.G. Horn None 29/09/2005 789 Mixer 26.5-40GHz Agilent 11970A 3003A08859 06/08/2003** 852 Antenna 1.0-18.0GHz Schwarzbeck BBHA9120D 128 29/03/2005 968 Antenna 30-300MHz Schwarzbeck VHBB9124 9124-285 06/08/2004 969 Antenna 0.3-2.0GHz Emco EM6946 112 06/08/2004 EM05 Microwave Cable Agilent 5061-5458 EMC Cable 5 As Required EM09 Microwave Cable Agilent 5061-5458 EMC Cable 9 As Required EM20 Low-loss RF cable 1.6m Andrew 243290 EMC Cable 20 As Required EM21 Low-loss	1520	Microwave Sig. Gen. 0.01-40GHz	Rohde & Schwarz	SMR40	10-300074685	17/08/2005
442 Antenna 0.09-30MHz Schaffner HLA6120 1122 06/01/2005* 479 Peak Power Sensor H-P 84812A 3318A01050 04/10/2005 482 Antenna 18-26.5GHz Credowan 20-R-2843-0007 36755 29/09/2005 483 Antenna 26.5-40GHz Credowan S.G. Horn None 29/09/2005 789 Mixer 26.5-40GHz Agilent 11970A 3003A08859 06/08/2003** 852 Antenna 1.0-18.0GHz Schwarzbeck BBHA9120D 128 29/03/2005 968 Antenna 30-300MHz Schwarzbeck VHBB9124 9124-285 06/08/2004 969 Antenna 0.3-2.0GHz Emco EM6946 112 06/08/2004 EM05 Microwave Cable Agilent 5061-5458 EMC Cable 5 As Required EM09 Microwave Cable Agilent 5061-5458 EMC Cable 9 As Required EM20 Low-loss RF cable 1.6m Andrew 243290 EMC Cable 20 As Required EM21 Low-loss	440	PSU 3-15V 25A	Palstar	PS30M	92534722	18/06/2005
479Peak Power SensorH-P84812A3318A0105004/10/2005482Antenna 18-26.5GHzCredowan20-R-2843-00073675529/09/2005483Antenna 26.5-40GHzCredowanS.G. HornNone29/09/2005789Mixer 26.5-40GHzAgilent11970A3003A0885906/08/2003**852Antenna 10-18.0GHzSchwarzbeckBBHA9120D12829/03/2005968Antenna 0.3-300MHzSchwarzbeckVHBB91249124-28506/08/2004969Antenna 0.3-2.0GHzEmcoEM694611206/08/2004EM05Microwave CableAgilent5061-5458EMC Cable 5As RequiredEM06Microwave CableAgilent5061-5458EMC Cable 9As RequiredEM20Low-loss RF cable 1.6mAndrew243290EMC Cable 20As RequiredEM21Low-loss RF cable 1.6mAndrew243290EMC Cable 21As RequiredEM22Low-loss RF cable 3mAndrewA06Y-75513EMC Cable 21As RequiredRD21Inline Attenuator 10dBNarda4779-108As RequiredRD24Inline Attenuator 20dBNarda4779-504As RequiredRD25Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD42WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N Adaptor						
482 Antenna 18-26.5GHz Credowan 20-R-2843-0007 36755 29/09/2005 483 Antenna 26.5-40GHz Credowan S.G. Horn None 29/09/2005 789 Mixer 26.5-40GHz Agilent 11970A 3003A08859 06/08/2003** 852 Antenna 1.0-18.0GHz Schwarzbeck BBHA9120D 128 29/03/2005 968 Antenna 0.3-2.0GHz Emco EM6946 112 06/08/2004 969 Antenna 0.3-2.0GHz Emco EM6946 112 06/08/2004 EM05 Microwave Cable Agilent 5061-5458 EMC Cable 5 As Required EM06 Microwave Cable Agilent 5061-5458 EMC Cable 6 As Required EM20 Low-loss RF cable 1.6m Andrew 243290 EMC Cable 20 As Required EM22 Low-loss RF cable 3m Andrew 243290 EMC Cable 22 As Required RD21 Inline Attenuator 10dB Narda 4779-10 8 As Required RD24 Inline Attenu	479				3318A01050	
483Antenna 26.5-40GHzCredowanS.G. HornNone29/09/2005789Mixer 26.5-40GHzAgilent11970A3003A0885906/08/2003**852Antenna 1.0-18.0GHzSchwarzbeckBBHA9120D12829/03/2005968Antenna 30-300MHzSchwarzbeckVHBB91249124-28506/08/2004969Antenna 0.3-2.0GHzEmcoEM694611206/08/2004EM05Microwave CableAgilent5061-5458EMC Cable 5As RequiredEM06Microwave CableAgilent5061-5458EMC Cable 6As RequiredEM09Microwave CableAgilent5061-5458EMC Cable 9As RequiredEM20Low-loss RF cable 1.6mAndrew243290EMC Cable 20As RequiredEM21Low-loss RF cable 1.6mAndrew243290EMC Cable 21As RequiredEM22Low-loss RF cable 3mAndrewA06Y-75513EMC Cable 22As RequiredRD14Microwave CouplerFlann16270-40-23116317As RequiredRD24Inline Attenuator 10dBNarda4779-108As RequiredRD25Inline Attenuator 20dBNarda4779-504As RequiredRD25Inline Attenuator 50dBNarda4779-504As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N Adaptor <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
789Mixer 26.5-40GHzAgilent11970A3003A0885906/08/2003**852Antenna 1.0-18.0GHzSchwarzbeckBBHA9120D12829/03/2005968Antenna 30-300MHzSchwarzbeckVHBB91249124-28506/08/2004969Antenna 0.3-2.0GHzEmcoEM694611206/08/2004EM05Microwave CableAgilent5061-5458EMC Cable 5As RequiredEM06Microwave CableAgilent5061-5458EMC Cable 6As RequiredEM09Microwave CableAgilent5061-5458EMC Cable 9As RequiredEM20Low-loss RF cable 1.6mAndrew243290EMC Cable 20As RequiredEM21Low-loss RF cable 1.6mAndrew243290EMC Cable 21As RequiredEM22Low-loss RF cable 3mAndrewA06Y-75513EMC Cable 22As RequiredRD24Inline Attenuator 10dBNarda4779-108As RequiredRD25Inline Attenuator 20dBUnknownR4118206As RequiredRD25Inline Attenuator 50dBNarda4779-504As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorFlann16094-NF10100As Required						
852Antenna 1.0-18.0GHzSchwarzbeckBBHA9120D12829/03/2005968Antenna 30-300MHzSchwarzbeckVHBB91249124-28506/08/2004969Antenna 0.3-2.0GHzEmcoEM694611206/08/2004EM05Microwave CableAgilent5061-5458EMC Cable 5As RequiredEM06Microwave CableAgilent5061-5458EMC Cable 6As RequiredEM09Microwave CableAgilent5061-5458EMC Cable 9As RequiredEM20Low-loss RF cable 1.6mAndrew243290EMC Cable 20As RequiredEM21Low-loss RF cable 1.6mAndrew243290EMC Cable 21As RequiredEM22Low-loss RF cable 3mAndrewA06Y-75513EMC Cable 22As RequiredRD14Microwave CouplerFlann16270-40-23116317As RequiredRD21Inline Attenuator 10dBNarda4779-108As RequiredRD25Inline Attenuator 20dBUnknownR4118206As RequiredRD25Inline Attenuator 10dBUnknownR4118107As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLABSS-7SR05As RequiredRD42WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorKayarineLABSS-7SR05As Required		Mixer 26.5-40GHz	Agilent	11970A	3003A08859	06/08/2003**
968Antenna 30-300MHzSchwarzbeckVHBB91249124-28506/08/2004969Antenna 0.3-2.0GHzEmcoEM694611206/08/2004EM05Microwave CableAgilent5061-5458EMC Cable 5As RequiredEM06Microwave CableAgilent5061-5458EMC Cable 6As RequiredEM09Microwave CableAgilent5061-5458EMC Cable 9As RequiredEM20Low-loss RF cable 1.6mAndrew243290EMC Cable 20As RequiredEM21Low-loss RF cable 1.6mAndrew243290EMC Cable 21As RequiredEM22Low-loss RF cable 3mAndrew243290EMC Cable 22As RequiredEM21Low-loss RF cable 3mAndrewA06Y-75513EMC Cable 22As RequiredRD14Microwave CouplerFlann16270-40-23116317As RequiredRD21Inline Attenuator 10dBNarda4779-108As RequiredRD25Inline Attenuator 20dBUnknownR4118206As RequiredRD25Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorKitec EuropeM0926-7-113711-2As Required						
969Antenna 0.3-2.0GHzEmcoEM694611206/08/2004EM05Microwave CableAgilent5061-5458EMC Cable 5As RequiredEM06Microwave CableAgilent5061-5458EMC Cable 6As RequiredEM09Microwave CableAgilent5061-5458EMC Cable 9As RequiredEM20Low-loss RF cable 1.6mAndrew243290EMC Cable 20As RequiredEM21Low-loss RF cable 3mAndrew243290EMC Cable 21As RequiredEM22Low-loss RF cable 3mAndrewA06Y-75513EMC Cable 22As RequiredRD14Microwave CouplerFlann16270-40-23116317As RequiredRD21Inline Attenuator 10dBNarda4779-108As RequiredRD24Inline Attenuator 20dBUnknownR4118206As RequiredRD25Inline Attenuator 10dBUnknownR4118107As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLABSS-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required	968	Antenna 30-300MHz		VHBB9124	9124-285	
EM05Microwave CableAgilent5061-5458EMC Cable 5As RequiredEM06Microwave CableAgilent5061-5458EMC Cable 6As RequiredEM09Microwave CableAgilent5061-5458EMC Cable 9As RequiredEM20Low-loss RF cable 1.6mAndrew243290EMC Cable 20As RequiredEM21Low-loss RF cable 1.6mAndrew243290EMC Cable 21As RequiredEM22Low-loss RF cable 3mAndrewA06Y-75513EMC Cable 22As RequiredRD14Microwave CouplerFlann16270-40-23116317As RequiredRD21Inline Attenuator 10dBNarda4779-108As RequiredRD25Inline Attenuator 20dBUnknownR4118206As RequiredRD27Inline Attenuator 10dBNarda4779-504As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorFlann16094-NF103711-2As Required		Antenna 0.3-2.0GHz	Emco	EM6946	112	06/08/2004
EM06Microwave CableAgilent5061-5458EMC Cable 6As RequiredEM09Microwave CableAgilent5061-5458EMC Cable 9As RequiredEM20Low-loss RF cable 1.6mAndrew243290EMC Cable 20As RequiredEM21Low-loss RF cable 1.6mAndrew243290EMC Cable 21As RequiredEM22Low-loss RF cable 3mAndrewA06Y-75513EMC Cable 22As RequiredRD14Microwave CouplerFlann16270-40-23116317As RequiredRD21Inline Attenuator 10dBNarda4779-108As RequiredRD24Inline Attenuator 20dBUnknownR4118206As RequiredRD27Inline Attenuator 10dBUnknownR4118107As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required	EM05	Microwave Cable		5061-5458	EMC Cable 5	As Required
EM09Microwave CableAgilent5061-5458EMC Cable 9As RequiredEM20Low-loss RF cable 1.6mAndrew243290EMC Cable 20As RequiredEM21Low-loss RF cable 1.6mAndrew243290EMC Cable 21As RequiredEM22Low-loss RF cable 3mAndrewA06Y-75513EMC Cable 22As RequiredRD14Microwave CouplerFlann16270-40-23116317As RequiredRD21Inline Attenuator 10dBNarda4779-108As RequiredRD24Inline Attenuator 20dBUnknownR4118206As RequiredRD25Inline Attenuator 20dBUnknownR4118107As RequiredRD27Inline Attenuator 10dBNarda4779-504As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required	EM06	Microwave Cable		5061-5458	EMC Cable 6	As Required
EM20Low-loss RF cable 1.6mAndrew243290EMC Cable 20As RequiredEM21Low-loss RF cable 1.6mAndrew243290EMC Cable 21As RequiredEM22Low-loss RF cable 3mAndrewA06Y-75513EMC Cable 22As RequiredRD14Microwave CouplerFlann16270-40-23116317As RequiredRD21Inline Attenuator 10dBNarda4779-108As RequiredRD24Inline Attenuator 20dBNarda4779-205As RequiredRD25Inline Attenuator 20dBUnknownR4118206As RequiredRD27Inline Attenuator 10dBUnknownR4118107As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required						
EM21Low-loss RF cable 1.6mAndrew243290EMC Cable 21As RequiredEM22Low-loss RF cable 3mAndrewA06Y-75513EMC Cable 22As RequiredRD14Microwave CouplerFlann16270-40-23116317As RequiredRD21Inline Attenuator 10dBNarda4779-108As RequiredRD24Inline Attenuator 20dBNarda4779-205As RequiredRD25Inline Attenuator 20dBUnknownR4118206As RequiredRD27Inline Attenuator 10dBUnknownR4118107As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required						
EM22Low-loss RF cable 3mAndrewA06Y-75513EMC Cable 22As RequiredRD14Microwave CouplerFlann16270-40-23116317As RequiredRD21Inline Attenuator 10dBNarda4779-108As RequiredRD24Inline Attenuator 20dBNarda4779-205As RequiredRD25Inline Attenuator 20dBUnknownR4118206As RequiredRD27Inline Attenuator 10dBUnknownR4118107As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required						
RD14Microwave CouplerFlann16270-40-23116317As RequiredRD21Inline Attenuator 10dBNarda4779-108As RequiredRD24Inline Attenuator 20dBNarda4779-205As RequiredRD25Inline Attenuator 20dBUnknownR4118206As RequiredRD27Inline Attenuator 10dBUnknownR4118107As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required						
RD21Inline Attenuator 10dBNarda4779-108As RequiredRD24Inline Attenuator 20dBNarda4779-205As RequiredRD25Inline Attenuator 20dBUnknownR4118206As RequiredRD27Inline Attenuator 10dBUnknownR4118107As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required					116317	
RD24Inline Attenuator 20dBNarda4779-205As RequiredRD25Inline Attenuator 20dBUnknownR4118206As RequiredRD27Inline Attenuator 10dBUnknownR4118107As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required						
RD25Inline Attenuator 20dBUnknownR4118206As RequiredRD27Inline Attenuator 10dBUnknownR4118107As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required						
RD27Inline Attenuator 10dBUnknownR4118107As RequiredRD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required						
RD30Inline Attenuator 50dBNarda4779-504As RequiredRD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required						
RD37Rotary w/g to WG16 AdaptorRaymarineLAB5S-7SR05As RequiredRD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required						
RD40WG16 to N AdaptorFlann16094-NF10100As RequiredRD42WG16 to N AdaptorMitec EuropeM0926-7-113711-2As Required						
RD42 WG16 to N Adaptor Mitec Europe M0926-7-11 3711-2 As Required						

Test Equipment Used (continued)

Notes:

- 2 year calibration cycle in accordance with manufacturer's recommendations.
- ** 3 year calibration cycle in accordance with manufacturer's recommendations.
- *** Voltage monitored using Item 424

All test equipment, except cables, wave guide components and attenuators, are on a calibration cycle in accordance with UKAS requirements. Items marked calibration as required are calibrated during the test setup using the R&S microwave signal generator in conjunction with the H-P analyzer.

Appendix B Measurement Methods.

B.1 Calculating Emissions Limit Lines

For both radiated emissions and conducted spurious emissions from the antenna port, with an Assigned Frequency of 9410MHz (Authorised Band 9310 - 9510MHz), the limits close to the magnetron frequency are:

Över the ranges 9210 - 9310MHz and 9510 - 9610MHz: -25dBc Over the ranges 8910 - 9210MHz and 9610 - 9910MHz: -35dBc

To establish the radiated emissions limit for the product on frequencies outside the range 8910 - 9910MHz, the EUT was placed on the test site with the measuring equipment located at a distance of three metres.

The magnetron was disconnected and replaced with a WG16 to N-type coaxial connector adaptor, which was connected to a signal generator with an unmodulated output at 9.4GHz. The rotating joint was connected, via an adaptor and attenuator, to a power meter and sensor.

The signal generator was unable to reproduce the actual peak power output of the intentional radiator – measured as 3.79kW by conducted methods. Consequently, a level of 3.79mW was reproduced at the antenna port, requiring a factor of +60dB to be applied at the analyser.

The rotating joint adaptor, attenuator and power measurement equipment were removed and replaced with the 24 inch Flare antenna. The antenna was aligned with the horn antenna connected to the spectrum analyser and adjusted to peak the analyser response. A reading of 180.2dBuV/m was obtained.

The calculation for the radiated emissions limit line is:

180.2 - 43 - 10log₁₀ 2.7= **132.9 dBuV/m**

For conducted spurious emissions from the antenna port, the calculation to establish the limit line for frequencies outside the range 8910 - 9910MHz is:

Po(peak)dBm - 43 - 10log₁₀ P(mean)watts, i.e., 65.79 - 43 - 10log₁₀ 2.7 = **18.47dBm**

B.2 Radiated Emissions (9 kHz to 2 GHz)

Radiated emissions measurements were performed in accordance with the standard, against appropriate limits for a Peak detector.

All testing was carried out within a semi-anechoic chamber at a distance of 3m. For all tests, the open array antenna was replaced with a rotating microwave load.

Measurements were split into five subranges to accommodate receiver bandwidth and antenna changes. Over each range, the same measurement procedure was used. The antenna was initially set to a height of 1.5m. The receiver was set to step through the appropriate frequency range in "Peak and Hold" mode, with the antenna firstly in vertical polarisation and then in horizontal polarisation. The EUT was then rotated clockwise through 90 degrees, then 180 degrees and finally 270 degrees, with the measurement process repeated at each 90 degree point, thus building up a profile of peak emissions. Emissions of

significance were noted. For each of these emissions, the antenna polarisation was changed to give the higher reading; the turntable was then rotated through 360 degrees to find the area of the EUT radiating the highest level and, for frequencies above 30MHz, the antenna height was then varied between 1 and 4m above the ground plane to further maximise the signal before remeasurement.

Measurements above 30MHz were performed using broadband antennas. Below 30MHz, a magnetic loop antenna was used.

B.3 Radiated Emissions 2 GHz to 6.5 GHz

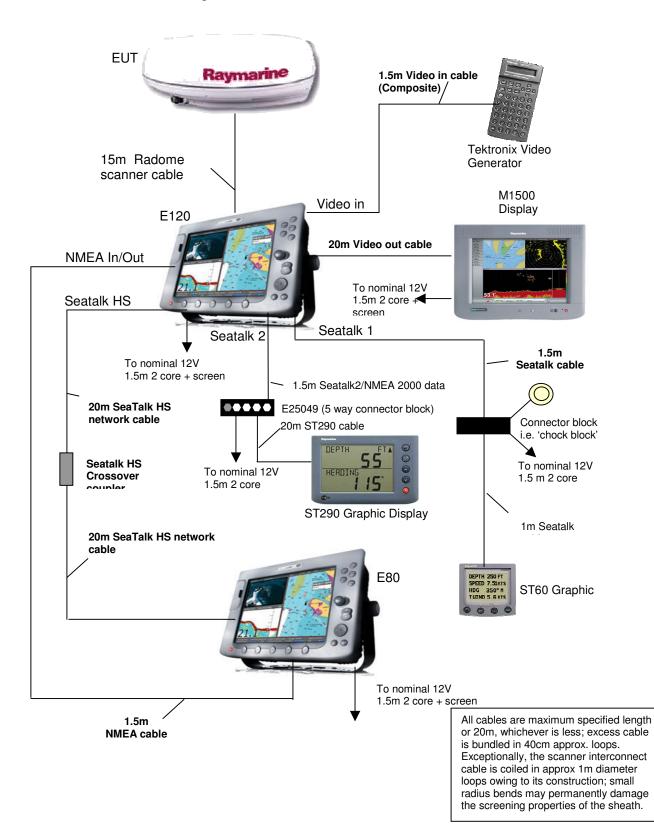
Radiated emissions measurements were performed using a horn antenna, against appropriate limits for a Peak detector.

All testing was carried out within a semi-anechoic chamber at a distance of 3m. The conducting ground plane between the antenna and the EUT was covered with ferrite and pyramidal absorbing material. For all tests, the open array antenna was replaced with a rotating microwave load.

The horn antenna was set to a height of 1.5m. The analyser was set to sweep through the appropriate frequency range in "Max Hold" mode, with the antenna firstly in vertical polarisation and then in horizontal polarisation. The EUT was then rotated clockwise through 90 degrees, then 180 degrees and finally 270 degrees, with the measurement process repeated at each 90 degree point, thus building up a profile of peak emissions. Emissions of significance were noted. For each of these emissions, the antenna polarisation was changed to give the higher reading; the turntable was then rotated through 360 degrees to find the area of the EUT radiating the highest level.

B.4 Radiated Emissions 6.5 GHz to 40 GHz

Radiated emissions measurements were performed against appropriate limits for a Peak detector. All measurements were carried out using horn antennas.

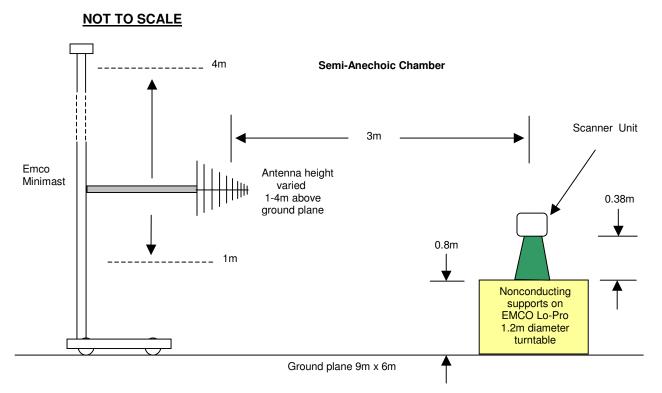

All testing was carried out within a semi-anechoic chamber at a distance of 3m. The conducting ground plane between the antenna and the EUT was covered with ferrite and pyramidal absorbing material. For all tests, the open array antenna was replaced with a rotating microwave load.

Measurements were split into subranges to accommodate antenna and mixer changes. Over each range, the same measurement procedure was used. The antenna was set to a height of 1.5m. The analyser was set to sweep through the appropriate frequency range in "Max Hold" mode, with the antenna in vertical polarisation. The EUT was slowly rotated clockwise through 360 degrees and then back to 000 degrees, thus building up a profile of peak emissions. The antenna was then changed to horizontal polarisation and the process continued. Emissions of significance were noted. For each of these emissions, the antenna polarisation was changed to give the higher reading; the turntable was then rotated to find the area of the EUT radiating the highest level. Measurements within 20dB of the limit line were recorded.

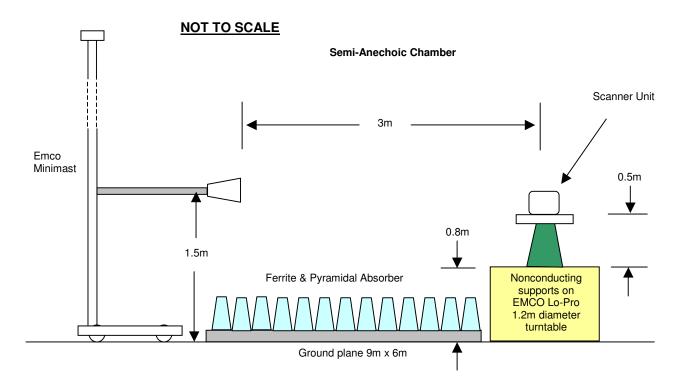
Appendix C Test Configuration Drawings

The scanner and display unit were arranged in as near a representative configuration as was practicable. The display unit, interface leads and excess scanner interconnection cable were placed upon a non-conducting support on the turntable such that the surface of the support was 0.8m above the ground plane. For tests below 1GHz, the scanner unit was placed centrally above the display unit on a non-conducting support 0.38m high. Above 1GHz, this support was increased to 0.5m, aligning the magnetron and circulator assembly height with the receiving horn antenna. The power/NMEA IN lead was connected to a 12V power supply placed on the turntable; the screen of this cable was connected to the ground plane. The Seatalk, HSB and NMEA Out cables were bundled with 0.4m loops and placed around the display unit. The scanner interconnection cable was coiled around the scanner support. Due to its size and construction, this cable cannot be bundled in the same manner as the other cables.

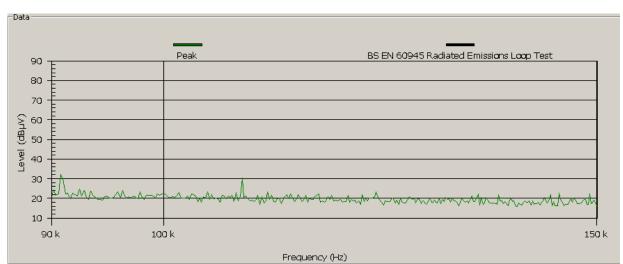
C.1 Connection diagram

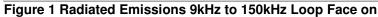


TEST REPORT No. 648/1065 Page 26 of 55 Issue Date: 10th February, 2006


- Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998
- C.2 Radiated Emissions Setup General Arrangement

C.3 Radiated Emissions 9 kHz to 2 GHz – General Arrangement




C.4 Radiated Emissions 2GHz to 40 GHz - General Arrangement

Appendix D Graphical Test Results

Figure 1 Radiated Emissions 9kHz to 150kHz Loop Face on Figure 2 Radiated Emissions 9kHz to 150kHz Loop Side on	
Figure 3 Radiated Emissions 150kHz to 30MHz Loop Side on	
Figure 4 Radiated Emissions 150kHz to 30MHz Loop Face On	
Figure 5 Radiated Emissions 30MHz to 300MHz.	
Figure 6 Radiated Emissions 300MHz to 1GHz	
Figure 7 Radiated Emissions 1GHz to 2GHz	. 32
Figure 8 Radiated Emissions 450ns Pulse width 2GHz to 8GHz	. 32
Figure 9 Radiated Emissions 450ns Pulse width 8GHz to 13GHz	. 33
Figure 10 Radiated Emissions 450ns Pulse width 13GHz to 18GHz	. 34
Figure 11 Radiated Emissions 450ns Pulse width 18GHz to 22GHz	. 34
Figure 12 Radiated Emissions 450ns Pulse width 22GHz to 26GHz	. 35
Figure 13 Radiated Emissions 450ns Pulse width 26GHz to 32GHz	. 35
Figure 14 Radiated Emissions 450ns Pulse width 32GHz to 40GHz	. 36
Figure 15 Main Pulse Measurement Short Pulse (Antenna Not fitted)	. 36
Figure 16 Conducted Emissions 450ns Pulse 6GHz to 8GHz	. 37
Figure 17 Conducted Emissions 450ns Pulse 8GHz to 13GHz	. 38
Figure 18 Conducted Emissions 450ns Pulse 13GHz to 18GHz	. 39
Figure 19 Conducted Emissions 450ns Pulse 18GHz to 22GHz	. 40
Figure 20 Conducted Emissions 450ns Pulse 22GHz to 26.5GHz	. 41
Figure 21 Conducted Emissions 450ns Pulse 26.5GHz to 32GHz	. 42
Figure 22 Conducted Emissions 450ns Pulse 32GHz to 40GHz	. 42
Figure 23 Main Pulse Measurement Short Pulse	. 43
Figure 24 Pulse Characterisation 75ns	. 44
Figure 25 Pulse Characterisation 100ns	
Figure 26 Pulse Characterisation 150ns	
Figure 27 Pulse Characterisation 250ns	. 45
Figure 28 Pulse Characterisation 350ns	. 46
Figure 29 Pulse Characterisation 450ns	. 46
Figure 30 Pulse Characterisation 600ns	
Figure 31 Pulse Characterisation 1000ns	
Figure 32 Occupied Bandwidth 75ns Pulse	
Figure 33 Occupied Bandwidth 100ns Pulse	
Figure 34 Occupied Bandwidth 150ns Pulse	
Figure 35 Occupied Bandwidth 250ns Pulse	
Figure 36 Occupied Bandwidth 350ns Pulse	
Figure 37 Occupied Bandwidth 450ns Pulse	
Figure 38 Occupied Bandwidth 600ns Pulse	
Figure 39 Occupied Bandwidth 1000ns Pulse	55

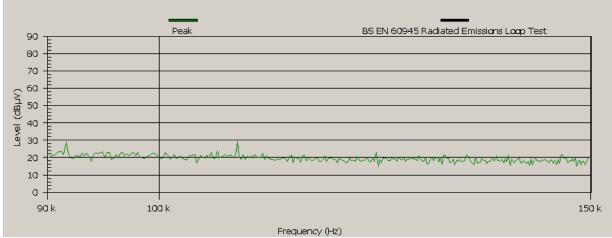


Figure 2 Radiated Emissions 9kHz to 150kHz Loop Side on

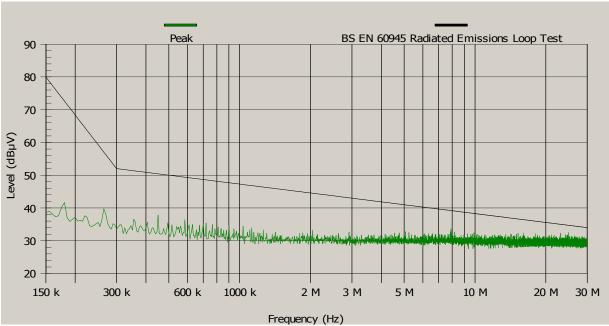


Figure 3 Radiated Emissions 150kHz to 30MHz Loop Side on

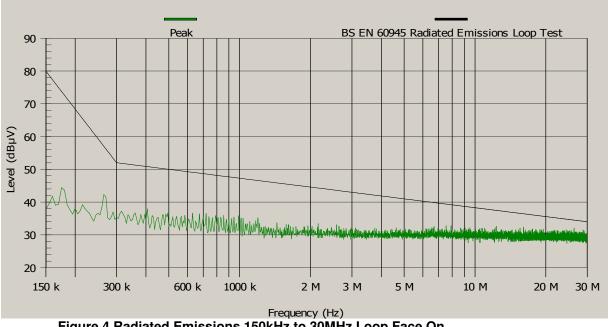


Figure 4 Radiated Emissions 150kHz to 30MHz Loop Face On

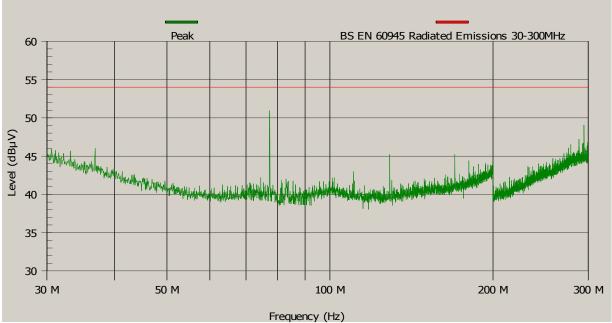
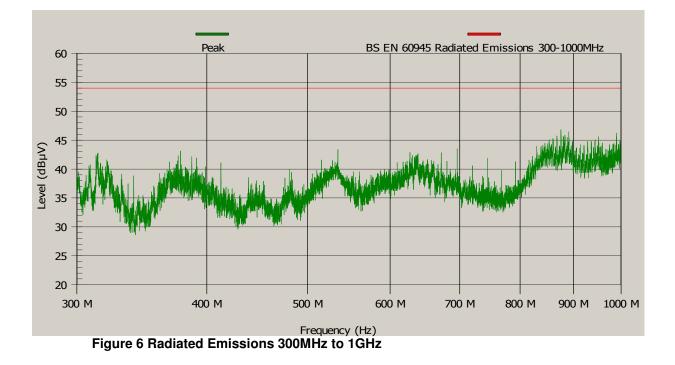



Figure 5 Radiated Emissions 30MHz to 300MHz

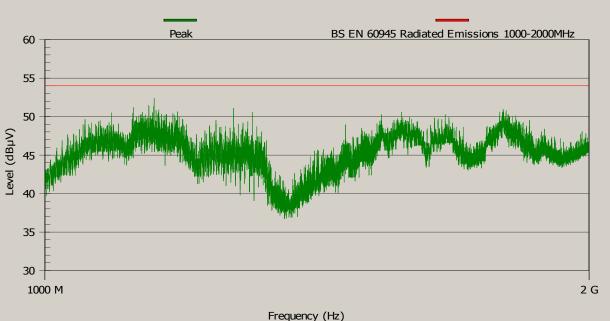
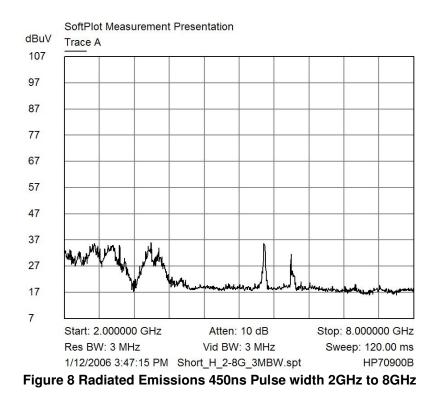
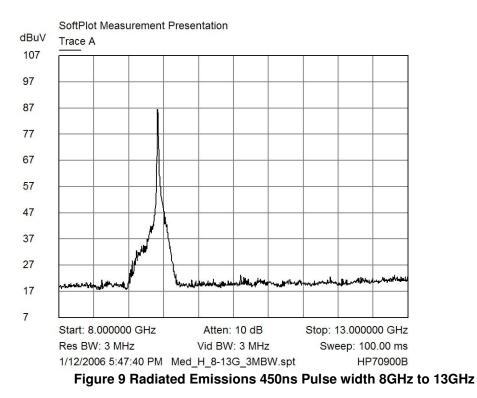
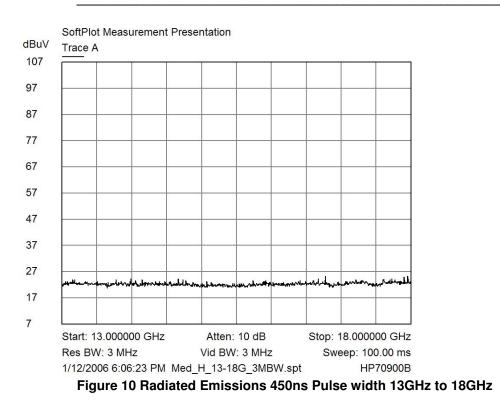
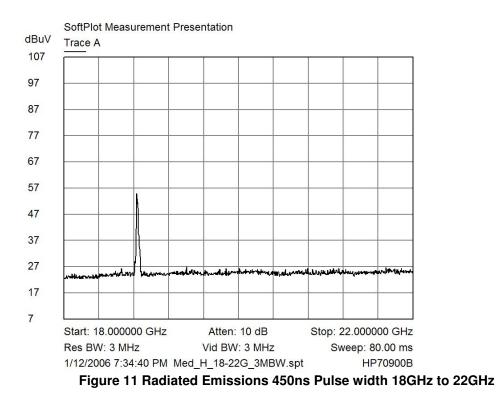
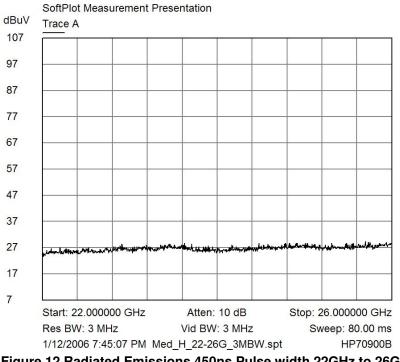






Figure 7 Radiated Emissions 1GHz to 2GHz



Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

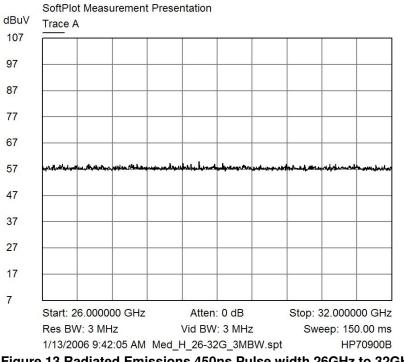
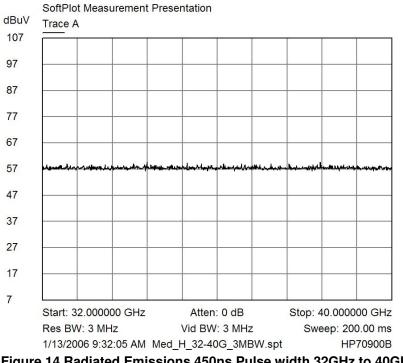



Figure 13 Radiated Emissions 450ns Pulse width 26GHz to 32GHz

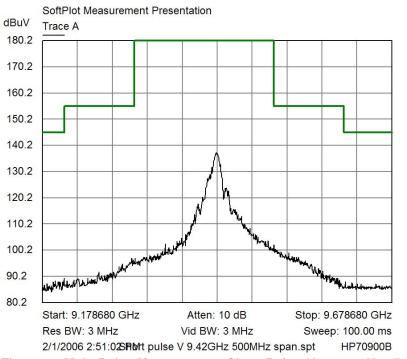
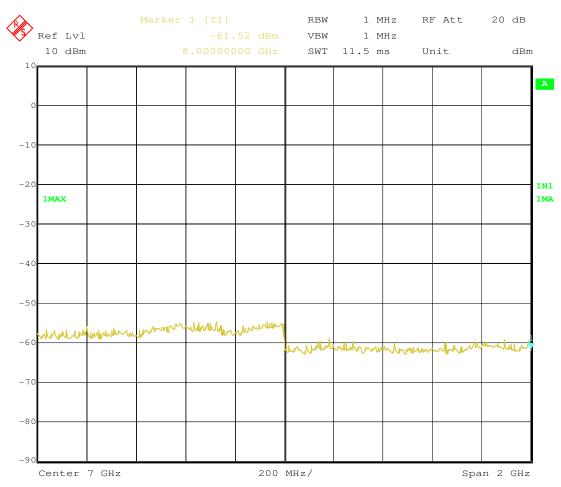
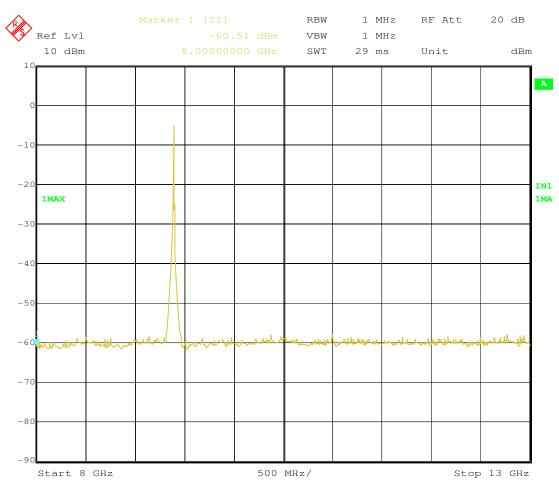
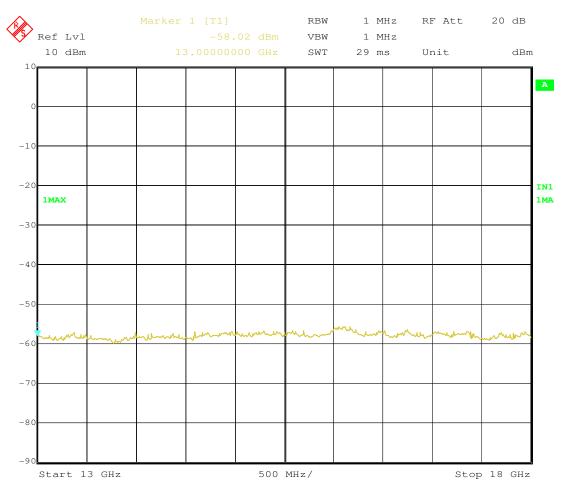



Figure 15 Main Pulse Measurement Short Pulse (Antenna Not fitted)


Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

Date: 19.JAN.2006 09:02:07

Figure 16 Conducted Emissions 450ns Pulse 6GHz to 8GHz


Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

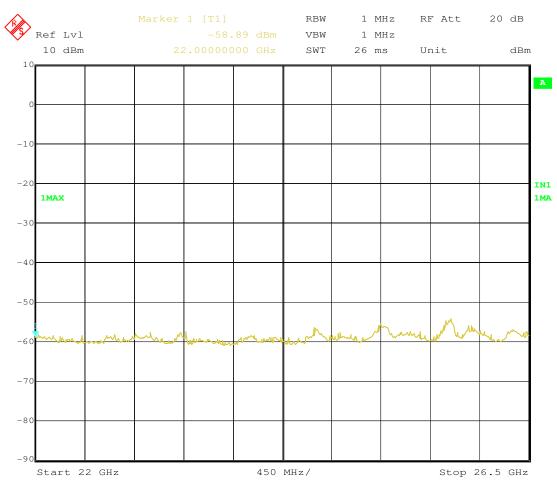
Date: 19.JAN.2006 09:04:53

Figure 17 Conducted Emissions 450ns Pulse 8GHz to 13GHz

Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

Date: 19.JAN.2006 09:38:10

Figure 18 Conducted Emissions 450ns Pulse 13GHz to 18GHz


Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

Date: 19.JAN.2006 10:47:32

Figure 19 Conducted Emissions 450ns Pulse 18GHz to 22GHz

Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

Date: 20.JAN.2006 09:08:16

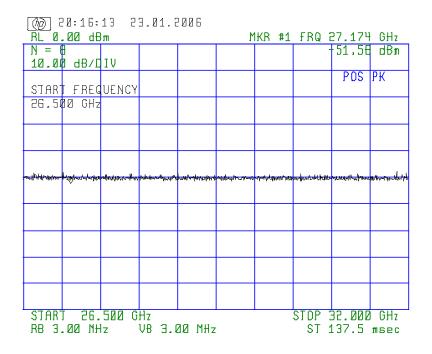
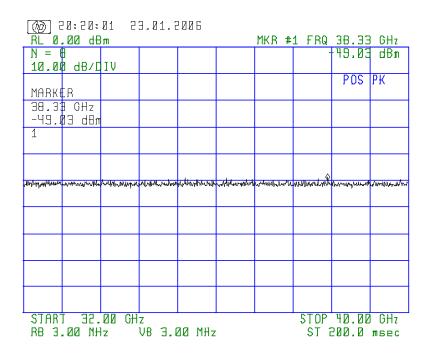
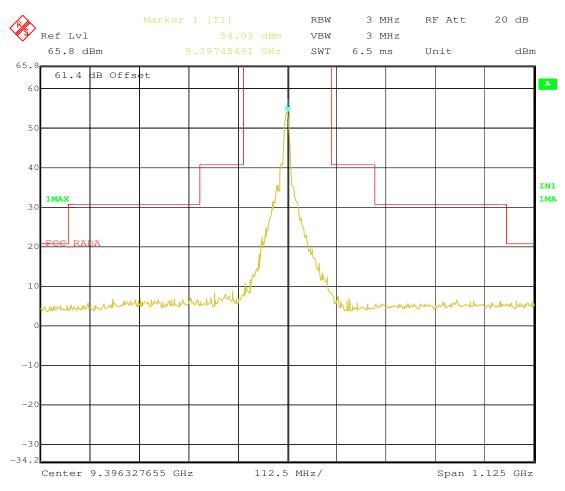
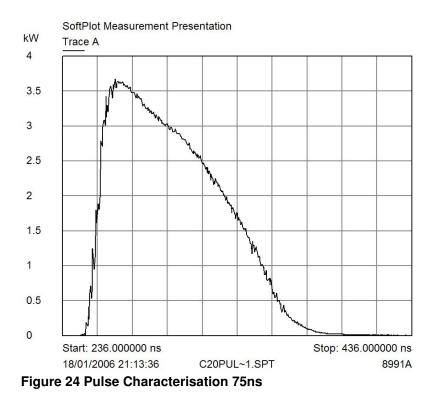
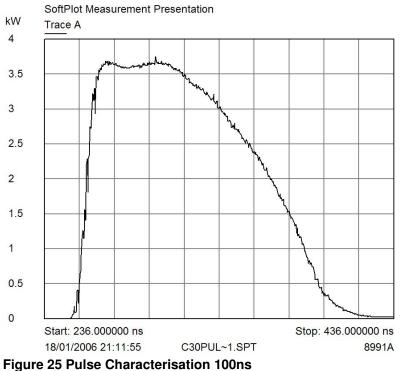
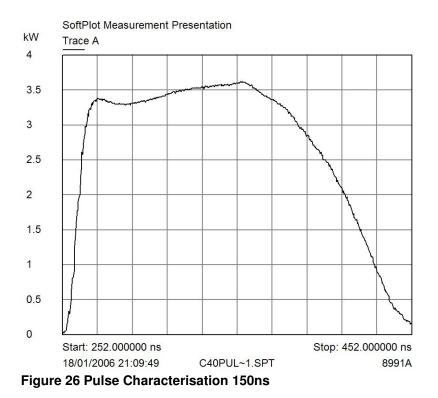


Figure 21 Conducted Emissions 450ns Pulse 26.5GHz to 32GHz

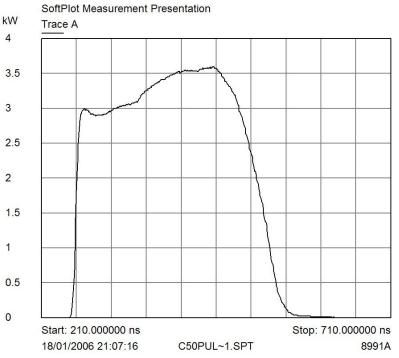
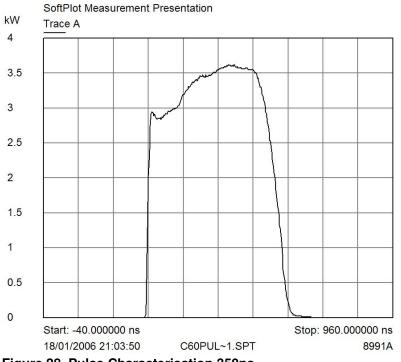
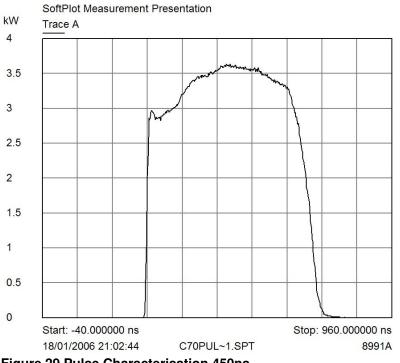

Figure 22 Conducted Emissions 450ns Pulse 32GHz to 40GHz

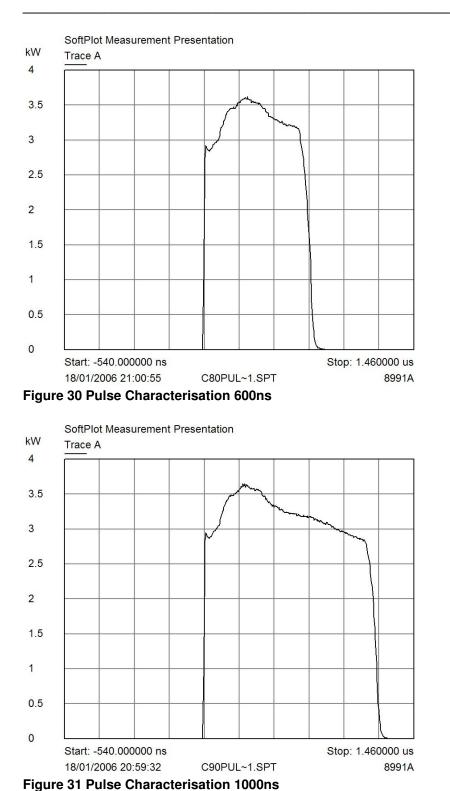

Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998



Date: 20.JAN.2006 10:06:06

Figure 23 Main Pulse Measurement Short Pulse


Figure 27 Pulse Characterisation 250ns

Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

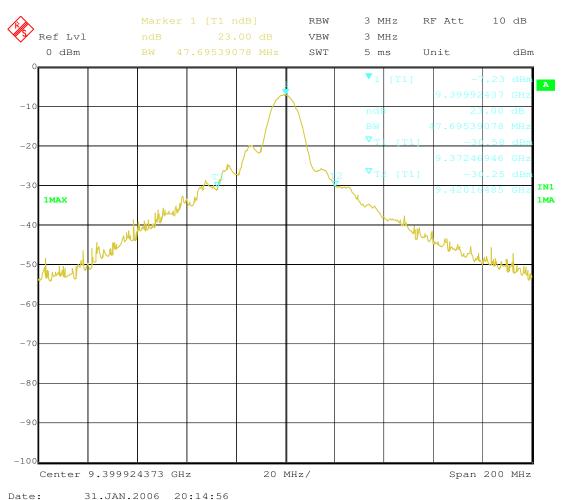


Figure 32 Occupied Bandwidth 75ns Pulse

Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

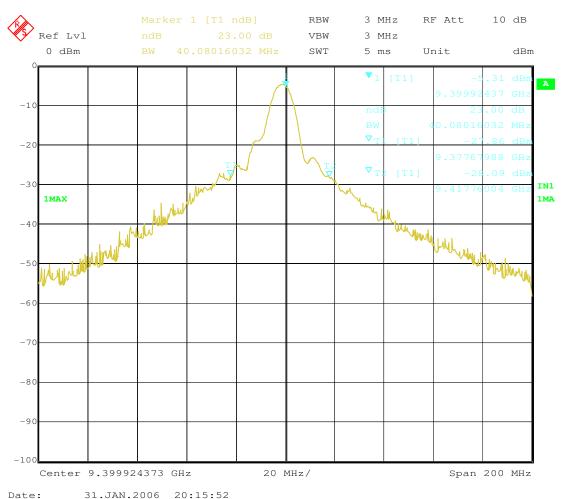


Figure 33 Occupied Bandwidth 100ns Pulse

Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

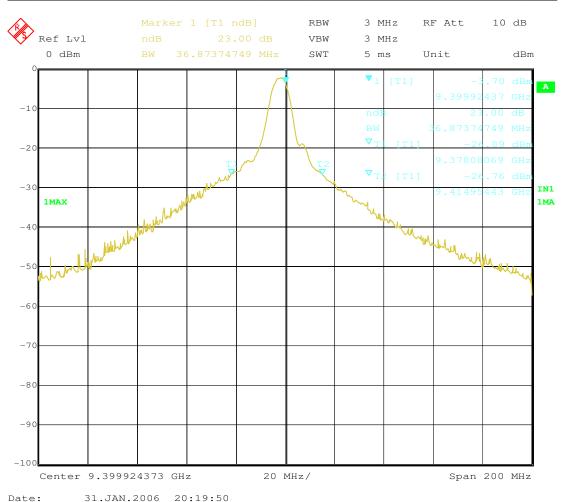
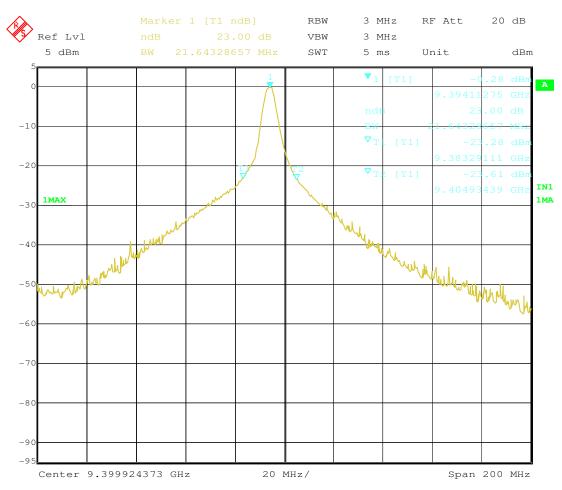
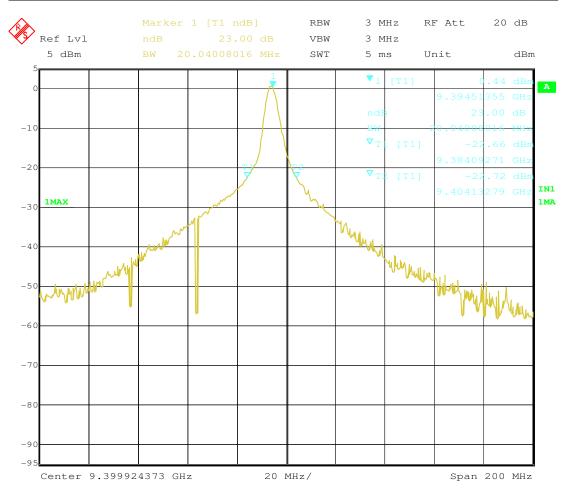



Figure 34 Occupied Bandwidth 150ns Pulse


Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

Date: 31.JAN.2006 21:01:52

Figure 35 Occupied Bandwidth 250ns Pulse

Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

Date: 31.JAN.2006 21:15:09 Figure 36 Occupied Bandwidth 350ns Pulse

Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

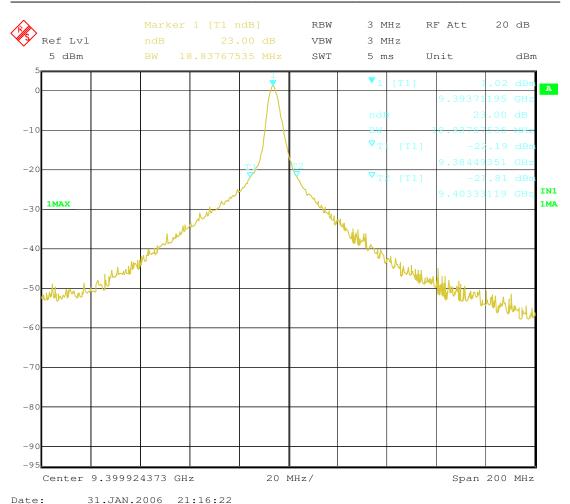
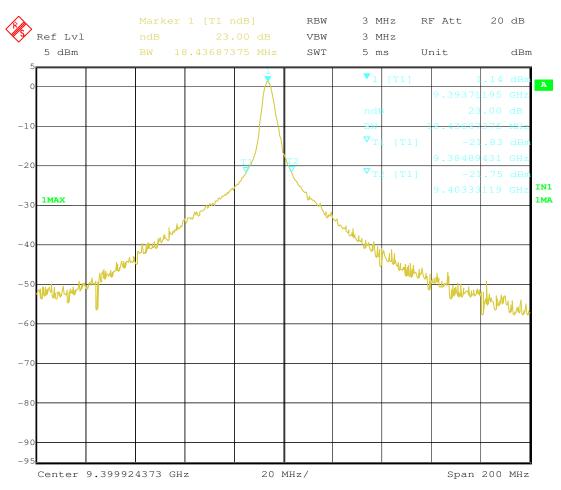



Figure 37 Occupied Bandwidth 450ns Pulse

Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

Date: 31.JAN.2006 21:17:24

Figure 38 Occupied Bandwidth 600ns Pulse

Test of: Raymarine Ltd. RD424 Analog 4kW Radome Scanner FCC Part 80: 1998 and FCC Part 2: 1998

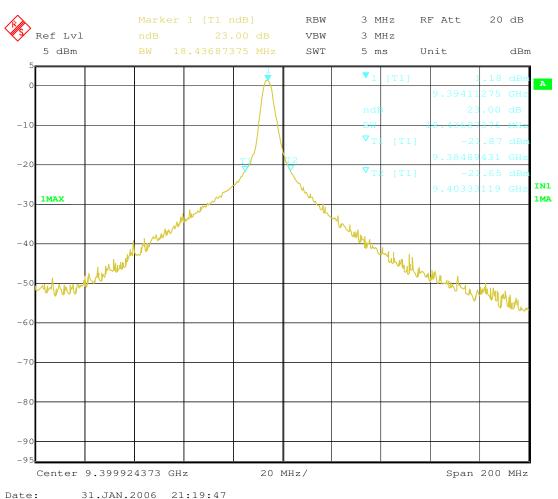


Figure 39 Occupied Bandwidth 1000ns Pulse

1.