

Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel Tel. +972-4-6288001 Fax. +972-4-6288277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC part 27 and part 15 subpart B

FOR:

Airspan Networks (Israel) Ltd. Base station Model: MicroMAX 1.4G TDD

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	
2	Equipment under test attributes	
3	Manufacturer information	
4	Test details	
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Ports and lines	5
6.3	Support and test equipment	5
6.4	Changes made in the EUT	5
6.5	Test configuration	6
6.6	Transmitter characteristics	7
7	Transmitter tests according to 47CFR part 27 requirements	
7.1	Peak output power test	
7.2	Occupied bandwidth test	
7.3	Radiated spurious emission measurements	
7.4	Spurious emissions at RF antenna connector test	
7.5	Frequency stability test	
8	Emissions tests according to 47CFR part 15 subpart B requirements	
8.1	Conducted emissions	
8.2	Radiated emission measurements	
8.3	Spurious emissions at RF antenna connector	
9	APPENDIX A Test equipment and ancillaries used for tests	
10	APPENDIX B Measurement uncertainties	
11	APPENDIX C Test laboratory description	
12	APPENDIX D Specification references	60
13	APPENDIX E Test equipment correction factors	61
14	APPENDIX F Abbreviations and acronyms	75

1 Applicant information

Client name:	Airspan Networks (Israel) Ltd.	
Address:	1, Hamelacha street, Lod 71293, Israel	
Telephone:	+972 3977 7444	
Fax:	+972 3977 7400	
E-mail:	zlevi@airspan.com	
Contact name:	Mr. Zion Levi	

2 Equipment under test attributes

Product name:	Base station
Product type:	P/N 90803041
Model(s):	MicroMAX 1.4G TDD
Serial number:	922F7610159A
Hardware version:	B1
Software release:	7.5.8.0
Receipt date	2/8/2009

3 Manufacturer information

Manufacturer name:	Airspan Networks (Israel) Ltd.
Address:	1, Hamelacha street, Lod 71293, Israel
Telephone:	+972 3977 7444
Fax:	+972 3977 7400
E-Mail:	zlevi@airspan.com
Contact name:	Mr. Zion Levi

4 Test details

Project ID:	19440
Location:	Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel
Test started:	2/8/2009
Test completed:	2/16/2009
Test specification(s):	FCC part 27; part 15 subpart B

5 Tests summary

Test	Status
Transmitter characteristics	
Section 27.50(e)(1), Peak output power at RF antenna connector	Pass
Section 2.1091, 27.52, RF safety	NA, fixed equipment
Section 27.53(j), Spurious emissions at RF antenna connector	Pass
Section 27.53(j), Band edge emissions at RF antenna connector	Pass
Section 27.53(j), Radiated spurious emissions	Pass
Section 27.54, Frequency stability	Pass
Section 2.1049, Occupied bandwidth	Pass
Unintentional emissions	
Section 15.107, Conducted emission at AC power port	Pass
Section 15.109, Radiated emission	Pass
Section 15.111, Conducted emission at receiver antenna port	Pass

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

This test report replaces the previously issued test report identified by Doc ID:AIRRAD_FCC.19440.

	Name and Title	Date	Signature
Tested by:	Mr. L. Markel, test engineer	February 16, 2009	X
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	March 1, 2009	Chur
Approved by:	Mr. M. Nikishin, EMC and Radio group manager	March 10, 2009	ff o

6 EUT description

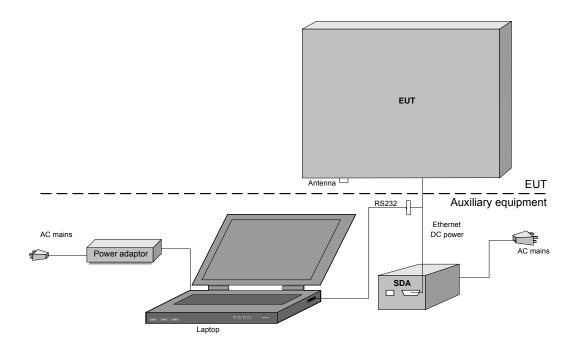
6.1 General information

The EUT, base station radio, MicroMAX 1400 MHz TDD, is a part of a WiMAX broadband fixed cellular wireless access system. The system provides a radio link between an end-user (a subscriber) and a network to give high-speed data access. The MicroMAX's transceiver/receiver (up to 64 QAM modulation, data rate up to 18 Mbps) uses OFDM and operates in TDD duplexing mode, equipped with a 10 dBi internal or 18 dBi external antenna.

6.2 Ports and lines

Port type	Port description	Connected from	Connected to	Qty.	Cable type	Cable length	Indoor / outdoor
Power	DC Power	EUT	SDA (+ DATA)	1	UTP	10	Outdoor
Signal	RS-232	EUT	Laptop	1	UTP	0.2	Outdoor
RF	Antenna	EUT	50 Ohm Termination	1	Shielded	NA	NA

6.3 Support and test equipment


Description	Manufacturer	Model number	Serial number
Laptop	IBM	X31	99-TXWYC
Laptop adaptor	IBM	NA	11S92P1014Z1ZD2N74T2LS
SDA	Airspan	SDA-4S/VL type 2	753D6A0086

6.4 Changes made in the EUT

No changes were implemented in the EUT.

6.5 Test configuration

6.6 Transmitter characteristics

Type of equipment								
V Stand-alone (Equipment with or without its own control provisions)								
	Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)							
Plug-in card (Equip	oment int	ended fo	r a varie	ety of host s	ystems)			
Intended use	Con	dition of	use					
V fixed	Alwa	ays at a c	listance	more than	2 m from all	people		
mobile	Alwa	ays at a c	listance	more than	20 cm from	all people		
portable	May	operate	at a dis	tance close	r than 20 cm	n to human body	y	
Assigned frequency range	е		1432	- 1435 MHz				
Operating frequency			1433.	.5 MHz				
RF channel spacing			1.75,	2.5 MHz				
Maximum rated output po	ower		At tra	nsmitter 50	Ω RF outpu	t connector		27.28 dBm
				No				
le trenemitter eutrut neur						ontinuous varia		
Is transmitter output power	er variai	Jier	v	Yes		tepped variable	with stepsize	0.5 dB
					minimum R			-30 dBm
					maximum F	RF power		27.28 dBm
Antenna connection								
unique coupling	v	sta	ndard c	onnector		Integral	V with with	temporary RF connector out temporary RF connector
Antenna/s technical chara	acteristi	cs						
Туре		Manufa	cturer		Model nu	mber	G	ain (maximum)
Internal MARS A		Antenna	ennas MA-WC15-AS10 10 dBi					
External		Foshan Road A		ui Shing Co., Ltd.	TDJ-SA1	500-18-65	1	8 dBi
Transmitter 99% powe	r bandw	idth	Trans	mitter aggr	egate data	rate/s, MBps		Type of modulation
					0.719			BPSK
1.75 MHz					1.0475		QPSK	
			3.14125		16QAM 64QAM			
			<u>6.4715</u> 1.0475		BPSK			
			2.095		QPSK			
2.5 MHz		6.2825		16QAM				
					9.425			64QAM
					3.425			
Type of multiplexing				OFD				UtQAN
Type of multiplexing Modulating test signal (ba	aseband)		OFD	М			
			l use	-	M S			
Modulating test signal (ba	y cycle i		luse	PRB	M S			
Modulating test signal (ba Maximum transmitter dut Transmitter power source	y cycle i e Iominal	n norma rated vo	Itage	90%	M S	Battery type		
Modulating test signal (ba Maximum transmitter duty Transmitter power source V DC N	y cycle i e Iominal Iominal	n norma rated vo rated vo	ltage Itage	90%	M S DC via SDA	A		
Modulating test signal (ba Maximum transmitter dut Transmitter power source N V DC N	y cycle i e Iominal Iominal Iominal	n norma rated vo rated vo rated vo	ltage Itage Itage	PRB 90% 48 V 120	M S DC via SDA		60 Hz	

Test specification:	Section 27.50(e)(1), Peak ou	Section 27.50(e)(1), Peak output power				
Test procedure:	47 CFR, Section 2.1046; TIA/EIA-603-C, Section 2.2.1					
Test mode:	Compliance	- Verdict: PASS				
Date & Time:	2/16/2009 1:33:05 PM					
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:						

7 Transmitter tests according to 47CFR part 27 requirements

7.1 Peak output power test

7.1.1 General

This test was performed to measure the peak output power at RF antenna connector. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Peak output power limits

Assigned frequency range, MHz	Maximum pe	ak output power	
Assigned nequency range, whiz	W	dBm	
1432.0 – 1435.0	2000	63.0	

7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- 7.1.2.2 The EUT was adjusted to produce maximum available to the end user RF output power.
- **7.1.2.3** The peak output power was measured with a power meter as provided in Table 7.1.2.

Figure 7.1.1 Output power test setup

Test specification:	Section 27.50(e)(1), Peak o	Section 27.50(e)(1), Peak output power				
Test procedure:	47 CFR, Section 2.1046; TIA	47 CFR, Section 2.1046; TIA/EIA-603-C, Section 2.2.1				
Test mode:	Compliance	Verdict: PASS				
Date & Time:	2/16/2009 1:33:05 PM	verdict.	FA33			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:		•				

Table 7.1.2 Output power test results

OPERATING FREQUENCY RANGE: DETECTOR USED: MODULATING SIGNAL: BIT RATE: TRANSMITTER OUTPUT POWER SETTINGS: EBW: ANTENNA GAIN: POWER SETTINGS: DUTY CYCLE:			Pow PRE 0.71 Max	9 (BPSK), 6.4715 imum MHz Bi J		ops	
Carrier frequency, MHz	Power meter reading, dBm	External attenuation, dB	Cable loss, dB	RF output power*, EIRP dBm	Limit, EIRP, dBm	Margin, dB	Verdict
BPSK							
1433.5	27.02	Included	Included	45.02	63.0	-17.98	Pass
64QAM							
1433.5	27.28	Included	Included	45.28	63.0	-17.72	Pass
OPERATING FREQUENCY RANGE: DETECTOR USED: MODULATING SIGNAL: BIT RATE: TRANSMITTER OUTPUT POWER SETTINGS: EBW: ANTENNA GAIN: POWER SETTINGS: DUTY CYCLE:		Pow PRB 1.04	75 (BPSK), 9.42 imum MHz Bi J		ops		
Carrier frequency, MHz	Power meter reading, dBm	External attenuation, dB	Cable loss, dB	RF output power*, EIRP dBm	Limit, EIRP, dBm	Margin, dB	Verdict
BPSK 2300		•					
1433.5	26.50	Included	Included	44.50	63.0	-18.50	Pass
64QAM	64QAM						

* - RF output power, EIRP (dBm) = Power meter reading, dBm + Antenna gain, dBi

Included

Reference numbers of test equipment used

26.43

I	HL 3301	HL 3302	HL 3435	HL 3442		

Included

44.43

63.0

-18.57

Pass

Full description is given in Appendix A.

1433.5

Test specification:	Section 2.1049, Occupied	Section 2.1049, Occupied bandwidth			
Test procedure:	47 CFR, Section 2.1049				
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	2/16/2009 1:35:07 PM	verdict.	FA33		
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:					

7.2 Occupied bandwidth test

7.2.1 General

This test was performed to measure transmitter occupied bandwidth. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Occupied bandwidth limits

Assigned frequency,	Modulation envelope reference points*,	Maximum allowed bandwidth,	
MHz	dBc	kHz	
1432.0 - 1435.0	26	NA	

* - Modulation envelope reference points are provided in terms of attenuation below the unmodulated carrier.

7.2.2 Test procedure

- **7.2.2.1** The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- 7.2.2.2 The EUT was set to transmit the unmodulated carrier and the reference peak power level was measured.
- 7.2.2.3 The EUT was set to transmit the normally modulated carrier.
- **7.2.2.4** The transmitter occupied bandwidth was measured with spectrum analyzer as a frequency delta between the reference points on modulation envelope and provided in Table 7.2.2 and the associated plots.

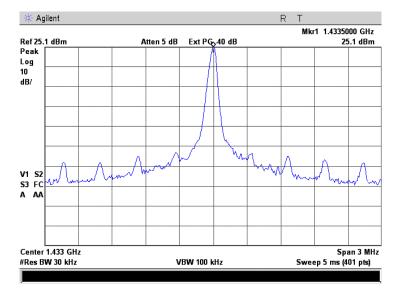
Figure 7.2.1 Occupied bandwidth test setup

Test specification:	Section 2.1049, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049				
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	2/16/2009 1:35:07 PM	verdict.	PA33		
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:			· • • • •		

Table 7.2.2 Occupied bandwidth test results

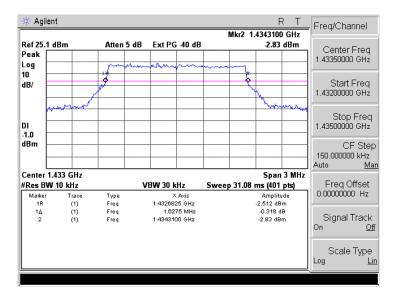
DETECTOR USED:		Peak hold			
RESOLUTION BANDWIDTH: VIDEO BANDWIDTH:) kHz) kHz			
MODULATION ENVELOPE REF		3 dBc			
MODULATING SIGNAL:		RBS			
BIT RATE:	0.	719 Mbps (BPSK)			
		4715 Mbps (64QÁM)			
EBW:	1.	75 MHz			
Carrier frequency, MHz	Occupied bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict	
BPSK					
1433.5	1627.5	NA	NA	Pass	
64QAM					
1433.5	1627.5	NA	NA	Pass	
RESOLUTION BANDWIDTH:30VIDEO BANDWIDTH:10MODULATION ENVELOPE REFERENCE POINTS:20MODULATING SIGNAL:PBIT RATE:19		eak hold) kHz)0 kHz 3 dBc RBS 0475 Mbps (BPSK) 425 Mbps (64QAM) 5 MHz			
Carrier frequency, MHz	Occupied bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict	
BPSK				_	
1433.5	2400.0	NA	NA	Pass	
64QAM	0.170.0			Deer	
1433.5	2470.0	NA	NA	Pass	

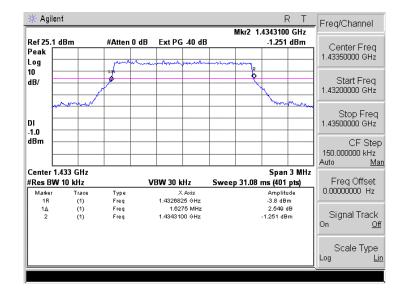
Reference numbers of test equipment used


HL 2867	HL 2909	HL 3439	HL 3442		

Full description is given in Appendix A.

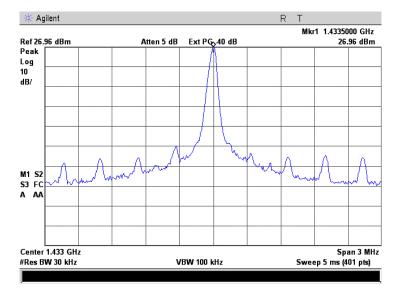
Test specification:	Section 2.1049, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049				
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	2/16/2009 1:35:07 PM	verdict.	PASS		
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:					


Plot 7.2.1 Occupied bandwidth test result reference level at 1.75 MHz EBW

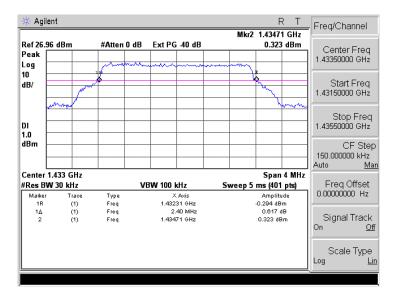


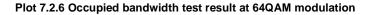
Test specification:	Section 2.1049, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049				
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	2/16/2009 1:35:07 PM	verdict.	PA33		
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:					

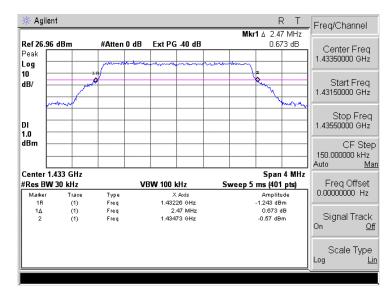
Plot 7.2.2 Occupied bandwidth test result at BPSK modulation


Plot 7.2.3 Occupied bandwidth test result at 64QAM modulation

Test specification:	Section 2.1049, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049				
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	2/16/2009 1:35:07 PM	verdict.	PA33		
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:					


Plot 7.2.4 Occupied bandwidth test result reference level at 2. 5 MHz EBW





Test specification:	Section 2.1049, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049				
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	2/16/2009 1:35:07 PM	verdict.	PA33		
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:					

Plot 7.2.5 Occupied bandwidth test result at BPSK modulation

Test specification:	Section 27.53(j), Radiated spurious emissions					
Test procedure:	47 CFR, Sections 2.1053; TIA	47 CFR, Sections 2.1053; TIA/EIA-603-C, Section 2.2.12				
Test mode:	Compliance	Verdict: PASS				
Date & Time:	2/16/2009 2:58:56 PM	verdict.	FA33			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:						

7.3 Radiated spurious emission measurements

7.3.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 7.3.1.

Table 7.3.1 Radiated spurious emission test limits

Frequency,	Attenuation below carrier dBc	ERP of spurious,	Equivalent field strength limit @ 3m,
MHz		dBm	dB(µV/m)***
0.009 – 10 th harmonic*	43+10logP**	-13	84.4

* - Excluding the in band emission within ± 250 % of the authorized bandwidth from the carrier

** - P is transmitter output power in Watts

*** - Equivalent field strength limit was calculated from maximum allowed ERP of spurious as follows: E=sqrt(30×P×1.64)/r, where P is ERP in Watts, 1.64 is numeric gain of ideal dipole and r is antenna to EUT distance in meters

7.3.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and the performance check was conducted.
- **7.3.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna was rotated around its vertical axis.
- 7.3.2.3 The worst test results (the lowest margins) were recorded in Table 7.3.2 and shown in the associated plots.

7.3.3 Test procedure for spurious emission field strength measurements above 30 MHz

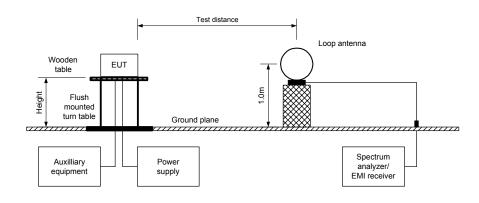
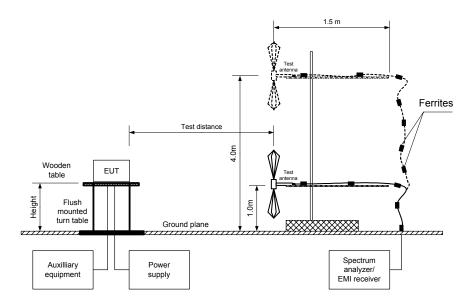
- 7.3.3.1 The EUT was set up as shown in Figure 7.3.2, energized and the performance check was conducted.
- **7.3.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal, polarizations.
- 7.3.3.3 The worst test results (the lowest margins) were recorded in Table 7.3.2 and shown in the associated plots.

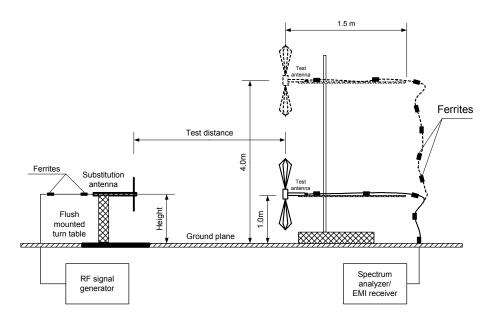
7.3.4 Test procedure for substitution ERP measurements of spurious

- **7.3.4.1** The test equipment was set up as shown in Figure 7.3.3 and energized.
- **7.3.4.2** RF signal generator was set to the frequency of investigated spurious emission and the RF output level was preliminary adjusted to produce the same field strength as it was measured from the EUT.
- **7.3.4.3** The test antenna height was swept from 1 to 4 m to find maximum emission from substitution antenna and RF signal generator output was fine adjusted to produce the same field strength as it was measured from the EUT.
- **7.3.4.4** The above procedure was performed in both, horizontal and vertical, polarizations of the test and substitution antennas.
- **7.3.4.5** The ERP of spurious emissions was calculated as a sum of signal generator output power in dBm and antenna gain in dBd reduced by cable loss in dB.
- 7.3.4.6 The above procedure was repeated at the rest of investigated frequencies.
- 7.3.4.7 The worst test results (the lowest margins) were recorded in Table 7.3.3 and shown in the associated plots.

Test specification:	Section 27.53(j), Radiated spurious emissions					
Test procedure:	47 CFR, Sections 2.1053; TIA	47 CFR, Sections 2.1053; TIA/EIA-603-C, Section 2.2.12				
Test mode:	Compliance	Verdict: PASS				
Date & Time:	2/16/2009 2:58:56 PM	verdict.	PASS			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:		· · · ·				

Figure 7.3.1 Setup for spurious emission field strength measurements in 9 kHz to 30 MHz band


Figure 7.3.2 Setup for spurious emission field strength measurements above 30 MHz

Test specification:	Section 27.53(j), Radiated spurious emissions					
Test procedure:	47 CFR, Sections 2.1053; TI	47 CFR, Sections 2.1053; TIA/EIA-603-C, Section 2.2.12				
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	2/16/2009 2:58:56 PM	verdict.	FA33			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:						

Figure 7.3.3 Setup for substitution ERP measurements of spurious

Test specification:	Section 27.53(j), Radiated spurious emissions					
Test procedure:	47 CFR, Sections 2.1053; TI	47 CFR, Sections 2.1053; TIA/EIA-603-C, Section 2.2.12				
Test mode:	Compliance	Verdict: PASS				
Date & Time:	2/16/2009 2:58:56 PM	verdict.	PA33			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:						

Table 7.3.2 Spurious emission field strength test results

TEST DISTANC TEST SITE: EUT HEIGHT: INVESTIGATED DETECTOR US VIDEO BANDW TEST ANTENN MODULATION: MODULATING BIT RATE:	D FREQUENCY RAN GED: YIDTH: A TYPE:	-		3 m OATS 0.8 m 0.009 – 14 Power Avy > Resoluti Active loo Biconilog	erage (100 swe on bandwidth p (9 kHz – 30 N (30 MHz – 100 Iged guide (abo ops	ИНz) 0 MHz)	
Frequency, MHz	Field strength, dB(µV/m)	Limit, dB(µV/m)					Turn-table position**, degrees
Carrier frequency 1433.5 MHz					•	<u> </u>	
2866.575	78.07	84.40	-6.33 1000 H 1.2				030
4300.125	68.13	84.40	-16.27	1000	Н	1.2	045
5733.925	57.78	84.40	-26.62	1000	V	1.1	070
7168.000	72.27	84.40	-12.13	1000	V	1.1	060

*- Margin = Field strength of spurious – calculated field strength limit.

**- EUT front panel refers to 0 degrees position of turntable.

Table 7.3.3 Substitution ERP of spurious test results

ASSIGNED FREQUENCY RANGE:	1432.0 – 1435.0 MHz
TEST SITE:	OATS
TEST DISTANCE:	3 m
SUBSTITUTION ANTENNA HEIGHT:	0.8 m
DETECTOR USED:	Power Average (100 sweeps)
VIDEO BANDWIDTH:	> Resolution bandwidth
SUBSTITUTION ANTENNA TYPE:	Tunable dipole (30 MHz – 1000 MHz)
	Double ridged guide (above 1000 MHz)

			Double ridged guide (above 1000 MHz)							
Frequency MHz	Field strength, dB(μV/m)	RBW, kHz	Antenna polarization	RF generator output, dBm	Ant gain dBd	able loss dB	ERP, dBm	Limit, dBm	Margin, dB*	Verdict
Carrier freque	Carrier frequency 1433.5 MHz									
2866.575	78.07	1000	Н	-30.67	7.30	1.22	-24.59	-13	-9.47	Pass
4300.125	68.13	1000	Н	-36.72	8.06	1.53	-30.22	-13	-17.22	Pass
5733.925	57.78	1000	V	-47.48	8.46	1.78	-41.83	-13	-27.83	Pass
7168.000	72.27	1000	V	-36.46	8.60	1.95	-29.84	-13	-16.84	Pass

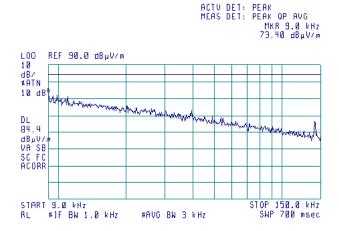
*- Margin = Spurious emission – specification limit.

NOTE: Radiated spurious emissions were tested with EUT configured to transmit at 1.75 MHz EBW and 64QAM modulation assuming that this configuration produces maximum RF power density.

Reference numbers of test equipment used

HL 0446	HL 0521	HL 0604	HL 1984	HL 2432	HL 2780	HL 2387	HL 2883
HL 2785	HL 3122	HL 3123	HL 3234	HL 3342	HL 3344	HL 3532	HL 3534

Full description is given in Appendix A.



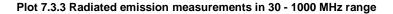
Test specification:	Section 27.53(j), Radiated spurious emissions				
Test procedure:	47 CFR, Sections 2.1053; TIA/EIA-603-C, Section 2.2.12				
Test mode:	Compliance	Verdict: PASS			
Date & Time:	2/16/2009 2:58:56 PM	verdict.	PA33		
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:		· • •	· · · · · ·		

Plot 7.3.1 Radiated emission measurements in 9 - 150 kHz range

TEST SITE: ANTENNA POLARIZATION: TEST DISTANCE: Semi anechoic chamber Vertical and Horizontal 3 m

👩 14:04:16 FEB 11, 2009

TEST SITE: ANTENNA POLARIZATION: TEST DISTANCE: Semi anechoic chamber Vertical and Horizontal 3 m

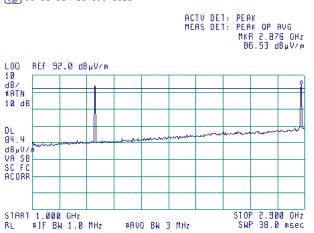

(7) 14:06:21 FEB 11, 2009

ACTV DET: PEAK Meas det: Peak op avg Mkr 170 kHz 56.77 dBµV/m

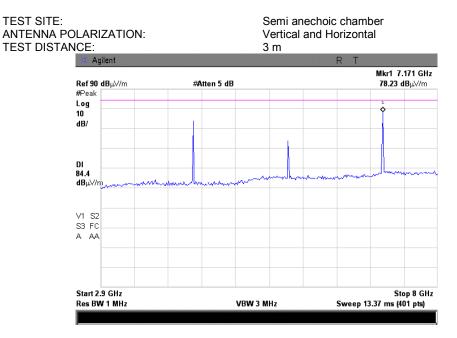


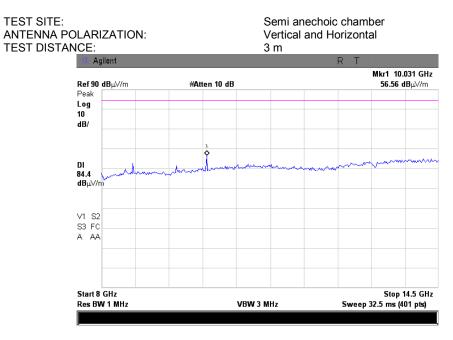
Test specification:	Section 27.53(j), Radiated spurious emissions					
Test procedure:	47 CFR, Sections 2.1053; TI	47 CFR, Sections 2.1053; TIA/EIA-603-C, Section 2.2.12				
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	2/16/2009 2:58:56 PM	verdict.	PASS			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:						

TEST SITE: ANTENNA POLARIZATION: TEST DISTANCE: Semi anechoic chamber Vertical and Horizontal 3 m


(7) 13:53:31 FEB 11, 2009

TEST SITE: ANTENNA POLARIZATION: TEST DISTANCE: Semi anechoic chamber Vertical and Horizontal 3 m

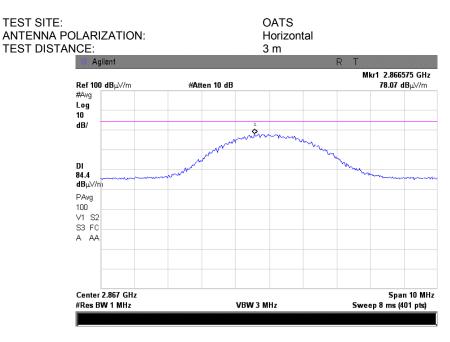

(7) 11:06:08 FEB 11, 2009



Test specification:	Section 27.53(j), Radiated spurious emissions					
Test procedure:	47 CFR, Sections 2.1053; TI	47 CFR, Sections 2.1053; TIA/EIA-603-C, Section 2.2.12				
Test mode:	Compliance	Verdict: PASS				
Date & Time:	2/16/2009 2:58:56 PM	verdict.	PA33			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:						

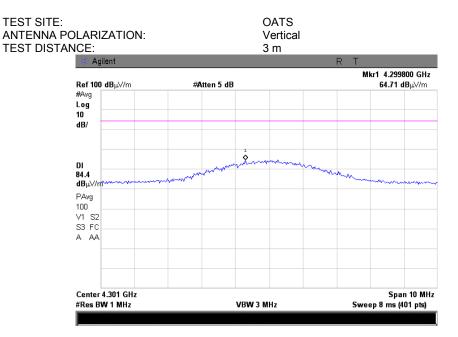
Plot 7.3.5 Radiated emission measurements in 2900 - 8000 MHz range

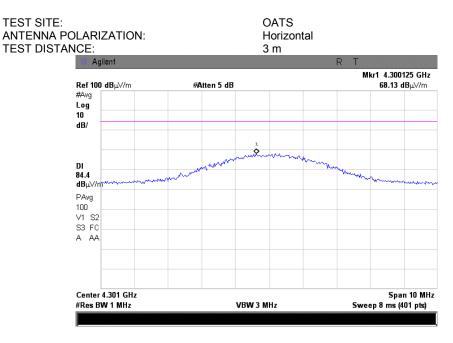
Plot 7.3.6 Radiated emission measurements in 8000 - 14500 MHz range



Test specification:	Section 27.53(j), Radiated spurious emissions				
Test procedure:	47 CFR, Sections 2.1053; TIA/EIA-603-C, Section 2.2.12				
Test mode:	Compliance	Verdict: PASS			
Date & Time:	2/16/2009 2:58:56 PM	Verdict: PASS			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:					

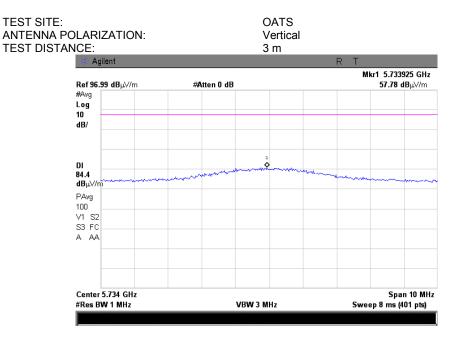
Plot 7.3.7 Radiated emission measurements at the 2nd harmonic

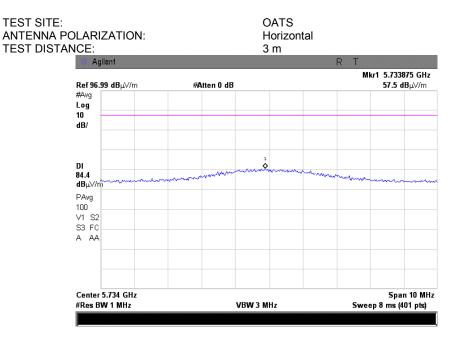

Plot 7.3.8 Radiated emission measurements at the 2nd harmonic



Test specification:	Section 27.53(j), Radiated spurious emissions				
Test procedure:	47 CFR, Sections 2.1053; TIA/EIA-603-C, Section 2.2.12				
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	2/16/2009 2:58:56 PM	Verdict: PASS			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:					

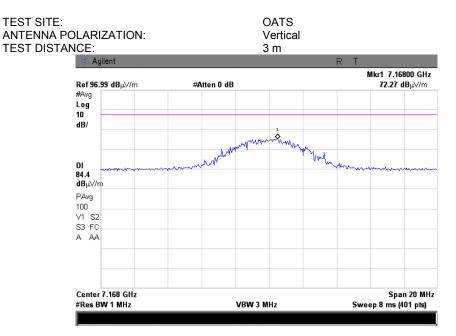
Plot 7.3.9 Radiated emission measurements at the 3rd harmonic

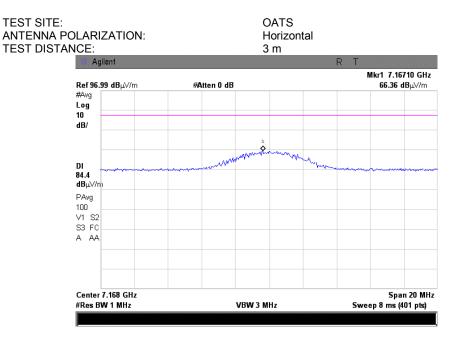

Plot 7.3.10 Radiated emission measurements at the 3rd harmonic



Test specification:	Section 27.53(j), Radiated spurious emissions				
Test procedure:	47 CFR, Sections 2.1053; TIA/EIA-603-C, Section 2.2.12				
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	2/16/2009 2:58:56 PM	Verdict: PASS			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:			· · · · ·		

Plot 7.3.11 Radiated emission measurements at the 4th harmonic


Plot 7.3.12 Radiated emission measurements at the 4th harmonic



Test specification:	Section 27.53(j), Radiated spurious emissions					
Test procedure:	47 CFR, Sections 2.1053; TI	A/EIA-603-C, Section 2.2.12				
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	2/16/2009 2:58:56 PM	Verdict: PASS				
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:						

Plot 7.3.13 Radiated emission measurements at the 5th harmonic

Plot 7.3.14 Radiated emission measurements at the 5th harmonic

Test specification:	Section 27.53(j), Conducted spurious emissions					
Test procedure:	47 CFR, Sections 2.1051; TIA	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	2/16/2009 1:43:30 PM	Verdict. PASS				
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:						

7.4 Spurious emissions at RF antenna connector test

7.4.1 General

This test was performed to measure spurious emissions at RF antenna connector. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Spurious emission limits

Frequency, MHz	Attenuation below carrier, dBc	ERP of spurious, dBm
0.009 – 10th harmonic*	43+10logP**	-13.0

* - spurious emission limits do not apply to the in band emission within ± 250 % of the authorized bandwidth from the carrier; investigated in course of emission mask testing

** - P is transmitter output power in Watts

7.4.2 Test procedure

- 7.4.2.1 The EUT was set up as shown in Figure 7.4.1, energized and its proper operation was checked.
- 7.4.2.2 The EUT was adjusted to produce maximum available for end user RF output power.
- **7.4.2.3** The spurious emission was measured with spectrum analyzer as provided in Table 7.4.2, Table 7.4.3 and the associated plots.

Figure 7.4.1 Spurious emission test setup

Test specification:	Section 27.53(j), Conducted spurious emissions					
Test procedure:	47 CFR, Sections 2.1051; TI	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	2/16/2009 1:43:30 PM	Verdict. PA35				
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:		· · · ·				

Table 7.4.2 Spurious emission test results

ASSIGNED FREQUENCY RANGE: INVESTIGATED FREQUENCY RANGE: DETECTOR USED: VIDEO BANDWIDTH: MODULATING SIGNAL: DUTY CYCLE: TRANSMITTER OUTPUT POWER SETTINGS: TRANSMITTER OUTPUT POWER:

1432.0 – 1435.0 MHz 0.009 - 14500 MHz Power Average ≥ Resolution bandwidth PRBS 100% Maximum 27.28 dBm @ 1.75 MHz EBW 26.50 dBm @ 2.5 MHz EBW

Frequency, MHz	SA reading, dBm	Attenuator, dB	Cable loss, dB	RBW, kHz	Spurious emission**, dBm	Limit, dBm	Margin, dB*	Verdict
BPSK 1.75 M	Hz EBW							
1430.000	-35.76	Included	Included	300	-30.53	-13.0	-17.53	Pass
1437.000	-36.82	Included	Included	300	-31.59	-13.0	-18.59	Pass
BPSK 2.5 MHz EBW								
1429.875	-32.27	Included	Included	300	-32.27	-13.0	-14.04	Pass
1437.080	-34.13	Included	Included	300	-34.13	-13.0	-15.90	Pass
64QAM 1.75	MHz EBW							
1429.950	-35.54	Included	Included	300	-30.31	-13.0	-17.31	Pass
1437.040	-37.22	Included	Included	300	-31.99	-13.0	-18.99	Pass
64QAM 2.5 M	IHz EBW							
1429.975	-32.27	Included	Included	300	-27.04	-13.0	-14.04	Pass
1437.000	-34.03	Included	Included	300	-28.80	-13.0	-15.80	Pass
Mania O		· · · · · · · · · · · · · · · · · · ·	C 12 20					

*- Margin = Spurious emission – specification limit. ** - Spurious emission, dBm = SA reading, dBm + Integration factor, dB*** *** - Integration factor, dB = 10* Log (1000 kHz/300 kHz) = 5.23 dB

Test specification:	Section 27.53(j), Conducted spurious emissions					
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13					
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	2/16/2009 1:43:30 PM	Verdici. PASS				
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:						

Table 7.4.3 Spurious emission test results in 1430.0 – 1437.0 MHz range

ASSIGNED FRE INVESTIGATED RBW: DETECTOR USE VIDEO BANDWI MODULATING S DUTY CYCLE: TRANSMITTER	FREQUENCY ED: DTH: JGNAL:	RANGE:	SS:	0.009 – 14 1% of the Power Av	erage ion bandwidth			
Frequency, MHz	SA reading, dBc	Attenuator, dB	Cable loss, dB	RBW, kHz	Attenuation below carrier, dBc	Limit, dBc***	Margin, dB***	Verdict
BPSK 1.75 MHz	EBW 25.16 dBm	total power*						
1430-1431	51.66	Included	Included	30	51.66	38.16	13.50	Pass
1431-1432	43.60	Included	Included	30	43.60	38.16	5.44	Pass
1435-1436	43.99	Included	Included	30	43.99	38.16	5.83	Pass
1436-1437	-53.42	Included	Included	30	53.42	38.16	15.26	Pass
BPSK 2.5 MHz E	BW 25.00 dBm ⁻	total power*						
1430-1431	46.78	Included	Included	30	46.78	38.0	8.78	Pass
1431-1432	39.44	Included	Included	30	39.44	38.0	1.44	Pass
1435-1436	39.72	Included	Included	30	39.72	38.0	1.72	Pass
1436-1437	47.80	Included	Included	30	47.80	38.0	9.80	Pass
64QAM 1.75 MHz	z EBW 25.27 dB	m total power'	ł					
1430-1431	51.90	Included	Included	30	51.90	38.27	13.63	Pass
1431-1432	44.10	Included	Included	30	44.10	38.27	5.83	Pass
1435-1436	43.79	Included	Included	30	43.79	38.27	5.52	Pass
1436-1437	52.73	Included	Included	30	52.73	38.27	14.46	Pass
64QAM 2.5 MHz	EBW 24.92 dBn	n total power*						
1430-1431	46.78	Included	Included	30	46.78	37.92	8.86	Pass
1431-1432	39.14	Included	Included	30	39.14	37.92	1.22	Pass
1435-1436	39.76	Included	Included	30	39.76	37.92	1.84	Pass
1436-1437	47.11	Included	Included	30	47.11	37.92	9.19	Pass

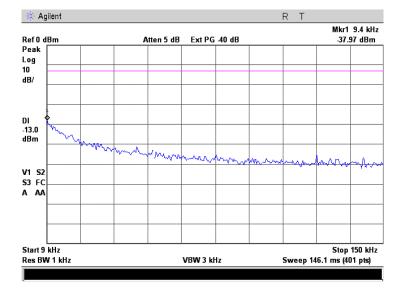
* - Total power – measured with the same settings as spurious emissions

** -The limit was calculated as 43 dB+10 log(total power*)

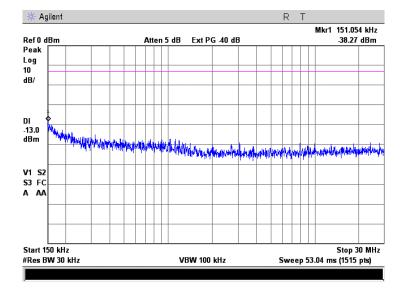
***- Margin = Spurious emission – specification limit.

NOTE: Conducted spurious emissions were tested with EUT configured to transmit at 1.75 MHz EBW and 64QAM modulation assuming that this configuration produces the maximum RF power density. However in the 1420 – 1445 MHz range both 1.75 MHz and 2.5 MHz EBW configurations under maximum and minimum bit rates were tested.

Reference numbers of test equipment used

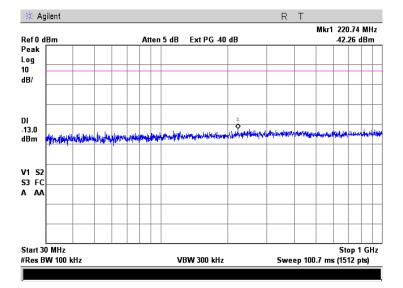

HL 2867 HL 2909 HL 3439 HL 3442	

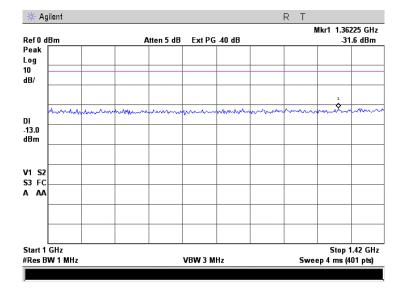
Full description is given in Appendix A.



Test specification:	Section 27.53(j), Conducted spurious emissions				
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	2/16/2009 1:43:30 PM	Verdict: PASS			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:		•	-		

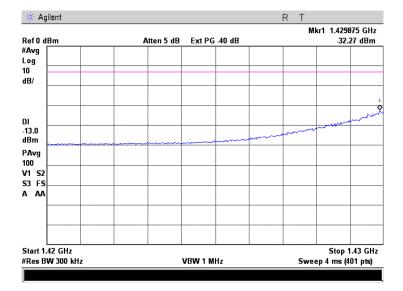
Plot 7.4.1 Spurious emission measurements in 9 - 150 kHz range

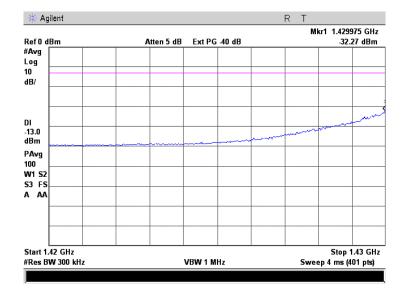

Plot 7.4.2 Spurious emission measurements in 0.15 - 30.0 MHz range



Test specification:	Section 27.53(j), Conducted spurious emissions		
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13		
Test mode:	Compliance	Verdict:	PASS
Date & Time:	2/16/2009 1:43:30 PM		
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC
Remarks:			-

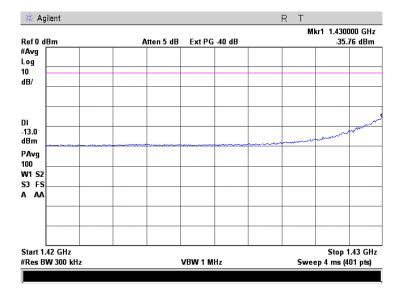
Plot 7.4.3 Spurious emission measurements in 30.0 - 1000 MHz range


Plot 7.4.4 Spurious emission measurements in 1000 - 1420.0 MHz range

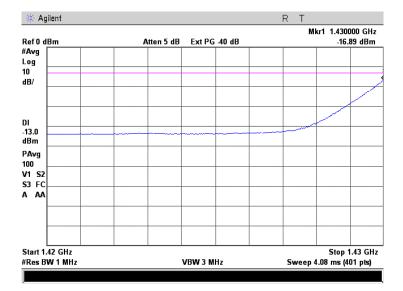


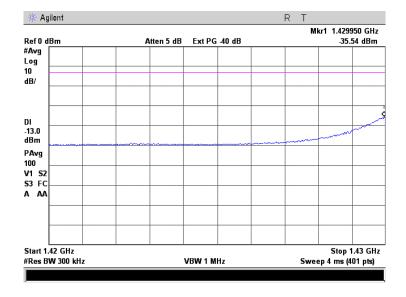
Test specification:	Section 27.53(j), Conducted spurious emissions		
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13		
Test mode:	Compliance	Verdict:	PASS
Date & Time:	2/16/2009 1:43:30 PM		
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC
Remarks:		•	-

Plot 7.4.5 Spurious emission measurements in 1420 - 1430 MHz range, 2.5 MHz EBW, BPSK


Plot 7.4.6 Spurious emission measurements in 1420 - 1430 MHz range, 2.5 MHz EBW, 64QAM

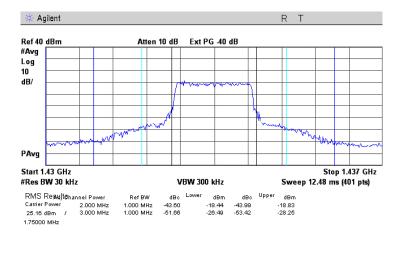
Test specification:	Section 27.53(j), Conducted spurious emissions		
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13		
Test mode:	Compliance	Verdict:	PASS
Date & Time:	2/16/2009 1:43:30 PM		
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC
Remarks:		•	-

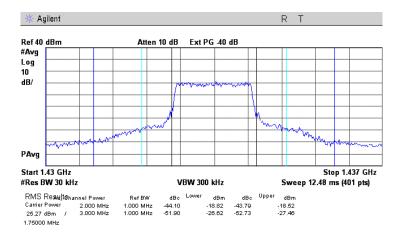

Plot 7.4.7 Spurious emission measurements in 1420 - 1430 MHz range, 1.75 MHz EBW, BPSK



Test specification:	Section 27.53(j), Conducted spurious emissions		
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13		
Test mode:	Compliance	Verdict:	PASS
Date & Time:	2/16/2009 1:43:30 PM		
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC
Remarks:			· · · · ·

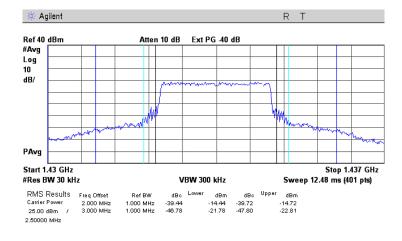
Plot 7.4.8 Spurious emission measurements in 1420 - 1430 MHz range, 1.75 MHz EBW, 64QAM, RBW=1000 kHz

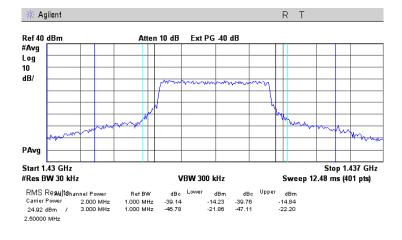

Plot 7.4.9 Spurious emission measurements in 1420 - 1430 MHz range, 1.75 MHz EBW, 64QAM, RBW=300 kHz



Test specification:	Section 27.53(j), Conducted spurious emissions		
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13		
Test mode:	Compliance	Verdict: PASS	DASS
Date & Time:	2/16/2009 1:43:30 PM		PA33
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC
Remarks:			

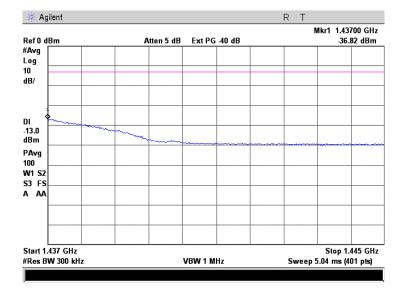
Plot 7.4.10 Band Edge Spurious emission measurements in 1430 – 1431, 1431 – 1432, 1435 – 1436, 1436 – 1437 MHz range, 1.75 MHz EBW, BPSK


Plot 7.4.11 Band edge spurious emission measurements in 1430 – 1431, 1431 – 1432, 1435 – 1436, 1436 – 1437 MHz range, 1.75 MHz EBW, 64QAM

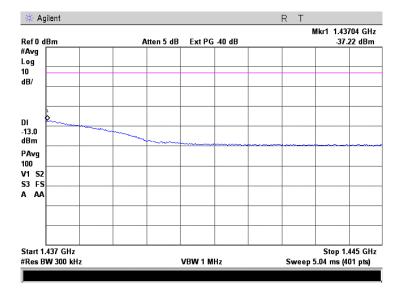


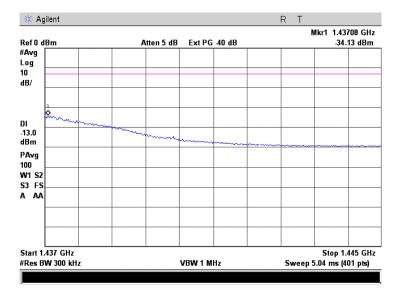
Test specification:	Section 27.53(j), Conducted spurious emissions		
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13		
Test mode:	Compliance	Verdict:	PASS
Date & Time:	2/16/2009 1:43:30 PM		
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC
Remarks:		· · ·	

Plot 7.4.12 Band Edge Spurious emission measurements in 1430 – 1431, 1431 – 1432, 1435 – 1436, 1436 – 1437 MHz range, 2.5 MHz EBW, BPSK


Plot 7.4.13 Band Edge Spurious emission measurements in 1430 – 1431, 1431 – 1432, 1435 – 1436, 1436 – 1437 MHz range, 2.5 MHz EBW, 64QAM

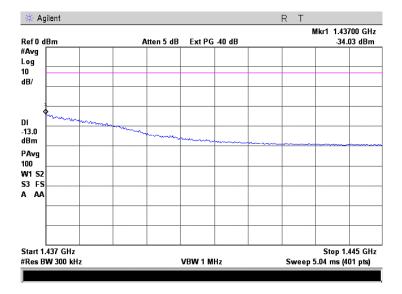
Test specification:	Section 27.53(j), Conducted spurious emissions						
Test procedure:	47 CFR, Sections 2.1051; TI	A/EIA-603-C, Section 2.2.13					
Test mode:	Compliance	Verdict:	PASS				
Date & Time:	2/16/2009 1:43:30 PM	verdict.	PASS				
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC				
Remarks:		•	-				

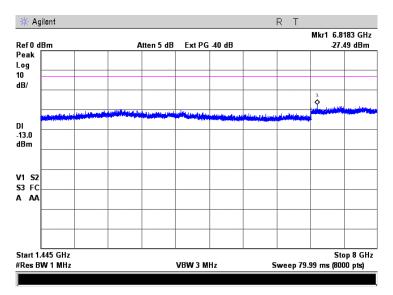

Plot 7.4.14 Spurious emission measurements in 1437 - 1445 MHz range, 1.75 MHz EBW, BPSK, RBW=300 kHz



Test specification:	Section 27.53(j), Conducted spurious emissions						
Test procedure:	47 CFR, Sections 2.1051; TI	A/EIA-603-C, Section 2.2.13					
Test mode:	Compliance	Verdict:	PASS				
Date & Time:	2/16/2009 1:43:30 PM	verdict.	PASS				
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC				
Remarks:			· · · · ·				

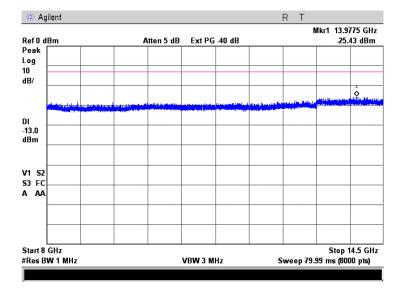
Plot 7.4.15 Spurious emission measurements in 1437 - 1445 MHz range, 1.75 MHz EBW, 64QAM


Plot 7.4.16 Spurious emission measurements in 1437 - 1445 MHz range, 2.5 MHz EBW, BPSK



Test specification:	Section 27.53(j), Conducted spurious emissions						
Test procedure:	47 CFR, Sections 2.1051; TI	A/EIA-603-C, Section 2.2.13					
Test mode:	Compliance	Verdict:	PASS				
Date & Time:	2/16/2009 1:43:30 PM	verdict.	PA33				
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC				
Remarks:		•	-				

Plot 7.4.17 Spurious emission measurements in 1437 - 1445 MHz range, 2.5 MHz EBW, 64QAM


Plot 7.4.18 Spurious emission measurements in 1445 - 8000 MHz range

Test specification:	Section 27.53(j), Conducted spurious emissions						
Test procedure:	47 CFR, Sections 2.1051; TIA	VEIA-603-C, Section 2.2.13					
Test mode:	Compliance	Verdict:	PASS				
Date & Time:	2/16/2009 1:43:30 PM	verdict.	PA33				
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC				
Remarks:			· · · · ·				

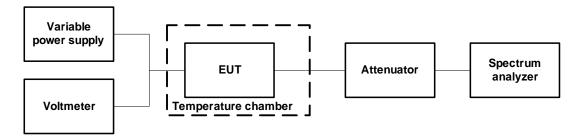
Plot 7.4.19 Spurious emission measurements in 8000 - 14500 MHz range

Test specification:	Section 27.54, Frequency	v stability	
Test procedure:	47 CFR, Section 2.1055; TIA/	EIA-603-C Section 2.2.2	
Test mode:	Compliance	Verdict:	PASS
Date & Time:	2/16/2009 1:44:17 PM	verdict.	FA33
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC
Remarks:			

7.5 Frequency stability test

7.5.1 General

This test was performed to measure frequency stability of transmitter RF carrier. Specification test limits are given in Table 7.5.1.


Table 7.5.1 Frequency stability limits

Assigned frequency, MHz	Maximum allowed frequency displacement Hz
1432.0 – 1435.0 MHz	The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation

7.5.2 Test procedure

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- **7.5.2.2** The EUT power was turned off. Temperature within test chamber was set to +30°C and a period of time sufficient to stabilize all of the oscillator circuit components was allowed.
- **7.5.2.3** The EUT was powered on and carrier frequency was measured at start up moment and then every minute until frequency had been stabilized or 10 minutes elapsed whichever reached the last. The EUT was powered off.
- **7.5.2.4** The above procedure was repeated at 0°C and at the lowest test temperature.
- **7.5.2.5** The EUT was powered on and carrier frequency was measured at start up moment and at the end of stabilization period at the rest of test temperatures and voltages. The EUT was powered off.
- 7.5.2.6 Frequency displacement was calculated and compared with the limit as provided in Table 7.5.2 and Table 7.5.3.

Figure 7.5.1 Frequency stability test setup

Test specification:	Section 27.54, Frequency	/ stability	
Test procedure:	47 CFR, Section 2.1055; TIA/	EIA-603-C Section 2.2.2	
Test mode:	Compliance	Verdict:	PASS
Date & Time:	2/16/2009 1:44:17 PM	verdict.	PA33
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC
Remarks:			· · · · ·

Table 7.5.2 Frequency stability test results

NOMINAL TEMPERA POWER D SPECTRU RESOLUT	OPERATING FREQUENCY: NOMINAL POWER VOLTAGE: TEMPERATURE STABILIZATION PERIOD: POWER DURING TEMPERATURE TRANSITION: SPECTRUM ANALYZER MODE: RESOLUTION BANDWIDTH: VIDEO BANDWIDTH:				12 20 0 P 10	432.0 – 1435 20 VAC 0 min ff eak Hold 0 Hz 0 Hz	.0 MHz			
т, ∘с ∨	/oltage, V	Frequency, MHz							lax frequ	iency drift, H
	•	Start up	1 st min	2 nd min	3 rd min	4 th min	5 th min	10 th min	⁰ositiv∈	Negative
Carrier free	auencv 1	433.50 MHz								

Carrier	frequency '	1433.50 MHz								
-30	nominal	1433.499171	1433.499126	1433.499098	1433.499004	1433.498987	1433.498972	1433.498963	1114.00	0.00
-20	nominal	1433.499030	NA	NA	NA	NA	NA	1433.499012	973.00	0.00
-10	nominal	1433.499155	NA	NA	NA	NA	NA	1433.498905	1098.00	0.00
0	nominal	1433.498087	1433.498062	1433.498052	1433.498043	1433.498051	1433.498052	1433.498063	30.00	-14.00
10	nominal	1433.498025	NA	NA	NA	NA	NA	1433.497915	0.00	-142.00
20	15%	1433.498053	NA	NA	NA	NA	NA	1433.498069	12.00	-4.00
20	nominal	1433.498000	NA	NA	NA	NA	NA	1433.498057*	0.00	-57.00
20	-15%	1433.498066	NA	NA	NA	NA	NA	1433.498062	9.00	0.00
30	nominal	1433.498600	1433.498067	1433.498071	1433.498070	1433.498066	1433.498063	1433.498063	543.00	0.00
40	nominal	1433.498000	NA	NA	NA	NA	NA	1433.498133	76.00	-57.00
50	nominal	1433.498012	1433.498027	1433.498058	1433.498112	1433.498127	1433.498131	1433.498215	158.00	-45.00

* - Reference frequency

Table 7.5.3 Transmission occupied bandwidth with frequency drift test results

Lower measured* band edge, MHz	Upper measured* band edge, MHz	Lower calculated** band edge, MHz	Upper calculated** band edge, MHz	Lower specified band edge, MHz	Upper specified band edge, MHz	Lower Margin***, MHz	Upper Margin***, MHz	Verdict		
Carrier frequency 1433.50 MHz, 2.5 MHz EBW										
BPSK										
1432.31	1434.71	1432.31	1434.711	1432	1435	-0.309858	-0.288886	Pass		
64QAM										
1432.26	1434.73	1432.26	1434.731	1432	1435	-0.259858	-0.268886	Pass		

* - Measured under normal test conditions at 26 dBc points

** - Measured band edge with proper drift addition

*** - Margin = Calculated band edge - specified band edge

Reference numbers of test equipment used

HL 1194 HL 2867 HL 2909 HL 3210	-						
	ſ	HL 1194	HL 2867	HL 2909	HL 3210		

Full description is given in Appendix A.

Test specification:	Section 15.107, Conduct	ed emission at AC power po	ort
Test procedure:	ANSI C63.4, Sections 11.5 ar	nd 12.1.3	
Test mode:	Compliance	Verdict:	PASS
Date & Time:	2/16/2009 1:50:29 PM	verdict.	FA33
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC
Remarks:			

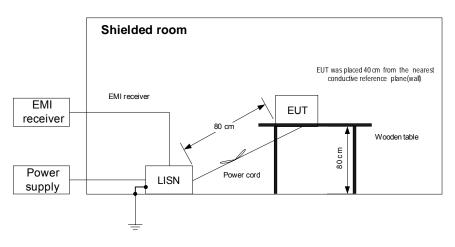
8 Emissions tests according to 47CFR part 15 subpart B requirements

8.1 Conducted emissions

8.1.1 General

This test was performed to measure common mode conducted emissions at the mains power port. Specification test limits are given in Table 8.1.1.

Frequency,	άΒ(μν)			lss A limit, dB(μV)	
MHz	QP AVRG		QP	AVRG	
0.15 - 0.5	66 - 56*	56 - 46*	79	66	
0.5 - 5.0	56	46	73	60	
5.0 - 30	60	50	73	60	


Table 8.1.1 Limits for conducted emissions

* The limit decreases linearly with the logarithm of frequency.

8.1.2 Test procedure

- 8.1.2.1 The EUT was set up as shown in Figure 8.1.1, energized and the performance check was conducted.
- **8.1.2.2** The measurements were performed at power terminals with the LISN, connected to a spectrum analyzer in the frequency range referred to in Table 8.1.2. Unused coaxial connector of the LISN was terminated with 50 Ohm. Quasi-peak and average detectors were used throughout the testing.
- 8.1.2.3 The position of the device cables was varied to determine maximum emission level.
- 8.1.2.4 The worst test results (the lowest margins) were recorded in Table 8.1.2 and shown in the associated plots.

Figure 8.1.1 Setup for conducted emission measurements, table-top equipment

Test specification:	Section 15.107, Conduct	Section 15.107, Conducted emission at AC power port				
Test procedure:	ANSI C63.4, Sections 11.5 a	ANSI C63.4, Sections 11.5 and 12.1.3				
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	2/16/2009 1:50:29 PM	verdict.	PA33			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:						

Table 8.1.2 Conducted emission test results

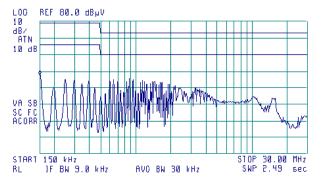
EUT SET UP: TEST SITE: DETECTORS L FREQUENCY F	AIT: Class A IT OPERATING MODE: Receive / Stand-by IT SET UP: TABLE-TOP								
Frequency	Peak		uasi-peak			Average			
Frequency, MHz	emission, dB(μV)	Measured emission, dB(µV)	Limit, dB(µV)	Margin, dB*	Measured emission, dB(µV)	Limit, dB(μV)	Margin, dB*	Line ID	Verdict
0.150710	47.86	46.81	79.00	-32.19	45.66	66.00	-20.34		
0.399985	43.69	43.27	79.00	-35.73	43.17	66.00	-22.83		
0.601235	43.75	43.3	73.00	-29.70	43.00	60.00	-17.00		
0.650930	44.02	43.61	73.00	-29.39	43.52	60.00	-16.48	L1	Pass
0.701270	43.87	43.23	73.00	-29.77	42.58	60.00	-17.42		
0.901700	44.55	44.22	73.00	-28.78	44.17	60.00	-15.83		
1.151740	43.81	43.38	73.00	-29.62	43.28	60.00	-16.72		
0.150000	48.27	47.44	79.00	-31.56	47.00	66.00	-19.00		
0.250000	47.21	46.89	79.00	-32.11	46.87	66.00	-19.13		
0.400225	46.95	46.62	79.00	-32.38	46.57	66.00	-19.43		
0.600425	47.14	46.74	73.00	-26.26	46.52	60.00	-13.48	L2	Pass
0.650150	47.06	46.66	73.00	-26.34	46.57	60.00	-13.43	LZ	1 455
0.900950	47.22	46.93	73.00	-26.07	46.86	60.00	-13.14		
0.901075	47.11	46.80	73.00	-26.20	46.74	60.00	-13.26		
1.151500	46.37	46.02	73.00	-26.98	45.95	60.00	-14.05		

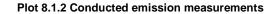
*- Margin = Measured emission - specification limit.

Reference numbers of test equipment used

HL 0447	HL 0580	HL 1430	HL 1513	HL 2888	HL 3170	HL 3612	

Full description is given in Appendix A.


Test specification:	Section 15.107, Conducted emission at AC power port					
Test procedure:	ANSI C63.4, Sections 11.5 a	ANSI C63.4, Sections 11.5 and 12.1.3				
Test mode:	Compliance	Verdict: PASS				
Date & Time:	2/16/2009 1:50:29 PM	verdict.	FA33			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:						


Plot 8.1.1 Conducted emission measurements

LINE:	L2
LIMIT:	Class A
EUT OPERATING MODE:	Receive / Stand-by
LIMIT:	QUASI-PEAK, AVERAGE
DETECTOR:	PEAK

ACTV DET: PEAK Meas det: peak op avg Mkr 150 kHz 40.15 dbyv LOC 10 dB/ ATN 10 dB REF 80.0 dBµV MW MM VA SB SC FC ACORR STOP 30.00 MHz SWP 2.49 sec START 150 kHz RL JF BW 9.0 kHz AVO BW 30 kHz

Test specification:	Section 15.109, Radiated emission					
Test procedure:	ANSI C63.4, Sections 11.6 an	ANSI C63.4, Sections 11.6 and 12.1.4				
Test mode:	Compliance	Verdict: PASS				
Date & Time:	2/15/2009 10:27:01 AM	verdict.	FA33			
Temperature: 23°C	Air Pressure: 1022 hPa	Relative Humidity: 45%	Power Supply: 120 V AC			
Remarks:						

8.2 Radiated emission measurements

8.2.1 General

This test was performed to measure radiated emissions from the EUT enclosure. Specification test limits are given in Table 8.2.1.

Frequency,		B limit, IV/m)	Class A limit, dB(μV/m)		
MHz	10 m distance 3 m distance		10 m distance	3 m distance	
30 - 88	29.5*	40.0	39.0	49.5*	
88 - 216	33.0*	43.5	43.5	54.0*	
216 - 960	35.5*	46.0	46.4	56.9*	
Above 960	43.5*	54.0	49.5	60.0*	

Table 8.2.1 Radiated emission test limits

* The limit for test distance other than specified was calculated using the inverse linear distance extrapolation factor as follows: $\lim_{S_2} = \lim_{S_1} + 20 \log (S_1/S_2)$,

where S_1 and S_2 – standard defined and test distance respectively in meters.

8.2.2 Test procedure for measurements in semi-anechoic chamber

- **8.2.2.1** The EUT was set up as shown in Figure 8.2.1 and associated photograph/s, energized and the performance check was conducted.
- **8.2.2.2** The specified frequency range was investigated with biconilog antenna connected to EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal and the EUT cables position was varied.
- 8.2.2.3 The worst test results (the lowest margins) were recorded in Table 8.2.2 and shown in the associated plots.

8.2.3 Test procedure for measurements at OATS

- **8.2.3.1** The EUT was set up as shown in Figure 8.2.1 and associated photograph/s, energized and the performance check was conducted.
- **8.2.3.2** Preliminary measurements were performed in the anechoic chamber at 3 m test distance. The specified frequency range was investigated with biconical and log periodic antennas connected to EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed, its polarization was switched from vertical to horizontal and the EUT cables position was varied.
- 8.2.3.3 The EUT was set up as shown in Figure 8.2.2, energized and the performance check was conducted.
- **8.2.3.4** Final measurements were performed at the open area test site at 10 m test distance. The EUT wires and cables were arranged to produce maximum emission as it was found during preliminary measurements. The frequencies yield the worst test results (the lowest margins) during preliminary testing were investigated with biconilog antenna connected to EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m and its polarization was changed from vertical to horizontal. At frequencies where high ambient noise was encountered, the final measurements were taken in the anechoic chamber at 3 m distance.
- 8.2.3.5 The worst test results (the lowest margins) were recorded in Table 8.2.2 and shown in the associated plots.

Test specification:	Section 15.109, Radiated emission					
Test procedure:	ANSI C63.4, Sections 11.6 a	ANSI C63.4, Sections 11.6 and 12.1.4				
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	2/15/2009 10:27:01 AM	verdict.	PA33			
Temperature: 23°C	Air Pressure: 1022 hPa	Relative Humidity: 45%	Power Supply: 120 V AC			
Remarks:						

Figure 8.2.1 Setup for radiated emission measurements in anechoic chamber, table-top equipment

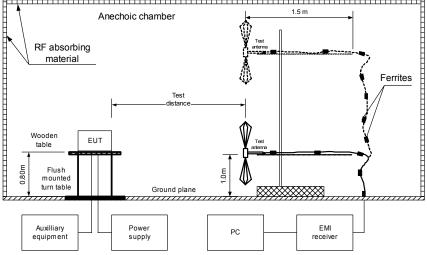
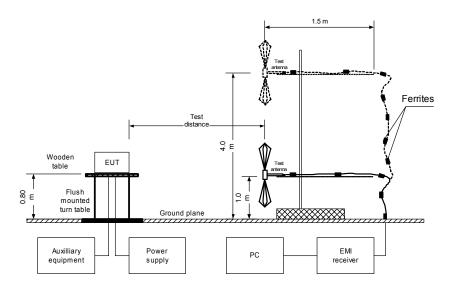



Figure 8.2.2 Setup for radiated emission measurements at OATS, table-top equipment

Test specification:	Section 15.109, Radiated	Section 15.109, Radiated emission				
Test procedure:	ANSI C63.4, Sections 11.6 ar	ANSI C63.4, Sections 11.6 and 12.1.4				
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	2/15/2009 10:27:01 AM	verdict.	PA33			
Temperature: 23°C	Air Pressure: 1022 hPa	Relative Humidity: 45%	Power Supply: 120 V AC			
Remarks:						

Table 8.2.2 Radiated emission test results

EUT SET UP: LIMIT: EUT OPERATI TEST SITE: TEST DISTANO DETECTORS U FREQUENCY I RESOLUTION	CE: JSED: RANGE:	OATS 3 m PEAK / QUASI-PEAK 30 MHz – 1000 MHz DTH: 120 kHz						
Frequency, MHz	Peak emission, dB(μV/m)	Measured emission, dB(μV/m)	Quasi-peak Limit, dB(µV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees	Verdict
199.998800	37.28	35.17	54.00	-18.83	V	1.4	210	
299.998500	48.09	46.65	57.00	-10.35	Н	1.0	210	
399.994000	40.31	37.78	57.00	-19.22	V	1.3	100	Pass
499.997600	44.53	42.42	57.00	-14.58	V	1.2	010	
599.997600	42.71	40.26	57.00	-16.74	V	1.1	000	

TEST SITE:	
TEST DISTANCE:	
DETECTORS USED:	
FREQUENCY RANGE:	
RESOLUTION BANDWIDTH:	

OATS 3 m PEAK / AVERAGE 1000 MHz – 8000 MHz 1000 kHz

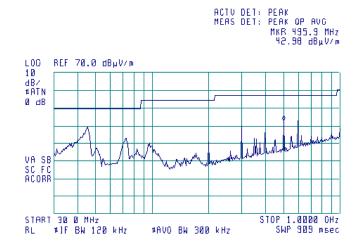
	Peak		Average	-		Antenna	Turn-table	
Frequency, MHz	emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(µV/m)	Margin, dB*	Antenna polarization	height, m	position**, degrees	Verdict
5512.354	51.27	44.38	60.0	-15.62	V	1.2	010	Pass

*- Margin = Measured emission - specification limit. **- EUT front panel refer to 0 degrees position of turntable.

Reference numbers of test equipment used

HL 0415	HL 0521	HL 0569	HL 0604	HL 0812	HL 1430	HL 1984	HL 2780
HL 3121	HL 3123	HL 3532	HL 3615				

Full description is given in Appendix A.

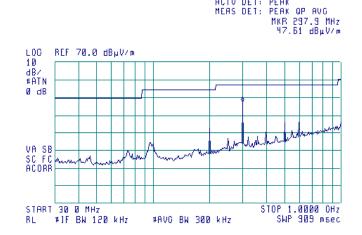


Test specification:	Section 15.109, Radiated	emission	
Test procedure:	ANSI C63.4, Sections 11.6 ar	nd 12.1.4	
Test mode:	Compliance	Verdict:	PASS
Date & Time:	2/15/2009 10:27:01 AM	verdict.	PASS
Temperature: 23°C	Air Pressure: 1022 hPa	Relative Humidity: 45%	Power Supply: 120 V AC
Remarks:			· · · · ·

Plot 8.2.1 Radiated emission measurements in 30 - 1000 MHz range, vertical antenna polarization

TEST SITE:	Semi anechoic chamber
LIMIT:	Class A
TEST DISTANCE:	3 m
EUT OPERATING MODE:	Receive / Stand-by

() 13:26:55 FEB 11, 2009

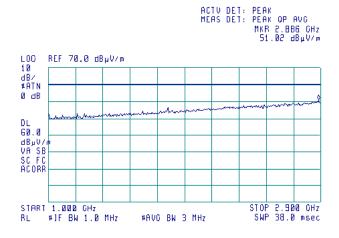


Plot 8.2.2 Radiated emission measurements in 30 - 1000 MHz range, horizontal antenna polarization

ACTV DET: PEAK

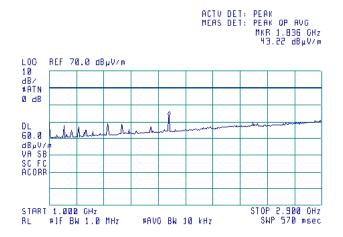
TEST SITE: LIMIT:	Semi anechoic chamber Class A
TEST DISTANCE:	3 m
EUT OPERATING MODE:	Receive / Stand-by

(%) 13:29:51 FEB 11, 2009



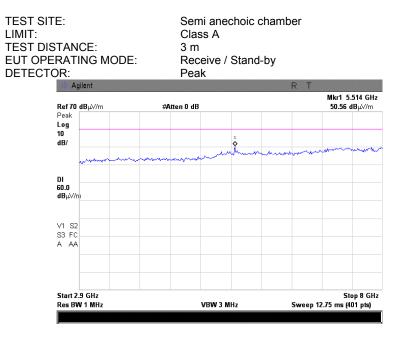
Test specification:	Section 15.109, Radiated	emission	
Test procedure:	ANSI C63.4, Sections 11.6 ar	nd 12.1.4	
Test mode:	Compliance	Verdict:	PASS
Date & Time:	2/15/2009 10:27:01 AM	verdict.	PA33
Temperature: 23°C	Air Pressure: 1022 hPa	Relative Humidity: 45%	Power Supply: 120 V AC
Remarks:			

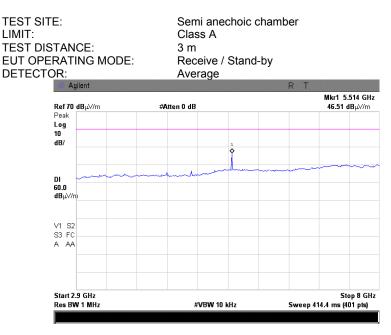
Plot 8.2.3 Radiated emission measurements in 1000 MHz – 2900 MHz, vertical antenna polarization


(5) 12:47:23 FEB 11, 2009

Plot 8.2.4 Radiated emission measurements in 1000 MHz – 2900 MHz, vertical antenna polarization

TEST SITE:	Semi anechoic chamber
LIMIT:	Class A
TEST DISTANCE:	3 m
EUT OPERATING MODE:	Receive / Stand-by
DETECTOR:	Average

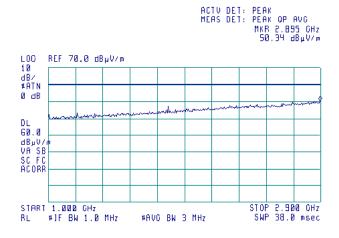

() 12:45:47 FEB 11, 2009



Test specification:	Section 15.109, Radiated	emission	
Test procedure:	ANSI C63.4, Sections 11.6 an	d 12.1.4	
Test mode:	Compliance	Verdict:	PASS
Date & Time:	2/15/2009 10:27:01 AM	verdict.	PA33
Temperature: 23°C	Air Pressure: 1022 hPa	Relative Humidity: 45%	Power Supply: 120 V AC
Remarks:			

Plot 8.2.5 Radiated emission measurements in 2.9 GHz – 8.0 GHz, vertical antenna polarization

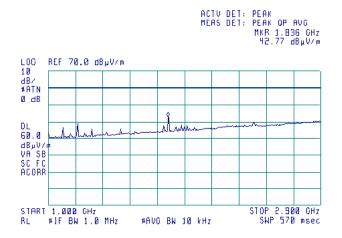
Plot 8.2.6 Radiated emission measurements in 2.9 GHz – 8.0 GHz GHz, vertical antenna polarization



Test specification:	Section 15.109, Radiated	emission	
Test procedure:	ANSI C63.4, Sections 11.6 ar	nd 12.1.4	
Test mode:	Compliance	Verdict:	PASS
Date & Time:	2/15/2009 10:27:01 AM	verdict.	PA33
Temperature: 23°C	Air Pressure: 1022 hPa	Relative Humidity: 45%	Power Supply: 120 V AC
Remarks:			

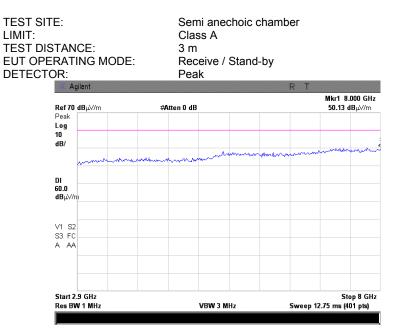
Plot 8.2.7 Radiated emission measurements in 1000 MHz – 2900 MHz, horizontal antenna polarization

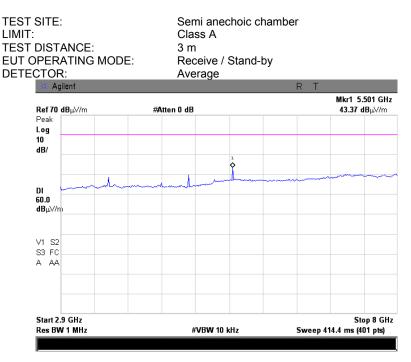
LIMIT: Class A TEST DISTANCE: 3 m EUT OPERATING MODE: Receive / S DETECTOR: Peak	Stand-by
---	----------


👩 12:50:52 FEB 11, 2009

Plot 8.2.8 Radiated emission measurements in 1000 MHz – 2900 MHz, horizontal antenna polarization

TEST SITE:	Semi anechoic chamber
LIMIT:	Class A
TEST DISTANCE:	3 m
EUT OPERATING MODE:	Receive / Stand-by
DETECTOR:	Average


() 12:49:27 FEB 11, 2009



Test specification:	Section 15.109, Radiated emission				
Test procedure:	ANSI C63.4, Sections 11.6 an	d 12.1.4			
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	2/15/2009 10:27:01 AM	verdict.	PA33		
Temperature: 23°C	Air Pressure: 1022 hPa	Relative Humidity: 45%	Power Supply: 120 V AC		
Remarks:					

Plot 8.2.9 Radiated emission measurements in 2.9 GHz – 8.0 GHz, horizontal antenna polarization

Plot 8.2.10 Radiated emission measurements in 2.9 GHz - 8.0 GHz, horizontal antenna polarization

Test specification:	Section 15.111, Conducted emission at receiver antenna port				
Test procedure:	ANSI C63.4, Section 12.1.5				
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	2/16/2009 1:56:10 PM	Verdict: PASS			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:					

8.3 Spurious emissions at RF antenna connector

8.3.1 General

This test was performed to measure spurious emissions at RF antenna connector of receiver operated within 30 to 960 MHz band or a citizens band (CB) receiver which was tested for compliance with radiated emission limits with the antenna port connected to resistive termination. Specification test limits are given in Table 8.3.1.

Table 8.3.1 Spurious emission limits

EUT type	Power of	spurious
Lot type	nW	dBm
Citizens band (CB) receiver		
MHz – 2 nd harmonic** Superheterodyne receiver		-57.0
Other receiver operates within 30 – 960 MHz		
	Superheterodyne receiver	nW Citizens band (CB) receiver Superheterodyne receiver 2.0

* - harmonic of the highest frequency the EUT generates, uses, operates or tunes to.

** - harmonic of the local oscillator frequency.

8.3.2 Test procedure

- 8.3.2.1 The EUT was set up as shown in Figure 8.3.1, energized and its proper operation was checked.
- 8.3.2.2 The spurious emission was measured with spectrum analyzer as provided in Table 8.3.2 and associated plots.

Figure 8.3.1 Spurious emission test setup

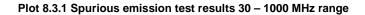
Pass

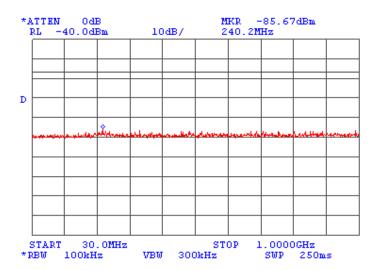
Test specification:	Section 15.111, Conduct	Section 15.111, Conducted emission at receiver antenna port				
Test procedure:	ANSI C63.4, Section 12.1.5					
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	2/16/2009 1:56:10 PM	verdict.	PA33			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC			
Remarks:		· · · · ·	· • • •			

Table 8.3.2 Spurious emission test results

INVESTIGATED FRE RECEIVER TYPE: EUT OPERATING MO DETECTOR USED: RESOLUTION BAND VIDEO BANDWIDTH	ODE: WIDTH:			
Frequency, MHz	Spurious emission, dBm	Limit, dBm	Margin, dB	Verdict

Reference numbers of test equipment used

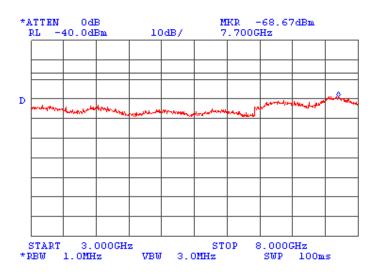

No emissions were found


HL 1424	HL 2911				
Full description	is given in Ann	andix A			

-57.0

NA

Full description is given in Appendix A.



Test specification:	Section 15.111, Conducted emission at receiver antenna port				
Test procedure:	ANSI C63.4, Section 12.1.5				
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	2/16/2009 1:56:10 PM	Verdict: PASS			
Temperature: 23°C	Air Pressure: 1019 hPa	Relative Humidity: 43%	Power Supply: 120 V AC		
Remarks:			· · · · · ·		

Plot 8.3.2 Spurious emission test results 1000 - 8000 MHz range

9 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal.	Due Cal.
0415	Cable, Coax, RF, RG-214	Hermon Laboratories	CC-3	056	02-Dec-08	02-Dec-09
0446	Antenna, Loop, Active, 10 kHz - 30 MHz	EMCO	6502	2857	29-Jun-08	29-Jun-09
0447	LISN, 16/2, 300V RMS, 50 Ohm/50 uH + 5 Ohm, STD CISPR 16-1	Hermon Laboratories	LISN 16 - 1	066	04-Nov-08	04-Nov-09
0521	EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz	Hewlett Packard Co	8546A	3617A 00319, 3448A002 53	29-Aug-08	29-Aug-09
0569	Antenna, Log Periodic, 200 - 1000 MHz	Electro-Metrics	LPA 25/30	1953	25-Sep-08	25-Sep-10
0580	DC block adaptor 10 kHz - 2.2 GHz	Anritsu	MA8601 A	580	23-Nov-08	23-Nov-09
0604	Antenna BiconiLog Log-Periodic/T Bow- TIE, 26 - 2000 MHz	EMCO	3141	9611-1011	11-Jan-09	11-Jan-10
0812	Cable Coax, RG-214, 11.5 m, N-type connectors	Hermon Laboratories	C214-11	148	02-Dec-08	02-Dec-09
1194	Variac, 220 V/ 2.5 A	Matsunaga		2962	06-Jan-09	06-Jan-10
1424	Spectrum Analyzer, 30 Hz- 40 GHz	Agilent Technologies	8564EC	3946A002 19	30-Dec-08	30-Dec-09
1430	EMI Receiver, 9 kHz - 2.9 GHz, System: HL1431, HL1432	Agilent Technologies	8542E	3807A002 62,3705A0 0217	31-Aug-08	31-Aug-09
1513	Cable RF, 8 m, BNC/BNC	Belden	M17/167 MIL-C-17	1513	03-Sep-08	03-Sep-09
1984	Antenna, Double-Ridged Waveguide Horn, 1-18 GHz, 300 W	EMC Test Systems	3115	9911-5964	23-Jan-09	23-Jan-10
2387	Filter Bandpass, 8-14 GHz	Hermon Laboratories	FBP8-14	2387	05-Jun-07	05-Jun-09
2432	Antenna, Double-Ridged Waveguide Horn 1-18 GHz	EMC Test Systems	3115	00027177	23-Jan-09	23-Jan-10
2780	EMC analyzer, 100 Hz to 26.5 GHz	Agilent Technologies	E7405A	MY451024 6	11-Jun-07	11-Jun-09
2785	Signal generator, 50 MHz to 26 GHz, pulse modulation	Giga-tronics	1026-01	284007	15-Oct-08	15-Oct-09
2867	Cable, 18 GHz, 0.9 m, SMA - SMA, Right Angle	Gore	NA	91P72076	04-Feb-09	04-Feb-10
2883	Cable, 18 GHz N-type, M-F, 3 m	Bird	TC- MNFN-3.0	211539 003	07-Dec-08	07-Dec-09
2888	LISN Two-line V-Network 50 Ohm / 50 uH + 5 Ohm, 16A, MIL STD 461E, CISPR 16- 1	Rolf Heine	NNB- 2/16Z	02/10018	09-Jul-08	09-Jul-09
2909	Spectrum analyzer, ESA-E, 100 Hz to 26.5 GHz	Agilent Technologies	E4407B	MY414447 62	07-May-08	07-May-09
2911	Cable 18 GHz, 1.5 m, SMA-SMA	Gore	NA	89386	05-Oct-08	05-Oct-09
3121	Microwave Cable Assembly, 18 GHz, 6.4 m, SMA - SMA	Huber-Suhner	198-9155- 00	3121	07-Dec-08	07-Dec-09

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal.	Due Cal.
3122	Microwave Cable Assembly, 18 GHz, 6.4 m, SMA - SMA	Huber-Suhner	198-9155- 00	3122	07-Dec-08	07-Dec-09
3123	Microwave Cable Assembly, 18 GHz, 6.4 m, SMA - SMA	Huber-Suhner	198-9155- 00	3123	30-Dec-08	30-Dec-09
3170	Attenuator, N-type, 10 dB, DC to 6 GHz, 1 W	Mini-Circuits	UNAT-10+	15542	07-May-08	07-May-09
3210	Temperature Chamber, (-50+100) °C	Associated	NA	NA	11-Sep-08	11-Sep-09
3234	Signal generator, 9 kHz - 3.3 GHz	Rohde & Schwarz	SML03	103387	13-Jul-08	13-Jul-09
3301	Power Meter, P-series, 50 MHz to 40 GHz	Agilent Technologies	N1911A	MY451010 57	03-Dec-08	03-Dec-09
3302	Power sensor, P-Series, 50 MHz to 40 GHz, -35/30 to 20 dBm	Agilent Technologies	N1922A	MY452405 86	05-Dec-08	05-Dec-09
3342	High Pass Filter, 50 Ohm, 2000 to 5200 MHz.	Mini-Circuits	VHF- 1910+	NA	29-Oct-08	29-Oct-09
3344	High Pass Filter, 50 Ohm, 3400 to 9900 MHz.	Mini-Circuits	VHF- 3100+	NA	29-Oct-08	29-Oct-09
3435	Precision Fixed Attenuator, 50 Ohm, 5 W, 10 dB, DC to 18 GHz	Mini-Circuits	BW- S10W5+	NA	09-Mar-08	09-Mar-09
3439	Precision Fixed Attenuator, 50 Ohm, 5 W, 20 dB, DC to 18 GHz	Mini-Circuits	BW- S20W5+	NA	09-Mar-08	09-Mar-09
3442	Precision Fixed Attenuator, 50 Ohm, 5 W, 20 dB, DC to 18 GHz	Mini-Circuits	BW- S20W5+	NA	09-Mar-08	09-Mar-09
3532	Amplifier, low noise, 2 to 8 GHz	Quinstar Technology	QLJ- 02084040 -J0	111590020 01	23-Nov-08	23-Nov-09
3534	Amplifier, low noise, 6 to 18 GHz	Quinstar Technology	QLJ- 06184040 -J0	111590010 02	07-Dec-08	07-Dec-09
3612	Cable RF, 17.5 m, N type-N type	Teldor	RG-214/U	NA	17-Nov-08	17-Nov-09
3615	Cable RF, 6.5 m, N type-N type, DC-6 GHz	Suhner Switzerland	RG 214/U	NA	07-Dec-08	07-Dec-09

10 APPENDIX B Measurement uncertainties

Test description	Expanded uncertainty
Transmitter tests	
Carrier power conducted at antenna connector	± 1.7 dB
Carrier power radiated (substitution method)	± 4.5 dB
Occupied bandwidth	±8%
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB 2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Spurious emissions radiated 30 MHz – 40 GHz (substitution method)	± 4.5 dB
Frequency error	30 – 300 MHz: ± 50.5 Hz (1.68 ppm)
	300 – 1000 MHz: ± 168 Hz (0.56 ppm)
Transient frequency behaviour	187 Hz
	± 13.9 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Unintentional radiator tests	
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

11 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by Industry Canada for electromagnetic emissions (file numbers IC 2186A-1 for OATS and IC 2186A-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site), assessed by TNO Certification EP&S (Netherlands) for a number of EMC, telecommunications, environmental, safety standards, and by AMTAC (UK) for safety of medical devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01).

 Address:
 P.O. Box 23, Binyamina 30500, Israel.

 Telephone:
 +972 4628 8001

 Fax:
 +972 4628 8277

 e-mail:
 mail@hermonlabs.com

 website:
 www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

12 APPENDIX D Specification references

FCC 47CFR part 27: 2008	Miscellaneous wireless communications services
FCC 47CFR part 1: 2008	Practice and procedure
FCC 47CFR part 2: 2008	Frequency allocations and radio treaty matters; general rules and regulations
FCC 47CFR part 15: 2008	Radio Frequency Devices
ANSI C63.2: 1996	American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI C63.4: 2005	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
ANSI/TIA/EIA-603-C:2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards

13 APPENDIX E Test equipment correction factors

Antenna Factor Active Loop Antenna EMC Test Systems, model 6502, S/N 2857, HL 0446

Frequency, MHz	Magnetic Antenna Factor, dB(S/m)	Electric Antenna Factor, dB(1/m)
0.009	-32.8	18.7
0.010	-33.8	17.7
0.020	-38.3	13.2
0.050	-41.1	10.4
0.075	-41.3	10.2
0.100	-41.6	9.9
0.150	-41.7	9.8
0.250	-41.6	9.9
0.500	-41.8	9.7
0.750	-41.9	9.6
1.000	-41.4	10.1
2.000	-41.5	10.0
3.000	-41.4	10.1
4.000	-41.4	10.1
5.000	-41.5	10.0
10.000	-41.9	9.6
15.000	-41.9	9.6
20.000	-42.2	9.3
25.000	-42.8	8.7
30.000	-44.0	7.5

Antenna factor in dB(S/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ A/m). Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor Log periodic antenna Electro-Metrics, model LPA-25/30 Ser.No.1953, HL 0569

Frequency MHz	Antenna Factor dB(1/m)	Frequency MHz	Antenna Factor dB(1/m)
200	15.2	625	25.2
225	15.1	650	25.8
250	16.3	675	27.2
275	17.2	700	27.6
300	19.6	725	27.6
325	18.4	750	27.6
350	19.0	775	28.0
375	20.0	800	28.2
400	20.9	825	29.4
425	21.3	850	29.9
450	22.1	875	30.0
475	22.7	900	30.4
500	23.2	925	30.6
525	23.9	950	30.8
550	24.2	975	31.6
575	24.6	1000	32.1
600	24.7		

Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)
26	7.8	560	19.8	1300	27.0
28	7.8	580	20.6	1320	27.8
30	7.8	600	21.3	1340	28.3
40	7.2	620	21.5	1360	28.2
60	7.1	640	21.2	1380	27.9
70	8.5	660	21.4	1400	27.9
80	9.4	680	21.9	1420	27.9
90	9.8	700	22.2	1440	27.8
100	9.7	720	22.2	1460	27.8
110	9.3	740	22.1	1480	28.0
120	8.8	760	22.3	1500	28.5
130	8.7	780	22.6	1520	28.9
140	9.2	800	22.7	1540	29.6
150	9.8	820	22.9	1560	29.8
160	10.2	840	23.1	1580	29.6
170	10.4	860	23.4	1600	29.5
180	10.4	880	23.8	1620	29.3
190	10.3	900	24.1	1640	29.2
200	10.6	920	24.1	1660	29.4
220	11.6	940	24.0	1680	29.6
240	12.4	960	24.1	1700	29.8
260	12.8	980	24.5	1720	30.3
280	13.7	1000	24.9	1740	30.8
300	14.7	1020	25.0	1760	31.1
320	15.2	1040	25.2	1780	31.0
340	15.4	1060	25.4	1800	30.9
360	16.1	1080	25.6	1820	30.7
380	16.4	1100	25.7	1840	30.6
400	16.6	1120	26.0	1860	30.6
420	16.7	1140	26.4	1880	30.6
440	17.0	1160	27.0	1900	30.6
460	17.7	1180	27.0	1920	30.7
480	18.1	1200	26.7	1940	30.9
500	18.5	1220	26.5	1960	31.2
520	19.1	1240	26.5	1980	31.6
540	19.5	1260	26.5	2000	32.0
040	19.0	1280	26.6	2000	52.0

Antenna factor Biconilog antenna EMCO, model 3141, serial number 1011, HL 0604

Antenna factor Double-ridged wave guide horn antenna Model 3115, S/N 9911-5964, HL 1984

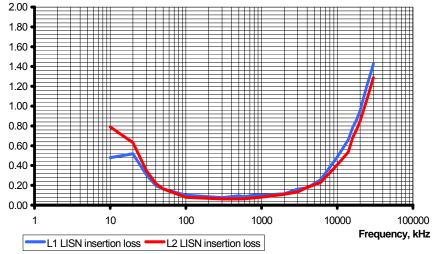
Frequency, MHz	Antenna factor, dB(1/m)
1000.0	24.7
1500.0	25.7
2000.0	27.6
2500.0	28.9
3000.0	31.2
3500.0	32.0
4000.0	32.5
4500.0	32.7
5000.0	33.6
5500.0	35.1
6000.0	35.4
6500.0	34.9
7000.0	36.1
7500.0	37.8
8000.0	38.0
8500.0	38.1
9000.0	39.1
9500.0	38.3
10000.0	38.6
10500.0	38.2
11000.0	38.7
11500.0	39.5
12000.0	40.0
12500.0	40.4
13000.0	40.5
13500.0	41.1
14000.0	41.6
14500.0	41.7
15000.0	38.7
15500.0	38.2
16000.0	38.8
16500.0	40.5
17000.0	42.5
17500.0	45.9
18000.0	49.4

Antenna factor Double-ridged guide horn antenna Model 3115, serial number: 00027177, HL 2432

Frequency, MHz	Antenna factor. dB(1/m)
1000.0	24.7
1500.0	25.7
2000.0	27.8
2500.0	28.9
3000.0	30.7
3500.0	31.8
4000.0	33.0
4500.0	32.8
5000.0	34.2
5500.0	34.9
6000.0	35.2
6500.0	35.4
7000.0	36.3
7500.0	37.3
8000.0	37.5
8500.0	38.0
9000.0	38.3
9500.0	38.3
10000.0	38.7
10500.0	38.7
11000.0	38.9
11500.0	39.5
12000.0	39.5
12500.0	39.4
13000.0	40.5
13500.0	40.8
14000.0	41.5
14500.0	41.3
15000.0	40.2
15500.0	38.7
16000.0	38.5
16500.0	39.8
17000.0	41.9
17500.0	45.8
18000.0	49.1

Correction factor Line impedance stabilization network Model LISN 16 - 1 Hermon Laboratories, HL 0447

Frequency, kHz	Correction factor, dB
10	4.9
15	2.86
20	1.83
25	1.25
30	0.91
35	0.69
40	0.53
50	0.35
60	0.25
70	0.18
80	0.14
90	0.11
100	0.09
125	0.06
150	0.04


The correction factor in dB is to be added to meter readings of an interference analyzer or a spectrum analyzer.

Correction factor Line impedance stabilization network Model NNB-2/16Z, Rolf Heine, HL 2888

	Insertion loss,dB		Measurement
Frequency, kHz	L1	N	Uncertainty, dB
10	0.48	0.79	
20	0.52	0.63	
30	0.31	0.35	
40	0.20	0.22]
50	0.16	0.17]
100	0.10	0.08	
300	0.08	0.06	
500	0.10	0.06	
600	0.09	0.07	
800	0.10	0.07	
1000	0.10	0.08	
2000	0.12	0.11	±0.6
3000	0.16	0.14	
4000	0.17	0.18	
6000	0.26	0.23]
10000	0.49	0.41	
14000	0.66	0.54	
16000	0.79	0.69	
18000	0.86	0.76	
20000	0.96	0.85	
25000	1.22	1.08	
28000	1.35	1.21	
30000	1.43	1.29	

Insertion loss, dB

No.	Frequency, MHz	Cable loss, dB	Measured uncertainty, dB
1	20	0.73	
2	30	0.91	
3	50	1.2	
4	80	1.56	
5	100	1.76	
6	200	2.59	
7	300	3.26	
8	400	3.93	±0.12
9	500	4.42	
10	600	4.92	
11	700	5.36	
12	800	5.88	
13	900	6.41	
14	1000	6.71	
15	1500	8.63	
16	2000	10.39	

Cable loss Cable Coaxial, RG-58/RG-214, s/n 056, HL 0415 + Cable Coaxial, RG-214, 11.5m, s/n 148, HL 0812

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.06	5750	0.68	12000	1.06
30	0.04	6000	0.69	12250	1.07
100	0.07	6250	0.70	12500	1.09
250	0.14	6500	0.73	12750	1.09
500	0.19	6750	0.74	13000	1.15
750	0.22	7000	0.78	13250	1.17
1000	0.26	7250	0.77	13500	1.16
1250	0.27	7500	0.79	13750	1.17
1500	0.31	7750	0.81	14000	1.14
1750	0.35	8000	0.86	14250	1.13
2000	0.38	8250	0.86	14500	1.06
2250	0.41	8500	0.87	14750	1.12
2500	0.43	8750	0.87	15000	1.16
2750	0.46	9000	0.88	15250	1.11
3000	0.48	9250	0.89	15500	1.06
3250	0.51	9500	0.90	15750	1.12
3500	0.53	9750	0.94	16000	1.20
3750	0.55	10000	1.00	16250	1.25
4000	0.56	10250	1.01	16500	1.24
4250	0.58	10500	1.02	16750	1.34
4500	0.60	10750	1.01	17000	1.35
4750	0.62	11000	1.01	17250	1.35
5000	0.64	11250	1.01	17500	1.36
5250	0.67	11500	1.01	17750	1.40
5500	0.68	11750	1.05	18000	1.51

Cable loss Cable coaxial, Gore, 18 GHz, 0.9 m, SMA - SMA, model Right Angle, S/N 91P72076 HL 2867

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.06	5750	1.70	12000	2.46
30	0.12	6000	1.75	12250	2.48
100	0.21	6250	1.80	12500	2.52
250	0.34	6500	1.81	12750	2.50
500	0.47	6750	1.86	13000	2.54
750	0.59	7000	1.86	13250	2.48
1000	0.67	7250	1.92	13500	2.63
1250	0.76	7500	1.96	13750	2.65
1500	0.84	7750	1.98	14000	2.72
1750	0.92	8000	2.02	14250	2.67
2000	0.98	8250	2.03	14500	2.70
2250	1.05	8500	2.05	14750	2.72
2500	1.12	8750	2.11	15000	2.79
2750	1.17	9000	2.17	15250	2.80
3000	1.22	9250	2.17	15500	2.83
3250	1.27	9500	2.20	15750	2.75
3500	1.33	9750	2.19	16000	2.82
3750	1.38	10000	2.22	16250	2.85
4000	1.42	10250	2.25	16500	2.90
4250	1.46	10500	2.30	16750	2.89
4500	1.51	10750	2.28	17000	2.88
4750	1.54	11000	2.32	17250	2.85
5000	1.59	11250	2.34	17500	2.96
5250	1.62	11500	2.39	17750	3.04
5500	1.65	11750	2.42	18000	3.04

Cable loss Cable coaxial, Bird, 18 GHz, N-type, M-F, model TC-MNFN-3.0, S/N 211539 003 HL 2883

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.06	5750	1.32	12000	2.04
30	0.09	6000	1.34	12250	2.04
100	0.16	6250	1.41	12500	2.07
250	0.27	6500	1.43	12750	1.96
500	0.38	6750	1.46	13000	1.97
750	0.49	7000	1.49	13250	2.01
1000	0.55	7250	1.52	13500	2.04
1250	0.62	7500	1.56	13750	2.12
1500	0.68	7750	1.66	14000	2.16
1750	0.74	8000	1.69	14250	2.16
2000	0.78	8250	1.78	14500	2.28
2250	0.83	8500	1.73	14750	2.26
2500	0.88	8750	1.71	15000	2.22
2750	0.97	9000	1.72	15250	2.34
3000	1.00	9250	1.74	15500	2.41
3250	1.03	9500	1.76	15750	2.45
3500	1.05	9750	1.80	16000	2.57
3750	1.09	10000	1.89	16250	2.54
4000	1.14	10250	1.94	16500	2.55
4250	1.17	10500	1.99	16750	2.52
4500	1.21	10750	1.92	17000	2.42
4750	1.22	11000	1.96	17250	2.49
5000	1.24	11250	1.97	17500	2.62
5250	1.28	11500	2.02	17750	2.70
5500	1.30	11750	2.07	18000	2.76

Cable loss Cable coaxial, Gore, 18 GHz, 1.5 m, SMA-SMA, S/N 89386 HL 2911

Frequency, MHz	Cable loss, dB								
10	0.08	3600	2.10	7400	3.08	11200	3.85	15100	4.58
30	0.18	3700	2.14	7500	3.11	11300	3.85	15200	4.60
50	0.26	3800	2.18	7600	3.14	11400	3.86	15300	4.63
100	0.34	3900	2.19	7700	3.16	11500	3.86	15400	4.65
200	0.47	4000	2.25	7800	3.18	11600	3.87	15500	4.71
300	0.59	4100	2.25	7900	3.20	11700	3.85	15600	4.70
400	0.66	4200	2.28	8000	3.22	11800	3.96	15700	4.69
500	0.75	4300	2.35	8100	3.26	11900	3.92	15800	4.71
600	0.83	4400	2.35	8200	3.27	12000	3.92	15900	4.74
700	0.90	4500	2.38	8300	3.29	12100	3.94	16000	4.69
800	0.96	4600	2.43	8400	3.30	12200	3.94	16100	4.72
900	1.02	4700	2.43	8500	3.31	12300	3.99	16200	4.71
1000	1.07	4800	2.45	8600	3.33	12400	4.02	16300	4.74
1100	1.12	4900	2.48	8700	3.35	12500	4.10	16400	4.74
1200	1.15	5000	2.55	8800	3.36	12600	4.09	16500	4.75
1300	1.22	5100	2.54	8900	3.38	12700	4.15	16600	4.78
1400	1.28	5200	2.56	9000	3.40	12800	4.15	16700	4.86
1500	1.29	5300	2.58	9100	3.41	12900	4.08	16800	4.84
1600	1.36	5400	2.61	9200	3.45	13000	4.21	16900	4.83
1700	1.40	5500	2.64	9300	3.48	13100	4.19	17000	4.86
1800	1.45	5600	2.69	9400	3.52	13200	4.29	17100	4.83
1900	1.51	5700	2.67	9500	3.54	13300	4.24	17200	4.90
2000	1.50	5800	2.71	9600	3.59	13400	4.26	17300	4.91
2100	1.56	5900	2.73	9700	3.59	13500	4.26	17400	4.94
2200	1.59	6000	2.75	9800	3.62	13600	4.29	17500	4.93
2300	1.63	6100	2.81	9900	3.70	13700	4.35	17600	4.93
2400	1.73	6200	2.80	10000	3.70	13800	4.31	17700	5.00
2500	1.73	6300	2.82	10100	3.72	13900	4.29	17800	5.01
2600	1.78	6400	2.85	10200	3.73	14000	4.32	17900	5.00
2700	1.84	6500	2.87	10300	3.75	14100	4.33	18000	5.00
2800	1.84	6600	2.90	10400	3.76	14200	4.34		
2900	1.91	6700	2.91	10500	3.77	14300	4.36		
3000	1.91	6800	2.94	10600	3.79	14400	4.38		
3100	1.97	6900	2.96	10700	3.80	14600	4.42		
3200	1.98	7000	2.98	10800	3.81	14700	4.42		
3300	2.04	7100	3.01	10900	3.81	14800	4.55		
3400	2.04	7200	3.02	11000	3.83	14900	4.55		
3500	2.10	7300	3.04	11100	3.84	15000	4.55		

Cable loss Microwave Cable Assembly, 18 GHz, 6.4 m, SMA – SMA, Huber-Suhner, model 198-9155-00 HL 3121

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable Ioss, dB	Frequency, MHz	Cable loss, dB
10	0.11	3600	2.08	7400	3.07	11200	3.92	15100	4.61
30	0.17	3700	2.12	7500	3.09	11300	3.95	15200	4.58
50	0.23	3800	2.15	7600	3.14	11400	3.93	15300	4.62
100	0.32	3900	2.18	7700	3.15	11500	3.93	15400	4.62
200	0.47	4000	2.21	7800	3.19	11600	3.94	15500	4.65
300	0.58	4100	2.24	7900	3.22	11700	3.97	15600	4.66
400	0.66	4200	2.27	8000	3.20	11800	3.98	15700	4.66
500	0.74	4300	2.31	8100	3.21	11900	4.08	15800	4.72
600	0.81	4400	2.31	8200	3.24	12000	4.03	15900	4.78
700	0.88	4500	2.36	8300	3.27	12100	4.06	16000	4.89
800	0.95	4600	2.37	8400	3.32	12200	4.05	16100	4.95
900	1.00	4700	2.40	8500	3.35	12300	4.16	16200	4.92
1000	1.06	4800	2.43	8600	3.35	12400	4.18	16300	4.95
1100	1.11	4900	2.45	8700	3.33	12500	4.20	16400	5.02
1200	1.16	5000	2.50	8800	3.37	12600	4.22	16500	5.04
1300	1.21	5100	2.51	8900	3.39	12700	4.23	16600	5.06
1400	1.26	5200	2.55	9000	3.45	12800	4.28	16700	5.17
1500	1.31	5300	2.56	9100	3.46	12900	4.26	16800	5.16
1600	1.35	5400	2.59	9200	3.47	13000	4.28	16900	5.19
1700	1.39	5500	2.62	9300	3.46	13100	4.28	17000	5.23
1800	1.44	5600	2.65	9400	3.50	13200	4.28	17100	5.30
1900	1.47	5700	2.67	9500	3.50	13300	4.29	17200	5.26
2000	1.52	5800	2.71	9600	3.53	13400	4.34	17300	5.30
2100	1.55	5900	2.72	9700	3.52	13500	4.31	17400	5.30
2200	1.60	6000	2.73	9800	3.54	13600	4.35	17500	5.36
2300	1.63	6100	2.76	9900	3.56	13700	4.36	17600	5.40
2400	1.67	6200	2.78	10000	3.57	13800	4.37	17700	5.47
2500	1.70	6300	2.81	10100	3.60	13900	4.41	17800	5.56
2600	1.74	6400	2.85	10200	3.69	14000	4.42	17900	5.45
2700	1.78	6500	2.87	10300	3.69	14100	4.45	18000	5.47
2800	1.83	6600	2.87	10400	3.67	14200	4.49		
2900	1.85	6700	2.90	10500	3.70	14300	4.55		
3000	1.89	6800	2.91	10600	3.70	14400	4.62		
3100	1.92	6900	2.96	10700	3.76	14600	4.54		
3200	1.96	7000	2.99	10800	3.88	14700	4.58		
3300	1.99	7100	3.01	10900	3.88	14800	4.57		
3400	2.03	7200	3.04	11000	3.85	14900	4.65		
3500	2.06	7300	3.08	11100	3.85	15000	4.64		

Cable loss Microwave Cable Assembly, 18 GHz, 6.4 m, SMA – SMA, Huber-Suhner, model 198-9155-00 HL 3122

Frequency, MHz	Cable loss, dB								
10	0.11	3600	1.97	7400	3.12	11200	3.90	15100	4.74
30	0.17	3700	1.97	7500	3.13	11300	3.93	15200	4.70
50	0.25	3800	2.03	7600	3.16	11400	3.88	15300	4.73
100	0.32	3900	2.04	7700	3.18	11500	3.87	15400	4.78
200	0.46	4000	2.10	7800	3.20	11600	3.90	15500	4.75
300	0.58	4100	1.97	7900	3.23	11700	3.86	15600	4.76
400	0.65	4200	1.97	8000	3.25	11800	3.88	15700	4.75
500	0.74	4300	2.03	8100	3.26	11900	3.86	15800	4.78
600	0.82	4400	2.04	8200	3.28	12000	3.89	15900	4.79
700	0.89	4500	2.10	8300	3.31	12100	3.94	16000	4.73
800	0.95	4600	1.97	8400	3.31	12200	3.92	16100	4.78
900	1.01	4700	1.97	8500	3.32	12300	3.96	16200	4.84
1000	1.07	4800	2.03	8600	3.34	12400	4.01	16300	4.90
1100	1.11	4900	2.04	8700	3.35	12500	4.07	16400	4.87
1200	1.17	5000	2.10	8800	3.37	12600	4.08	16500	4.90
1300	1.22	5100	2.53	8900	3.39	12700	4.17	16600	4.98
1400	1.27	5200	2.55	9000	3.42	12800	4.26	16700	5.05
1500	1.29	5300	2.60	9100	3.43	12900	4.16	16800	5.04
1600	1.35	5400	2.61	9200	3.51	13000	4.21	16900	5.02
1700	1.40	5500	2.64	9300	3.52	13100	4.24	17000	5.09
1800	1.44	5600	2.70	9400	3.54	13200	4.27	17100	5.07
1900	1.51	5700	2.67	9500	3.63	13300	4.31	17200	5.10
2000	1.49	5800	2.71	9600	3.61	13400	4.33	17300	5.13
2100	1.55	5900	2.74	9700	3.71	13500	4.25	17400	5.23
2200	1.58	6000	2.80	9800	3.66	13600	4.27	17500	5.21
2300	1.62	6100	2.79	9900	3.77	13700	4.33	17600	5.22
2400	1.72	6200	2.81	10000	3.75	13800	4.33	17700	5.36
2500	1.76	6300	2.83	10100	3.77	13900	4.31	17800	5.35
2600	1.78	6400	2.86	10200	3.80	14000	4.30	17900	5.45
2700	1.80	6500	2.88	10300	3.79	14100	4.30	18000	5.43
2800	1.86	6600	2.90	10400	3.87	14200	4.31		
2900	1.90	6700	2.92	10500	3.83	14300	4.37		
3000	1.90	6800	2.98	10600	3.88	14400	4.35		
3100	1.97	6900	2.98	10700	3.86	14600	4.53		
3200	1.97	7000	3.00	10800	3.87	14700	4.50		
3300	2.03	7100	3.02	10900	3.90	14800	4.62		
3400	2.04	7200	3.04	11000	3.84	14900	4.65		
3500	2.10	7300	3.06	11100	3.88	15000	4.79		

Cable loss Microwave Cable Assembly, 18 GHz, 6.4 m, SMA – SMA, Huber-Suhner, model 198-9155-00 HL 3123

Frequency, GHz	Cable loss, dB
0.1	0.05
0.5	0.07
1	0.10
3	0.22
5	0.29
10	0.39
30	0.68
50	0.90
100	1.27
150	1.58
200	1.80
250	2.12
300	2.36
350	2.60
400	2.82
450	2.99
500	3.23
550	3.40
600	3.56
650	3.71
700	3.90
750	4.04
800	4.23
850	4.39
900	4.55
950	4.65
1000	4.79

Cable loss Cable coaxial, RG-214/U, N type-N type, 17 m Teldor, HL 3612

14 APPENDIX F Abbreviations and acronyms

A AC A/m AM AVRG CBW cm dB dBm dB(μ V) dB(μ V) dB(μ V) dB(μ A) dB(μ A	ampere alternating current ampere per meter amplitude modulation average (detector) channel bandwidth centimeter decibel decibel referred to one milliwatt decibel referred to one microvolt decibel referred to one microvolt per meter decibel referred to one microvappere decibel referred to one Ohm direct current emission bandwidth equivalent isotropically radiated power effective radiated power equipment under test frequency gigahertz ground height Hermon laboratories hertz
k	kilo
kHz	kilohertz
LO	local oscillator
m	meter
MHz	megahertz
min	minute
mm	millimeter
ms	millisecond
μs	microsecond
NA	not applicable
NB	narrow band
NT	not tested
OATS	open area test site
Ω	Ohm
QP	quasi-peak
PM	pulse modulation
PS	power supply
RE	radiated emission
RF	radio frequency
rms	root mean square
Rx	receive
s	second
T	temperature
Tx	transmit
V	volt
VA	volt-ampere

END OF DOCUMENT