

Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel Tel. +972-4-6288001 Fax. +972-4-6288277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC part 27

FOR:

Airspan Networks (Israel) Ltd. Subscriber unit Model: ProST 1.4G TDD V-p

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	
2	Equipment under test attributes	
3	Manufacturer information	
4	Test details	
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Ports and lines	5
6.3	Support and test equipment	5
6.4	Changes made in the EUT	5
6.5	Test configuration	6
6.6	Transmitter characteristics	7
7	Transmitter tests according to 47CFR part 27 requirements	
7.1	Peak output power test	8
7.2	Occupied bandwidth test	
7.3	Spurious emissions at RF antenna connector test	
8	APPENDIX A Test equipment and ancillaries used for tests	
9	APPENDIX B Measurement uncertainties	
10	APPENDIX C Test laboratory description	
11	APPENDIX D Specification references	
12	APPENDIX E Test equipment correction factors	
13	APPENDIX F Abbreviations and acronyms	

1 Applicant information

Client name:	Airspan Networks Inc.
Address:	777 Yamato Rd, Suite 310, Boca Raton 33431, Florida, USA
Telephone:	+1 561 893 8686
Fax:	+1 561 893 8671
E-mail:	zlevi@airspan.com
Contact name:	Mr. Zion Levi

2 Equipment under test attributes

Product name:	Subscriber unit	
Product type:	Transceiver	
Model(s):	ProST 1.4G TDD V-p	
Serial number:	48FF88C5C948	
Hardware version:	A0	
Software release:	V7.9.12.0	
Receipt date	4/3/2011	

3 Manufacturer information

Manufacturer name:	Airspan Networks Inc.
Address:	777 Yamato Rd, Suite 310, Boca Raton 33431, Florida, USA
Telephone:	+1 561 893 8686
Fax:	+1 561 893 8671
E-Mail:	zlevi@airspan.com
Contact name:	Mr. Zion Levi

4 Test details

Project ID:	21822
Location:	Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel
Test started:	4/3/2011
Test completed:	4/5/2011
Test specification(s):	FCC part 27

5 Tests summary

Test	Status
Transmitter characteristics	
Section 27.50(e)(1), (2), Peak output power at RF antenna connector	Pass
Section 2.1091, 27.52, RF safety	Pass, Exhibit provided in Application
Section 27.53(j), Spurious emissions at RF antenna connector	Pass
Section 27.53(j), Band edge emissions at RF antenna connector	Pass
Section 27.53(j), Radiated spurious emissions	Pass, refer to test report AIRRAD_FCC.19957_ProST
Section 27.54, Frequency stability	Pass, refer to test report AIRRAD_FCC.19957_ProST
Section 2.1049, Occupied bandwidth	Pass

This report presents the test results for additional frequency channels for Application for certification, FCC ID:PIDASMAX145.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mrs. E. Pittl, test engineer	April 5, 2011	BHE
rected by:	Mr. S. Samokha, test engineer	7,011,0,2011	Can
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	May 1, 2011	Chur
Approved by:	Mr. M. Nikishin, EMC and Radio group manager	May 2, 2011	ff b

6 EUT description

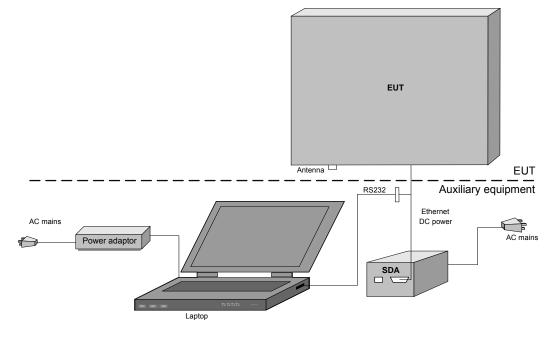
6.1 General information

The EUT, subscriber premises radio, model names ProST 1.4G TDD, is a part of a WiMAX broadband fixed cellular wireless access system. The system provides a radio link between an end-user (a subscriber) and a network to give high-speed data access. The ProST transceiver/receiver (up to 64 QAM modulation, data rate up to 37Mbps) uses OFDM and operates in TDD duplexing mode. The ProST 1.4G TDD is equipped with a 10 dBi internal or 18 dBi external antennas.

6.2 Ports and lines

Port type	Port description	Connected from	Connected to	Qty.	Cable type	Cable length	Indoor / outdoor
Power	DC Power	EUT	SDA (+ DATA)	1	UTP	10	Outdoor
Signal	RS-232	EUT (Maintance only)	Laptop	1	UTP	0.2	Outdoor
RF	Antenna	EUT	50 Ohm termination	1	Shielded	NA	NA

6.3 Support and test equipment


Description Manufactu		Model number	Serial number
Laptop	IBM	X31	99-TXWYC
Laptop adaptor	Lenovo	92P1014	Z1ZD2N74T2LSN74T2LS
SDA	Airspan	SDA-4S/VL type 2	753D6A0086

6.4 Changes made in the EUT

No changes were implemented in the EUT.

6.5 Test configuration

6.6 Transmitter characteristics

Type of equipment									
V Stand-alone (Equipment with or without its own control provisions)									
	Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)								
Plug-in o	Plug-in card (Equipment intended for a variety of host systems)								
Intended use Condition of use									
V fixed		Always at a distance more than 2 m from all people							
mobile				e more than 2					
portable		May operat	e at a dis	stance closer	than 20 cm t	o human body	y		
Assigned frequency range 1390 – 1395 MHz; 1432 - 1435 MHz									
Operating frequ	ency		1391	- 1394 MHz;	1432.75 – 1	434.25 MHz			
RF channel spa	cing		1.5 N	/Hz, 2.5 MHz	, 3.5 MHz, 5	MHz			
Maximum rated	output pow	er	At tra	At transmitter 50 Ω RF output connector 24.94 dBm					
				No					
					CO	ntinuous varia	ble		
Is transmitter or	utput power	variable?	v	Yes	V ste	pped variable	with ste	epsize 0.5 dB	
			ľ	105	minimum RF	power		-30 dBm	
					maximum RF	power		24.94 dBm	
Antenna connec	ction								
unique c	oupling	V s	tandard	connector		Integral	V	with temporary RF connector without temporary RF connector	
Antenna/s techr	nical charact	teristics							
Туре			facturer		Model num	her		Gain (maximum)	
Internal			S Antenn	as	MA-WC15-AS10 10 dBi				
External				Sanshui Shing TDJ-SA1500-18-65 18 dBi					
External				Co., Ltd.					
Transmitter 99% power bandwidth		Trans	smitter aggre	egate data ra	ate/s, MBps		Type of modulation		
				0.6285 BPSK					
	1.5 MHz			1.2570 3.7695			QPSK		
							16QAM		
			_		5.6550 1.0475		64QAM BPSK		
					2.095			QPSK	
	2.5 MHz				5.2825			16QAM	
					9.425		64QAM		
				1.466			BPSK		
	3.5 MHz				2.933 8.795			QPSK	
								16QAM 64QAM	
			-	13.195 2.095			BPSK		
					4.19		QPSK		
	5 MHz				12.565		16QAM		
				18.85		64QAM			
Type of multiple	xing			OFDI	N				
Modulating test	signal (base	eband)		PRBS	8				
Maximum transı	nitter duty c	ycle in norm	al use	100%					
Transmitter pow									
		minal rated v	oltage	ĺ		Battery type			
V DC		minal rated v		48 VI	DC via SDA				
AC main	s Nor	minal rated v	oltage	120 \	/	Frequency	60 H	Hz	
Common power	source for t	transmitter a	nd recei	ver		V	yes	no	
		-	-						

Test specification:	Section 27.50(e)(1), (2), Pea	Section 27.50(e)(1), (2), Peak output power						
Test procedure:	47 CFR, Section 2.1046; TIA/	47 CFR, Section 2.1046; TIA/EIA-603-C, Section 2.2.1						
Test mode:	Compliance	Verdict: PASS						
Date:	4/4/2011	- Verdict: PASS						
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 53 %	Power Supply: 120 VAC					
Remarks:								

7 Transmitter tests according to 47CFR part 27 requirements

7.1 Peak output power test

7.1.1 General

This test was performed to measure the peak output power at RF antenna connector. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Peak output power limits for Fixed Base Station

Assigned frequency range, MHz	Maximum pea	k output power, EIRP
Assigned frequency range, Milz	W	dBm
1390.0 – 1395.0	100	50.0
1432.0 – 1435.0	2000	63.0

7.1.2 Test procedure

7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.

7.1.2.2 The EUT was adjusted to produce maximum available to the end user RF output power.

7.1.2.3 The peak output power was measured with power meter as provided in Table 7.1.2.

Figure 7.1.1 Peak output power test setup

Test specification:	Section 27.50(e)(1), (2), Pea	Section 27.50(e)(1), (2), Peak output power					
Test procedure:	47 CFR, Section 2.1046; TIA	47 CFR, Section 2.1046; TIA/EIA-603-C, Section 2.2.1					
Test mode:	Compliance	Verdict:	PASS				
Date:	4/4/2011	verdict.	FA33				
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 53 %	Power Supply: 120 VAC				
Remarks:							

Table 7.1.2 Peak output power test results

ASSIGHED FREQUENCY RANGE: DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS: ANTENNA GAIN: DUTY CYCLE:			Pow BPS PRE	imum IBi			
Carrier frequency, MHz	Power meter reading, dBm	External attenuation, dB	Cable loss, dB	RF output power*, EIRP dBm	Limit, EIRP, dBm	Margin, dB	Verdict
EBW 1.5 MHz	Z						
BPSK							
1391.0	23.81	Included	Included	41.81	50.0	-8.19	Pass
64QAM		-				-	-
1391.0	24.49	Included	Included	42.49	50.0	-7.51	Pass
BPSK							
1394.0	24.20	Included	Included	42.20	50.0	-7.80	Pass
64QAM							_
1394.0	24.94	Included	Included	42.94	50.0	-7.06	Pass
EBW 2.5 MHz	Z						
BPSK		· · · · ·					_
1391.25	23.46	Included	Included	41.46	50.0	-8.54	Pass
64QAM	0.4.00			10.00	=0.0		_
1391.25	24.60	Included	Included	42.60	50.0	-7.40	Pass
BPSK	04.04	111	1	40.04	50.0	7.00	Dere
1393.750	24.61	Included	Included	42.61	50.0	-7.39	Pass
64QAM 1393.750	24.72	Included	Included	42.72	50.0	-7.28	Pass
EBW 3.5 MH		Included	included	42.12	50.0	-1.20	F855
	Z						
BPSK 1392.5	24.61	Included	Included	42.61	50.0	-7.39	Pass
1392.5 64QAM	24.01	Included	included	42.01	50.0	-1.59	F855
1392.5	24.62	Included	Included	42.62	50.0	-7.38	Pass
EBW 5 MHz	27.02	moladaa	moladed	72.02	00.0	1.00	1 400
BPSK							
1392.5	24.45	Included	Included	42.45	50.0	-7.55	Pass
64QAM	27.70	moladea	moladed	72.70	00.0	-1.00	1 455
1392.5	24.67	Included	Included	42.67	50.0	-7.33	Pass
* DE suitsuit s	=		n dDre i Arter				

* - RF output power, EIRP (dBm) = Power meter reading, dBm + Antenna gain, dBi

Test specification:	Section 27.50(e)(1), (2), Pea	Section 27.50(e)(1), (2), Peak output power					
Test procedure:	47 CFR, Section 2.1046; TIA	47 CFR, Section 2.1046; TIA/EIA-603-C, Section 2.2.1					
Test mode:	Compliance	Verdict:	PASS				
Date:	4/4/2011	verdict.	FA33				
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 53 %	Power Supply: 120 VAC				
Remarks:		•	•				

Table 7.1.2 Peak output power test results (continued)

ASSIGHED FREQUENCY RANGE: DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS: EBW: ANTENNA GAIN: DUTY CYCLE:			Pow BPS PRE Max	imum MHz Bi			
Carrier frequency, MHz	Power meter reading, dBm	External attenuation, dB	Cable loss, dB	RF output power*, EIRP dBm	Limit, EIRP, dBm	Margin, dB	Verdict
BPSK							
1432.75	24.50	Included	Included	42.50	63.0	-20.50	Pass
64QAM							
1432.75	24.30	Included	Included	42.30	63.0	-20.70	Pass
BPSK							
1434.25	24.47	Included	Included	42.47	63.0	-20.53	Pass
64QAM			_			-	-
1434.25	24.30	Included	Included	42.30	63.0	-20.70	Pass
* - RF output p	ower, EIRP (dBm) = I	Power meter readin	a. dBm + Antei	nna qain. dBi		-	•

RF output power, EIRP (dBm) = Power meter reading, dBm + Antenna gain, dBi

Reference numbers of test equipment used

HL 3301	HL 3302	HL 3787			

Full description is given in Appendix A.

Test specification:	Section 2.1049, Occupie	Section 2.1049, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049					
Test mode:	Compliance	Verdict:	PASS			
Date:	4/5/2011	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC			
Remarks:						

7.2 Occupied bandwidth test

7.2.1 General

This test was performed to measure transmitter occupied bandwidth. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Occupied bandwidth limits

Assigned frequency, MHz	Modulation envelope reference points*, dBc	Maximum allowed bandwidth, kHz
1390.0 - 1395.0	26	NA
1432.0 - 1435.0	26	NA

* - Modulation envelope reference points are provided in terms of attenuation below the unmodulated carrier.

7.2.2 Test procedure

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- 7.2.2.2 The EUT was set to transmit the unmodulated carrier and the reference peak power level was measured.
- 7.2.2.3 The EUT was set to transmit the normally modulated carrier.
- **7.2.2.4** The transmitter occupied bandwidth was measured with spectrum analyzer as a frequency delta between the reference points on modulation envelope and provided in Table 7.2.2 and the associated plots.

Figure 7.2.1 Occupied bandwidth test setup

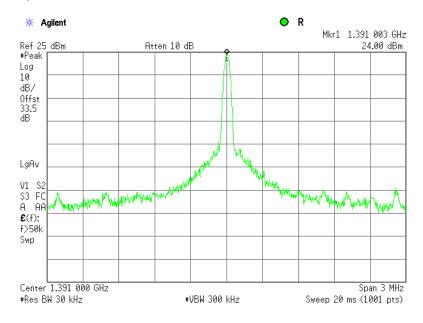
Test specification:	Section 2.1049, Occupie	Section 2.1049, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049					
Test mode:	Compliance	Verdict:	PASS			
Date:	4/5/2011	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC			
Remarks:		•				

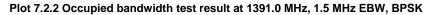
Table 7.2.2 Occupied bandwidth test results

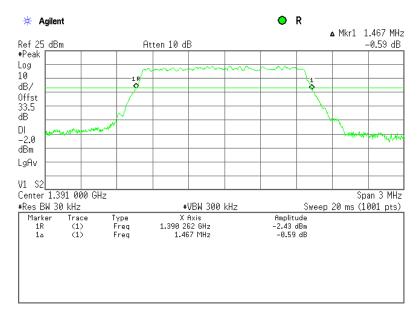
DETECTOR USED: MODULATION ENVE MODULATION:	LOPE REFERENCE F	POINTS:	Peak hold 26 dBc BPSK		
Carrier frequency, MHz	Emission Bandwidth, kHz	Occupied bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
1391.00	1500	1467	NA	NA	NA
1394.00		1458	NA	NA	NA
1432.75		1467	NA	NA	NA
1434.25		1467	NA	NA	NA
1391.25	2500	2385	NA	NA	NA
1393.75	2500	2395	NA	NA	NA
1392.50	3500	3374	NA	NA	NA
1392.50	5000	4840	NA	NA	NA

DETECTOR USED: MODULATION ENVE MODULATION:	LOPE REFERENCE F	POINTS:	Peak hold 26 dBc 64 QAM		
Carrier frequency, MHz	Emission Bandwidth, kHz	Occupied bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
1391.00		1464	NA	NA	NA
1394.00	1500	1458	NA	NA	NA
1432.75	1500	1467	NA	NA	NA
1434.25		1467	NA	NA	NA
1391.25	2500	2395	NA	NA	NA
1393.75	2000	2395	NA	NA	NA
1392.50	3500	3374	NA	NA	NA
1392.50	5000	4830	NA	NA	NA

Reference numbers of test equipment used

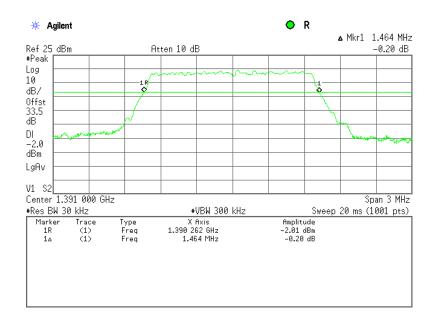

[HL 1906	HL 2951	HL 3301	HL 3302	HL 3763	HL 3787	HL 3818	

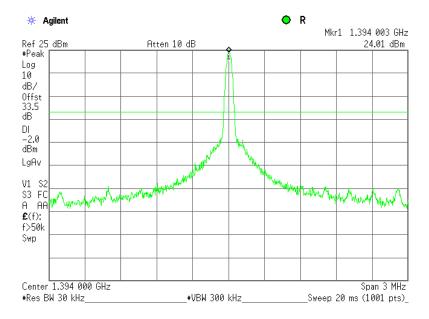

Full description is given in Appendix A.



Test specification:	Section 2.1049, Occupie	Section 2.1049, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049					
Test mode:	Compliance	Verdict:	PASS			
Date:	4/5/2011	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC			
Remarks:						

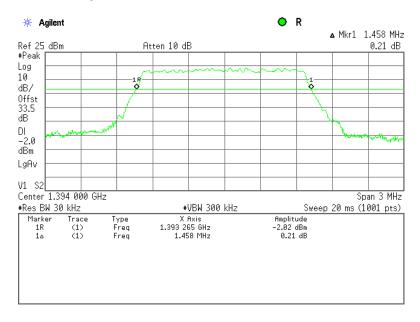
Plot 7.2.1 Occupied bandwidth test result at 1391.0 MHz reference level, unmodulated, 1.5 MHz EBW

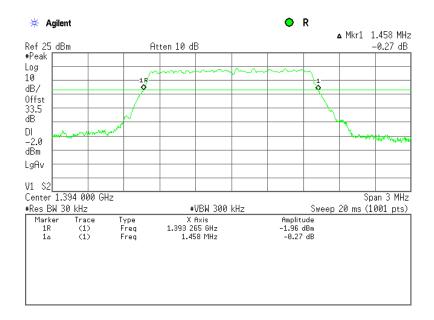




Test specification:	Section 2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	4/5/2011	verdict:	FA33
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC
Remarks:		-	-

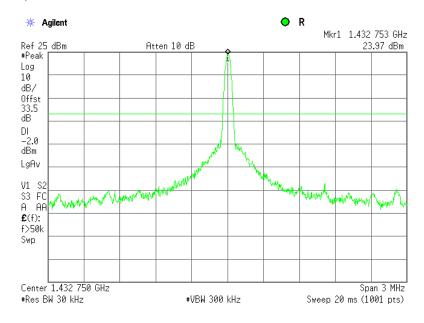
Plot 7.2.3 Occupied bandwidth test result at 1391.0 MHz, 1.5 MHz EBW, 64QAM

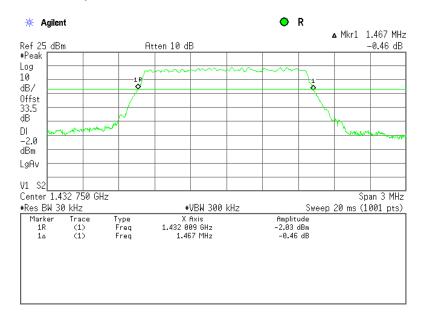

Plot 7.2.4 Occupied bandwidth test result at 1394.0 MHz reference level, unmodulated, 1.5 MHz EBW



Test specification:	Section 2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	4/5/2011	verdict:	LY22
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC
Remarks:			

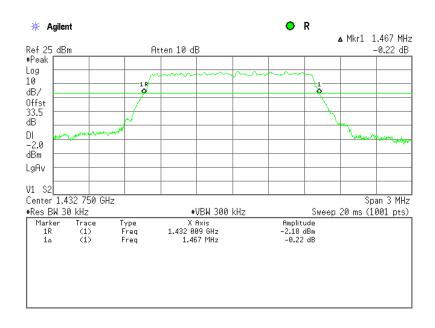
Plot 7.2.5 Occupied bandwidth test result at 1394 MHz, 1.5 MHz EBW, BPSK

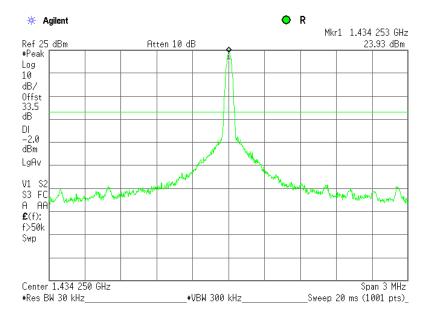

Plot 7.2.6 Occupied bandwidth test result 1394 MHz, 1.5 MHz EBW, 64QAM



Test specification:	Section 2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	4/5/2011	verdict.	FA33
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC
Remarks:			

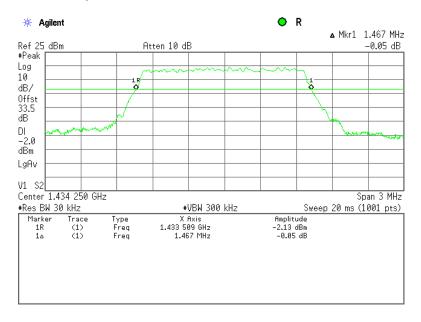
Plot 7.2.7 Occupied bandwidth test result at 1432.75 MHz reference level, unmodulated, 1.5 MHz EBW

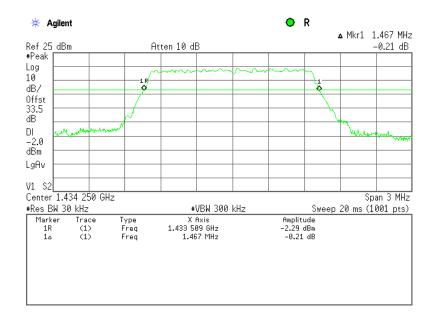

Plot 7.2.8 Occupied bandwidth test result at 1432.75 MHz, 1.5 MHz EBW, BPSK



Test specification:	Section 2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	4/5/2011	verdict.	FA33
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC
Remarks:			

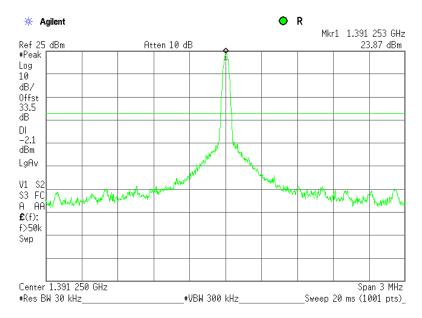
Plot 7.2.9 Occupied bandwidth test result at 1432.75 MHz, 1.5 MHz EBW, 64QAM

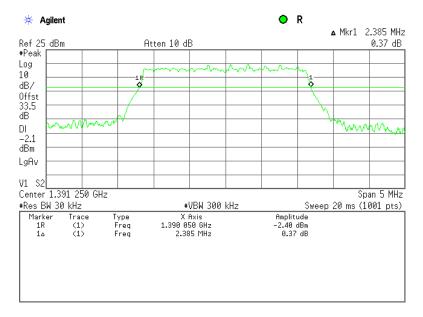

Plot 7.2.10 Occupied bandwidth test result at 1434.25 MHz reference level, unmodulated, 1.5 MHz EBW



Test specification:	Section 2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	4/5/2011	verdict.	FA33
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC
Remarks:			•

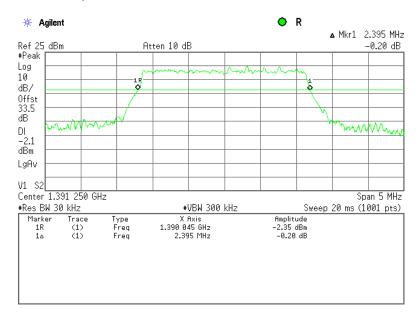
Plot 7.2.11 Occupied bandwidth test result at 1434.25 MHz, 1.5 MHz EBW, BPSK

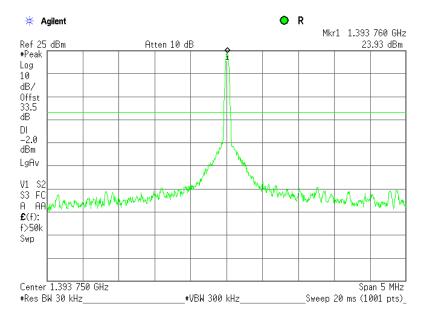

Plot 7.2.12 Occupied bandwidth test result at 1434.25 MHz, 1.5 MHz EBW, 64QAM



Test specification:	Section 2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	4/5/2011	verdict.	FA33
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC
Remarks:			

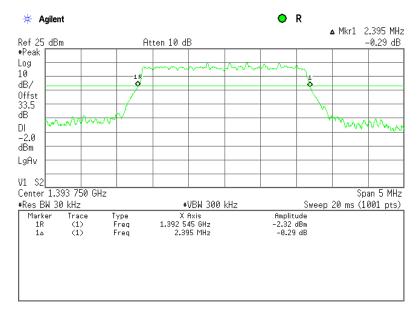
Plot 7.2.13 Occupied bandwidth test result at 1391.25 MHz reference level, unmodulated, 2.5 MHz EBW

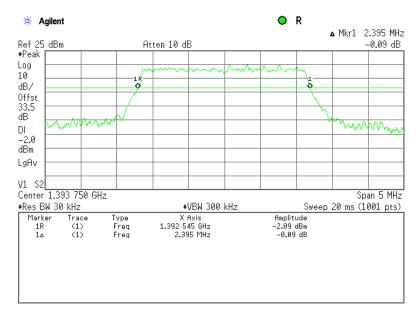

Plot 7.2.14 Occupied bandwidth test result at 1391.25 MHz, 2.5 MHz EBW, BPSK



Test specification:	Section 2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	4/5/2011	verdict:	LY22
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC
Remarks:			

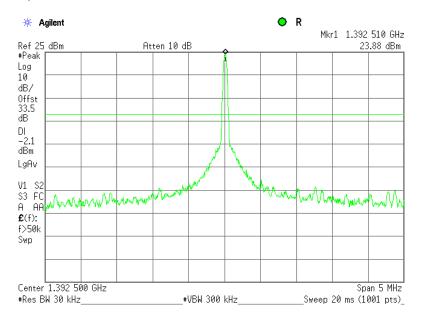
Plot 7.2.15 Occupied bandwidth test result at 1391.25 MHz, 2.5 MHz EBW, 64QAM

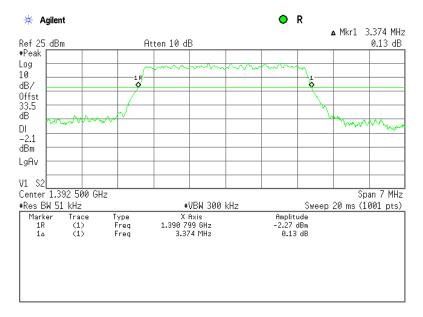

Plot 7.2.16 Occupied bandwidth test result at 1393.75 MHz reference level, unmodulated, 2.5 MHz EBW



Test specification:	Section 2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	4/5/2011	verdict.	FA33
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC
Remarks:		•	

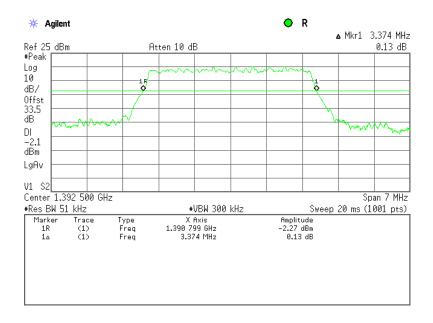
Plot 7.2.17 Occupied bandwidth test result at 1393.75 MHz, 2.5 MHz EBW, BPSK

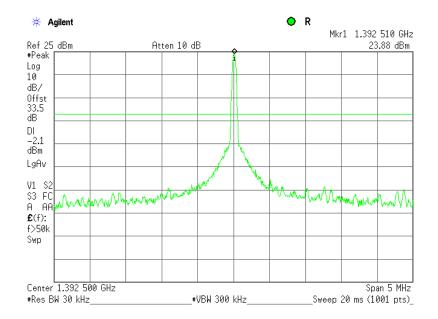




Test specification:	Section 2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	4/5/2011	verdict.	FA33
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC
Remarks:			

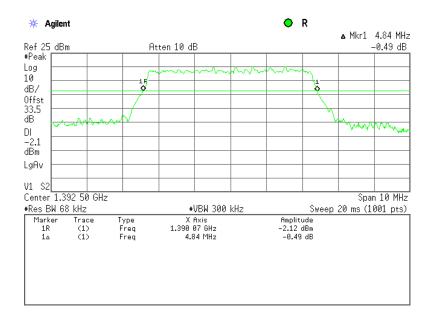
Plot 7.2.19 Occupied bandwidth test result at 1392.5 MHz reference level, unmodulated, 3.5 MHz EBW

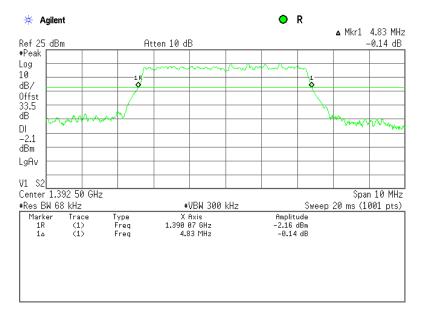

Plot 7.2.20 Occupied bandwidth test result at 1392.5 MHz, 3.5 MHz EBW, BPSK



Test specification:	Section 2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	4/5/2011	verdict:	LY22
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC
Remarks:			

Plot 7.2.21 Occupied bandwidth test result at 1392.5 MHz, 3.5 MHz EBW, 64QAM


Plot 7.2.22 Occupied bandwidth test result at 1392.5 MHz reference level, unmodulated, 5 MHz EBW



Test specification:	Section 2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	4/5/2011	verdict:	FA33
Temperature: 23 °C	Air Pressure: 1013 hPa	Relative Humidity: 49 %	Power Supply: 120 VAC
Remarks:		-	-

Plot 7.2.23 Occupied bandwidth test result at 1392.5 MHz, 5 MHz EBW, BPSK

Plot 7.2.24 Occupied bandwidth test result at 1392.5 MHz, 5 MHz EBW, 64QAM

Test specification:	Section 27.53(j), Conducted spurious emissions		
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13		
Test mode:	Compliance	Verdict:	PASS
Date:	4/3/2011 - 4/4/2011	verdict.	FA33
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC
Remarks:			

7.3 Spurious emissions at RF antenna connector test

7.3.1 General

This test was performed to measure spurious emissions at RF antenna connector. Specification test limits are given in Table 7.3.1.

Table 7.3.1 Spurious emission limits

Frequency, MHz	Attenuation below carrier, dBc	ERP of spurious, dBm
0.009 – 10th harmonic*	43+10logP**	-13.0

- spurious emission limits do not apply to the in band emission of the authorized bandwidth

** - P is transmitter output power in Watts

7.3.2 Test procedure

7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and its proper operation was checked.

7.3.2.2 The EUT was adjusted to produce maximum available for end user RF output power.

7.3.2.3 The spurious emission was measured with spectrum analyzer as provided in Table 7.3.2, Table 7.3.3 and the associated plots.

Conducted spurious emissions were tested with EUT configured to transmit at 1.5 MHz EBW and 64QAM modulation assuming that this configuration produced the maximum RF power density. However, the ranges 1387.0 – 1390.0 MHz, 1395-1398 MHz, 1429-1432 MHz, 1435-1438 MHz were tested with 1.5 MHz, 2.5 MHz, 5.0 MHz EBW and 64 QAM; BPSK types of modulation.

Figure 7.3.1 Spurious emission test setup

Test specification:	Section 27.53(j), Conducted spurious emissions						
Test procedure:	47 CFR, Sections 2.1051; TI	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13					
Test mode:	Compliance	Verdict: PASS					
Date:	4/3/2011 - 4/4/2011	verdict.	FA33				
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC				
Remarks:							

Table 7.3.2 Spurious emission test results

INVESTIGATE DETECTOR U VIDEO BAND MODULATING	WIDTH: S SIGNAL: R OUTPUT PC	CY RANGE:	GS:	0.009 – 14 Peak / RM ≥ Resolutio PRBS Maximum 1.5 MHz	S at bandedges on bandwidth	– 1435.0 N	ЛНz	
Frequency, MHz	SA reading, dBm	Attenuator, dB	Cable loss, dB	RBW, kHz	Spurious emission, dBm	Limit, dBm	Margin, dB*	Verdict
Low frequenc	y 1391.0 MHz							
BPSK		-	-	-		-		
1387-1388	-45.09	Included	Included	1000	-45.09	-13	-32.09	Pass
1388-1389	-37.78	Included	Included	1000	-37.78	-13	-24.78	Pass
1389-1390	-24.28	Included	Included	1000	-24.28	-13	-11.28	Pass
64QAM								_
1387-1388	-32.21	Included	Included	1000	-32.21	-13	-19.21	Pass
1388-1389	-29.64	Included	Included	1000	-29.64	-13	-16.64	Pass
1389-1390	-19.32	Included	Included	1000	-19.32	-13	-6.32	Pass
High frequence	cy 1394 MHz							
BPSK								
1395-1396	-22.12	Included	Included	1000	-22.12	-13	-8.12	Pass
1396-1397	-30.37	Included	Included	1000	-30.37	-13	-17.37	Pass
1397-1398	-31.80	Included	Included	1000	-31.80	-13	-19.80	Pass
64QAM								
1395-1396	-21.42	Included	Included	1000	-21.42	-13	-8.42	Pass
1396-1397	-30.17	Included	Included	1000	-30.17	-13	-17.17	Pass
1397-1398	-32.09	Included	Included	1000	-32.09	-13	-19.09	Pass
	y 1432.75 MHz							
BPSK		-			-	-		
1429-1430	-33.16	Included	Included	1000	-33.16	-13	-20.16	Pass
1430-1431	-29.15	Included	Included	1000	-29.15	-13	-16.15	Pass
1431-1432	-13.56	Included	Included	1000	-13.56	-13	-0.56	Pass
64QAM		-			-	-		
1429-1430	-32.58	Included	Included	1000	-32.58	-13	-19.58	Pass
1430-1431	-28.44	Included	Included	1000	-28.44	-13	-15.44	Pass
1431-1432	-13.48	Included	Included	1000	-13.48	-13	-0.48	Pass
	cy 1434.25 MHz							
BPSK				-				
1435-1436	-18.84	Included	Included	1000	-18.84	-13	-6.84	Pass
1436-1437	-30.94	Included	Included	1000	-30.94	-13	-17.94	Pass
1437-1438	-32.57	Included	Included	1000	-32.57	-13	-19.57	Pass
64QAM								
1435-1436	-18.39	Included	Included	1000	-18.39	-13	-6.39	Pass
1436-1437	-30.94	Included	Included	1000	-30.94	-13	-17.94	Pass
1437-1438	-32.67	Included	Included	1000	-32.67	-13	-19.67	Pass

*- Margin = Spurious emission – specification limit.

Reference numbers of test equipment used

HL 1906	HL 2951	HL 3301	HL 3302	HL 3763	HL 3787	HL 3818	

Full description is given in Appendix A.

Test specification:	Section 27.53(j), Conducted spurious emissions						
Test procedure:	47 CFR, Sections 2.1051; TI	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13					
Test mode:	Compliance	Verdict:	PASS				
Date:	4/3/2011 - 4/4/2011	verdict.	FA33				
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC				
Remarks:							

Table 7.3.3 Spurious emission test results

ASSIGNED FREQUENCY RANGE:	1390.0 – 1395.0 MHz
INVESTIGATED FREQUENCY RANGE:	0.009 – 14500 MHz
DETECTOR USED:	Peak / RMS at bandedges
VIDEO BANDWIDTH:	≥ Resolution bandwidth
MODULATING SIGNAL:	PRBS
TRANSMITTER OUTPUT POWER SETT	INGS: Maximum
	EMISSION BANDWIDTH 2.5 MHz

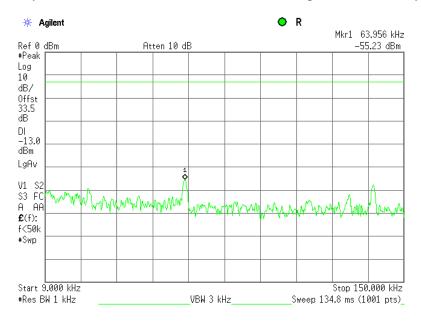
Frequency,	SA reading,	Attenuator,	Cable loss,	RBW,	Spurious	Limit,	Margin,	Verdict
MHz	dBm	dB	dB	kHz	emission, dBm	dBm	dB*	Verdict
	y 1391.25 MHz							
BPSK								
1387-1388	-30.71	Included	Included	1000	-30.71	-13	-17.71	Pass
1388-1389	-22.37	Included	Included	1000	-22.37	-13	-9.37	Pass
1389-1390	-15.02	Included	Included	1000	-15.02	-13	-2.02	Pass
64QAM								
1387-1388	-31.53	Included	Included	1000	-31.53	-13	-18.53	Pass
1388-1389	-23.61	Included	Included	1000	-23.61	-13	-10.61	Pass
1389-1390	-15.40	Included	Included	1000	-15.40	-13	-2.40	Pass
High frequence	y 1393.75 MHz							
BPSK								
1395-1396	-15.73	Included	Included	1000	-15.73	-13	-2.73	Pass
1396-1397	-26.57	Included	Included	1000	-26.57	-13	-13.57	Pass
1397-1398	-31.37	Included	Included	1000	-31.37	-13	-18.37	Pass
64QAM								
1395-1396	-15.70	Included	Included	1000	-15.70	-13	-2.70	Pass
1396-1397	-26.31	Included	Included	1000	-26.31	-13	-13.31	Pass
1397-1398	-31.03	Included	Included	1000	-31.03	-13	-18.03	Pass
		E	MISSION BA	NDWIDTH	3.5 MHz			
Frequency 13	92.5 MHz							
BPSK								
1387-1388	-31.26	Included	Included	1000	-31.26	-13	-18.26	Pass
1388-1389	-22.83	Included	Included	1000	-22.83	-13	-9.83	Pass
1389-1390	-20.88	Included	Included	1000	-20.88	-13	-7.88	Pass
1395-1396	-23.29	Included	Included	1000	-23.29	-13	-10.29	Pass
1396-1397	-27.10	Included	Included	1000	-27.10	-13	-14.10	Pass
1397-1398	-31.50	Included	Included	1000	-31.50	-13	-18.50	Pass
64 QAM								
1387-1388	-32.61	Included	Included	1000	-32.61	-13	-19.61	Pass
1388-1389	-24.22	Included	Included	1000	-24.22	-13	-11.22	Pass
1389-1390	-22.35	Included	Included	1000	-22.35	-13	-9.35	Pass
1395-1396	-24.94	Included	Included	1000	-24.94	-13	-11.94	Pass
1396-1397	-28.82	Included	Included	1000	-28.82	-13	-15.82	Pass
1397-1398	-32.24	Included	Included	1000	-32.24	-13	-19.24	Pass

Test specification:	Section 27.53(j), Conducted spurious emissions						
Test procedure:	47 CFR, Sections 2.1051; TIA	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13					
Test mode:	Compliance	Verdict: PASS					
Date:	4/3/2011 - 4/4/2011	veraici.	FA33				
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC				
Remarks:		•					

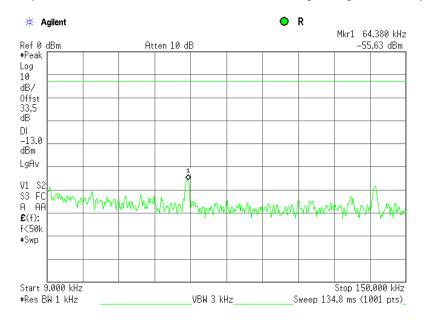
Table 7.3.3 Spurious emission test results (continued)

ASSIGNED FREQUENCY RANGE: INVESTIGATED FREQUENCY RANGE: DETECTOR USED: VIDEO BANDWIDTH: MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS:								
			EMISSION E	BANDWIDTI	H 5 MHz			
Frequency 139	92.5 MHz							
BPSK								
1387-1388	-20.88	Included	Included	1000	-20.88	-13	-7.88	Pass
1388-1389	-20.76	Included	Included	1000	-20.76	-13	-7.76	Pass
1389-1390	-14.56	Included	Included	1000	-14.56	-13	-1.56	Pass
1395-1396	-15.05	Included	Included	1000	-15.05	-13	-2.05	Pass
1396-1397	-22.89	Included	Included	1000	-22.89	-13	-9.89	Pass
1397-1398	-26.18	Included	Included	1000	-26.18	-13	-13.18	Pass
64 QAM								
1387-1388	-20.56	Included	Included	1000	-20.56	-13	-7.56	Pass
1388-1389	-20.32	Included	Included	1000	-20.32	-13	-7.32	Pass
1389-1390	-14.04	Included	Included	1000	-14.04	-13	-1.04	Pass
1395-1396	-15.00	Included	Included	1000	-15.00	-13	-2.00	Pass
1396-1397	-22.42	Included	Included	1000	-22.42	-13	-9.42	Pass
1397-1398	-25.77	Included	Included	1000	-25.77	-13	-12.77	Pass

Reference numbers of test equipment used


	<u>.</u>		<u>.</u>	<u>.</u>	-	<u>.</u>	<u>.</u>
HL 1906	HL 2951	HL 3301	HL 3302	HL 3763	HL 3787	HL 3818	

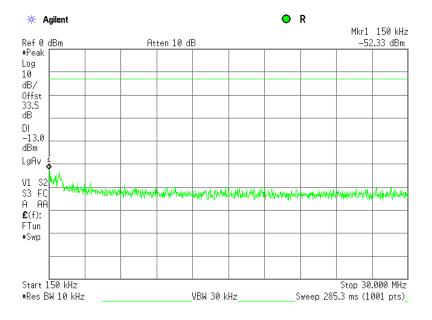
Full description is given in Appendix A.



Test specification:	Section 27.53(j), Conducted spurious emissions						
Test procedure:	47 CFR, Sections 2.1051; TIA	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13					
Test mode:	Compliance	Verdict:	PASS				
Date:	4/3/2011 - 4/4/2011	verdict.	FA33				
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC				
Remarks:			-				

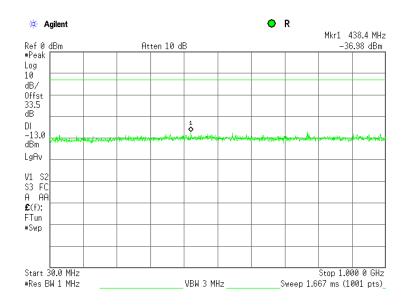
Plot 7.3.1 Spurious emission measurements in 9 - 150 kHz range at low carrier frequency

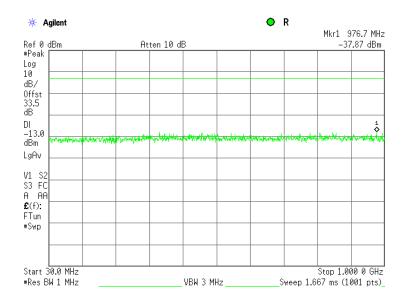

Plot 7.3.2 Spurious emission measurements in 9 – 150 kHz range at high carrier frequency



Test specification:	Section 27.53(j), Conducted spurious emissions						
Test procedure:	47 CFR, Sections 2.1051; TIA	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13					
Test mode:	Compliance	Verdict:	PASS				
Date:	4/3/2011 - 4/4/2011	verdict.	FA33				
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC				
Remarks:		-	-				

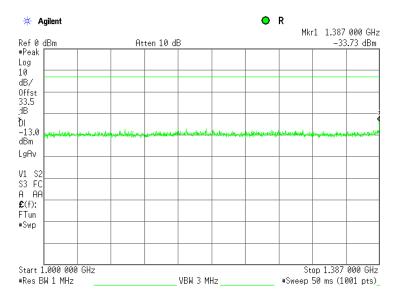
Plot 7.3.3 Spurious emission measurements in 0.15 - 30.0 MHz range at low carrier frequency

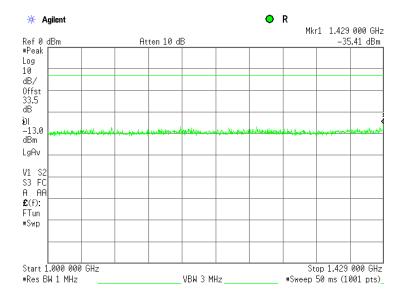

Plot 7.3.4 Spurious emission measurements in 0.15 – 30.0 MHz range at high carrier frequency



Test specification:	Section 27.53(j), Conducted spurious emissions				
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict:	PASS		
Date:	4/3/2011 - 4/4/2011	verdict.	FA33		
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC		
Remarks:					

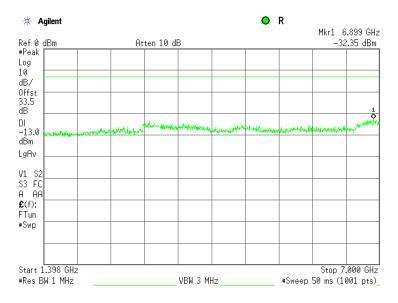
Plot 7.3.5 Spurious emission measurements in 30.0 - 1000 MHz range at low carrier frequency

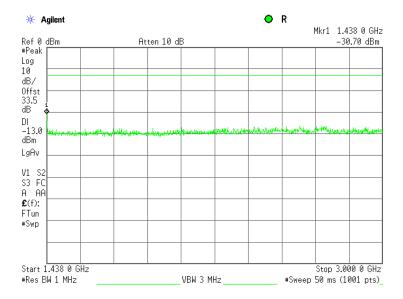

Plot 7.3.6 Spurious emission measurements in 30.0 – 1000 MHz range at high carrier frequency



Test specification:	Section 27.53(j), Conducted spurious emissions				
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict:	PASS		
Date:	4/3/2011 - 4/4/2011	verdict.	FA33		
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC		
Remarks:			-		

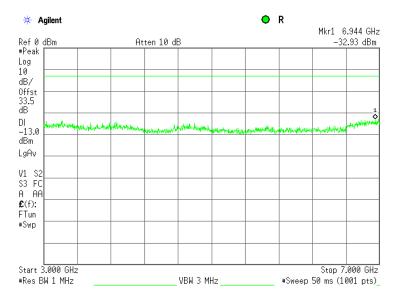
Plot 7.3.7 Spurious emission measurements in 1000 - 1387 MHz range at low carrier frequency

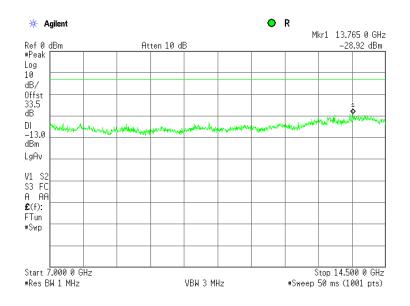

Plot 7.3.8 Spurious emission measurements in 1000 - 1429 MHz at high carrier frequency



Test specification:	Section 27.53(j), Conducted spurious emissions				
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict:	PASS		
Date:	4/3/2011 - 4/4/2011	verdict.	FA33		
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC		
Remarks:			-		

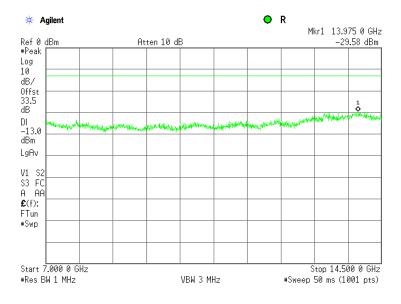
Plot 7.3.9 Spurious emission measurements in 1398 – 7000 MHz range at low carrier frequency


Plot 7.3.10 Spurious emission measurements in 1438 – 3000 MHz range at high carrier frequency



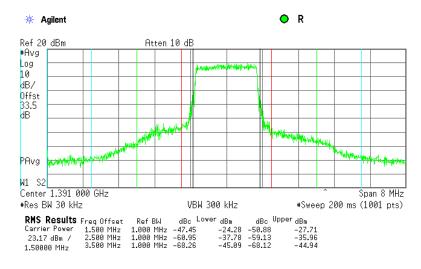
Test specification:	Section 27.53(j), Conducted spurious emissions				
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict:	PASS		
Date:	4/3/2011 - 4/4/2011	veraict.	FA33		
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC		
Remarks:		•	-		

Plot 7.3.11 Spurious emission measurements in 3000 - 7000 MHz range at high carrier frequency


Plot 7.3.12 Spurious emission measurements in 7000 - 14500 MHz at low carrier frequency

Test specification:	Section 27.53(j), Conducted spurious emissions				
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict:	PASS		
Date:	4/3/2011 - 4/4/2011	veraict.	FA33		
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC		
Remarks:		•			

Plot 7.3.13 Spurious emission measurements in 7000-14500 MHz at high carrier frequency

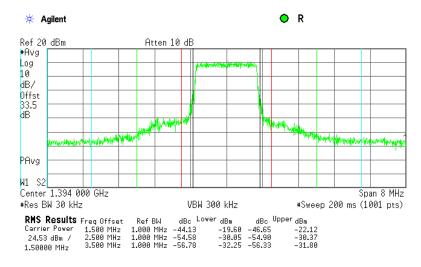


:

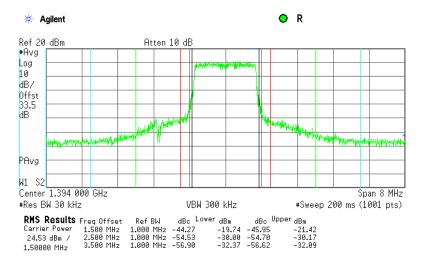
Test specification:	Section 27.53(j), Conducted spurious emissions				
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict:	PASS		
Date:	4/3/2011 - 4/4/2011	verdict.	FA33		
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC		
Remarks:		•	-		

Plot 7.3.14 Spurious emission measurements in 1387 - 1390 MHz at low carrier frequency, 1.5 MHz EBW, BPSK

Plot 7.3.15 Spurious emission measurements in 1387 – 1390 MHz at low carrier frequency, 1.5 MHz EBW, 64QAM

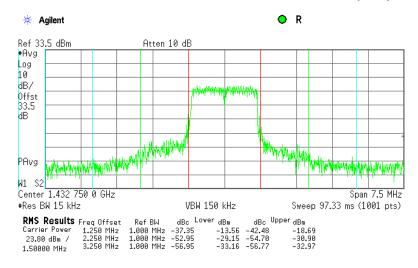


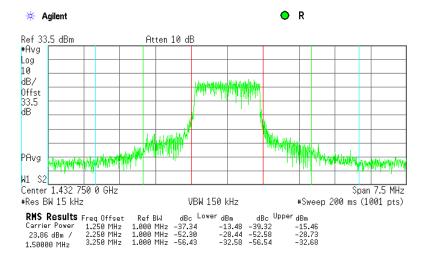
RMS Results Freq Of	fset RefBW	dBc Lower	dBm	dBc Uppe	^{er} dBm
Carrier Power 1.500 24.57 dBm / 2.500 1.50000 MHz 3.500	MHz 1.000 MHz MHz 1.000 MHz	-54.22	-19.32 -29.64 -32.21		-21.35 -29.87 -31.44



Test specification:	Section 27.53(j), Conducted spurious emissions					
Test procedure:	47 CFR, Sections 2.1051; TIA	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict: PASS				
Date:	4/3/2011 - 4/4/2011	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC			
Remarks:		•	-			

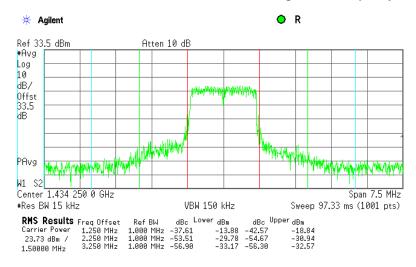
Plot 7.3.16 Spurious emission measurements in 1395 – 1398 MHz at high carrier frequency, 1.5 MHz EBW, BPSK

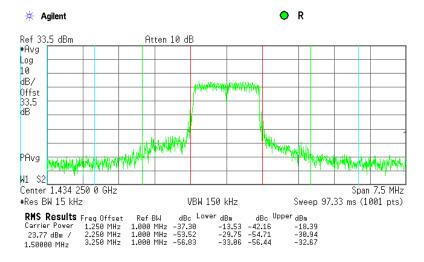

Plot 7.3.17 Spurious emission measurements in 1395 – 1398 MHz at high carrier frequency, 1.5 MHz EBW, 64QAM



Test specification:	Section 27.53(j), Conducted spurious emissions					
Test procedure:	47 CFR, Sections 2.1051; TIA	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict: PASS				
Date:	4/3/2011 - 4/4/2011	veraict.	FA33			
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC			
Remarks:		•	-			

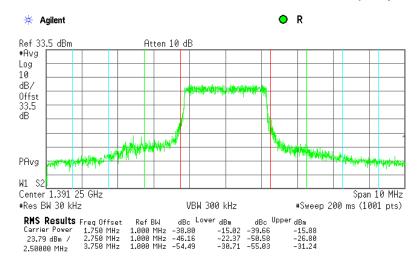
Plot 7.3.18 Spurious emission measurements in 1429 – 1432 MHz at low carrier frequency, 1.5 MHz EBW, BPSK

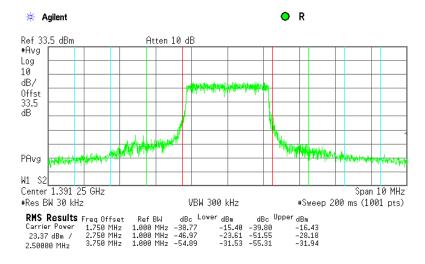

Plot 7.3.19 Spurious emission measurements in 1429 - 1432 MHz at low carrier frequency, 1.5 MHz EBW, 64 QAM



Test specification:	Section 27.53(j), Conducted spurious emissions					
Test procedure:	47 CFR, Sections 2.1051; TIA	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict: PASS				
Date:	4/3/2011 - 4/4/2011	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC			
Remarks:		•	-			

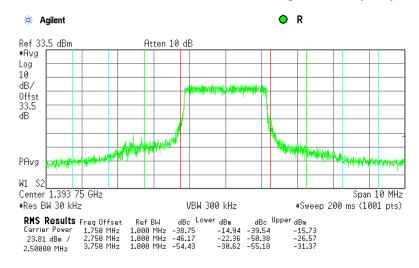
Plot 7.3.20 Spurious emission measurements in 1435 – 1438 MHz at high carrier frequency, 1.5 MHz EBW, BPSK

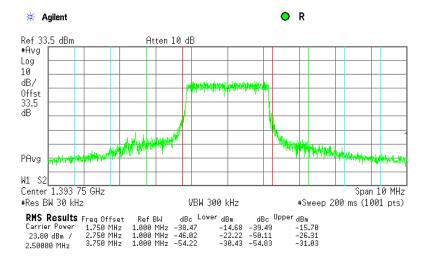

Plot 7.3.21 Spurious emission measurements in 1435 - 1438 MHz at high carrier frequency, 1.5 MHz EBW, 64QAM



Test specification:	Section 27.53(j), Conducted spurious emissions					
Test procedure:	47 CFR, Sections 2.1051; TIA	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict: PASS				
Date:	4/3/2011 - 4/4/2011	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC			
Remarks:		•	-			

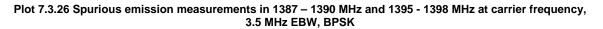
Plot 7.3.22 Spurious emission measurements in 1387 – 1390 MHz at low carrier frequency, 2.5 MHz EBW, BPSK

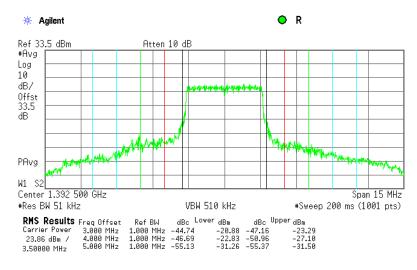

Plot 7.3.23 Spurious emission measurements in 1387 - 1390 MHz at low carrier frequency, 2.5 MHz EBW, 64 QAM

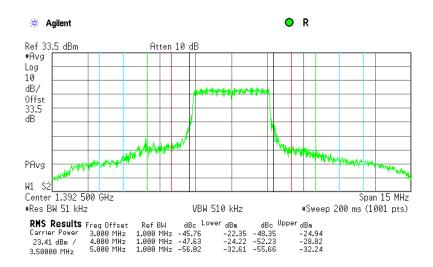


Test specification:	Section 27.53(j), Conducted spurious emissions					
Test procedure:	47 CFR, Sections 2.1051; TIA	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict: PASS				
Date:	4/3/2011 - 4/4/2011	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC			
Remarks:		•	-			

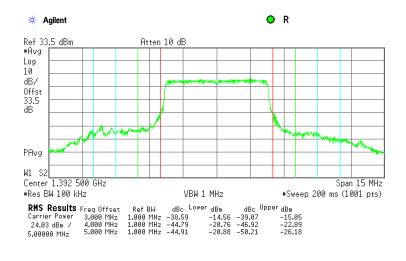
Plot 7.3.24 Spurious emission measurements in 1395 – 1398 MHz at high carrier frequency, 2.5 MHz EBW, BPSK

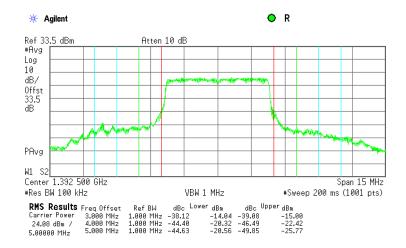



Plot 7.3.25 Spurious emission measurements in 1395 – 1398 MHz at high carrier frequency, 2.5 MHz EBW, 64 QAM



Test specification:	Section 27.53(j), Conducted spurious emissions				
Test procedure:	47 CFR, Sections 2.1051; TI	CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13			
Test mode:	Compliance	Verdict: PASS			
Date:	4/3/2011 - 4/4/2011	verdict.	FA33		
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC		
Remarks:					


Plot 7.3.27 Spurious emission measurements in 1387 – 1390 MHz and 1395 - 1398 MHz at carrier frequency, 3.5 MHz EBW, 64 QAM



Test specification:	Section 27.53(j), Conducted spurious emissions				
Test procedure:	47 CFR, Sections 2.1051; TIA/EIA-603-C, Section 2.2.13				
Test mode:	Compliance	Verdict:	PASS		
Date:	4/3/2011 - 4/4/2011	verdict:	FA33		
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 48 %	Power Supply: 120 V AC		
Remarks:					

Plot 7.3.28 Spurious emission measurements in 1387 – 1390 MHz and 1395 - 1398 MHz at carrier frequency, 5 MHz EBW, 64 BPSK

Plot 7.3.29 Spurious emission measurements in 1387 – 1390 MHz and 1395 - 1398 MHz at carrier frequency, 5 MHz EBW 64 QAM

HL	Description	Manufacturer	Model	Ser. No.	Last Cal.	Due Cal.
No						
1906	Power Divider, 0.5-18.0 GHz, 80 W	Omni Spectra	2090-	1906	01-Dec-10	01-Dec-12
			6204-00			
2951	Cable, RF, 18 GHz, 0.9 m, SMA-SMA	Gore	10020014	NA	04-Oct-10	04-Oct-11
3301	Power Meter, P-series, 50 MHz to	Agilent	N1911A	MY45101057	13-Dec-10	13-Dec-11
	40 GHz	Technologies				
3302	Power sensor, P-Series, 50 MHz to	Agilent	N1922A	MY45240586	13-Dec-10	13-Dec-11
	40 GHz, -35/30 to 20 dBm	Technologies				
3442	Precision Fixed Attenuator, 50 Ohm,	Mini-Circuits	BW-	NA	07-Mar-11	07-Mar-12
	5 W, 20 dB, DC to 18 GHz		S20W5+			
3763	Precision Fixed Attenuator, 50 Ohm,	Mini-Circuits	BW-	NA	07-Dec-10	07-Dec-11
	5 W, 20 dB, DC to 18 GHz		S20W5+			
3787	Precision Fixed Attenuator, 50 Ohm,	Mini-Circuits	BW-	NA	07-Dec-10	07-Dec-11
	5 W, 10 dB, DC to 18 GHz		S10W5+			
3818	PSA Series Spectrum Analyzer, 3 Hz- 44	Agilent	E4446A	MY48250288	25-Sep-09	25-Sep-11
	GHz	Technologies				

8 APPENDIX A Test equipment and ancillaries used for tests

9 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Transmitter tests	
Carrier power conducted at antenna connector	± 1.7 dB
Carrier power radiated (substitution method)	± 4.5 dB
Occupied bandwidth	±8%
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Spurious emissions radiated 30 MHz – 40 GHz (substitution method)	± 4.5 dB
Frequency error	30 – 300 MHz: ± 50.5 Hz (1.68 ppm)
	300 – 1000 MHz: ± 168 Hz (0.56 ppm)
Transient frequency behaviour	187 Hz
	± 13.9 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

10 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility.

Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), Registration Numbers 90624 for OATS and 90623 for the anechoic chamber; by Industry Canada for electromagnetic emissions (file numbers IC 2186A-1 for OATS, IC 2186A-2 for anechoic chamber, IC 2186A-3 for full-anechoic chamber for RE measurements above 1 GHz), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, G-27 for full-anechoic chamber for RE measurements above 1 GHz, C-845 for conducted emissions site, T-1606 for conducted emissions at telecommunication ports), has a status of a Telefication - Listed Testing Laboratory, Certificate No. L138/00. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01). The FCC Designation Number is US1003.

Address:	P.O. Box 23, Binyamina 30500, Israel.
Telephone:	+972 4628 8001
Fax:	+972 4628 8277
e-mail:	mail@hermonlabs.com
website:	www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

11 APPENDIX D Specification references

FCC 47CFR part 27: 2010	Miscellaneous wireless communications services
FCC 47CFR part 1: 2010	Practice and procedure
FCC 47CFR part 2: 2010	Frequency allocations and radio treaty matters; general rules and regulations
ANSI C63.2: 1996	American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI C63.4: 2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
ANSI/TIA/EIA-603-C:2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards

12 APPENDIX E Test equipment correction factors

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.07	5750	0.77	12000	1.23
30	0.06	6000	0.78	12250	1.25
100	0.09	6250	0.81	12500	1.26
250	0.15	6500	0.83	12750	1.26
500	0.21	6750	0.84	13000	1.30
750	0.27	7000	0.85	13250	1.30
1000	0.31	7250	0.88	13500	1.30
1250	0.36	7500	0.88	13750	1.29
1500	0.38	7750	0.93	14000	1.23
1750	0.42	8000	0.92	14250	1.32
2000	0.44	8250	0.94	14500	1.27
2250	0.47	8500	0.99	14750	1.27
2500	0.50	8750	0.97	15000	1.34
2750	0.52	9000	1.01	15250	1.36
3000	0.54	9250	1.05	15500	1.35
3250	0.57	9500	1.08	15750	1.36
3500	0.58	9750	1.10	16000	1.43
3750	0.61	10000	1.09	16250	1.38
4000	0.63	10250	1.09	16500	1.42
4250	0.66	10500	1.07	16750	1.49
4500	0.68	10750	1.10	17000	1.53
4750	0.70	11000	1.09	17250	1.59
5000	0.71	11250	1.09	17500	1.65
5250	0.74	11500	1.13	17750	1.82
5500	0.77	11750	1.12	18000	2.09

Cable loss Cable coaxial, Gore, 18 GHz, 0.9 m, SMA-SMA, S/N 10020014 HL 2951

13 APPENDIX F Abbreviations and acronyms

A AC A/m AM AVRG CBW cm dB dBm dB(μ V) dB(μ V) dB(μ V) dB(μ V) dB(μ A) dB(μ A	ampere alternating current ampere per meter amplitude modulation average (detector) channel bandwidth centimeter decibel decibel referred to one milliwatt decibel referred to one microvolt decibel referred to one microvolt per meter decibel referred to one microvolt per meter decibel referred to one microvolt per meter decibel referred to one ohm direct current emission bandwidth equivalent isotropically radiated power effective radiated power equipment under test frequency gigahertz ground
H	height
HL	Hermon laboratories
Hz	hertz
k	kilo
kHz	kilohertz
LO	local oscillator
m	meter
MHz	megahertz
min	minute
mm	millimeter
ms	millisecond
μs NA	microsecond
NB	not applicable narrow band
NT	not tested
OATS	open area test site
Ω	Ohm
QP	quasi-peak
PM	pulse modulation
PS	power supply
RE	radiated emission
RF	radio frequency
rms	root mean square
Rx	receive
S	second
Т	temperature
Tx	transmit
V	volt
VA	volt-ampere

END OF DOCUMENT