FCC and ISED Test Report

Raymarine Belgium BVBA Cyclone Pedestal, Model: Cyclone Pro

In accordance with FCC 47 CFR Part 80, FCC 47 CFR Part 2, Industry Canada RSS-238 and ISED RSS-GEN (RADAR)

Prepared for: Raymarine Belgium BVBA

Luxemburgstraat

Meer 2321 Belgium

FCC ID: PJ5-953MPSSR IC: 4069B-953MPSSR

COMMERCIAL-IN-CONFIDENCE

Document 75950287-04 Issue 01

SIGNATURE			
Thesell			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Matthew Russell	RF Team Leader	Authorised Signatory	23 April 2021

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 80, FCC 47 CFR Part 2, Industry Canada RSS-238 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Neil Rousell	23 April 2021	1 secur
Testing	Graeme Lawler	23 April 2021	GNavlu :

FCC Accreditation ISED Accreditation

90987 Octagon House, Fareham Test Laboratory 12669A Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 80: 2019, FCC 47 CFR Part 2: 2019, Industry Canada RSS-238: Issue 01 (07-2013) and ISED RSS-GEN: Issue 05 (04-2018) + A1 (03-2019) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2021 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	
1.2 1.3	Introduction Brief Summary of Results	
1.3 1.4	Application Form	
1.5	Product Information	
1.6	Deviations from the Standard	
1.7	EUT Modification Record	
1.8	Test Location	7
2	Test Details	8
2.1	Modulation Characteristics	8
2.2	Occupied Bandwidth	
2.3	Transmitter Frequency Stability	
2.4	Spurious Emissions at Antenna Terminals	
2.5	Radiated Spurious Emissions	
2.6	RF Output Power	63
3	Photographs	66
3.1	Test Setup Photographs	66
4	Test Equipment Information	69
4.1	Customer Support Equipment	69
5	Measurement Uncertainty	70
ΔΝΝΕΥ	X A Customer Supplied Information	Λ 2
~!4!4 L /	A A Customer Cupplica information	··············

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	23 April 2021

Table 1

1.2 Introduction

Applicant Raymarine Belgium BVBA
Manufacturer Raymarine Belgium BVBA

Model Number(s) Cyclone Pro

Serial Number(s) E70621 AD601YR Storix ID 552061 Item 6

Hardware Version(s) 1012140-3 Software Version(s) V0.56.439

Number of Samples Tested 1

Test Specification/Issue/Date FCC 47 CFR Part 80: 2019

FCC 47 CFR Part 2: 2019

Industry Canada RSS-238: Issue 01 (07-2013) ISED RSS-GEN: Issue 05 (04-2018) + A1 (03-2019)

Order Number 1310109535
Date 22-October-2020
Date of Receipt of EUT 22-February-2021
Start of Test 26-February-2021
Finish of Test 16-March-2021

Name of Engineer(s) Neil Rousell and Graeme Lawler

Related Document(s) ANSI C63.26 (2015)

ITU-R M.1177-4 (04-2011) ITU-R SM.1541-6 (08-2015)

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 80, FCC 47 CFR Part 9, FCC 47 CFR Part 2, Industry Canada RSS-238 and ISED RSS-GEN is shown below.

Section	Specification Clause		Total Decembrian	Dooult	Commente/Dage Standard				
Section	FCC Part 80	FCC Part 2	RSS-238	RSS-GEN	Test Description	Result	Comments/Base Standard		
Configuratio	Configuration and Mode: DC Powered - Transmit								
2.1	-	2.1047	3.2(a)	-	Modulation Characteristics	Satisfactory			
2.2	80.205	2.1049	3.2(c)	6.7	Occupied Bandwidth	Pass			
2.3	80.209(b)	2.1055	4.1	6.11	Transmitter Frequency Stability	Pass			
2.4	80.211(f)	2.1051	4.3	6.13	Spurious Emissions at Antenna Terminals	Pass			
2.5	80.211(f)	2.1053	4.3	6.13	Radiated Spurious Emissions	Pass			
2.6	80.215	2.1046	4.2	6.12	RF Output Power	Pass			

Table 2

COMMERCIAL-IN-CONFIDENCE Page 3 of 70

1.4 Application Form

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment including the technologies the product supports)	Solid state non-IMO radar		
Manufacturer:	FLIR Belgium B	Bvba	
Model:	Cyclone Pedes	stal – High Power	
Part Number:	E70621 AD601	IYR	
Hardware Version:	Radar Pedesta with the followi D-21-1377 D-20-1186 D-20-1264 D-21-1335 D-21-1378 D-21-1383 D-21-1407 3ft antenna 4ft antenna 6ft antenna	1 1012140-3 ng deviations applied: 1011615-3 1011614-3 1010556-3	
Software Version: V0.56.439			
FCC ID of the product under test – see guidar	nce here	PJ5-953MPSSR	
IC ID of the product under test – see guidance here		4069B-953MPSSR	

Table 3

Intentional Radiators

Technology	Radar	-	-	-	-	-
Frequency Range (MHz to MHz)	9400+/- 20MHz	-	-	-	-	-
Conducted Declared Output Power (dBm)	49.2dBm	-	-	-	-	-
Antenna Gain (dBi)	3ft 24.13 4ft 25.60 6ft 27.42	-	-	-	-	
Supported Bandwidth(s) (MHz) (e.g 1 MHz, 20 MHz, 40 MHz)	32MHz Max	-	-	-	-	-
Modulation Scheme(s) (e.g GFSK, QPSK etc)	Pulse modulation with non- linear FM chirp	-	-	-	-	-
ITU Emission Designator (see quidance here) (not mandatory for Part 15 devices)	41M1P0N and 21M9Q0N	-	-	-	,	,

Bottom Frequency (MHz)	9370	-	-	-	=	
Middle Frequency (MHz)	9400	=	=	-	=	-
Top Frequency (MHz)	9430	=	=	=	=	-

Table 4

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	9420 MHz
Lowest frequency generated or used in the device or on which the device operates or tunes	700 Hz (longest PRF)
Class A Digital Device (Use in commercial, industrial or business environment)	
Class B Digital Device (Use in residential environment only) \square	

Table 5

DC Power Source

Nominal voltage:	12/24	V
Extreme upper voltage:	31.2	V
Extreme lower voltage:	10.2	V
Max current:	20A	A

Table 6

Charging

Can the EUT transmit whilst being charged	Yes □ No □
---	------------

Table 7

Temperature

Minimum temperature:	-25	°C
Maximum temperature:	+55	°C

Table 8

Antenna Characteristics

Antenna connector □		State impedance		Ohm	
Temporary antenna connector ⊠ WR90 (WG16) / N-Type		State impedance	50	Ohm	
Integral antenna ⊠	Type:	Slotted Waveguide	Gain	24.13 / 25.60 / 27.42	dBi
External antenna	Type:		Gain		dBi
For external antenna only:					
Standard Antenna Jack \square If yes, describe how user is prohibited from changing antenna (if not professional installed):					
Equipment is only ever professionally installed \square					
Non-standard Antenna Jack \square					

Table 9

Ancillaries (if applicable)

Voltage Conditioner

Manufacturer:	FLIR Belgium Bvba	Part Number:	E52091
Model:	VCM100	Country of Origin:	Hungary

Table 10

3ft Antenna

Manufacturer:	FLIR Belgium Bvba	Part Number:	E70628
Model:	Cyclone 3ft Array	Country of Origin:	Hungary

Table 11

4ft Antenna

Manufacturer:	FLIR Belgium Bvba	Part Number:	E70629
Model:	Cyclone 4ft Array	Country of Origin:	Hungary

Table 12

6ft Antenna

Manufacturer:	FLIR Belgium Bvba	Part Number:	E70630
Model:	Cyclone 6ft Array	Country of Origin:	Hungary

Table 13

I hereby declare that the information supplied is correct and complete.

Name: Jamie Cox

Position held: Project Manager

Date: 22.02.2021

1.5 Product Information

1.5.1 Technical Description

Solid state non-IMO radar.

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted		
Model: E70621, Ser	Model: E70621, Serial Number: AD601YR Storix ID 552061 Item 6				
0	As supplied by the customer	Not Applicable	Not Applicable		
1	Change to internal ethernet cable	Manufacturer	05-March-2021		

Table 14

1.8 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation			
Configuration and Mode: DC Powered - Transmit					
Modulation Characteristics	Neil Rousell	UKAS			
Occupied Bandwidth	Neil Rousell	UKAS			
Transmitter Frequency Stability	Neil Rousell	UKAS			
Spurious Emissions at Antenna Terminals	Neil Rousell	UKAS			
Radiated Spurious Emissions	Graeme Lawler	UKAS			
RF Output Power	Neil Rousell	UKAS			

Table 15

Office Address:

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Modulation Characteristics

2.1.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1047 Industry Canada RSS-238, Clause 3.2(a)

2.1.2 Equipment Under Test and Modification State

E70621, S/N: AD601YR Storix ID 552061 Item 6- Modification State 0

2.1.3 Date of Test

26-February-2021

2.1.4 Test Method

The EUT was connected via a WR90 waveguide directional coupler and attenuator to a real time power sensor. The pulse width, rise time and its frequency (PRF) were measured.

The class of emission for the EUT was: 41M1P0N and 21M9Q0N

2.1.5 Environmental Conditions

Ambient Temperature 24.9 °C Relative Humidity 28.1 %

2.1.6 Test Results

DC Powered - Transmit

Radar Pulse Description	Radar Pulse Width (µs)	Repetition Rate (Hz)	Pulse Rise Time (µs)
9400 MHz, CW, 46 ns	0.046322	4796.3	0.0224
9400 MHz, FM, 192 ns	0.20086	4796.7	0.0345
9400 MHz, FM, 750 ns	0.75533	4806.5	0.194
9400 MHz, FM, 1020 ns	1.0179	4807.2	0.238
9400 MHz, FM, 1235 ns	1.2238	4807.6	0.174
9400 MHz, FM, 1675 ns	1.6410	4806.6	0.246
9400 MHz, FM, 2300 ns	2.2969	4805.2	0.257
9400 MHz, FM, 2710 ns	2.7214	4805.1	0.155
9400 MHz, FM, 3900 ns	3.9100	4805.0	0.125
9400 MHz, FM, 17600 ns	17.484	3601.7	0.618
9400 MHz, FM, 23600 ns	23.335	2401.2	0.786
9400 MHz, FM, 35000 ns	34.852	1600.0	1.08
9400 MHz, FM, 47000 ns	46.468	1200.7	1.35
9400 MHz, FM, 79000 ns	78.267	819.91	1.85
9370 MHz, FM, 750 ns	0.78768	4807.5	0.159
9370 MHz, FM, 79000 ns	78.507	819.90	1.68
9430 MHz, FM, 750 ns	0.74609	4807.6	0.199
9430 MHz, FM, 79000 ns	78.322	819.90	1.84

Table 16 - Modulation Characteristics

Figure 1 - 9400 GHz, CW, 46 ns

Figure 2 - 9400 GHz, FM, 192 ns

Figure 3 - 9400 GHz, FM, 750 ns

Figure 4 - 9400 GHz, FM, 1020 ns

Figure 5 - 9400 GHz, FM, 1235 ns

Figure 6 - 9400 GHz, FM, 1675 ns

Figure 7 - 9400 GHz, FM, 2300 ns

Figure 8 - 9400 GHz, FM, 2710 ns

Figure 9 - 9400 GHz, FM, 3900 ns

Figure 10 - 9400 GHz, FM, 17600 ns

Figure 11 - 9400 GHz, FM, 23600 ns

Figure 12 - 9400 GHz, FM, 35000 ns

Figure 13 - 9400 GHz, FM, 47000 ns

Figure 14 - 9400 GHz, FM, 79000 ns

Figure 15 - 9370 GHz, FM, 750 ns

Figure 16 - 9370 GHz, FM, 79000 ns



Figure 17 - 9430 GHz, FM, 750 ns

Figure 18 - 9430 GHz, FM, 79000 ns

FCC 47 CFR Part 2, Limit Clause 2.1047

Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

ISED RSS-238 and RSS-GEN Limit Clause

None Specified

2.1.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Hygromer	Rotronic	A1	2138	12	01-Jul-2021
Multimeter	Fluke	79 Series II	3057	12	21-Aug-2021
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	29-Jan-2022
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	30-Dec-2021
Quad Power Supply	Rohde & Schwarz	HMP4040	4954	-	O/P Mon
Attenuator 20dB 100W	Weinschel	48-20-43-LIM	5133	12	03-Dec-2021
WR90 / WG16 Waveguide Directional Coupler	Quasar	QCC 16SB-UBR- UBR-N-F-30	5145	-	O/P Mon
WR90 / WG16 Waveguide Load	Quasar	QWL16SB-UBR- 25W	5146	-	O/P Mon
USB Power Sensor	Boonton	RTP5318	5185	12	12-Jan-2022

Table 17

O/P Mon – Output Monitored using calibrated equipment

2.2 Occupied Bandwidth

2.2.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.205 FCC 47 CFR Part 2, Clause 2.1049 Industry Canada RSS-238, Clause 3.2(c) ISED RSS-GEN, Clause and 6.7

2.2.2 Equipment Under Test and Modification State

E70621, S/N: AD601YR Storix ID 552061 Item 6 - Modification State 1

2.2.3 Date of Test

11-March-2021 to 12-March-2021

2.2.4 Test Method

The measurements were made using a Spectrum Analyser with the RBW set to 1% to 5% of emission bandwidth and the VBW set to \geq 3 times the RBW.

40 dB bandwidth

The detector was set to RMS and a long sweep time employed with the trace set to Max Hold. The peak of the fundamental was measured and markers at -40 dBc were positioned above and below the center frequency. The Marker Delta function result was recorded.

Occupied (99%) bandwidth

A Peak Detector and Max Hold trace were used.

2.2.5 Environmental Conditions

Ambient Temperature 23.4 - 24.1 °C Relative Humidity 34.8 - 41.1 %

2.2.6 Test Results

DC Powered - Transmit

Test Frequency (MHz)	Radar Pulse Description	99% Occupied Bandwidth (MHz)	40 dB Bandwidth (MHz)
9400	CW, 46 ns	41.1	106.1
9400	FM, 192 ns	20.2	54.1
9400	FM, 750 ns	21.0	57.5
9400	FM, 1020 ns	21.0	57.5
9400	FM, 1235 ns	15.8	43.9
9400	FM, 1675 ns	15.8	43.8
9400	FM, 2300 ns	14.6	43.7
9400	FM, 2710 ns	14.6	43.7
9400	FM, 3900 ns	4.0	30.4
9400	FM, 17600 ns	1.9	28.4
9400	FM, 23600 ns	1.9	28.3
9400	FM, 35000 ns	1.1	27.3
9400	FM, 47000 ns	1.1	27.4
9400	FM, 79000 ns	1.1	53.2
9370	FM, 750 ns	21.9	55.7
9370	FM, 79000 ns	1.1	52.7
9430	FM, 750 ns	19.5	69.7
9430	FM, 79000 ns	1.0	53.4

Table 18 - Emission Bandwidth Results

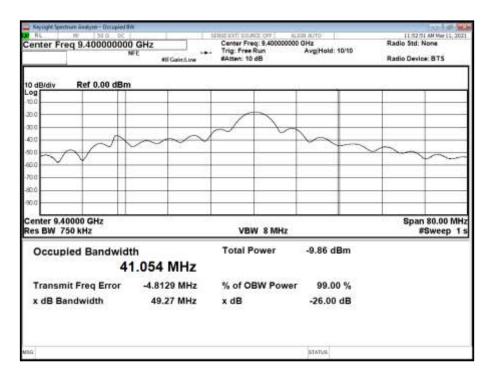


Figure 19 - 9400, CW, 46 ns, 99% Occupied Bandwidth

Figure 20 - 9400 MHz, CW, 46 ns, 40 dB Bandwidth

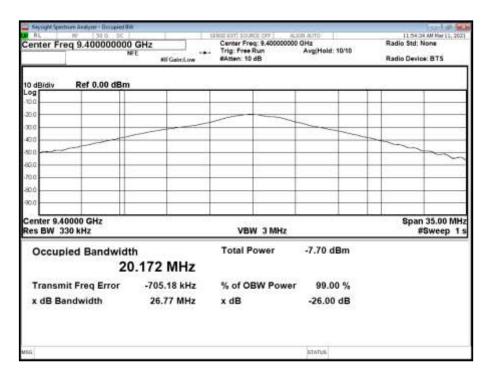


Figure 21 - 9400 MHz, FM, 192 ns, 99% Occupied Bandwidth

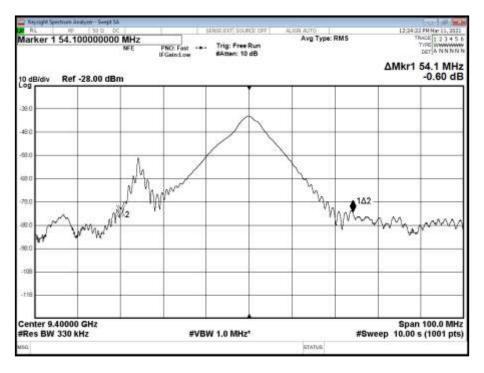


Figure 22 - 9400 MHz, FM, 192 ns, 40 dB Bandwidth

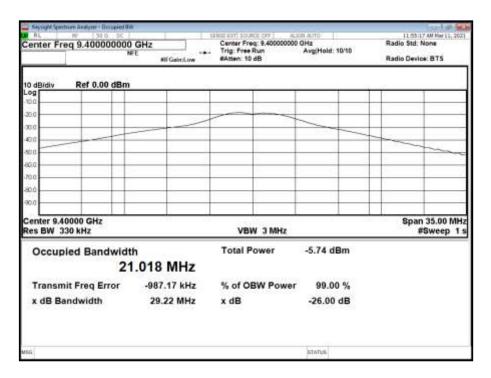


Figure 23 - 9400 MHz, FM, 750 ns, 99% Occupied Bandwidth

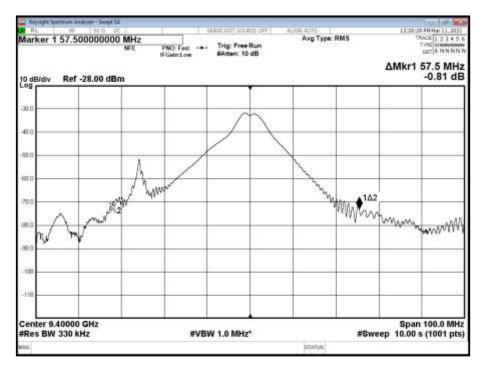


Figure 24 - 9400 MHz, FM, 750 ns, 40 dB Bandwidth

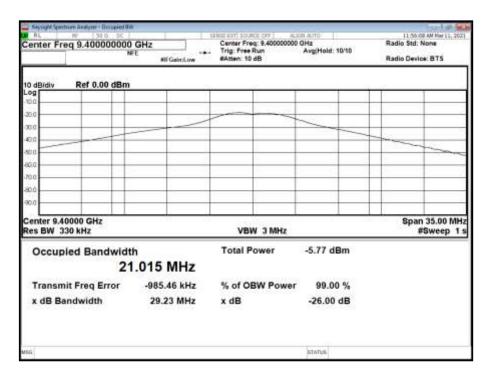


Figure 25 - 9400 MHz, FM, 1020 ns, 99% Occupied Bandwidth

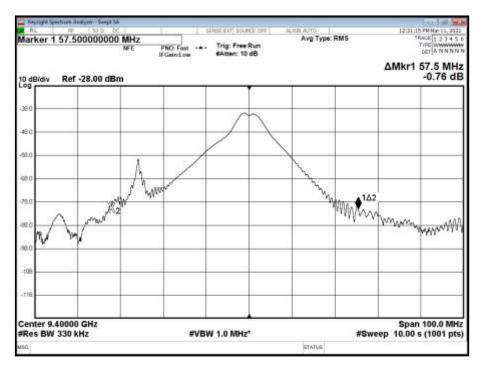


Figure 26 - 9400 MHz, FM, 1020 ns, 40 dB Bandwidth

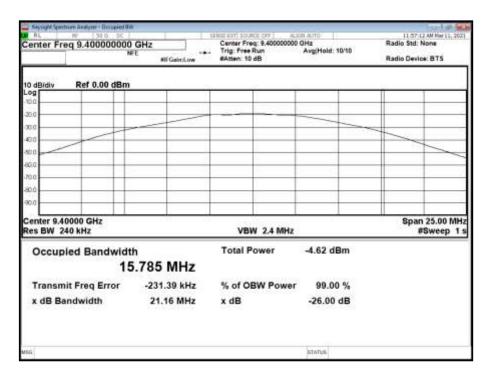


Figure 27 - 9400 MHz, FM, 1235 ns, 99% Occupied Bandwidth

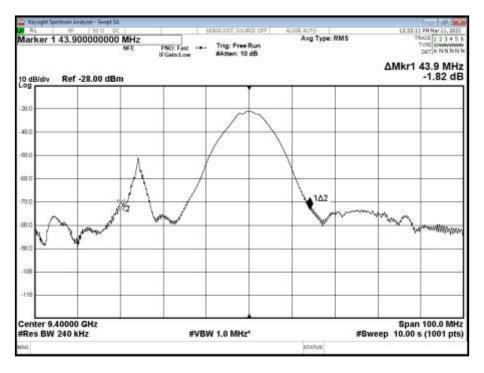


Figure 28 - 9400 MHz, FM, 1235 ns, 40 dB Bandwidth

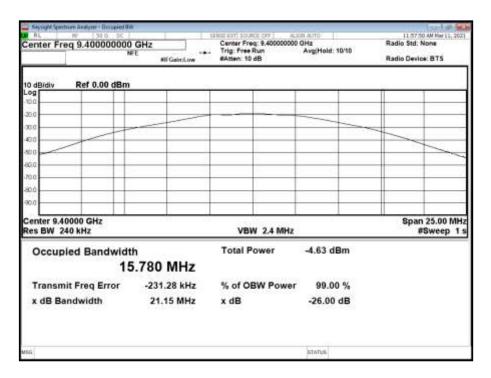


Figure 29 - 9400 MHz, FM, 1675 ns, 99% Occupied Bandwidth

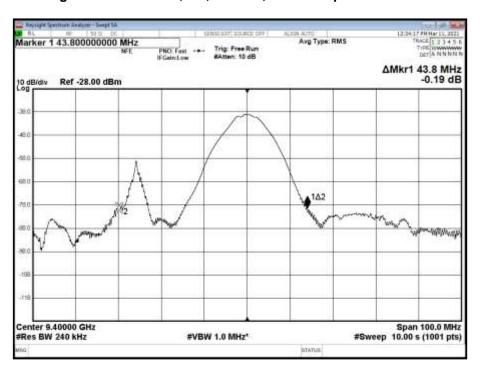


Figure 30 - 9400 MHz, FM, 1675 ns, 40 dB Bandwidth

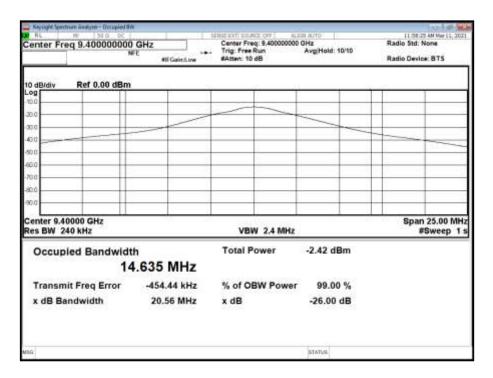


Figure 31 - 9400 MHz, FM, 2300 ns, 99% Occupied Bandwidth

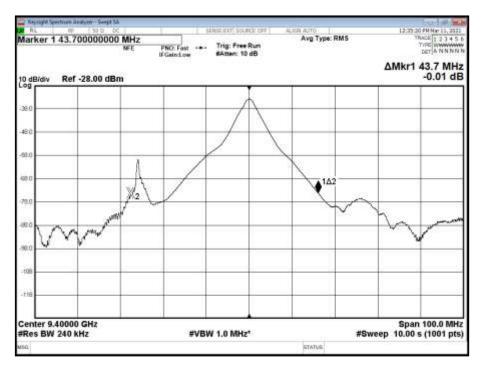


Figure 32 - 9400 MHz, FM, 2300 ns, 40 dB Bandwidth

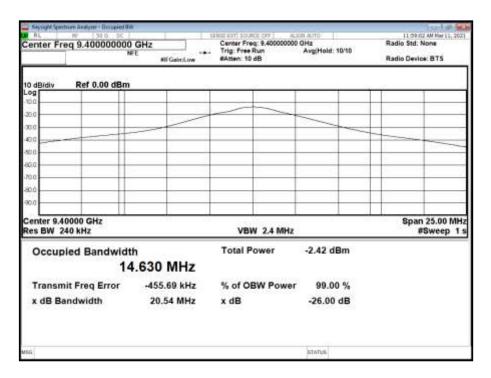


Figure 33 - 9400 MHz, FM, 2710 ns, 99% Occupied Bandwidth

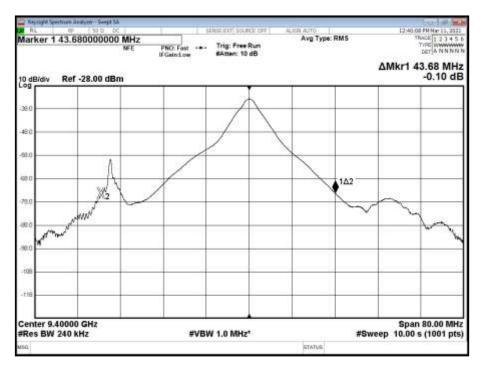


Figure 34 - 9400 MHz, FM, 2710 ns, 40 dB Bandwidth

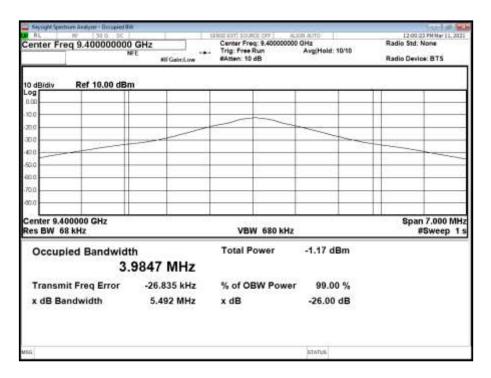


Figure 35 - 9400 MHz, FM, 3900 ns, 99% Occupied Bandwidth

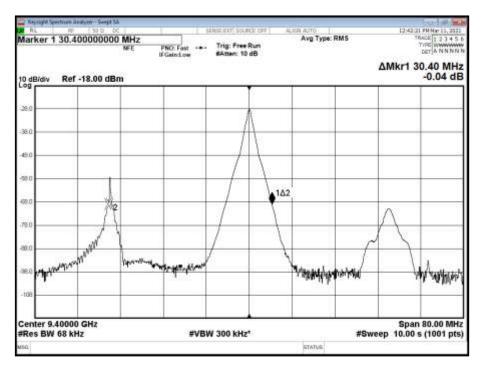


Figure 36 - 9400 MHz, FM, 3900 ns, 40 dB Bandwidth

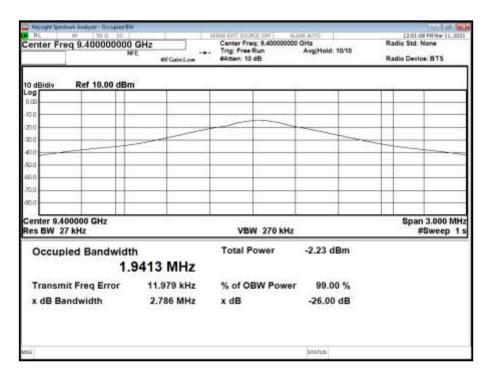


Figure 37 - 9400 MHz, FM, 17600 ns, 99% Occupied Bandwidth

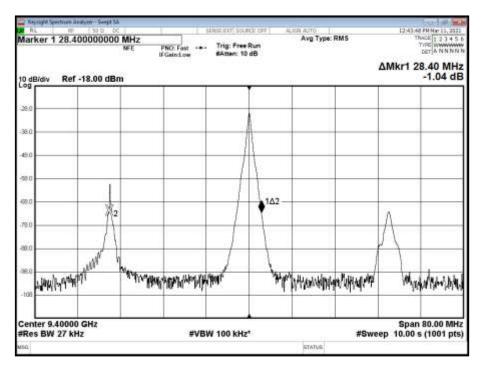


Figure 38 - 9400 MHz, FM, 17600 ns, 40 dB Bandwidth

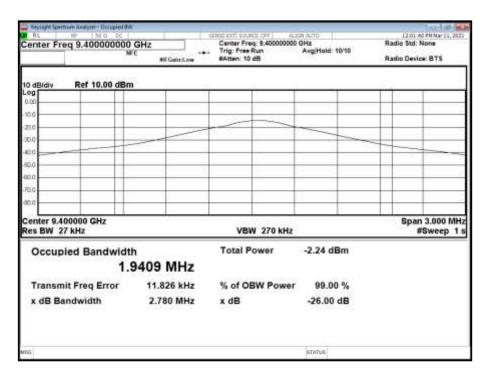


Figure 39 - 9400 MHz, FM, 23600 ns, 99% Occupied Bandwidth

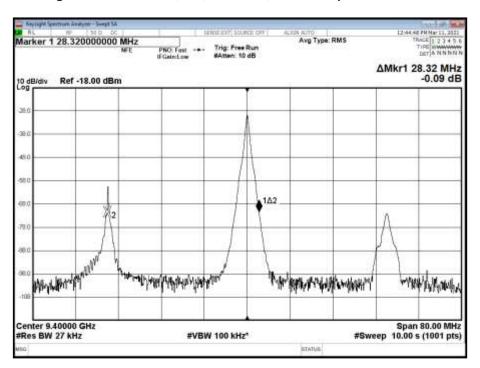


Figure 40 - 9400 MHz, FM, 23600 ns, 40 dB Bandwidth

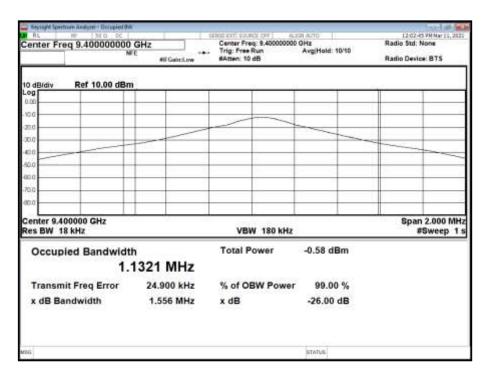


Figure 41 - 9400 MHz, FM, 35000 ns, 99% Occupied Bandwidth

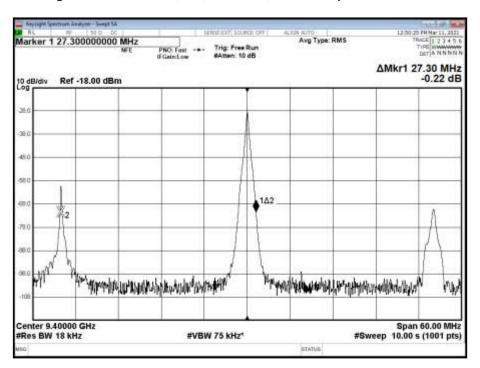


Figure 42 - 9400 MHz, FM, 35000 ns, 40 dB Bandwidth

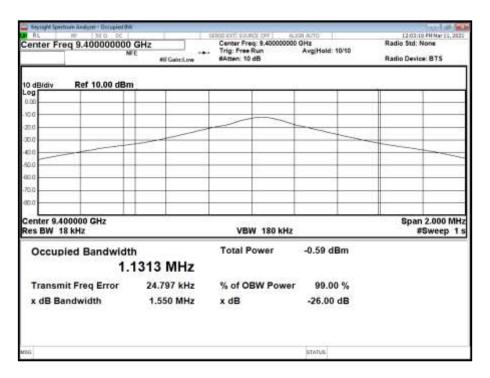


Figure 43 - 9400 MHz, FM, 47000 ns, 99% Occupied Bandwidth

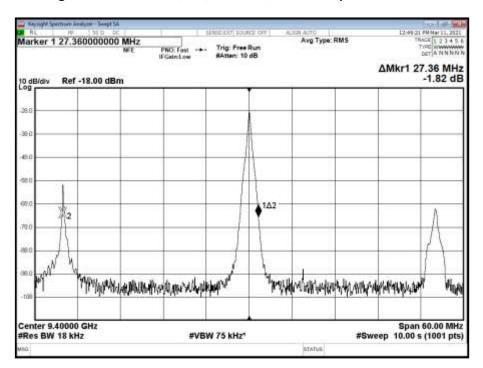


Figure 44 - 9400 MHz, FM, 47000 ns, 40 dB Bandwidth

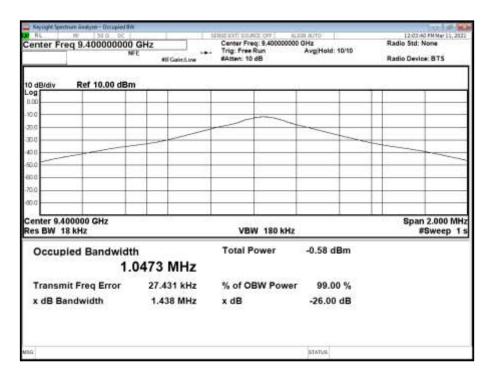


Figure 45 - 9400 MHz, FM, 79000 ns, 99% Occupied Bandwidth

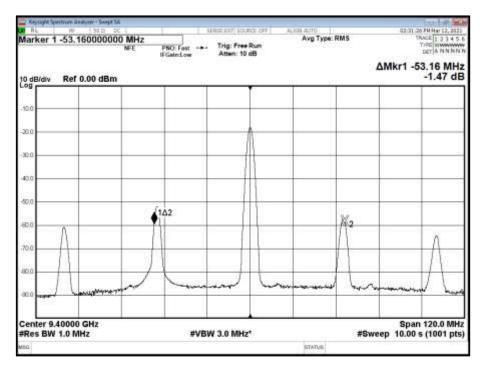


Figure 46 - 9400 MHz, FM, 79000 ns, 40 dB Bandwidth

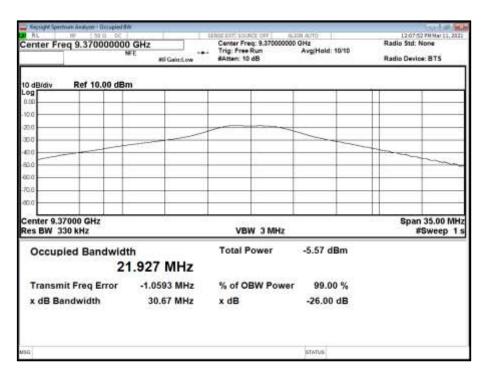


Figure 47 - 9370, FM, 750 ns, 99% Occupied Bandwidth



Figure 48 - 9370, FM, 750 ns, 40 dB Bandwidth

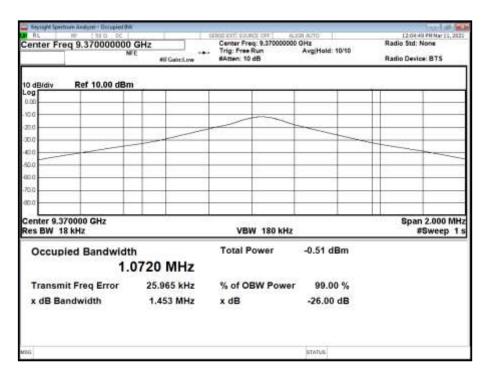


Figure 49 - 9370, FM, 79000 ns, 99% Occupied Bandwidth

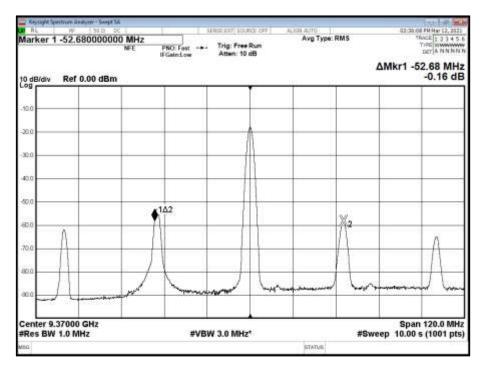


Figure 50 - 9370, FM, 79000 ns, 40 dB Bandwidth

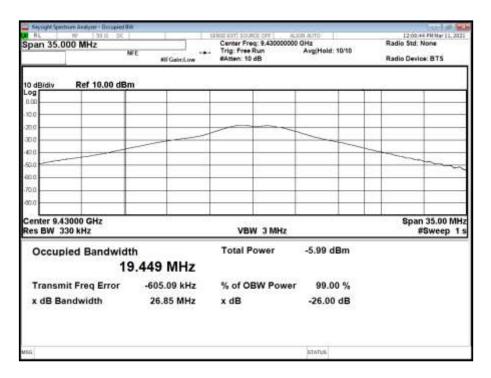


Figure 51 - 9430, FM, 750 ns, 99% Occupied Bandwidth

Figure 52 - 9430, FM, 750 ns, 40 dB Bandwidth

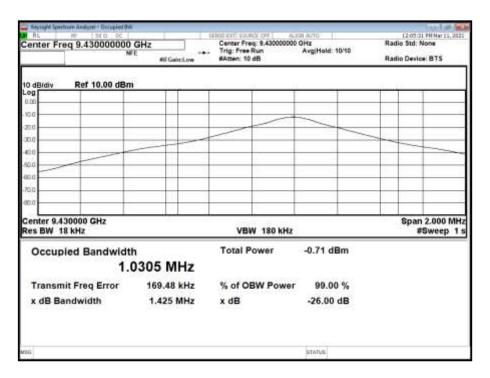


Figure 53 - 9430, FM, 79000 ns, 99% Occupied Bandwidth

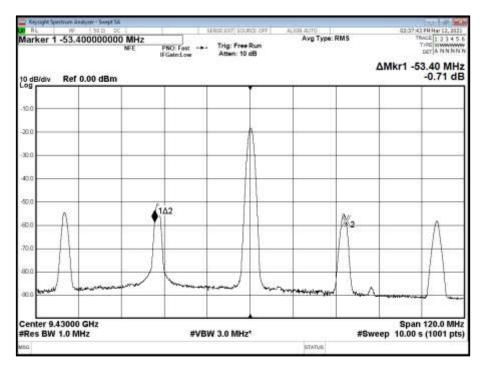


Figure 54 - 9430, FM, 79000 ns, 40 dB Bandwidth

FCC 47 CFR Part 80, Limit Clause 80.209(b)

When pulse modulation is used in land and ship radar stations operating in the bands above 2.4 GHz the frequency at which maximum emission occurs must be within the authorized bandwidth and must not be closer than 1.5/T MHz to the upper and lower limits of the authorized bandwidth where "T" is the pulse duration in microseconds.

Industry Canada RSS-238, Limit Clause

None Specified

2.2.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	17-May-2021
Hygromer	Rotronic	A1	2138	12	01-Jul-2021
Multimeter	Fluke	79 Series II	3057	12	21-Aug-2021
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	29-Jan-2022
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	30-Dec-2021
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	17-May-2021
PXA Signal Analyser	Keysight Technologies	N9030A	4654	12	06-Nov-2021
Quad Power Supply	Rohde & Schwarz	HMP4040	4954	-	O/P Mon
Attenuator 20dB 100W	Weinschel	48-20-43-LIM	5133	12	03-Dec-2021
WR90 / WG16 Waveguide Directional Coupler	Quasar	QCC 16SB-UBR- UBR-N-F-30	5145	-	O/P Mon
WR90 / WG16 Waveguide Load	Quasar	QWL16SB-UBR- 25W	5146	-	O/P Mon

Table 19

O/P Mon – Output Monitored using calibrated equipment

2.3 Transmitter Frequency Stability

2.3.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.209(b) FCC 47 CFR Part 2, Clause 2.1055 Industry Canada RSS-238, Clause 4.1 ISED RSS-GEN, Clause 6.11

2.3.2 Equipment Under Test and Modification State

E70621, S/N: AD601YR Storix ID 552061 Item 6 - Modification State 0 E70621, S/N: AD601YR Storix ID 552061 Item 6 - Modification State 1

2.3.3 Date of Test

08-March-2021 to 09-March-2021

2.3.4 Test Method

This test was performed in accordance with ANSI C63.26 clause 5.6 and RSS-GEN clause 6.11.

The EUT was placed in a Climatic Chamber and its Frequency Error measured using the Spectrum Analyser 99% Occupied Bandwidth function with a Peak detector and Max Hold, over the temperature range of -30°C to +50°C. In addition, measurements were made at ±15 % of the nominal voltage at 20°C.

2.3.5 Environmental Conditions

Ambient Temperature 22.1 - 23.5 °C Relative Humidity 24.2 - 27.3 %

2.3.6 Test Results

DC Powered - Transmit

Voltage	Frequency Error (kHz)	Frequency Error (ppm)
24 V DC	-3589	-382
10.2 V DC	-3659	-389
31.2 V DC	-3606	-384

Table 20 - Frequency Stability Under Voltage Variations, 9400 MHz, CW, 46 ns

Voltage	Frequency Error (kHz)	Frequency Error (ppm)
24 V DC	-846	-90
10.2 V DC	-858	-91
31.2 V DC	-854	-91

Table 21 - Frequency Stability Under Voltage Variations, 9400 MHz, FM, 192 ns

Voltage	Frequency Error (kHz)	Frequency Error (ppm)
24 V DC	46	5
10.2 V DC	47	5
31.2 V DC	48	5

Table 22 - Frequency Stability Under Voltage Variations, 9400 MHz, FM, 79000 ns

Voltage	Frequency Error (kHz)	Frequency Error (ppm)
24 V DC	-1309	-140
10.2 V DC	-1305	-140
31.2 V DC	-1325	-141

Table 23 - Frequency Stability Under Voltage Variations, 9370 MHz, FM, 750 ns

Voltage	Frequency Error (kHz)	Frequency Error (ppm)
24 V DC	51	5
10.2 V DC	43	5
31.2 V DC	29	5

Table 24 - Frequency Stability Under Voltage Variations, 9370 MHz, FM, 79000 ns

Voltage	Frequency Error (kHz)	Frequency Error (ppm)
24 V DC	-948	-101
10.2 V DC	-950	-101
31.2 V DC	-962	-102

Table 25 - Frequency Stability Under Voltage Variations, 9430 MHz, FM, 750 ns

Voltage	Frequency Error (kHz)	Frequency Error (ppm)
24 V DC	149	16
10.2 V DC	151	16
31.2 V DC	149	16

Table 26 - Frequency Stability Under Voltage Variations, 9430 MHz, FM, 79000 ns

All measurements in the tables above remained within the band of operation and were not closer than 1.5/T MHz to the upper and lower limits of the authorized bandwidth.

Temperature	Frequency Error (kHz)	Frequency Error (ppm)
-30.0 °C	-8237	-876
-20.0 °C	-7052	-750
-10.0 °C	-2836	-302
0.0 °C	-2563	-272
+10.0 °C	-3569	-380
+20.0 °C	-3589	-382
+30.0 °C	-4036	-429
+40.0 °C	-4266	-454
+50.0 °C	-5065	-539

Table 27 - Frequency Stability Under Temperature Variations, 9400 MHz, CW, 46 ns

Temperature	Frequency Error (kHz)	Frequency Error (ppm)
-30.0 °C	-3715	-395
-20.0 °C	-3321	-353
-10.0 °C	-2719	-289
0.0 °C	-1465	-156
+10.0 °C	-946	-101
+20.0 °C	-846	-90
+30.0 °C	-791	-84
+40.0 °C	-725	-77
+50.0 °C	-500	-53

Table 28 - Frequency Stability Under Temperature Variations, 9400 MHz, FM, 192 ns

Temperature	Frequency Error (kHz)	Frequency Error (ppm)
-30.0 °C	91	9
-20.0 °C	106	11
-10.0 °C	105	11
0.0 °C	80	9
+10.0 °C	67	7
+20.0 °C	46	5
+30.0 °C	28	3
+40.0 °C	27	3
+50.0 °C	37	4

Table 29 - Frequency Stability Under Temperature Variations, 9400 MHz, FM, 79000 ns

Temperature	Frequency Error (kHz)	Frequency Error (ppm)
-30.0 °C	-802	-86
-20.0 °C	-4696	-501
-10.0 °C	-2427	-259
0.0 °C	-1383	-148
+10.0 °C	-1366	-146
+20.0 °C	-1309	-140
+30.0 °C	-1197	-128
+40.0 °C	-1094	-117
+50.0 °C	-727	-78

Table 30 - Frequency Stability Under Temperature Variations, 9370 MHz, FM, 750 ns

Temperature	Frequency Error (kHz)	Frequency Error (ppm)
-30.0 °C	85	9
-20.0 °C	93	10
-10.0 °C	97	10
0.0 °C	70	8
+10.0 °C	58	6
+20.0 °C	51	5
+30.0 °C	29	3
+40.0 °C	26	3
+50.0 °C	36	4

Table 31 - Frequency Stability Under Temperature Variations, 9370 MHz, FM, 79000 ns

Temperature	Frequency Error (kHz)	Frequency Error (ppm)
-30.0 °C	-427	-45
-20.0 °C	-7995	-848
-10.0 °C	-1720	-182
0.0 °C	-1354	-144
+10.0 °C	-1075	-114
+20.0 °C	-948	-101
+30.0 °C	-787	-83
+40.0 °C	-654	-69
+50.0 °C	-374	-40

Table 32 - Frequency Stability Under Temperature Variations, 9430 MHz, FM, 750 ns

Temperature	Frequency Error (kHz)	Frequency Error (ppm)
-30.0 °C	242	26
-20.0 °C	247	26
-10.0 °C	242	26
0.0 °C	195	21
+10.0 °C	169	18
+20.0 °C	149	16
+30.0 °C	141	15
+40.0 °C	144	15
+50.0 °C	159	17

Table 33 - Frequency Stability Under Temperature Variations, 9430 MHz, FM, 79000 ns

All measurements in the tables above remained within the band of operation and were not closer than 1.5/T MHz to the upper and lower limits of the authorized bandwidth.

FCC 47 CFR Part 80, Limit clause 80.209(b)

When pulse modulation is used in land and ship radar stations operating in the bands above 2.4 GHz the frequency at which maximum emission occurs must be within the authorized bandwidth and must not be closer than 1.5/T MHz to the upper and lower limits of the authorized bandwidth where "T" is the pulse duration in microseconds. In the band 14.00–14.05 GHz the centre frequency must not vary more than 10 MHz from 14.025 GHz.

Industry Canada RSS-238, Limit Clause 4.1

The carrier frequency shall not depart from the reference frequency in excess of 800 ppm for equipment which operates in the band 2900-3100 MHz nor in excess of 1250 ppm for equipment which operates in the band 9225-9500 MHz.

2.3.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1 and RF Laboratory 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
True RMS Multimeter	Fluke	79 Series III	411	12	12-Oct-2021
Power Supply Unit	Farnell	H60-25	1092	-	O/P Mon
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	17-May-2021
Thermocouple Thermometer	Fluke	51	3172	12	28-Jan-2022
Hygrometer	Rotronic	I-1000	3220	12	16-Oct-2021
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	17-May-2021
PXA Signal Analyser	Keysight Technologies	N9030A	4653	12	26-Feb-2022
2 Channel PSU	Rohde & Schwarz	HMP2020	4735	-	O/P Mon
Climatic Chamber	Aralab	FitoTerm 300E45	4823	12	19-Mar-2021
Attenuator 30dB 100W	Weinschel	48-30-43-LIM	5135	12	23-Jul-2021
Power Supply	Rohde & Schwarz	HMP2020	S/N: 101828	-	O/P Mon
Coupler	Flann Microwave	16270-40-23	S/N: 154533	-	O/P Mon
Load	Hampton	MPT90-1A	S/N: 942117 -002	-	O/P Mon

Table 34

O/P Mon – Output Monitored using calibrated equipment

2.4 Spurious Emissions at Antenna Terminals

2.4.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.211(f) FCC 47 CFR Part 2, Clause 2.1051 Industry Canada RSS-238, Clause 4.3 ISED RSS-GEN, Clause 6.13

2.4.2 Equipment Under Test and Modification State

E70621, S/N: AD601YR Storix ID 552061 Item 6- Modification State 1

2.4.3 Date of Test

11-March-2021 to 16-March-2021

2.4.4 Test Method

<250 % Authorized Bandwidth

The EUT was connected to a Spectrum Analyser via a WR90 Waveguide Directional Coupler with additional attenuation. The mask reference level was set to the Peak value of the carrier. An RBW of 1 MHz and a VBW of 3 MHz was used for all tests. The mask was derived based on the measured or calculated 40 dB Bandwidth. An RMS detector was used for FCC measurements while a Peak detector was used for ISED measurements.

ISED Mask:

In accordance with ITU-R M.1177-4 Clause 4, the 40 dB Bandwidth was calculated for each pulse type. The calculations used are detailed in ITU-R SM.1541-6 Annex 8 Clause 3.1.

In accordance with RSS-238, the analyser RBW was set to 1 MHz and the VBW to 3 MHz. A Peak detector was configured with the trace set to Max Hold. The sweep points were set to > 2 * (Span / RBW). The trace was allowed to stabilize, and the result checked against the mask.

>250 % Authorized Bandwidth

The test equipment was configured as shown in the setup diagram. A search was made over the range 9 kHz to 40 GHz using a 1 MHz RBW and 3 MHz VBW filter. A peak detector was used in conjunction with a Max Hold trace. Any emissions that were noted over the test range were then measured with a reduced span. The peak emission value was measured and recorded, and the true Peak value calculated to account for the Pulse Desensitization of the Spectrum Analyser. The peak measurement result can be directly compared to the ISED limit requirements. To determine compliance against FCC limits, a Duty Cycle Correction Factor based on the Pulse Characteristics is applied to the Peak Level results to give the Average value.

Declared Carrier Power: 50 dBm ISED Limit: -60 dBc ISED Limit (dBm) = 50 - 60 = -10 dBm FCC Limit = 50 - (43 + 10log(P)) = -13 dBm where P = 100 W

The worst case value in each measurement range was reported.

2.4.5 Environmental Conditions

Ambient Temperature 23.6 - 25.1 °C Relative Humidity 15.4 - 37.5 %

2.4.6 Test Results

DC Powered - Transmit

Results Within 250% of Authorised Bandwidth

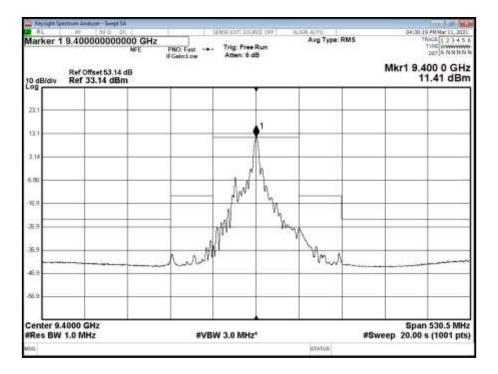


Figure 55 - 9400 MHz, CW, 46 ns (FCC Mask)

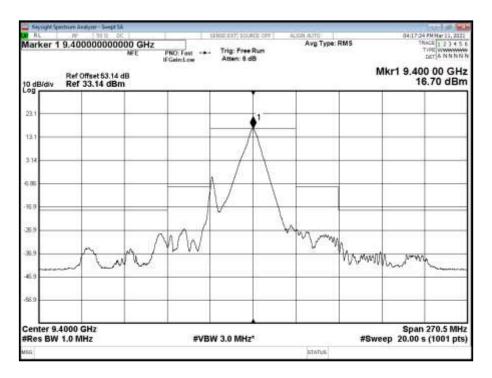


Figure 56 - 9400 MHz, FM, 192 ns (FCC Mask)

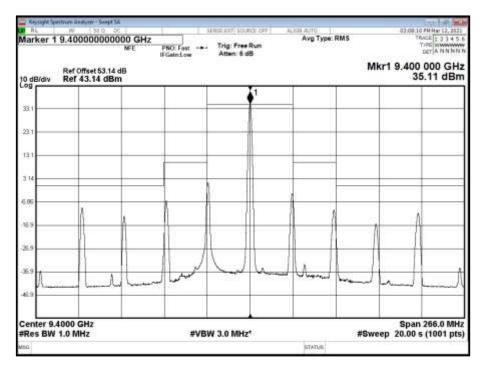


Figure 57 - 9400 MHz, FM, 79000 ns (FCC Mask)

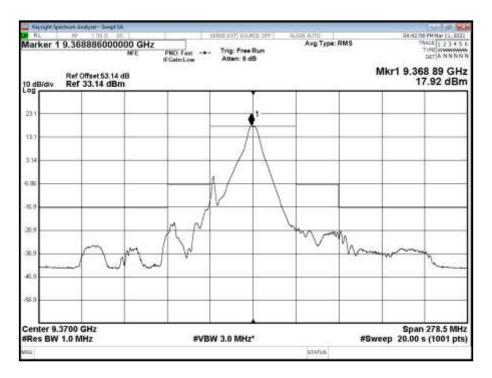


Figure 58 - 9370 MHz, FM, 750 ns (FCC Mask)

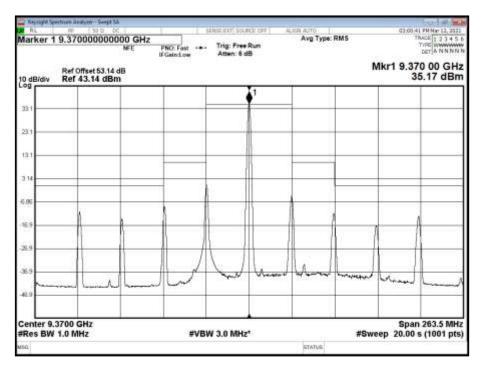


Figure 59 - 9370 MHz, FM, 79000 ns (FCC Mask)

Figure 60 - 9430 MHz, FM, 750 ns (FCC Mask)

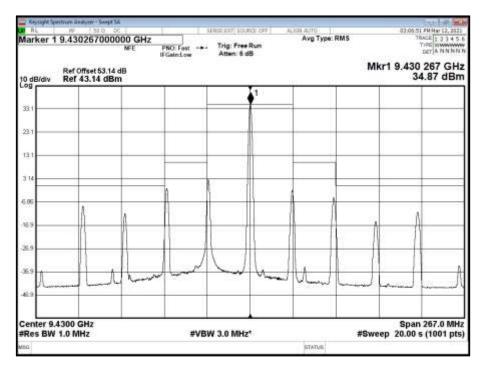


Figure 61 - 9430 MHz, FM, 79000 ns (FCC Mask)

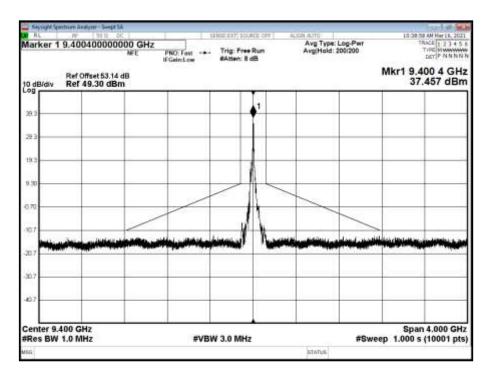


Figure 62 - 9400 MHz, CW, 46 ns (ISED Mask)

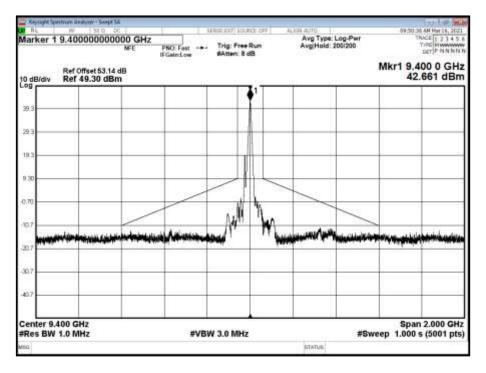


Figure 63 - 9400 MHz, FM, 192 ns (ISED Mask)

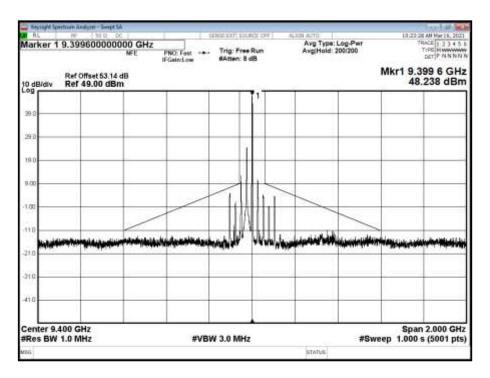


Figure 64 - 9400 MHz, FM, 79000 ns (ISED Mask)

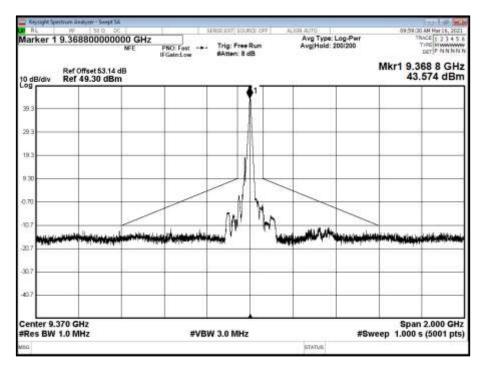


Figure 65 - 9370 MHz, FM, 750 ns (ISED Mask)

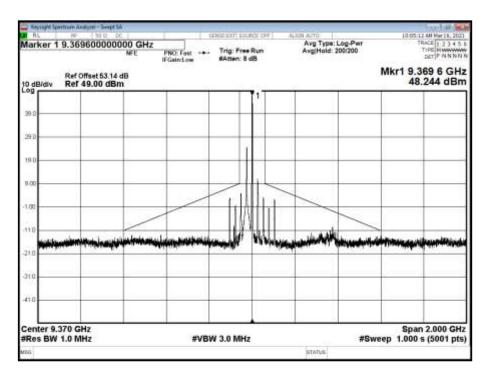


Figure 66 - 9370 MHz, FM, 79000 ns (ISED Mask)

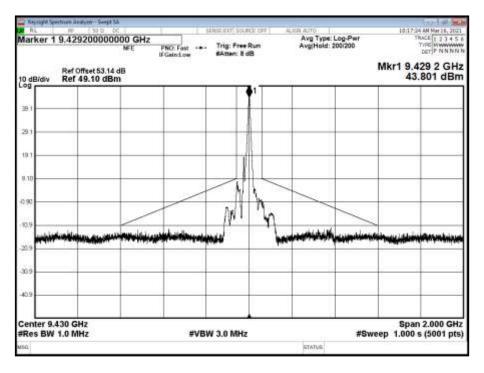


Figure 67 - 9430 MHz, FM, 750 ns (ISED Mask)

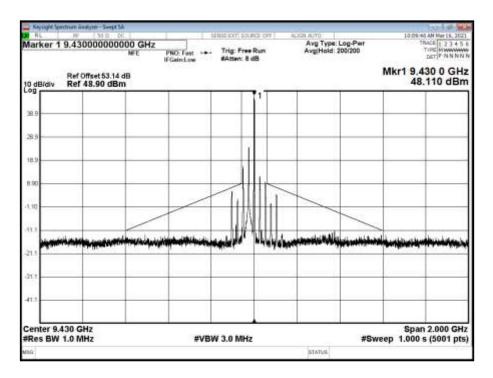


Figure 68 - 9430 MHz, FM, 79000 ns (ISED Mask)

Results >250% of Authorised Bandwidth

Pulse Type	Measured Frequency (MHz)	Peak Level (dBm)	Duty Cycle Correction Factor (dB)	Average Level (dBm)	FCC Limit (dBm)	ISED Limit (dBm)	Verdict
9430 MHz, FM, 79000 ns	14.14	-16.2	11.9	-28.1	-13.0	-10.0	Pass
9370 MHz, FM, 79000 ns	18.74	-24.8	11.9	-36.7	-13.0	-10.0	Pass
9370 MHz, FM, 79000 ns	28.12	-25.5	11.9	-37.4	-13.0	-10.0	Pass

Table 35 - Emission Results > 250% of Authorised Bandwidth

FCC 47 CFR Part 80, Clause 80.211(f)

On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;

On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB;

On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log₁₀ (mean power in watts) dB.

Industry Canada RSS-238, Limit Clause 4.3

The unwanted emission and the transmitter power shall be measured using a peak detector.

The unwanted emission power in any 1 MHz bandwidth shall be attenuated below the transmitter peak power by at least 20 dB per decade from the edge of the 40 dB bandwidth and beyond.

The unwanted emissions power shall not need to be attenuated more than 60 dB below the transmitter peak power.

2.4.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	17-May-2021
Hygromer	Rotronic	A1	2138	12	01-Jul-2021
Multimeter	Fluke	79 Series II	3057	12	21-Aug-2021
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	29-Jan-2022
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	30-Dec-2021
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	17-May-2021
PXA Signal Analyser	Keysight Technologies	N9030A	4654	12	06-Nov-2021
Quad Power Supply	Rohde & Schwarz	HMP4040	4954	-	O/P Mon
Attenuator 20dB 100W	Weinschel	48-20-43-LIM	5133	12	03-Dec-2021
WR90 / WG16 to SMA Adaptor	Quasar	QWC18SB-UBR- SMA-F	5144	-	O/P Mon
WR90 / WG16 Waveguide Directional Coupler	Quasar	QCC 16SB-UBR- UBR-N-F-30	5145	-	O/P Mon
WR90 / WG16 Waveguide Load	Quasar	QWL16SB-UBR- 25W	5146	-	O/P Mon
WR42 / WG20 to WR28 / WG22 Waveguide Taper	Quasar	QTT20SB-UBR- UBR-22	5147	-	O/P Mon
WR62 / WG18 to WR42 / WG20 Waveguide Taper	Quasar	QTT18SB-UBR- UBR-20	5148	-	O/P Mon
WR62 / WG18 to WR51 / WG19 Waveguide Taper	Quasar	QTT18SB-UBR- UBR-19	5149	-	O/P Mon
WR28 / WG22 to K Type Adaptor	Quasar	QWC22SB-UBR-K-F	5153	-	O/P Mon
WR42 / WG20 to K Type Adaptor	Quasar	QWC20SB-UBR-K- F	5154	-	O/P Mon
WR51 / WG19 to K Type Adaptor	Quasar	QWC19SB-UBR- SMAF	5155	-	O/P Mon
Semi-flex 18GHz-40GHz cable	Aralab	CSF6767C- C2S6500	5175	-	O/P Mon
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB 40	5605	12	08-Sep-2021

Table 36

O/P Mon – Output Monitored using calibrated equipment

2.5 Radiated Spurious Emissions

2.5.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.211(f) FCC 47 CFR Part 2, Clause 2.1053 Industry Canada RSS-238, Clause 4.3 ISED RSS-GEN, Clause 6.13

2.5.2 Equipment Under Test and Modification State

E70621, S/N: AD601YR Storix ID 552061 Item 6 - Modification State 0

2.5.3 Date of Test

26-February-2021

2.5.4 Test Method

This test was performed in accordance with ANSI C63.26, clause 5.7.

2.5.5 Environmental Conditions

Ambient Temperature 23.1 °C Relative Humidity 25.9 %

2.5.6 Test Results

DC Powered - Transmit

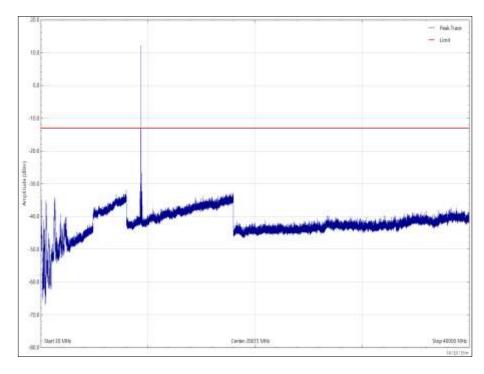


Figure 69 - 30 MHz to 40 GHz - 9370 MHz - Vertical

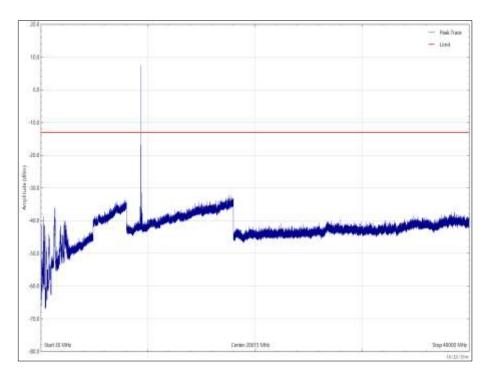


Figure 70 - 30 MHz to 40 GHz - 9370 MHz- Horizontal

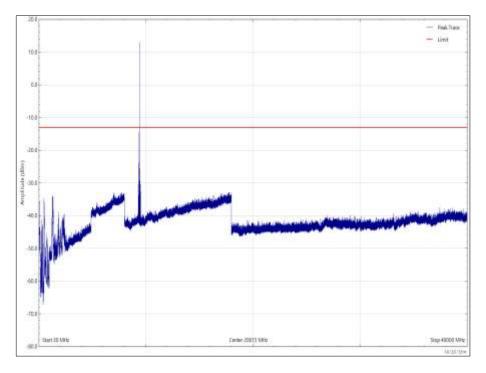


Figure 71 - 30 MHz to 40 GHz - 9400 MHz - Vertical

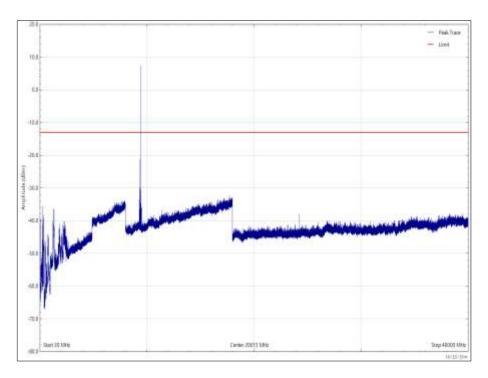


Figure 72 - 30 MHz to 40 GHz - 9400 MHz - Horizontal

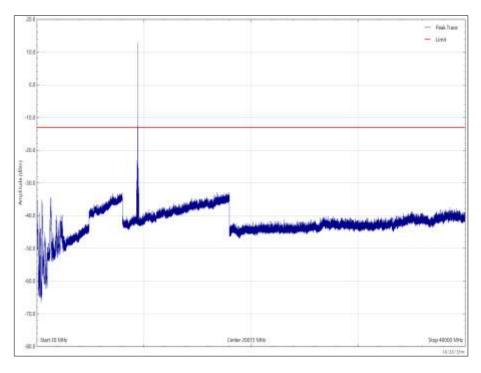


Figure 73 - 30 MHz to 40 GHz - 9430 MHz - Vertical

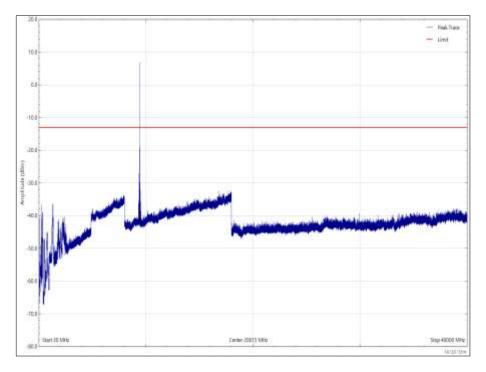


Figure 74 - 30 MHz to 40 GHz - 9430 MHz - Horizontal

FCC 47 CFR Part 80, Clause 80.211(f)

On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;

On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB;

On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log₁₀ (mean power in watts) dB.

Industry Canada RSS-238, Limit Clause 4.3

The unwanted emission and the transmitter power shall be measured using a peak detector.

The unwanted emission power in any 1 MHz bandwidth shall be attenuated below the transmitter peak power by at least 20 dB per decade from the edge of the 40 dB bandwidth and beyond.

The unwanted emissions power shall not need to be attenuated more than 60 dB below the transmitter peak power.

2.5.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Antenna 18-40GHz (Double Ridge Guide)	Link Microtek Ltd	AM180HA-K-TU2	230	24	27-Jul-2022
Antenna with permanent attenuator (Bilog)	Schaffner	CBL6143	287	24	14-Oct-2022
18GHz - 40GHz Pre- Amplifier	Phase One	PSO4-0087	1534	12	18-Feb-2022
Comb Generator	Schaffner	RSG1000	3034	-	TU
Cable 1503 2M 2.92(P)m 2.92(P)m	Rhophase	KPS-1503A-2000- KPS	4293	12	16-Nov-2021
Multimeter	Fluke	175	4427	12	16-Mar-2021
EmX Emissions Software	TUV SUD	V2.1.1	5125	-	Software
Test Receiver	Rohde & Schwarz	ESW44	5379	12	15-Dec-2021
3.5 mm 2m Cable	Junkosha	MWX221- 02000DMS	5428	12	15-Oct-2021
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB-40	5481	12	18-Mar-2021
1m K-Type Cable	Junkosha	MWX241- 01000KMSKMS/A	5511	12	03-Apr-2021
8m N Type Cable	Junkosha	MWX221- 08000NMSNMS/B	5519	12	24-Mar-2021
2 m K Type Cable	Junkosha	MWX241- 02000KMSKMS/A	5523	12	03-Apr-2021
DRG Horn Antenna (7.5- 18GHz)	Schwarzbeck	HWRD750	5610	12	22-Sep-2021
Broadband Horn Antenna (1-10 GHz)	Schwarzbeck	BBHA 9120 B	5611	12	22-Sep-2021
Turntable & Mast Controller	Maturo Gmbh	NCD/498/2799.01	5612	-	TU
Tilt Antenna Mast TAM 4.0-P	Maturo Gmbh	TAM 4.0-P	5613	-	TU
Turntable	Maturo Gmbh	Turntable 1.5 SI-2t	5614	-	TU
3m Semi Anechoic Chamber	MVG	EMC-3	5621	36	11-Aug-2023

Table 37

TU - Traceability Unscheduled

2.6 RF Output Power

2.6.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.215 FCC 47 CFR Part 2, Clause 2.1046 Industry Canada RSS-238, Clause 4.2 ISED RSS-GEN, Clause 6.12

2.6.2 Equipment Under Test and Modification State

E70621, S/N: AD601YR Storix ID 552061 Item 6 - Modification State 0

2.6.3 Date of Test

26-February-2021

2.6.4 Test Method

The path loss between the EUT and the Power Sensor was measured using a Network Analyser. The loss was entered as a correction into the Power Meter which was connected via attenuators and a WR90 30 dB Waveguide Directional Coupler to the EUT. Peak power measurements were made, and the Average derived by applying a Duty Cycle correction factor to the results based on the measured pulse characteristics.

2.6.5 Environmental Conditions

Ambient Temperature 24.9 °C Relative Humidity 28.1 %

2.6.6 Test Results

DC Powered - Transmit

Test Frequency	Radar Pulse	Peak	Power	Averag	Average Power		
(MHz)	Description	(dBm)	(W)	(dBm)	(W)		
9400	CW, 46 ns	49.3	84.2	12.7	0.019		
9400	FM, 192 ns	49.3	84.5	19.1	0.081		
9400	FM, 750 ns	49.1	82.2	24.7	0.298		
9400	FM, 1020 ns	49.1	82.0	26.0	0.401		
9400	FM, 1235 ns	49.1	81.4	26.8	0.479		
9400	FM, 1675 ns	49.0	80.4	28.0	0.634		
9400	FM, 2300 ns	49.0	79.7	29.4	0.880		
9400	FM, 2710 ns	49.0	80.0	30.2	1.046		
9400	FM, 3900 ns	49.0	80.2	31.8	1.508		
9400	FM, 17600 ns	48.9	79.2	37.0	4.989		
9400	FM, 23600 ns	49.1	80.4	36.5	4.504		
9400	FM, 35000 ns	49.1	80.4	36.5	4.482		
9400	FM, 47000 ns	49.0	79.9	36.5	4.458		
9400	FM, 79000 ns	49.0	78.9	37.0	5.063		
9370	FM, 750 ns	49.3	84.8	25.1	0.321		
9370	FM, 79000 ns	49.0	80.2	37.1	5.162		
9430	FM, 750 ns	49.1	81.0	24.6	0.291		
9430	FM, 79000 ns	48.9	77.3	37.0	4.961		

Table 38 - RF Output Power

The maximum antenna gain was declared by the manufacturer as: 27.42 dBi.

FCC 47 CFR Part 80, Clause 80.215

The transmitter output power shall not exceed 60 kW and the antenna gain shall not exceed 35 dBi.

Industry Canada RSS-238, Limit Clause 4.2

The transmitter output power shall not exceed 60 kW and the antenna gain shall not exceed 35 dBi.

2.6.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Hygromer	Rotronic	A1	2138	12	01-Jul-2021
Multimeter	Fluke	79 Series II	3057	12	21-Aug-2021
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	29-Jan-2022
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	30-Dec-2021
Quad Power Supply	Rohde & Schwarz	HMP4040	4954	-	O/P Mon
Attenuator 20dB 100W	Weinschel	48-20-43-LIM	5133	12	03-Dec-2021
WR90 / WG16 Waveguide Directional Coupler	Quasar	QCC 16SB-UBR- UBR-N-F-30	5145	-	O/P Mon
WR90 / WG16 Waveguide Load	Quasar	QWL16SB-UBR- 25W	5146	-	O/P Mon
USB Power Sensor	Boonton	RTP5318	5185	12	12-Jan-2022

Table 39

O/P Mon – Output Monitored using calibrated equipment

3 Photographs

3.1 Test Setup Photographs

Figure 75 - Test Setup - 30 MHz to 1 GHz

Figure 76 - Test Setup - 1 GHz to 18 GHz

Figure 77 - Test Setup - 18 GHz to 40 GHz

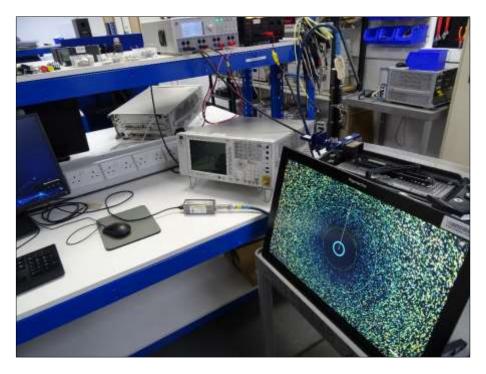


Figure 78 - Conducted Test Setup

4 Test Equipment Information

4.1 Customer Support Equipment

Instrument	Manufacturer	Type No	Serial Number	Calibration Period (months)	Calibration Due
Multi-functional Display	Raymarine	E70401	685646	-	O/P Mon
Multi-functional Display	Raymarine	E70515	786700	-	O/P Mon
Power Supply Unit	Raymarine	VCM100	2668803	-	O/P Mon
Power Supply Unit	Raymarine	VCM100	1279649	-	O/P Mon
Power Supply Unit	Nevada	PS-30M	20190016	-	O/P Mon
Ethernet switch	Netgear	FS605 v2	FS62146CB241839	-	O/P Mon
Ethernet switch	Netgear	FS605 v2	FS62149CB297964	-	O/P Mon

Table 40

O/P Mon – Output Monitored Using Calibrated Equipment

5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Modulation Characteristics	±5%
Occupied Bandwidth	± 803.45 kHz
Transmitter Frequency Stability	± 2610 kHz
Spurious Emissions at Antenna Terminals	± 3.45 dB
Radiated Spurious Emissions	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB
RF Output Power	± 0.96 dB

Table 41

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.

ANNEX A

CUSTOMER SUPPLIED INFORMATION

Cyclone antennas

All figures quoted at 9.4GHz centre frequency.

Antenna Type: Slotted Waveguide.

Antenna size and model number	Gain dBi (directivity)	Gain d8*	Azimuth 3d8 beam width	Elevation 3d5 beam width	Azimuth squint angle	Azimuth sidelobes within ±10° (IMO limit - 23cis)	Azimuth sidelobes outside ±10° (IMO limit - 30:65)	Back lobe level	Antenna build standard
3ft E70628	25.7dBi	24.13dB	2.83*	28.4*	5.2*	-26dB	-25.9d8	-39.8dB	1011615-8
4ft E70629	27.7d8i	25.60dB	1.99*	26.8"	5.0*	-26.5dB	-33.2dB	-41.5dB	1011614-3
6ft E70630	29.5dBi	27,42dB	1.32"	26.3"	5.0*	-26.4d8	-30.3dB	-35.1d8	1010556-2

^{*}Gain values include test fixture loss and elevation squint of -2*